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Abstract—Classical leader election protocols typically assume
complete and correct knowledge of underlying membership lists
at all participating nodes. Yet many edge and IoT settings are
dynamic, with nodes joining, leaving, and failing continuously—a
phenomenon called churn. This implies that in any membership
protocol, a given node’s membership list may have entries that
are missing (e.g., false positive detections, or newly joined nodes
whose information has not spread yet) or stale (e.g., failed
nodes that are undetected)—these would render classical election
protocols incorrect. We present a family of four leader election
protocols that are churn-tolerant (or c-tolerant). The key ideas
are to: i) involve the minimum number of nodes necessary to
achieve safety; ii) use optimism so that decisions are made faster
when churn is low; iii) incorporate a preference for electing
healthier nodes as leaders. We prove the correctness and safety
of our c-tolerant protocols and show their message complexity
is optimal. We present experimental results from both a trace-
driven simulation as well as our implementation atop Raspberry
Pi devices, including a comparison against Zookeeper.

Index Terms—Leader Election, Membership, Edge Computing,
Churn

I. INTRODUCTION

Driven by the promise of autonomous operation, self-
adaptability, low latency, and bandwidth [1], the global edge
computing market size is expected to reach 155.9 billion
USD by 2030 [2], with over 29 billion IoT devices by
2030 [3]. Edge computing scenarios range from “stable” ones
like smart homes, Industry 4.0, and infrastructure deployments
(e.g., smart bridges, roads, etc.), to “dynamic” settings—
examples include robots in remote or inhospitable terrains
(e.g., emergency rescue and recovery scenarios, battlefields,
smart farms) [4], [5], [6], to constellations of satellites (low
earth LEO, or medium earth MEO) [7], [8], to fast-moving
vehicle platoons [9]. While a bulk of research today deals
with the former stable edge settings, the rapid recent growth
of the latter dynamic settings brings forth many problems that
remain unsolved.

This paper tackles the classical problem of leader election.
A leader election protocol can be initiated by any one node,
and aims to satisfy both: 1) (Safety) elect a unique leader
that has the single “best attribute” (e.g., the lowest hash
ID, or the most amount of data, etc.), and 2) (Liveness)
inform all non-faulty nodes of this single unique leader’s ID.
Leader election is a key building block for coordination among
nodes in dynamic edge settings, especially when remoteness
means no central hub or infrastructure is present nearby to

perform coordination actions. For instance, robots in rescue
and recovery scenarios, or smart farms [6], need a leader for
coordination when no human operator is nearby. A second
example—LEO or MEO satellites [7] move very fast (finishing
an orbit in under 2 hrs), so the set of satellites above a
geographical area (e.g., a state) is a dynamic group and
yet needs a leader satellite for coordination actions (since
ground stations are sparse and may be absent in that area).
A third example is vehicle platoons using a leader to achieve
autonomous caravan driving [9].

Unfortunately, classical solutions to leader election [10],
[11], [12], [13], [14], [15], [16], [17], [18] assume a “stable”
membership (i.e., “strongly-consistent membership”), wherein
every node knows all other nodes, and if any node joins,
leaves, or fails, the underlying membership protocol sends an
instantaneous update to all non-faulty nodes. However, incon-
sistencies in membership lists are unavoidable in asynchronous
edge systems since an update (node join, leave, or failure)
cannot instantly propagate to all nodes: network latencies are
non-zero and vary, while timeouts for failure detection (e.g.,
via heartbeating [19] or ping-ack protocols [20], [21]) are not
synchronized across nodes.

We aim to solve leader election in such churned edge
environments where nodes continuously join, leave, and fail
(by crashing only 1). Concretely, our leader election protocols
can be layered atop an arbitrary weakly-consistent membership
protocol such as gossip-style heartbeating [19], SWIM [20], or
Medley [21]. These weakly-consistent membership protocols
detect failures and spread membership updates quickly, yet
they only provide eventual consistency guarantees, i.e., a
membership update (join, leave, or failure) is received only
eventually at all non-faulty nodes, and in an arbitrary order.
Due to their scalability, weakly-consistent membership proto-
cols are an appropriate choice for edge computing settings.

The problem of churn-tolerant leader election is non-trivial.
Given strongly-consistent membership, a group can quickly
elect a leader: each node uses a consistent and local hash
function (e.g., SHA3, MD5, etc.) on all IDs present in its
local membership list and selects as leader node whose ID
has the lowest hash [22], [10], [21]. With identical and correct
membership lists (strong), everyone elects the same leader,
without extra messages. However, if membership lists are

1Fail-stop model only. This paper does not consider Byzantine failures.
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inconsistent (weak), the would-be leader may be unknown at
some nodes, thus multiple leaders may be elected, violating
safety. Thus a new churn-tolerant variant of this protocol is
needed. (For simplicity the rest of this paper uses the lowest
hash ID as the leader selection criteria, but this can be replaced
by an arbitrary attribute of choice, and our results still apply.)

The contributions of this paper are:

• We propose a progression of four variants for churn-
tolerant (or c-tolerant) election that (respectively) in-
volve the fewest messages, have optimism by completing
quickly in the common (consistent) case, accommodate a
“health” preference for the leader, and a hybrid optimistic-
preference variant.
• We prove Safety and Liveness of all our protocols, and

analyze the optimality of their message complexity.
• We present simulation results of our churn-tolerant elec-

tion protocols, where we inject traces from the Medley
membership protocol [21].
• We implemented our churn-tolerant election protocols in

Raspberry Pi devices, and we present results from a lab
deployment, and we show that our protocols consume far
fewer resources than stock solutions like Zookeeper [11].

The rest of the paper is organized as follows. Sec. II presents
background and related work. Sec. III presents our system
model. Sec. IV presents our c-tolerant election protocols. Sec.
V analyzes them formally. Sec. VI presents simulation results,
and Sec. VII presents Raspberry Pi deployment results.

II. BACKGROUND AND RELATED WORK

A. Membership Protocols

There are two major kinds of membership protocols in
asynchronous distributed systems—strong and weak.

Strongly-Consistent Membership: The strictest variants
assume that membership lists at each alive node are identical at
all times. This implies that membership updates are delivered
to all nodes at the exact same time, which is impossible to
achieve in asynchronous systems [23], [24]. A slightly relaxed
variant (within strong membership) assumes that membership
updates will reach each node in the same order, but possibly
at different physical arrival times. Examples include virtual
synchrony [25], Raft [13], Zookeeper [11], and others [26],
[27]. Yet the overhead of strongly-consistent membership
protocols scales poorly with churn, rendering nodes unable to
do useful work. For instance, this is why a typical Zookeeper
cluster only contains between 3 and 7 servers.

Weakly-Consistent Membership: A weakly-consistent
membership propagates membership updates to all nodes even-
tually, but it does not guarantee either ordering or timing of
the updates. Examples include gossip-style heartbeating [19],
SWIM [20], and other IoT membership protocols [21]. These
protocols scale better than strongly-consistent membership
protocols and have been used in systems with thousands of
participating nodes [28], [29]. However, membership inconsis-
tencies create a mismatch with the desire to provide a strong

safety property above it. Concretely, a node Mi could be
missing in other nodes’ membership lists if Mi just joined
or it is mistakenly detected as failed (false positive) by some
other nodes. A node Mi could also falsely exist at another
node’s membership list but Mi is actually failed, as failure
detection is not instantaneous.

Membership in Edge Settings: Edge settings are better
suited to weakly-consistent membership protocols. Strongly-
consistent membership protocols have difficulty scaling in
asynchronous systems as they incur high bandwidth and
tend to splinter the node group beyond a few 10s of nodes
[30], [25], [23], [31]. Weakly-consistent membership protocols
[32], [33], [21] only guarantee eventual delivery of member-
ship changes without order, but they scale well and use low
bandwidth. Hence all election protocols presented in this paper
are layered over a weakly-consistent membership.

B. Related Work

Broadly, the topic of layering consistent services over in-
consistent substrates has received recent attention. [34] imple-
ments transactional systems on top of inconsistent replication
in distributed systems, and [31] supports virtual synchrony
over gossiping. The key idea in [34] and [31] are similar: they
both reactively try to fix inconsistency issues raised from lower
layers, as opposed to our (membership-based) approach which
is proactive. [35] builds a microservices OS over inconsistent
networks by integrating strong consistency properties into the
membership layer itself. Neither of the aforementioned papers
builds over inconsistent membership lists, nor did they propose
fully-distributed election protocols. Some work [10], [36]
provides probabilistic safety property for distributed protocols
atop weak membership, while we provide 100% safety. Ad-
hoc routing [29] uses gossip [30], [37] to spread information
fast, but requires flooding to maintain safety. To the best of
our knowledge, our work is the first to explore the challenges
and mismatches of layering strongly-consistent distributed
protocols directly over weak membership layers.

Churn is a common phenomenon in peer-to-peer systems
and past work has built distributed hash tables and applications
that are churn-tolerant [38], [39], yet the notions of safety pro-
vided therein are merely probabilistic or best-effort (while we
provably guarantee safety). Classical leader election solutions
such as the Bully Algorithm [14] or consensus-based election
protocols like Zookeeper [11], Paxos [12], and Raft [13],
assume full and correct membership. Election in mobile ad-
hoc networks that are subject to partitions exists [15], [16],
yet they assume FIFO links and consistency within each
partition (these partition-tolerant techniques can be applied
orthogonally to us as we do not consider partitions). Self-
stabilizing leader election [40], [41], [42] aims to recover
from transient faults, but they assume that the underlying
“overlay” (ring, tree, etc.) stabilizes after failures. We assume
no membership convergence, and our membership lists can be
inconsistent all the time.
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III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We assume an asynchronous system where messages have

arbitrary delay but are delivered eventually (without a known
bound), and nodes may crash by failing. Like classical lit-
erature, we assume a known upper-bound f on the number
of simultaneously failed nodes (after the protocol quiesces,
further f nodes may fail).

We assume a weakly-consistent membership protocol [19],
[20], [21] runs in the background at each node and continually
updates its local membership. Each node in the system can
join, leave, or fail (crash) arbitrarily, and the membership
protocol only provides the property that such updates are
eventually propagated to non-faulty nodes. We also assume
multicast is eventually reliable, e.g., via gossip [43] or R-
multicast [44]. To summarize: in the rest of this paper, a
churned setting means a weakly-consistent membership and
eventually reliable multicast running at each node.

Denote the total number of nodes in the system as N .
Edge and IoT systems naturally know N . This assumption
is backed up by studies—even in high-churn peer-to-peer
systems, studies have shown that the number of alive nodes
remains stable in spite of churn [45], [46].

Now, let a given node Mi be missing in the membership
lists of ci other nodes. We assume that the maximum of all ci
values is bounded from above by a known value c (analogous
to the classical assumption of f failures), i.e.,

max({ci|1 ≤ i ≤ N}) ≤ c

We aim to design an election protocol that provides safety
for a given maximum value of c—we call such an election
as a c-tolerant election protocol (or more precisely (c,f)-
tolerant). Our notion of c-tolerance handles missing entries
in membership lists, thus generalizing the traditional failure
(f)-tolerant protocol that deals with extra entries (nodes that
are failed but not yet detected).

In practice, values of c are in fact small. Table I shows
5-minute runs of the Medley failure detector [21] with 3
different topologies, system sizes, and message drop rates.
(Experimental settings are in Sec. VI.)

We observe that the calculated c(= max({ci|1 ≤ i ≤ N}))
values are small. For message loss rates at or under 5%,
c values never exceed 10% of N . Hence we assume the
membership graph is strongly connected, not partitioned, and
that c is small.

B. Leader Election Problem
An election run must satisfy the following two properties:

Definition 1. Liveness: Protocol terminates, i.e., each alive
node eventually elects a leader (sets its local leader variable
to a non-null value).

Definition 2. Safety: At the end of the leader election, each
alive node only sets its local leader variable to that unique
non-faulty node which has the lowest hash of all non-faulty
nodes currently in the system.

TABLE I: c values (from 5-minute Medley [21] runs) stay
small across different configurations

Topology Type Topology Size Message Drop Rate c

Grid 49 0.05 4

Cluster 49 0.05 4

Random 49 0.05 4

Random 49 0.1 7

Random 49 0.15 10

Random 49 0.2 13

Random 32 0.05 2

Random 64 0.05 5

Random 128 0.05 9

Random 256 0.05 17

For ease of exposition, our description of the protocols
assumes a single “initiator” node. This node may be the one
that detects the failure of the old leader or is the bootstrap node
when the system boots up. We do not tackle initiator failure
because weak membership protocol failures are eventually
detected, so some node will eventually detect the old leader’s
failure and initiate an election. To handle multiple initiators—
any initiator that hears of a lower ID initiator does not
complete its own protocol and instead participates in the
lower ID initiator’s protocol, thus only the lowest ID initiator
completes. In this way, multiple initiators would elect the same
leader.

IV. PROTOCOL DESIGN

In this section, we present our four leader election protocols
for churned settings.

A. Base Protocol

We first observe that in order to minimize message com-
plexity, the initiator must communicate with the least number
of nodes, to safely make a decision about who the leader is.

Assume node Mi is the would-be (or presumptive) leader
(i.e., the non-faulty node with the lowest hash in the system,
though other nodes may not know it yet). Assume no failed
nodes at first. By our assumption, Mi may be missing in
up to c other nodes’ membership lists. Thus, our protocol
has the initiator send a QUERY message to at least (c + 1)
nodes, selected arbitrarily, each of which then sends back a
RESPONSE message with its lowest known hash node (from
its local membership lists). By definition, at least one of the
(c+ 1) responses will contain the would-be leader Mi.

Next, because there may be up to f failures, some of these
nodes contacted by the initiator may not respond. Thus we
increase the number of nodes that the initiator contacts to (c+
f +1) nodes (selected arbitrarily) so that the initiator receives
at least (c+ 1) responses.

Once the initiator calculates the leader, it sends the would-
be leader a NOTIFYLEADER message. Upon receiving this,
the leader knows it is the leader, and it multicasts a LEADER
message to the entire group.

3



Non-responsive would-be leaders may cause election retries
but do not violate Safety. We discuss two cases. First, if the
would-be leader is alive but suffers temporary message losses
that drop election messages to/from it, then the initiator times
out and restarts the election. It still elects the same would-be
leader since it is present in at least one of the (c + f + 1)
RESPONSE messages. If the would-be leader continues being
flaky/lossy, then the failure detector will detect it as failed
(at sufficient number of alive nodes), and a different leader
will be elected in a subsequent election retry. Second, if the
would-be leader itself crashes during the election (before it
multicasts a LEADER message), and this crash is updated by
the failure detector module at sufficient number of alive nodes,
then the initiator restarts the election and elects the next would-
be leader. In either case, Safety is maintained. Additionally,
since failure detectors like Medley [21] are fast in practice, a
failed would-be leader does not hinder Liveness for too long.

This Base Protocol is depicted formally in Algorithm 1. The
TIMEOUT in line 14 is set based on the expected round-trip
time so that if the would-be leader failed during the election
run, a new election is started.

Algorithm 1 Base Protocol

1: function INITIATEELECTION // At Initiator
2: id←∞, receivedIds← ∅
3: Send QUERY to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new RESPONSE after TIMEOUT then
6: Send QUERY to c+f+1−size(receivedIds)

nodes excluding receivedIds
7: end if
8: newId← RESPONSE from node i
9: receivedIds.add(i)

10: id← min(id, newId)
11: end while
12: Send NOTIFYLEADER to node id
13: if No LEADER message from id after TIMEOUT then
14: INITIATEELECTION()
15: end if
16: end function
17:
18: function RECVMESSAGE(msg from node i) // Any Node
19: if msg is of type QUERY then
20: Send RESPONSE (← lowest hash node) to node i
21: else if msg is of type NOTIFYLEADER then
22: Multicast LEADER
23: else if msg is of type LEADER then
24: Mark node i as leader
25: end if
26: end function

Fig. 1 depicts an example of the Base Protocol with 4 nodes.
We use c = 2, f = 0, and node 3 is the initiator.
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Fig. 1: Base Protocol Example

B. Optimistic Protocol

The Base Protocol can be slow in the common case when
membership lists are nearly consistent. To converge quickly
in this optimistic case, we present the Optimistic variant
shown in Algorithm 2. The key idea is for the initiator to
“stream” the leader calculation—whenever a new RESPONSE
is received the leader is re-calculated and if it changes, a new
NOTIFYLEADER message is sent to the newly elected leader
(which then multicasts LEADER to the group). Nodes may
receive multiple LEADER messages and use only the lowest
hash value node as the leader.

If membership lists are nearly consistent, the Optimistic Pro-
tocol converges quickly, because one of the early RESPONSE
messages received at the initiator will contain the would-be
leader and further NOTIFYLEADER messages will not be sent.

Algorithm 2 Optimistic Protocol

1: function INITIATEELECTION // At Initiator
2: id←∞, receivedIds← ∅
3: Send QUERY to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new RESPONSE after TIMEOUT then
6: Send QUERY to c+f+1−size(receivedIds)

nodes excluding receivedIds
7: end if
8: newId← RESPONSE from node i
9: receivedIds.add(i)

10: if newId < id then
11: id← newId
12: Send NOTIFYLEADER to node id
13: end if
14: end while
15: if No LEADER message from id after TIMEOUT then
16: INITIATEELECTION()
17: end if
18: end function
19:
20: function RECVMESSAGE is identical to the Base Protocol
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C. Preferred Protocol

Some applications additionally need to elect the lowest hash
leader who is also healthy, i.e., is being suspected less often
by other nodes’ failure detectors as a false positive. Our third
protocol, called Preferred Protocol (Algorithm 3), has each
RESPONSE message contain both the top (parameterized) y un-
healthy nodes and the lowest (parameterized) x hash nodes. (In
our implementation, typical values are x = y = 5.) The health
of a node can be calculated in an application-defined way:
possibilities include metrics such as false positive count [19]
or suspicion counts (in SWIM [20] or Medley [21])—these
metrics are readily available from the membership protocol
itself. The initiator calculates the set leaders: by taking the
union of all received lowest hash ID nodes, and removing
the union of all received unhealthy nodes. The initiator uses
the lowest hash node from leaders as the leader (the rest
of the protocol remains unchanged). If leaders = ∅, the
protocol retries by increasing x (GETNEXTX) and reducing
y (GETNEXTY).

D. Hybrid Protocol: Combining Optimistic and Preferred

Optimism and Preference are orthogonal and our Hybrid
Protocol in Algorithm 4 combines both. Whenever the initiator
receives a new RESPONSE, it calculates the lowest hash node
with unhealthy nodes excluded. If this results in a leader
change, a new NOTIFYLEADER is sent to the newly elected
leader. This protocol converges quickly if membership lists
happen to be mostly consistent system-wide.
Example—Hybrid Protocol: In Fig. 2 there are 5 nodes
(with respective hash values 0, 1, 2, 3, 4), and the parameters
are set as: x← 2, y ← 2, c← 2, f ← 0, and c+ f + 1← 3.
The unhealthiness metric takes integer values. Consider the
following snapshot of the system operation. For each line, the
first number denotes which node’s membership list we are
looking at, and the corresponding dictionary of (key : value)
pairs indicate (node : unhealthiness metric) pairs:

0 : {1 : 2, 2 : 1, 3 : 4, 4 : 0}

1 : {0 : 5, 2 : 0, 3 : 2, 4 : 1}

2 : {0 : 2, 1 : 2, 3 : 3, 4 : 1}

3 : {0 : 3, 1 : 0, 2 : 2, 4 : 1}

4 : {0 : 0, 1 : 1, 2 : 0, 3 : 2}

Suppose node 4 is the initiator and it sends QUERY to nodes
0, 1, 4. They reply back with their top y = 2 unhealthy nodes
and the lowest x = 2 hash nodes. Below is one possible
execution outcome of the Hybrid Protocol:

• Initiator receives RESPONSE from node 4
- excludes← {3 : 2, 1 : 1}
- candidates← {0, 2}
- leaders← {0, 2}
- Node 0 becomes the tentative leader and the initiator

sends NOTIFYLEADER to node 0
- Node 0 multicasts LEADER to everyone

Algorithm 3 Preferred Protocol

1: function INITIATEELECTION(x, y) // At Initiator
2: candidates, excludes, receivedIds← ∅
3: Send QUERY{x, y} to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new RESPONSE after TIMEOUT then
6: Send QUERY to c+f+1−size(receivedIds)

nodes excluding receivedIds
7: end if
8: {candidate, exclude} ← RESPONSE from node i
9: receivedIds.add(i)

10: candidates← candidates ∪ candidate
11: excludes← excludes ∪ exclude
12: end while
13: leaders← candidates− excludes
14: if leaders = ∅ then
15: x←GETNEXTX(x), y ←GETNEXTY(y)
16: INITIATEELECTION(x,y)
17: return
18: end if
19: id← min(leaders)
20: Send NOTIFYLEADER to node id
21: if No LEADER message from id after TIMEOUT then
22: INITIATEELECTION(x,y)
23: end if
24: end function
25:
26: function RECVMESSAGE(msg from node i) // Any Node
27: if msg is of type QUERY then
28: {x, y} ← QUERY
29: exclude← top y unhealthy nodes
30: candidate← x lowest hash (excludes exclude)
31: Send RESPONSE{candidate, exclude} to node i
32: else if msg is of type NOTIFYLEADER then
33: Multicast LEADER
34: else if msg is of type LEADER then
35: Mark node i as leader
36: end if
37: end function
38:
39: function GETNEXTX(x): return min(N, x+ 1)
40: function GETNEXTY(y): return max(0, y − 1)

• Initiator receives RESPONSE from node 0
- excludes← {3 : 6, 1 : 3}
- candidates← {0, 2}
- leaders← {0, 2}
- Node 0 remains the tentative leader

• Initiator receives RESPONSE from node 1
- excludes← {3 : 8, 0 : 5, 1 : 3}
- candidates← {2}
- leaders← {2}
- Node 2 becomes the tentative leader and the initiator

sends NOTIFYLEADER to node 2
- Node 2 multicasts LEADER to everyone
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Algorithm 4 Optimistic and Preferred (Hybrid) Protocol

1: function INITIATEELECTION(x, y) // At Initiator
2: candidates, excludes, receivedIds← ∅, id←∞
3: Send QUERY{x, y} to arbitrary c+ f + 1 nodes
4: while size(receivedIds) < c+ 1 do
5: if no new RESPONSE after TIMEOUT then
6: Send QUERY to c+f+1−size(receivedIds)

nodes excluding receivedIds
7: end if
8: {candidate, exclude} ← RESPONSE from node i
9: receivedIds.add(i)

10: candidates← candidates ∪ candidate
11: excludes← excludes ∪ exclude
12: leaders← candidates− excludes
13: if leaders = ∅ then
14: x←GETNEXTX(x), y ←GETNEXTY(y)
15: INITIATEELECTION(x,y)
16: return
17: end if
18: leaderId← min(leaders)
19: if id ! = leaderId then
20: id← leaderId
21: Send NOTIFYLEADER to node id
22: end if
23: end while
24: if No LEADER message from id after TIMEOUT then
25: INITIATEELECTION(x,y)
26: end if
27: end function
28:
29: function RECVMESSAGE, GETNEXTX, and GETNEXTY

are identical to the Preferred Protocol

• At this point the initiator has received all the RESPONSE
messages, thus the confirmed leader is node 2

V. FORMAL ANALYSIS

We formally analyze the properties of the four protocols.
Readers may skip this section without loss of continuity—for
such readers, we provide here a summary of our findings:

1) The Base Protocol and Optimistic Protocol both satisfy
Safety and elect the lowest hash ID node as the leader.
(Note that the Preferred Protocol and Hybrid Protocol
may not elect the lowest hash ID leader if it is un-
healthy.)

2) All our four protocols (Base, Optimistic, Preferred, Hy-
brid) satisfy Liveness: they complete and elect a leader.

3) The Base Protocol is optimal in message complexity.
4) The Preferred Protocol and Hybrid Protocol do not elect

top unhealthy nodes as leaders, with high probability.

Theorem 1. (Safety) Both the Base Protocol and Optimistic
Protocol satisfy Safety (as defined in Sec. III-B)).

Proof. We prove this by contradiction. Assume the would-be
leader is the non-faulty node Mi (with the lowest hash) but
instead, there exists at least one node that sets another node
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Fig. 2: Hybrid Protocol Example

Mj (j ̸= i) as its confirmed leader. This can only occur if all
the initiator’s received (c + 1) responses contain Mj but not
Mi. However, Mi is missing in ci nodes’ membership lists,
and hence this implies that ci > c, which is a contradiction to
the definition of c (Section III-A).

Theorem 2. (Liveness) If the initiator and would-be leader re-
main alive, all our four protocols (Base, Optimistic, Preferred,
Hybrid) satisfy Liveness (as defined in Sec. III-B)).

Proof. We prove the theorem by contradiction. Assume the
leader is never elected and the protocols do not finish. This
may occur due to three reasons:

(1) If the initiator does not receive at least (c+1) RESPONSE
messages: Since the initiator sends QUERY to (c + f + 1)
arbitrary nodes and the maximum number of failed nodes
is f , at least (c + 1) nodes are alive and will send back a
RESPONSE. Because messages are eventually delivered, the
initiator receives at least (c+ 1) responses.

(2) If the initiator never receives LEADER message from
the lowest hash node: Since multicast is reliable, this happens
only if:

• The would-be leader is dead: in this case, the election will
be restarted after the initiator times out; or

• The would-be leader does not receive NOTIFYLEADER:
this cannot happen as messages are delivered eventually.

(3) For the Preferred Protocol and Hybrid Protocol, if
leaders set (Algorithm 3 and 4) is empty: Then the protocol
will restart with the new x and y values. If this keeps
reoccurring then according to GETNEXTX and GETNEXTY,
eventually we have x = N and y = 0. Then, candidates
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contains all the N nodes and excludes is empty, which makes
leaders = candidates− excludes = candidates non-empty.
Thus, there will always be a leader elected in this case.

Hence all four protocols satisfy Liveness.

Lemma 1. Assume unicast is reliable and nodes don’t fail.
Then, the Base Protocol involves (2 · (c+ f +1)+1) unicasts
and 1 multicast.

Proof. The leader multicasts LEADER only once at the end
of the election process. The initiator sends c+ f + 1 QUERY
messages to arbitrary nodes, and these nodes will reply back
with c+ f + 1 RESPONSE messages. The initiator also sends
another NOTIFYLEADER to the would-be leader.

Theorem 3. (Message Optimality) Assume unicast is reliable
and nodes don’t fail. Then (among all initiator-based election
protocols) the Base Protocol is optimal in message complexity
in order to satisfy Safety.

Proof. For any leader election protocol, we need at least 1
multicast message to let everyone know the new leader. The
single NOTIFYLEADER unicast is also necessary since the
leader needs to be informed by the initiator that it is the
leader. So at least 1 multicast and 1 unicast are required by
any election protocol.

Next, suppose there exists a leader election protocol that
works with less than 2 · (c + f + 1) unicast messages. We
prove by contradiction that this would violate Safety. Suppose
only (c+ f ) nodes are contacted by the initiator (and thus 2 ·
(c+f) total unicasts). If f of these nodes fail, the initiator will
only receive c replies. In the worst-case scenario, the would-be
leader Mi (non-faulty node with the lowest hash) is absent in
ci node’s membership lists, and these are the c = ci nodes that
send RESPONSE messages to the initiator. This will result in a
different node than Mi being elected as leader, thus violating
Safety. Therefore, we conclude that at least 2 · (c + f + 1)
unicasts are necessary.

Together with Lemma 1, this proves the theorem.

Since the Preferred Protocol and Hybrid Protocol may not
elect the lowest hash ID leader if it is unhealthy, we define:

Definition 3. Preference: The elected leader does not belong
to the system-wide top y unhealthy nodes.

Theorem 4. (Preference w.h.p.) With only a logarithmic num-
ber of messages, the Preferred Protocol and Hybrid Protocol
satisfy Preference with high probability (w.h.p.).

Proof. Denote r as the number of RESPONSE messages the
initiator receives. Denote p as the average percentage of nodes
that belongs to system-wide top-y unhealthy nodes but do
not exist in an arbitrary RESPONSE message (top-y unhealthy
nodes in local membership lists). Then, the probability that
a given top-y system-wide unhealthy node will be in at least
one of the r RESPONSE is 1 − pr. To achieve this with high
probability > (1− 1

N ), we need r > log1/p(N). This implies

the Preferred Protocol and Hybrid Protocol only require a log-
arithmic number of RESPONSE messages to satisfy Preference
w.h.p.

Theorem 4 in Practice: Practically, we observed that the value
of p stays small. Via multiple runs of Medley [21], we find that
p only depends on the topology size N (and is independent
of topology and message drop rate). In fact, Table II shows
that p converges to 0.5 as N increases. Further, the r values
never exceed (c+1). Since the initiator receives at least (c+1)
RESPONSE messages, this suffices to satisfy Preference w.h.p.

TABLE II: r and (c+ 1) values with different topology sizes

Topology Size N 32 49 64 128 256

p 0.34 0.43 0.48 0.5 0.5

r 3 5 6 7 8

c+ 1 3 5 6 10 18

VI. TRACE-DRIVEN SIMULATION

The research questions addressed by our trace-driven sim-
ulation in this section are:

1) What is the bandwidth and leader election completion
time for our four c-tolerant election protocols?

2) How well do the Base Protocol and Optimistic Protocol
satisfy Safety?

3) Do the Optimistic Protocol and Hybrid Protocol shorten
the completion/convergence time?

4) How healthy are the leaders elected by the Preferred
Protocol and Hybrid Protocol?

We wrote and tested a custom simulator incorporating our
four election algorithms. Our custom simulator allows us more
agility to vary parameters than stock simulators (like NS-
3), and also allows us to scale simulations better. In our
simulator, messages can be dropped or delayed. Because we
are dealing with ad-hoc routing topologies, packets are routed
via Dijkstra’s shortest path protocol.

Simulations are driven by real membership traces that
we collected from running a weakly-consistent membership
protocol, Medley (code obtained and run from the authors of
[21]). We configured the membership protocol to run with
the identical network configuration (e.g., message drop rate,
topology, etc.) as our leader election protocols. We collect
membership traces only after its warm-up phase has finished.
These traces are injected into our election protocols—our
simulator continually reads the latest membership list at each
node (along with information such as suspicion counts as
a health metric) and updates it, and our election protocol
implementation has to automatically cope with any changes.

We evaluate using three topologies: Grid topology (default
7x7 grid), Random, and Cluster (total of 5 clusters with 7, 7, 9,
10, and 16 nodes respectively). Topologies with 49 nodes are
simulated in a 15m x 15m space. Topologies with other sizes
have a fixed node density of around 0.22 nodes/m2. These are
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the settings that we used to generate Table I. We set the value
of c accordingly based on that table.

Each plotted data point is from 100 simulation runs using
different seeds and different initiators. Message delay on
each hop is randomly chosen in (0, 50] (time units), and the
communication range is 4 meters. Default parameter values
in Section IV’s pseudocode are: TIMEOUT = 500 time units,
x = 5, and y = 5.

In order to show the benefit of the Preferred Protocol and
Hybrid Protocol, our network simulator has higher drop rates
for messages sent and received by nodes with lower hash
values. The consequence is that nodes with higher hashes
will be healthier than nodes with lower hash. This forces the
protocols to avoid electing the lowest hash node as the leader.

We show and discuss data for bandwidth, comple-
tion/convergence time, and leader health.

A. Bandwidth

Fig. 3, 4, and 5, show the bandwidth for our four protocols,
measured as end-to-end bytes (summed across all hops for
each packet’s route).

Among our four protocols, we observe that while the
bandwidth of the Base Protocol, Optimistic Protocol, and
Preferred Protocol are similar, the Hybrid Protocol incurs
relatively more bandwidth. This is because the unhealthiness
information varies across nodes, and thus “top unhealthy” lists
may look different at different nodes. Consequently (in the
Hybrid Protocol), received RESPONSE messages at the initiator
may frequently update the leader, leading to more LEADER
multicast messages, and thus higher network bandwidth.

Fig. 3: Bandwidth with different topology types

Bandwidth rises linearly with message drop rate and system
size, as expected (Fig. 4 and 5). Larger system sizes or higher
message drop rates naturally require higher values for c, thus
increasing bandwidth via the (c+f+1) QUERY and RESPONSE
messages. Across different topology types, the comparative
trends do not vary much (Fig. 3).

B. Completion Time (or Convergence Time)

The completion time of leader election is defined as the
difference between when the initiator initiates the election and
when the last non-faulty node knows the correct leader (i.e.,
receives LEADER). Fig. 6, 7, and 8 show the completion time
across topology types, message drop rates, and system sizes.

Fig. 4: Bandwidth with different drop rates

Fig. 5: Bandwidth with different topology sizes

We observe that the completion time of the Base Protocol
and Preferred Protocol are large since both of them wait for all
(c + 1) RESPONSE messages before notifying the leader. On
the other hand, the completion time of the Optimistic Protocol
is 42.6% less than the Base Protocol on average, and the
completion time of the Hybrid Protocol is 33.3% less than the
Preferred Protocol on average. These small completion times
of the Optimistic Protocol and Hybrid Protocol indicate they
are able to naturally leverage the existing consistency across
membership lists and converge faster.

Fig. 7 and 8 show that, as expected, higher message drop
rates and system sizes prolong completion times. Higher drop
rates mean some messages (e.g., QUERY, RESPONSE) may be
resent. Large system sizes mean higher values of c and thus
longer wait time for the initiator to get (c+ 1) responses.

Fig. 6: Completion time with different topology types

C. Leader Health

Recall that the Preferred Protocol and Hybrid Protocol
(Section IV) are aimed at optimizing the health of the leader,
i.e., attempt to elect a leader that is not among the top
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Fig. 7: Completion time with different drop rates

Fig. 8: Completion time with different topology sizes

unhealthy nodes in the system, while the Optimistic Protocol
and Hybrid Protocol are aimed at finishing quickly.

We measure the implications of these optimizations by mea-
suring three different metrics: the number of times the leader
is changed within the same election run, the unhealthiness of
the elected leader, and the hash rank of the elected leader.

1) Leader Change Count: This is the number of times
that a different leader multicasts LEADER message within
the same election run. This metric measures the disruption
to the application (running at nodes) which may need to take
actions (e.g., contacting the leader) right after it recognizes a
new leader. Fig. 9 shows that, as expected, the leader change
count for both the Base Protocol and Preferred Protocol are
small (= 1, since they only send one leader notification per
run). The Optimistic Protocol has a small leader change count
because membership lists are largely consistent. The Hybrid
Protocol has the highest leader change count, increasing with
message drop rate—28% worse than the Base Protocol at 0.05
message drop rate, and 157% worse at 0.2 drop rate. Hence
the tradeoff achieved by the Hybrid Protocol is frequent leader
changes (during the election) vs. a higher quality leader (next
paragraph).

2) Unhealthy Rank: This is the system-wide unhealthiness
rank of the elected leader, where a higher value means the
leader is healthier (0 represents the most unhealthy node and
N represents the healthiest node in the system). Fig. 10 shows
that: (a) the Base Protocol and Optimistic Protocol may be
lucky and elect healthier leaders at low message drop rates
(0.05) since many nodes are healthy, but as the drop rate
rises to 0.1 and beyond, these protocols start electing largely
unhealthy leaders, and (b) the Preferred Protocol and Hybrid
Protocol elect healthier leaders with 1.5× better healthiness

ranks than the Base Protocol at 0.05 message drop rate and
28.5× at 0.2 message drop rate (the Optimistic Protocol is
similar).

3) Hash Rank: This metric shows how close our protocol
comes to electing the “best attribute” (lowest hash) leader.
Concretely, it is the rank of the leader node hash, with 0
representing the lowest hash node (and N−1 the highest hash).
Fig. 11 shows that both the Base Protocol and Optimistic
Protocol only elect node 0 (lowest hash ID), as expected.
While the Preferred Protocol and Hybrid Protocol elect higher
hash ranks, the hash rank values stay low and range from
around 0.5 to 2.0 (out of large N )—this indicates that the
Preferred Protocol and Hybrid Protocol are able to elect
healthy leaders (as we saw in Fig. 10) while still being able to
minimize the “best attribute” (hash ID) of the elected leader.

Fig. 9: Leader change count with different drop rates

Fig. 10: Leader unhealthy rank with different drop rates

Fig. 11: Leader hash rank with different drop rates

VII. DEPLOYMENT WITH RASPBERRY PIS

We implement our four c-tolerant leader election proto-
cols for Raspberry Pi 4 devices, using about 2500 lines of
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Java code. We reuse code from the authors of the Medley
system [21] as the membership layer (with their default
configuration parameters) and layer our election protocols atop
it. Separately, we also deployed Zookeeper [11] on the same
Raspberry Pis, and compare it against our protocols.

A. Raspberry Pi Deployment Results

Deployments involve a default of 16 Raspberry Pi 4 devices
connected in an ad-hoc mesh network. The topology is a 4x4
grid (in a 4.5m x 4.5m area) shown in Fig. 12b and the
actual lab placement is shown in Fig. 12a. Each device is
a Raspberry Pi 4 model B, with 2GB LPDDR4 RAM and
Broadcom BCM2711, 1.5 GHz quad-core Cortex-A72 CPU.
Based on recommendations [21], we attenuate the transmit
power of each device to about 15 dBm. We use OLSRD for
packet routing due to its easy configurability and popularity.

(a) Lab placement (b) Deployment topology
Fig. 12: Topology of Raspberry Pi deployment

The parameters and the network configurations are similar
to those used in the simulation results of Sec. VI. The c values
are set to 2, 3, 5, 7 for message drop rates 0.05, 0.1, 0.15, 0.2
respectively, based on our measurements from 5-minute runs
of the failure detector [21].

Fig. 13 shows the completion time vs. message drop rates.
Overall, the comparative performance among the four proto-
cols is similar to the simulation results (Fig. 7), thus validating
that our simulator of Sec. VI successfully models practically
observed behavior. We do observe that the completion time
(across protocols) varies a bit less in the Pi deployment than
in the simulation. This is because the deployment topology is
smaller (16 nodes) compared to the simulation (49 nodes)—
lower system size results in lower c values and thus fewer
messages.

Fig. 14 shows the number of leader change counts (during
a given run) vs. message drop rates. Again the comparative
trends parallel simulation results (Fig. 9), with a couple of
exceptions. We do observe that the leader change count for the
Optimistic Protocol is relatively higher than in the simulation
results. This is because the effective message drop rates
in deployment are higher than the drop rates we set, e.g.,
Raspberry Pis themselves can drop packets even with message
drop rate set to 0. This higher drop rate leads to more missing
entries in membership lists and thus more leader changes. On
the contrary, leader change count for the Hybrid Protocol is
less than in simulation at high drop rates—this is because the

initiator receives fewer RESPONSE (lower c) messages thus
limiting the number of leader changes.

Fig. 13: Completion time with different drop rates on Rasp-
berry Pis

Fig. 14: Leader change count with different drop rates on
Raspberry Pis

B. Resource Utilization Comparison with Zookeeper

Carefully designed protocols for edge settings can offer
significant benefits over “stock” open-source software. To il-
lustrate this, we compare against a state-of-the-art coordination
and election system. Specifically, we enabled Zookeeper [11]
to run on the Raspberry Pi 4 devices, and we compare against
our c-tolerant leader election protocol (our Hybrid Protocol) on
the same settings as Sec. VII-A (16 Raspberry Pis connected
in a 4x4 grid mesh). Both Zookeeper and our c-tolerant
election run continuously for around 10 minutes and we record
their memory usage, CPU usage, and network traffic (via
tcpdump [47]). For Zookeeper, we set parameter values as
suggested by the official documentation [48] (tickT ime =
2000, initLimit = 5, syncLmit = 2).

Fig. 15 shows the memory utilization and Fig. 16 shows the
CPU utilization (averaged across all nodes). In the stable state
(after time t = 100s), our c-tolerant election utilizes 26.9%
less CPU and 5.9% less memory than Zookeeper. During the
warm-up phase (t < 100s), there is a spike in memory used
by c-tolerant election when it runs the election, however even
the spike uses less than 4% memory and it’s less than 13%
above the stable memory usage.

Fig. 17 shows the total network bandwidth across all nodes
during the 10-min run. The average bandwidth consumed by
our c-tolerant election protocol is 20 Kbps, which is 82.9%
less than Zookeeper’s average bandwidth (117 Kbps). Further,
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Fig. 15: Memory Utilization Comparison

Fig. 16: CPU Utilization Comparison

our c-tolerant election’s network usage is more stable than
Zookeeper, with a standard deviation over 10× lower: the
respective standard deviations are 2.1 Kbps and 25.1 Kbps.

Fig. 17: Network Bandwidth Comparison

VIII. SUMMARY

We presented a family of four churn-tolerant (c-tolerant)
leader election protocols intended for edge environments that
face churn. Our protocols only require a weakly-consistent
membership protocol running underneath it. Our four
protocols satisfy Safety and Liveness, use provably minimal
messages, and elect healthy leaders with high probability. Our
experiments with both trace-driven simulations, as well as
a Raspberry Pi deployment, showed that: (i) our Optimistic
Protocol reduces leader election completion time by 42.6%
(vs. Base Protocol), (ii) our Preferred Protocol elects healthier
leaders, and (iii) compared to “stock” Zookeeper, our c-
tolerant election’s bandwidth usage is 82.9% less and 10×
more stable, and its memory and CPU usage are respectively
5.9% and 26.9% lower.

Future Directions: Zookeper’s suboptimal performance may
arise from either a mismatch between its consensus protocol
(ZAB) and churn, or due to extra functionalities that make
Zookeeper too “heavy” for election. It remains an open ques-
tion whether Zookeeper can be pared down or adapted to be
efficient in churn-tolerant scenarios.
Code: Open-source implementation of the churn-
tolerant election protocol in this paper is available at:
http://dprg.cs.uiuc.edu/downloads.php.
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