
Journal of Machine Learning Research 24 (2023) 1-37 Submitted 9/21; Revised 7/23; Published 7/23

On the Estimation of Derivatives Using Plug-in Kernel
Ridge Regression Estimators

Zejian Liu zejian.liu@rice.edu
Department of Statistics
Rice University
Houston, TX 77005, USA

Meng Li meng@rice.edu

Department of Statistics

Rice University

Houston, TX 77005, USA

Editor: Garvesh Raskutti

Abstract

We study the problem of estimating the derivatives of a regression function, which has
a wide range of applications as a key nonparametric functional of unknown functions.
Standard analysis may be tailored to specific derivative orders, and parameter tuning re-
mains a daunting challenge particularly for high-order derivatives. In this article, we pro-
pose a simple plug-in kernel ridge regression (KRR) estimator in nonparametric regression
with random design that is broadly applicable for multi-dimensional support and arbitrary
mixed-partial derivatives. We provide a non-asymptotic analysis to study the behavior
of the proposed estimator in a unified manner that encompasses the regression function
and its derivatives, leading to two error bounds for a general class of kernels under the
strong L∞ norm. In a concrete example specialized to kernels with polynomially decaying
eigenvalues, the proposed estimator recovers the minimax optimal rate up to a logarithmic
factor for estimating derivatives of functions in Hölder and Sobolev classes. Interestingly,
the proposed estimator achieves the optimal rate of convergence with the same choice of
tuning parameter for any order of derivatives. Hence, the proposed estimator enjoys a
plug-in property for derivatives in that it automatically adapts to the order of derivatives
to be estimated, enabling easy tuning in practice. Our simulation studies show favorable
finite sample performance of the proposed method relative to several existing methods and
corroborate the theoretical findings on its minimax optimality.

Keywords: Derivative estimation, kernel ridge regression, plug-in property

1. Introduction

Estimating the derivatives of the regression function has a wide range of applications in
many areas, such as cosmology (Holsclaw et al., 2013), spatial process models (Banerjee
et al., 2003), and shape-constrained function estimation that builds on the derivative process
or virtual derivative observations (Riihimäki and Vehtari, 2010; Wang and Berger, 2016).
Furthermore, derivative estimation may improve the computational efficiency for nonlinear
dynamic system identification (Solak et al., 2003), while serving as a vital tool in detecting
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local extrema (Song et al., 2006; Li et al., 2021) and efficient modeling of functional data
(Dai et al., 2018).

Existing methods for estimating derivatives of regression functions include smoothing
spline, local polynomial regression, and difference-based methods. Local polynomial regres-
sion and smoothing spline base the estimation of derivatives on estimating the regression
function. Key smoothing parameters in these two methods often depend on the order of
the derivative being estimated and are difficult to choose in practice (Wahba and Wang,
1990; Charnigo et al., 2011). Difference-based methods require boundary correction, hin-
dering theoretical studies such as those establishing uniform convergence rates. Moreover,
existing methods are either restricted to the fixed design setting, or only applicable to
one-dimensional support and low-order derivatives. The goal of this article is to develop
a unified framework for derivative estimation that achieves broadened applicability and
enables simple optimal parameter tuning with theoretical guarantees.

In this paper, we propose a simple plug-in kernel ridge regression (KRR) estimator for
the derivatives of the regression function and develop a non-asymptotic framework that
provides theoretical support for general kernels. We consider a random design setting
with multi-dimensional support, and derive convergence rates for partial mixed derivatives
of arbitrary order under the strong L∞ norm. In a concrete example where the regression
function belongs to a Hölder or Sobolev class, we show that the proposed estimator is nearly
minimax optimal with the same choice of tuning parameters for any order of derivatives
to be estimated. Hence, unlike methods such as smoothing spline, the proposed estimator
remarkably adapts to the order of derivatives and achieves the so-called plug-in property
(Bickel and Ritov, 2003) for derivative estimation. This leads to immediate insight for
parameter tuning, which along with the closed-form expression substantially facilitates the
implementation of the proposed method in broad settings.

Kernel ridge regression (Wahba, 1990; Györfi et al., 2006; Cucker and Zhou, 2007),
also known as regularized least squares, is a popular technique in supervised learning and
has been widely used in an immense variety of areas, including computer vision (Cheng
et al., 2016), speech recognition (Chen et al., 2016), forecasting (Exterkate et al., 2016),
and biomedical fields (Mohapatra et al., 2016).

There has been a rich literature on the theoretical guarantees of KRR (Cucker and Smale,
2002; Zhang, 2005; Caponnetto and De Vito, 2007; Steinwart et al., 2009; Mendelson and
Neeman, 2010). However, theory on nonparametric functionals of KRR estimators such as
derivatives is comparatively underdeveloped. We contribute to the growing literature of
KRR by developing non-asymptotic analysis for derivatives of arbitrary order, with added
focus on its generality to encompass a large class of kernels and the strong L∞ norm.

1.1 Related work

One popular method to estimate function derivatives is to differentiate estimates of the
regression functions. For example, smoothing spline produces derivative estimation by
differentiating the spline basis. Stone (1985); Zhou and Wolfe (2000) studied theoretical
properties of smoothing spline, including the L2 minimax optimal convergence rate. Local
polynomial regression is another standard method, which relies on local polynomial fitting
obtained by Taylor expansion; Fan and Gijbels (1996); Delecroix and Rosa (1996) provided
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asymptotic normality and strong uniform consistency for local polynomial regression, re-
spectively. However, the smoothing parameter in these methods typically depends on the
order of the derivative and is usually difficult to choose in practice (Wahba and Wang,
1990; Wang and Lin, 2015). The implementation of these methods is also specific to one
particular derivative order. Yatracos (1989) related error bounds for general plug-in deriva-
tive estimators to those for the original estimators, concluding that derivative estimation
is more challenging than the estimation of the original function. This line of research was
recently expanded by Yatracos (2019), focusing on mixing density estimation instead of
nonparametric regression.

Difference-based methods have attracted increasing attention. These methods create
a new noisy dataset with derivatives as the mean, followed by nonparametric smoothing
(Müller et al., 1987; Härdle, 1990). Along this line, Charnigo et al. (2011); De Brabanter
et al. (2013) proposed an empirical derivative estimator with improved variance and estab-
lished pointwise consistency. Wang and Lin (2015) derived an asymptotic L2 convergence
rate for estimating the first derivative. However, they required the true regression function
to be five times differentiable, which is a very strict assumption. Liu and Brabanter (2018);
Liu and De Brabanter (2020) extended the difference-based estimator to random design.
Wang et al. (2019) adopted L1 regression instead of least squares regression, improving the
robustness to outliers and heavy-tailed errors. However, difference-based methods typically
aim at estimating the first or second derivative of regression functions with one-dimensional
support, and have limited developments for high-order derivatives or multi-dimensional
cases. Moreover, difference-based estimators require boundary correction in general, neces-
sitating a separate treatment when studying their behavior at the boundaries.

In this article, we provide a non-asymptotic analysis for the proposed plug-in KRR es-
timator. In the literature of KRR for nonparametric regression, Cucker and Smale (2002)
provided a non-asymptotic upper bound under the L2 norm, utilizing the covering number
of an open subset of the reproducing kernel Hilbert space (RKHS). Smale and Zhou (2005,
2007) replaced the covering number technique by the method of integral operators and ob-
tained tighter bounds, but assumed the outputs to be uniformly bounded above, excluding
the Gaussian error. This assumption was later relaxed by moment conditions (Wang and
Zhou, 2011; Guo and Zhou, 2013). However, they did not particularly focus on learning
rates for derivatives of KRR estimators. The optimality of the induced learning rates and
parameter tuning that is of great practical relevance, in the presence of varying derivative
orders, have not been studied in the literature. Note that derivatives with kernel meth-
ods have been considered in different settings, including nonparametric sparse regression
(Rosasco et al., 2013) and semi-supervised learning (Cabannes et al., 2021).

1.2 Contributions

Our contributions can be summarized as follows:

(1) We propose a plug-in KRR estimator for derivatives of arbitrary order. The proposed
estimator is analytically given and applicable for multi-dimensional support and sub-
Gaussian error, enabling fast computation and broad practicability. We allow the
derivative order to be zero throughout the article and thus unify the study of the
regression function and its derivatives.
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(2) We provide two non-asymptotic error bounds for the proposed plug-in KRR estima-
tors under the L∞ norm: the H̃-bound for Mercer kernels with uniformly bounded
eigenfunctions (Section 3.2) and the H-bound for all Mercer kernels (Section 3.3). To
the best of our knowledge, learning rates for derivatives of KRR estimators have not
been addressed in the literature. Our analysis rests on an operator-theoretic approach,
equivalent kernels, and the Hanson-Wright inequality, encompassing a general class of
kernel functions and the strong L∞ norm.

(3) In a concrete example where the kernel has polynomially decaying eigenvalues and the
regression function belongs to a Hölder or Sobolev class, we show that our general anal-
ysis recovers the nearly minimax optimal L2 convergence rate, suggesting the sharpness
of the established bounds (Section 4). Given the smoothness level of the regression func-
tion, the rate-optimal estimation is achieved under the same choice of the regularization
parameter that does not depend on the derivative order. Therefore, the proposed esti-
mator enjoys a remarkable plug-in property that it automatically adapts to the order
of the derivative to be estimated, leading to easy tuning in practice.

1.3 Notation

Let N be the set of all positive integers and write N0 = N ∪ {0}. We let C(X ) denote
the space of continuous functions. For a multi-index β = (β1, . . . , βd) ∈ Nd0, we write

|β| = β1 + · · · + βd and ∂β = ∂β1x1 · · · ∂
βd
xd . For any m ∈ N, let Cm(X ) stand for the

space of all functions possessing continuous mixed partial derivatives up to order m, i.e.,
Cm(X ) = {f : X → R|∂βf ∈ C(X ) for all β ∈ Nd0 with |β| ≤ m}. Let C(X ,X ) denote
the space of continuous bivariate functions and C2m(X ,X ) = {K : X × X → R|∂β,βK ∈
C(X ,X ) for all β ∈ Nd0 with |β| ≤ m} denote the space of m-times continuously differen-

tiable bivariate functions, where ∂β,βK(x,x′) = ∂βx∂
β
x′K(x,x′). For any f : X → R, let

‖f‖∞ be the L∞ norm. For two sequences an and bn, we write an . bn if an ≤ Cbn for a
universal constant C > 0, and an � bn if an . bn and bn . an.

2. Plug-in KRR estimator for function derivatives

Suppose that we have n iid observations {Xi, yi}ni=1 from an unknown data generating
probability P0 on X × R, where X ⊂ Rd is a compact metric space for d ≥ 1. Denote the
marginal distribution on X by PX with Lebesgue density pX . Let L2

pX
(X ) be the L2 space

with respect to the measure PX , with the L2 norm ‖f‖2 = (
∫
X f

2dPX)1/2 and the inner

product 〈f, g〉2 = (
∫
X fgdPX)1/2. The regression model is given by

yi = f0(Xi) + εi, (1)

where the random error εi is sub-Gaussian with mean zero and variance proxy σ2, i.e.,
E[εi] = 0 and E[etεi ] ≤ eσ

2t2/2 for any t ∈ R. Given a multi-index β = (β1, . . . , βd) ∈ Nd0,
our goal is to estimate ∂βf0, the mixed partial derivative of the regression function, assuming
its existence.

Let X = (XT
1 , . . . , X

T
n )T ∈ Rn×d and y = (y1, . . . , yn)T ∈ Rn. Let K(·, ·) : X × X → R

be a Mercer kernel, i.e., a continuous, symmetric, and positive definite bivariate function. In
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this article, we propose the following closed-form plug-in KRR estimator for ∂βf0, assuming
differentiability of K:

∂̂βf0(x) =: ∂βf̂n(x) = [∂βK(x, X)][K(X,X) + nλIn]−1y, (2)

where ∂βK(x, X) = (∂βixiK(xi, Xj))1≤i≤d,1≤j≤n is a d by n matrix, K(X,X) is the n by n
matrix (K(Xi, Xj))1≤i,j≤n, and λ > 0 is a regularization parameter that possibly depends on

the sample size n. Here f̂n(x) = ∂̂0f0(x) is the classical KRR estimator for the regression
function f0. It is well known that f̂n is also the solution to the following optimization
problem:

f̂n = arg min
f∈H

{
1

n

n∑
i=1

(yi − f(Xi))
2 + λ‖f‖2H

}
, (3)

where (H, ‖ · ‖H) is the reproducing kernel Hilbert space (RKHS) induced by the kernel K.

The closed-form expression in (2) enables fast calculation for any order of derivatives.
The proposed estimator is applicable for d-dimensional support with d ≥ 1. Taking one-

dimensional support X ⊂ R as a special case, the plug-in KRR estimator for f
(m)
0 with

m ∈ N0 is

f̂ (m)
n (x) = [∂mK(x,X)][K(X,X) + nλIn]−1y,

where ∂mK(x,X) = (∂mx K(x,Xj))1≤j≤n is a 1 by n vector. In addition, (2) enables conve-
nient inference. For example, the proposed estimator at any x is normally distributed for
Gaussian error εi ∼ N(0, σ2) with variance given by

σ2[∂βK(x, X)][K(X,X) + nλIn]−2[∂βK(x, X)]T .

3. Non-asymptotic analysis

We take an operator-theoretic approach to study non-asymptotic properties of the plug-in
KRR estimator, which characterizes behaviors of the proposed estimator, provides insights
for choosing regularization parameters, and leads to asymptotic optimality.

3.1 Preliminaries

We begin with reviewing preliminaries and introducing commonly used notation (Smale and
Zhou, 2005, 2007; Steinwart et al., 2009). For any f ∈ L2

pX
(X ), we introduce an integral

operator LK : L2
pX

(X )→ H ⊂ L2
pX

(X ) defined by

LK(f)(x) =

∫
X
K(x,x′)f(x′)dPX(x′), x ∈ X .

Since LK is compact, positive definite, and self-adjoint on L2
pX

(X ) (i.e., as an operator
mapping L2

pX
(X ) to L2

pX
(X )), by the spectral theorem (see, e.g., Theorem A.5.13 in Stein-

wart and Christmann (2008)), there exist countable pairs of eigenvalues and eigenfunctions
(µi, ψi)i∈N ⊂ (0,∞)× L2

pX
(X ) of LK such that

LKψi = µiψi, i ∈ N,
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where {ψi}∞i=1 form an orthonormal basis of L2
pX

(X ) and µ1 ≥ µ2 ≥ · · · > 0 with lim
i→∞

µi = 0.

By Mercer’s Theorem, we have that for any x,x′ ∈ X ,

K(x,x′) =

∞∑
i=1

µiψi(x)ψi(x
′),

where the convergence is absolute and uniform. It follows that H can be characterized by
a series representation

H =

{
f ∈ L2

pX
(X ) : ‖f‖2H =

∞∑
i=1

f2i
µi

<∞

}
,

where fi = 〈f, ψi〉2. The corresponding inner product is given by 〈f, g〉H =
∑∞

i=1 figi/µi for
any f =

∑∞
i=1 fiψi and g =

∑∞
i=1 giψi in H.

We then define the sample analog LK,X : H→ H by

LK,X(f) =
1

n

n∑
i=1

f(Xi)KXi , (4)

where Kx(·) := K(x, ·). It is easy to see LK,X is also a compact, positive definite, self-
adjoint operator because for any f, g ∈ H, we have

〈f, LK,Xg〉H =
1

n

n∑
i=1

f(Xi)g(Xi) = 〈LK,Xf, g〉H

and 〈f, LK,Xf〉H ≥ 0. Thus, the eigenvalues of LK,X are all non-negative, which implies

‖(LK,X + λI)−1f‖H ≤
1

λ
‖f‖H, (5)

for any f ∈ H. We remark that the operator LK can also be defined on H and so does LK,X
on the space of all bounded functions; we use the same notation when they are defined on
different domains.

We further consider a proximate function of f0 in H

fλ = (LK + λI)−1LKf0,

where I is the identity operator. The function fλ is chosen this way to minimize the
population counterpart of (3), i.e.,

fλ = arg min
f∈H

{
‖f − f0‖22 + λ‖f‖2H

}
. (6)

We next present two non-asymptotic bounds for Mercer kernels with uniformly bounded
eigenfunctions and general Mercer kernels, respectively, which provide the basis for more
specific rate calculation and may be of independent interest for the KRR community.
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3.2 H̃-bound for Mercer kernels with uniformly bounded eigenfunctions

The proximate function fλ can be obtained using another integral operator LK̃ through fλ =

LK̃f0, where K̃ is the so-called equivalent kernel (Rasmussen and Williams, 2006; Sollich

and Williams, 2005). Compared to K, the equivalent kernel K̃ has the same eigenfunctions
but its eigenvalues are altered to νi = µi/(λ+ µi) for i ∈ N, i.e.,

K̃(x,x′) =

∞∑
i=1

νiψi(x)ψi(x
′).

Let H̃ be the RKHS induced by K̃, which is equivalent to H as a functional space, but with
a different inner product

〈f, g〉H̃ = 〈f, g〉2 + λ 〈f, g〉H .

Let the corresponding RKHS norm be ‖ · ‖H̃. Note that K̃ is also a Mercer kernel; thus, all

preliminaries in Section 3.1 hold for K̃. For example, in view of (4), we can similarly define
the sample analog by

LK̃,X(f) =
1

n

n∑
i=1

f(Xi)K̃Xi ,

which is compact, positive definite, and self-adjoint. Note that throughout the article, the
tilde notation such as K̃ and H̃ indicates dependence on λ, although λ may not be explicitly
spelled out in the notation with exceptions of κ̃2λ and κ̃2β,λ defined later.

We introduce the following assumption on the differentiability of the regression function
and the covariance kernel.

Assumption A There exists an m ∈ N0 such that f0 ∈ Cm(X ) and K ∈ C2m(X ,X ).

Under Assumption A, we can estimate ∂βf0 by ∂βf̂n for any |β| ≤ m. Note that we
do not necessarily require that f0 and K have exactly the same smoothness level. Indeed,
if there is a mismatch between the differentiability of f0 and K such that f0 ∈ Cm1(X )
and K ∈ C2m2(X ,X ), we can take m = min{m1,m2} to satisfy Assumption A. From the
perspective of kernel selection, this assumption indicates that for estimating ∂βf0, we should
choose a kernel K ∈ C2m(X ,X ) such that m ≥ |β|. Such kernels are widely available. For
example, it is satisfied by a general class of kernels with polynomially decaying eigenvalues
(given in Definition 8) under mild conditions. In particular, the Matérn kernel is known
to be 2m times differentiable if and only if the smoothness parameter ν > m (Stein, 1999,
Chapter 2.7). The squared exponential kernel as a limit case of Matérn kernel satisfies
Assumption A for any m. Assumption A directly implies that ψi ∈ Cm(X ).

Define κ̃2λ := supx∈X K̃(x,x). It is easy to see κ̃2λ ≤ C2
ψ

∑∞
i=1 νi .

∑∞
i=1 µi/(λ+ µi),

where the last expression is the effective dimension (Zhang, 2005) of the kernel K with
respect to L2

pX
(X ). We also define high-order analogies of κ̃2λ for any multi-index β ∈ Nd0

and |β| ≤ m:

κ̃2β,λ := sup
x∈X

∂β,βK̃(x,x) = sup
x∈X

∞∑
i=1

µi
λ+ µi

{∂βψi(x)}2. (7)
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Note that κ̃2λ = κ̃2β,λ with β = 0. In general, κ̃2β,λ is determined by the decay rate of the
eigenvalues of K, the derivatives of the eigenfunctions, and the regularization parameter λ.
For given λ > 0, there holds

κ̃2β,λ ≤ λ−1 sup
x∈X

∞∑
i=1

µi{∂βψi(x)}2 = λ−1 sup
x∈X

∂β,βK(x,x) <∞,

where the boundedness of supx∈X ∂
β,βK(x,x) in the last step is due to Assumption A as

∂β,βK(x,x) is a continuous bivariate function on a compact support X .

The following assumption on the eigenfunctions pertains to the equivalent kernel tech-
nique considered in this section; the error bound established in Section 3.3 does not require
such an assumption.

Assumption B There exists a constant Cψ > 0 such that ‖ψi‖∞ ≤ Cψ for all i ∈ N.

The following lemma indicates that functions in the RKHS inherit the differentiability
of the kernel, and the L∞ norm of the derivative is upper bounded by the RKHS norm of
the function.

Lemma 1 Under Assumption A, f ∈ Cm(X ) for any f ∈ H̃. Moreover, for any β ∈ Nd0,
|β| ≤ m, we have ‖∂βf‖∞ ≤ κ̃β,λ‖f‖H̃ for any f ∈ H̃.

Theorem 2 provides error bounds for Mercer kernels with bounded eigenfunctions.

Theorem 2 (H̃-bound) Under Assumptions A and B, for any β ∈ Nd0 with |β| ≤ m and
δ ∈ (0, 1), it holds with probability at least 1− δ that

‖∂βf̂n − ∂βf0‖∞ ≤ ‖∂βfλ − ∂βf0‖∞ +
κ̃β,λκ̃

−1
λ C(n, κ̃λ)

1− C(n, κ̃λ)
‖fλ − f0‖∞

+
1

1− C(n, κ̃λ)

C1κ̃β,λκ̃λσ
√

log(3/δ)√
n

,

where C1 > 0 does not depend on K or n, and C(n, κ̃λ) =
κ̃2λ

√
log(3/δ)√
n

(
4 +

4κ̃λ
√

log(3/δ)

3
√
n

)
.

3.3 H-bound for general Mercer kernels

The H̃-bound established in the preceding section relies on the crucial Assumption B that
the eigenfunctions are uniformly bounded, which does not necessarily hold for all Mercer
kernels. For example, Zhou (2002) constructed a C∞ kernel that does not satisfy this
assumption. To thoroughly study the learning rate in a more general setting, we provide
another error bound under the RKHS norm ‖ · ‖H for any Mercer kernel, referred to as the
H-bound.

Let fX,λ be the noiseless counterpart of f̂n by replacing noisy data with their means
given by the true regression function, i.e.,

fX,λ := K(·, X)[K(X,X) + nλIn]−1f0(X),

8
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where f0(X) := (f0(X1), . . . , f0(Xn))T . An equivalent operator-based representation akin
to (4) gives fX,λ = (LK,X + λI)−1LK,Xf0.

The following lemma is a parallel version of Lemma 1 but applies to K and the ‖·‖H norm.
While κ̃2β,λ relies on the regularization parameter λ, the characterization of using the ‖ · ‖H
norm only involves the single parameter κ2β of K, where κ2β := supx∈X ∂

β,βK(x,x) < ∞
and κ2 := κ20.

Lemma 3 Under Assumption A, f ∈ Cm(X ) for any f ∈ H. Moreover, for any β ∈ Nd0,
|β| ≤ m, we have ‖∂βf‖∞ ≤ κβ‖f‖H for any f ∈ H.

Invoking Lemma 3 and decomposing f̂n−fλ = (f̂n−fX,λ)+(fX,λ−fλ) yield convergence

rates of the mixed partial derivatives of f̂n under the L∞ norm.

Theorem 4 (H-bound) Under Assumption A, for any β ∈ Nd0 with |β| ≤ m and δ ∈
(0, 1), it holds with probability at least 1− δ that

‖∂βf̂n − ∂βf0‖∞ ≤ ‖∂βfλ − ∂βf0‖∞ +
κβκ‖f0‖∞

√
log(9/δ)√

nλ

(
10 +

4κ
√

log(9/δ)

3
√
nλ

)

+
C2κβκσ

√
log(3/δ)√
nλ

,

where C2 > 0 does not depend on K or n.

We have established two non-asymptotic error bounds in Theorem 2 and Theorem 4
under the L∞ norm. A few remarks are in order:

Remark Both H̃-bound and H-bound have three terms. This three-term structure
stems from applying the triangle inequality to the decomposition ∂βf̂n − ∂βf0 = (∂βf̂λ −
∂βf0)+(∂βf̂n−∂βfλ), with ‖∂βfλ−∂βf0‖∞ being the first term, and ∂βf̂n−∂βfλ bounded
by the second and third terms combined. H̃-bound and H-bound use different approaches to
bound ∂βf̂n−∂βfλ. As the name suggests, H̃-bound employs the ‖·‖H̃ norm of ∂βf̂n−∂βfλ,
while H-bound uses the ‖ · ‖H norm. When the observations are noiseless, i.e., y = f0(X)
in (3), the two bounds can be simplified by letting σ = 0, zeroing out the third term in
both bounds. Indeed, all subsequent error bounds imply a noise-free version by substituting
σ = 0; we do not present them separately due to space constraints.

Remark Theorem 2 and Theorem 4 are applicable for any derivative order β ∈ Nd0 as
long as |β| ≤ m. For example, if K ∈ C2(X ,X ), these two theorems give learning rates
for each component (e.g., the jth component) of the gradient ∇(f̂n − f0) by setting the
jth element of β to one and others to zero, in which case κ2β = supx∈X ∂xj∂xjK(x,x)
for 1 ≤ j ≤ d. Although our focus is on derivative estimation, setting β = 0 in the two
theorems also provides error bounds for estimating the regression function using the KRR
estimator; hence, we unify the study of the regression function and its derivatives in this
article. There are existing error bounds for the KRR estimator f̂n. For example, Theorem
6 in Smale and Zhou (2005) established an RKHS bound for f̂n − fλ under the bounded
sampling setting (i.e., the response yi is bounded), and their rate O(1/

√
nλ) is similar to

our H-bound with β = 0; Yang et al. (2017) provided error bounds for f̂n under the L∞
norm for kernels with polynomially decaying eigenvalues.
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H-bound is applicable for any Mercer kernels, broadening the applicability of the pro-
posed method. H̃-bound relies on the additional Assumption B. When both H̃-bound and
H-bound hold, the following result compares them by providing sufficient conditions under
which H-bound cannot be tighter than H̃-bound.

Corollary 5 Take δ = n−10 in both H̃-bound and H-bound. If ‖fλ − f0‖∞ = o(1), κ̃2λ =
o(
√
n/ log n) and κ̃β,λκ̃λ = o(λ−1), then H̃-bound is asymptotically less than H-bound.

The three conditions in Corollary 5 can be verified using special examples. For in-
stance, considering the kernel and regression function in Theorem 14 and invoking Lemma 1,
Lemma 11 and Lemma 13, ‖fλ − f0‖∞ = o(1) and κ̃β,λκ̃λ = o(λ−1) automatically hold,
whereas κ̃2λ = o(

√
n/ log n) is equivalent to λ & (log n/n)α. In particular, this condition on

λ is satisfied by the optimal value (log n/n)
2α

2α+1 derived in Theorem 14.
Theorem 2 and Theorem 4 lead to convergence rates of the plug-in KRR estimator

∂βf̂n by invoking augmenting estimates of ∂βfλ − ∂βf0. We conclude this section with a
few relatively abstract examples for such estimates, and introduce another more concrete
example in detail in the next section.

Theorem 6 Suppose Assumption A holds and β ∈ Nd0 with |β| ≤ m.

(a) Under Assumption B, if L−rK f0 ∈ L2
pX

(X ) for some 1/2 < r ≤ 1, then it holds

‖∂βfλ − ∂βf0‖∞ ≤ κβλr−1/2‖L−rK f0‖2.

(b) Suppose that K assumes eigendecomposition with respect to the Fourier basis and L−rK f0 ∈
Cp(X ) for some 0 < r ≤ 1 and p > d+ |β|. Then there exists C3 > 0 such that

‖∂βfλ − ∂βf0‖∞ ≤ C3λ
rζ(p− d+ 1− |β|).

Remark The condition L−rK f0 ∈ L2
pX

(X ) is adopted from Smale and Zhou (2007),
in which r can be understood as a smoothness parameter of f0. When r = 1/2, the

condition L
−1/2
K f0 ∈ L2

pX
(X ) is equivalent to f0 ∈ H. To see this, note that ‖L−1/2K f0‖22 =

‖
∑∞

i=1 fiψi/
√
µi‖22 =

∑∞
i=1 f

2
i /µi = ‖f‖2H. Hence, part (a) of Theorem 6 provides a rate for

f0 ∈ H, while part (b) allows a wider range of r and does not necessarily require f0 ∈ H.
But part (b) requires the image L−rK f0 ∈ Cp(X ). We next study a general setting where
L−rK f0 ∈ L2

pX
(X ) for 0 < r ≤ 1/2.

We state the following assumption on an embedding property, which is also considered
in Fischer and Steinwart (2020).

Assumption C ‖Lq/2K f‖∞ ≤ A‖f‖2 for 0 < q ≤ 1, some constant A > 0 and any f ∈
L2
pX

(X ).

The larger q is, the weaker the embedding property is. Assumption C always holds for q = 1

by noting that ‖L1/2
K f‖∞ ≤ κ‖L1/2

K f‖H = κ‖f‖2.

Theorem 7 Under Assumptions A and C, if K assumes eigendecomposition with respect
to the Fourier basis and L−rK f0 ∈ L2

pX
(X ) for some 0 < r ≤ 1/2, then there exists C4 > 0

such that for any β ∈ Nd0 with |β| ≤ m,

‖∂βfλ − ∂βf0‖∞ ≤ AC4λ
r−q/2−q|β|‖g∗‖2,

where g∗ ∈ L2
pX

(X ) is determined by f0, r and β.
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4. Nearly minimax optimal rate for Hölder and Sobolev class functions

In this section, we demonstrate the sharpness of the established bounds using a concrete
example. In particular, we use kernels with polynomially decaying eigenvalues for K and
consider X = [0, 1] along with a uniform sampling process for pX to ease presentation. We
also assume that the eigenfunctions of the kernel {ψi}∞i=1 are the Fourier basis:

ψ1(x) = 1, ψ2i(x) = cos(2πix), ψ2i+1 = sin(2πix), i ∈ N, (8)

which clearly satisfies Assumption B. We formalize the definition of such kernels as follows.

Definition 8 A kernel with polynomially decaying eigenvalues Kα : [0, 1] × [0, 1] → R
assumes an eigendecomposition with respect to the Lebesgue measure µ such that the eigen-
values µi � i−2α for some α > 0 and the eigenfunctions {ψi}∞i=1 are the Fourier basis
functions.

Examples of kernels with polynomially decaying eigenvalues include the Matérn kernel and
Sobolev kernel (Wahba, 1990; Gu, 2013). For example, it is well known that the eigenvalues
of Matérn kernel with parameter ν satisfy µi � i−2(ν+1/2) for i ∈ N. In the following, we
consider two function classes, a Hölder class Hα[0, 1] and a Sobolev class Sα[0, 1], for the
true regression function f0.

Definition 9 Let {ψi}∞i=1 be the Fourier basis of L2
µ[0, 1] in (8). For any α > 0, the Hölder

class Hα[0, 1] is a Hilbert space defined as

Hα[0, 1] =

{
f ∈ L2

µ[0, 1] : ‖f‖2Hα[0,1] =
∞∑
i=1

iα|fi| <∞
}
,

where fi = 〈f, ψi〉2.

For any f ∈ Hα[0, 1], f lies in the α-smooth Hölder space, i.e., it has continuous derivatives
up to order bαc and the bαcth derivative is Lipschitz continuous of order α − bαc (Yang
et al., 2017). To see this, note that

|f bαc(x)− f bαc(x′)| =

∣∣∣∣∣
∞∑
i=1

fi(ψ
bαc
i (x)− ψbαci (x′))

∣∣∣∣∣ .
∞∑
i=1

|fi|ibαc

.
∞∑
i=1

|fi|ibαc(i|x− x′|)α−bαc . |x− x′|α−bαc.

Definition 10 Let {ψi}∞i=1 be the Fourier basis of L2
µ[0, 1] in (8). For any α > 1/2, the

Sobolev class Sα[0, 1] is a Hilbert space defined as

Sα[0, 1] =

{
f ∈ L2

µ[0, 1] : ‖f‖2Sα[0,1] =
∞∑
i=1

i2αf2i <∞
}
,

where fi = 〈f, ψi〉2.

11
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For α ∈ N, functions in Sα[0, 1] belong to the α-smooth Sobolev space (cf. Theorem 7.11 in
Wasserman (2006)), which consists of functions with absolutely continuous α−1 derivatives
and whose αth derivative has uniformly bounded L2 norm and is also a Hilbert space.

It is easy to see that Hα[0, 1] ⊂ Sα[0, 1] by definition. On the other hand, Sα+α0 [0, 1] ⊂
Hα[0, 1] for α0 > 1/2. Indeed, it holds that

iα|fi| ≤ i−2α0 + i2(α+α0)f2i

for all i ∈ N. Hence, if f ∈ Sα+α0 [0, 1], we have

∞∑
i=1

iα|fi| ≤
∞∑
i=1

i−2α0 +

∞∑
i=1

i2(α+α0)f2i <∞.

Considering the equivalent kernel K̃α of Kα. Let the higher-order analog of the effective
dimension for Kα be κ̃2α,m,λ for m ∈ N0, where the subscript α emphasizes the use of Kα

compared to the general definition in (7). Similarly to the preceding section, all results in
this section cover the regression function as a special case with m = 0. For example, we
allow m = 0 in κ̃α,m,λ, which corresponds to κ̃2α,0,λ = κ̃2α,λ = supx∈[0,1] K̃α(x, x).

Lemma 11 provides the differentiability of Kα and the exact order of κ̃α,m,λ with respect
to λ.

Lemma 11 If α > m+ 1/2 for m ∈ N0, then Kα ∈ C2m([0, 1]× [0, 1]), K̃α ∈ C2m([0, 1]×
[0, 1]) and κ̃2α,m,λ � λ

− 2m+1
2α .

Thus, Kα satisfies Assumption A whenever α > m + 1/2. The 1/2 gap between m
and α appears to be smaller than those required by existing literature; for example, local
polynomial and smoothing splines often require the regression function f0 ∈ Cm+1(X )
when estimating the mth derivative (De Brabanter et al., 2013; Charnigo et al., 2011), and
difference-based methods such as Wang and Lin (2015) assumed the true regression function
to be five times differentiable when estimating the first derivative.

The next lemma studies the differentiability of functions in the RKHS Hα induced
by Kα. It turns out that the equivalent RKHS norm upper bounds the L2 norm of the
derivatives. Note that Hα and H̃α consist of the same class of functions, thus sharing the
same differentiability property.

Lemma 12 If α > m + 1/2 for m ∈ N0, then Hα ⊂ Cm[0, 1]. Moreover, there exists a
constant Cm > 0 that does not depend on λ such that ‖f (m)‖2 ≤ Cmκ̃

−1
α,λκ̃α,m,λ‖f‖H̃α for

any f ∈ Hα.

As we have seen in Theorem 2 and Theorem 4, calculating the learning rate of f̂
(m)
n −f (m)

0

requires the rate of f
(m)
λ − f (m)

0 . We next provide the error bound for this quantity under

the H̃α norm.

Lemma 13 Suppose f0 ∈ Hα[0, 1] or f0 ∈ Sα[0, 1] for α > 1/2. If the kernel is chosen to
be Kα, then it holds that

‖fλ − f0‖H̃α . λ
1
2 .
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When m = 0, the three lemmas above provide error bounds for estimating the regression
function. In particular, Lemma 11 implies κ̃2α,λ � λ−

1
2α , Lemma 12 gives ‖f‖2 ≤ ‖f‖H̃α ,

and Lemma 13 leads to ‖fλ − f0‖H̃α . λ
1
2 .

We are now in a position to present a non-asymptotic convergence rate of f̂
(m)
n .

Theorem 14 Suppose f0 ∈ Hα[0, 1] or f0 ∈ Sα[0, 1] for α > m+ 1/2 and m ∈ N0, and the

kernel is chosen to be Kα. Then it holds with P(n)
0 -probability at least 1− n−10 that

‖f̂ (m)
n − f (m)

0 ‖2 .
(

log n

n

) α−m
2α+1

,

with the corresponding choice of regularization parameter λ � (log n/n)
2α

2α+1 .

Theorem 14 yields that the plug-in KRR estimator is minimax optimal up to a logarith-

mic factor for estimating f
(m)
0 with f0 ∈ Hα[0, 1] or f0 ∈ Sα[0, 1] under the L2 norm. To see

this, first consider f0 ∈ Hα[0, 1] and let εα,m,n be the minimax optimal rate for estimating

f
(m)
0 . Note that n−

α−m
2α+1 is the optimal rate for estimating the mth derivative of α-smooth

Hölder functions (Stone, 1982). Let Hα
per[0, 1] denote the subset of α-smooth Hölder space

that satisfies the periodic boundary condition f (j)(0) = f (j)(1) for 0 ≤ j ≤ bαc − 1. It can

be shown that the corresponding L2 minimax rate for Hα
per[0, 1] is also n−

α−m
2α+1 . Suppose

f ∈ Hα′
per[0, 1] for α′ > α, according to Theorem 12.20 in Gockenbach (2005) and Theorem

3.14 in Cuddy (2012), the Fourier coefficient of f satisfies fi = O(i−α
′−1). Consequently,

Hα′
per[0, 1] ⊂ Hα[0, 1], and hence εα,m,n ≥ n−

α′−m
2α′+1 . Letting α′ ↓ α, we have εα,m,n ≥ n−

α−m
2α+1 ,

indicating the near minimax optimality of the plug-in KRR estimator when the function
class is Hα[0, 1]. The same minimax optimality extends to the function class Sα[0, 1].

When m = 0, it is known that the optimal rate for estimating f0 ∈ Sα[0, 1] is n−
α

2α+1 (cf.
Theorem 7.32 in Wasserman (2006)). For a general derivative order m ≥ 0, noting that
Hα[0, 1] ⊂ Sα[0, 1], the minimax rate for Sα[0, 1] is no faster than that for Hα[0, 1]. Since
the plug-in KRR estimator achieves the same convergence rate for both classes as shown in
Theorem 14, we arrive at the conclusion that the proposed KRR estimator is also nearly

minimax optimal when estimating f
(m)
0 with f0 ∈ Sα[0, 1].

Remark We can see that given the smoothness level of the regression function, the
rate-optimal estimation of the derivatives shares the same choice of λ between various
derivative orders. Thus, the plug-in KRR estimator is adaptive to the order of the derivative
to be estimated. This indicates that the proposed estimator enjoys the so-called plug-in
property (Bickel and Ritov, 2003), a phenomenon in which a rate-optimal nonparametric
estimator also efficiently estimates some bounded linear functionals. Instead of bounded
linear functionals, we establish the plug-in property for function derivatives.

Remark The adaptivity and plug-in property of the plug-in KRR estimator are in sharp
contrast to some existing methods. The minimax optimal rate for a specific derivative order
can be achieved by various methods in the literature but with caveats, including difference-
based methods (Wang and Lin, 2015; Dai et al., 2016; Liu and De Brabanter, 2020), local
polynomial regression (Fan and Gijbels, 1996; Delecroix and Rosa, 1996), and smoothing
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splines (Stone, 1985; Zhou and Wolfe, 2000). For difference-based methods, the optimality
only applies to interior points, and boundary correction is required for both practical imple-
mentation and theoretical understanding. Difference-based methods are typically used to
estimate the first two derivatives and require more tuning parameters for a higher derivative
order. For local polynomial regression and smoothing splines, as pointed out by Wahba and
Wang (1990) and Charnigo et al. (2011), the optimal choice of smoothing parameter de-
pends on the order of the derivative. Hence, they do not enjoy the aforementioned plug-in
property for function derivatives while the proposed plug-in KRR method does. In other
words, for local polynomial regression and smoothing splines, when the estimator achieves
the optimal rate of convergence for the regression function f0, the plug-in derivative esti-
mators with the same tuning parameter values will be sub-optimal, and vice versa. The
lack of adaptivity to derivative orders in these existing methods renders parameter tuning
challenging in the presence of varying derivative orders.

Remark There has been a rich literature on theoretical guarantees of KRR, but much
of the focus has been on regression functions (Cucker and Smale, 2002; Zhang, 2005; Capon-
netto and De Vito, 2007; Steinwart et al., 2009; Mendelson and Neeman, 2010; Yang et al.,
2017). For example, Yang et al. (2017) derived error bounds for f̂n when the regression
function belongs to similar function classes. Our focus in this section is instead on derivative
estimation, which requires different assumptions and techniques. The framework developed
in this article for estimating function derivatives, including the adaptivity and plug-in prop-
erty of the plug-in KRR estimators, might provide useful insights and results that could be
helpful in building upon existing bounds on KRR estimators for derivatives.

5. Practical consideration

Estimating the derivatives of the regression function has a wide range of applications in
many areas. In the regression setting considered in this article, function derivatives have
direct real-world applications. For example, estimating function derivatives is directly use-
ful in understanding the behavior of the hypothesized dark energy equation in cosmology
Holsclaw et al. (2013), which is a function of the second derivative of the data process. In
ocean sciences, the derivative function provides the rate of sea-level change at a particular
time point (Cahill et al., 2015), offering insights into the evolution of dynamic sea-level
rise over time. In more general settings, derivatives are frequently used in spatial pro-
cess models (Banerjee et al., 2003) and shape-constrained regression that utilizes derivative
processes (Riihimäki and Vehtari, 2010; Wang and Berger, 2016), and may improve the com-
putational efficiency for nonlinear dynamic system identification (Solak et al., 2003), while
serving as a tool in detecting local extrema (Song et al., 2006; Li et al., 2021) and efficient
modeling of functional data (Dai et al., 2018). An important implication of our developed
theory and methods is that KRR estimators as a common method for unknown regression
functions can be used to infer derivatives of functions by the simple plug-in strategy, with
easy tuning and explicit expressions.

In practice, one needs to choose the kernel and regularization parameter λ, and account
for computational complexity.

Kernel selection. There is a rich menu for the covariance kernel (Rasmussen and
Williams, 2006, Chapter 4), and below we introduce several choices with polynomially
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decaying eigenvalues. Such kernels are commonly used in the literature (Amini and Wain-
wright, 2012; Zhang et al., 2015; Yang et al., 2017). The Matérn kernel is given by

KMat,ν(x, x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

)ν
Bν

(√
2ν|x− x′|

)
,

where Bν(·) is the modified Bessel function of the second kind with smoothness parameter
ν to be determined. It is well known that the eigenvalues of the Matérn kernel satisfy that
µi � i−2(ν+1/2) for i ∈ N. In practice, we select ν via leave-one-out cross validation and
minimize the mean square error of the regression function. The Sobolev kernel is another
class of kernels with polynomial decaying eigenvalues that underlie the Sobolev spaces with
different orders of smoothness (Birman and Solomyak, 1967; Gu, 2013). In our numerical
experiment we consider the second-order Sobolev kernel

KSob(x, x′) = 1 + xx′ + min{x, x′}2(3 max{x, x′} −min{x, x′})/6,

which generates an RKHS of Lipschitz functions with smoothness α = 2. Other higher-order
Sobolev kernels also exhibit polynomial eigendecay with larger smoothness levels. Choosing
the covariance kernel can be largely assisted by domain knowledge in many fields as each
kernel encodes various properties of its samples from the induced RKHS. For example,
the squared exponential covariance kernel as the limiting case of the Matérn kernel with
ν → ∞ is a popular choice in event-related potential analysis in neuroscience (Yu et al.,
2023) thanks to the induced smooth functions that agree with domain knowledge, and
similarly, Matérn kernels are more popular for less smooth functions such as in spatial
process models (Banerjee et al., 2003). Shape constraints also point to specific kernels; for
example, inference on periodic functions necessitates choosing kernels defined on spheres
that encode periodicity (Li and Ghosal, 2017). One can also resort to cross validation as
a data-driven solution to choose a kernel among multiple options using a model selection
perspective.

Parameter tuning. For a given kernel and under normal assumptions, we estimate
error variance σ2 by its maximum marginal likelihood estimator (MMLE)

σ̂2n := λyT [K(X,X) + nλIn]−1y

and choose the regularization parameter λ by maximizing the marginal likelihood

y | X ∼ N(0, σ̂2n(nλ)−1K(X,X) + σ̂2nIn).

These parameters are used for any order of derivatives in view of the order adaptive property
of the proposed method; in contrast, optimal parameter tuning in competing methods may
vary with the derivative order and deviate from the one chosen for estimating the regression
function. We will assess the finite-sample performance of plug-in KRR estimators with this
choice of λ in the next section.

The above method for parameter tuning is also known as the empirical Bayes approach.
We advocate for this approach because of its empirical success in the Bayesian literature, and
an established equivalence link between Bayesian and non-Bayesian frameworks that allows
us to transfer concepts from the Bayesian regime to kernel ridge regression (Liu and Li,
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2020). In other settings, we have noticed that the MMLE of λ tends to adapt to the unknown
smoothness level of the underlying function when paired with an oversmooth kernel. That
is, the MMLE of λ often leads to excellent performance when the kernel’s smoothness
level is equal to or greater than that of the regression function. This suggests that an
alternative effective strategy for estimating smooth functions with unknown smoothness
and their derivatives could involve deploying an oversmooth kernel, such as the squared
exponential kernel, and choosing λ via the MMLE. The use of oversmooth kernels, including
the squared exponential kernel, is consistent with existing literature such as Bach (2013).
A formal investigation of this practically appealing adaptivity feature of the MMLE is an
interesting future work, and part of our efforts in this direction will be reported in Liu and
Li (2022).

Computational complexity. The proposed method has analytical forms for any
order of derivatives, facilitating fast implementation. The average total running time of the
proposed method is 0.31 when n = 100 and 0.97 seconds when n = 500 in R on a PC with
2.3 GHz 8-Core Intel Core i9 CPU. Computing the eigendecomposition of K(X,X) typically
takes O(n3) times, but this is a one-time cost as we can store the eigendecomposition of
K(X,X) to speed up the calculation of [K(X,X)+nλIn]−1 for any given λ. The subsequent
estimation process consists of two steps. First, we use limited-memory bound constrained
“BFGS” in the “optim” function in R to find the optimal λ. This tuning step has complexity
O(kn2), where k is the number of iterations, and is finished within an average of 0.28 seconds
when n = 100 and 0.56 seconds when n = 500. The following step is to calculate the plug-in
KRR estimate given the optimal λ, which has complexity O(n2).

6. Simulation

In this section, we assess the finite sample performance of the plug-in KRR estimator relative
to several methods and provide numerical evidence of its agreement with the minimax
optimal rate.

6.1 Comparison with existing methods

We consider two regression functions: f01(x) = exp{−4(1 − 2x)2}(1 − 2x) and f02(x) =
sin(8x) + cos(8x) + log(4/3 + x) for x ∈ [0, 1], with random design Xi ∼ Unif[0, 1] and
sample size n = 500. We generate the response y following Model (1) by adding Gaussian
error εi ∼ N(0, 0.22) to f01 and f02. We consider up to the third derivative to accommodate
competing methods, but note that the proposed method is readily available for any order.
We also conduct simulations under fixed design; the comparison is similar, and the results
are deferred to the Supplementary Material.

For the proposed method, we use the second-order Sobolev kernel and Matérn kernel
given in Section 5. We compare the plug-in KRR estimator with three other methods: local
polynomial regression with degree p = 2 (R package ‘locpol’ in Cabrera (2018)), penalized
smoothing spline (R package ‘pspline’ in Ripley (2017)) and locally weighted least squares
regression (coded as ‘LowLSR’) proposed by Wang et al. (2019). For local polynomial
regression, we use the Gaussian kernel and select the bandwidth via cross validation. For
smoothing spline, we use cubic penalized smoothing spline with other parameters set to the
default values. When implementing LowLSR, we set the number of difference quotients k
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to 50 for the first derivative and increase it to 100 for the second derivative, leading to 400
and 300 non-boundary points, respectively. We remark that it is not easy for LowLSR to
estimate high-order derivatives, and we only use it to estimate the first two derivatives.

We conduct a Monte Carlo study with 100 repetitions. We evaluate each estimator
except LowLSR at 100 equally spaced points in [0, 1], and calculate the root mean square
error (RMSE):

RMSE =

√√√√ 1

100

99∑
t=0

{ŝ(t/99)− s(t/99)}2,

where ŝ is the estimated function and s the true function (f
(m)
01 or f

(m)
02 for k = 1, 2, 3). Since

LowLSR does not allow evaluation at boundary points or points different from the observed
Xi, we compute the RMSE at every other 5 points from the sorted Xi that are away from the
boundaries, resulting in 80 and 60 testing points for first and second derivative estimation,
respectively.

Figure 1 presents the boxplot of RMSEs for estimating f ′01 and f ′02 for each method.
We can see that for f ′02 KRR with Matérn kernel achieves the lowest median RMSE among
all methods, while KRR with Sobolev kernel is comparable to penalized smoothing spline
and outperforms the other two methods. For f ′01, we observe a similar result with the
relative position switched between the Sobolev kernel and Matérn kernel. For both func-
tions, LowLSR exhibits the highest median and the most variability of RMSE; this might
be partly because LowLSR is designed for the fixed design setting. We consider a fixed
design simulation in the Supplementary Material, in which LowLSR improves but still gives
considerably larger RMSE than the better method of the two KRR estimators. Overall, the
plug-in KRR estimator with Matén kernel leads to the best RMSE for f ′02, and gives close
results to the leading approach KRR with Sobolev kernel for f ′01.

Figure 2 presents the boxplot of RMSEs for each method when estimating f ′′01 and f ′′02.
KRR with Matérn kernel achieves the lowest median RMSE among all methods.

Figure 3 displays the boxplot of RMSEs for estimating f ′′′01 and f ′′′02. We can see that the
performance of penalized smoothing spline is significantly worsened with high variability and
the largest median RMSE, indicating the challenge when estimating high-order derivatives.
The two KRR methods continue to give the best RMSEs, confirming our theory that the
proposed estimator is adaptive to the derivative order. Comparing these two plug-in KRR
estimators suggests the Matén kernel leads to either similar or better RMSE, and appears
to be the recommended choice under our simulation settings.

Figure 4 displays the result from one random run in the Monte Carlo study for esti-
mating the first derivatives. It can be seen that locpol and LowLSR do not perform well
for estimating f ′01, while all methods produce relatively satisfactory results for estimating
f ′02. KRR with either kernel estimates f ′01 fairly well, while the Sobolev kernel slightly
underperforms Matérn kernel when estimating the boundaries of f ′02.
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Figure 1: Boxplots of RMSEs: f ′01 (left) and f ′02 (right).
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Figure 2: Boxplots of RMSEs: f ′′01 (left) and f ′′02 (right).
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Figure 3: Boxplots of RMSEs: f ′′′01 (left) and f ′′′02 (right). LowLSR is not applicable to
estimate the third derivative.
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Figure 4: Estimates of f ′01 (left) and f ′02 (right) in one simulation: true derivative (full line);
KRR with Sobolev kernel (green dash), Matérn kernel (red dash); locpol (blue
long dash), spline (yellow long dash) and LowLSR (grey long dash).

6.2 Finite-sample comparison with minimax bounds

We next perform experiments as proof of concepts that the derived upper bound is observed
in practice. To this end, we examine how the empirical error scales with the sample size,
with λ selected by maximizing its marginal likelihood. We consider the true regression
function f0(x) =

√
2
∑∞

i=1 i
−5 sin i cos[(i − 1/2)πx] for x ∈ [0, 1], which belongs to Hα[0, 1]

with α = 4. Hence, we use a Matérn kernel with ν = 3.5. We simulate ni observations from
the regression model (1) with εi ∼ N(0, 0.1) and Xi ∼ Unif[0, 1]. The sample size ni varies
from 10 to 500 such that log(ni)’s are 100 equally spaced points in [log(10), log(500)]. We
replicate the simulation 100 times for each sample size ni. We then compute the average
RMSE errori of the 100 replications as an estimate of the L2 error ‖f̂ ′ni−f

′
0‖2. The minimax

optimal rate for estimating f ′0 is n−1/3 under the L2 norm (Stone, 1982). If our plug-in
estimator is able to achieve this optimal rate, then the scatterplot of (log(ni), log(errori))
should come close to forming a straight line log(errori) = −1

3 log(ni) + constant.

The left panel of Figure 5 plots log(errori) versus log(ni). The reference line in red has
slope −1/3; its intercept is determined by least square fitting with fixed slope −1/3, which
is
∑100

i=1{log(errori) + 1
3 log(ni)}/100. We can see that the points are distributed around

the line, suggesting that the estimation error of our plug-in KRR estimator agrees with
the theoretical minimax rate. To investigate the effect of sample size more dynamically,
the right panel of Figure 5 shows the rolling least square slopes with moving windows of
40 observations, i.e., the kth slope in the plot is obtained by linear regression using data
{(log(ni), log(errori)) : k ≤ i ≤ k + 39} for 1 ≤ k ≤ 61. The slopes are close to the
reference line (in red) that represents the minimax rate −1/3 for all the sample sizes under
consideration, and we do not observe a phase transition phenomenon from these results.
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Figure 5: Log-log plots for the plug-in KRR estimator. Left panel: Scatterplot of
(log(ni), log(errori)). Right panel: Slopes from rolling linear regression with mov-
ing windows of 40 observations. The reference lines in red are y = −x/3+constant
(left panel) and y = −1/3 (right panel), both representing the minimax rate.

We repeat the same experiment for local polynomial regression with degree p = 2, where
the Gaussian kernel is used and the bandwidth is selected via cross validation. The results
are shown in Figure 6. It can be seen that compared with the plug-in KRR estimator,
local polynomial has larger errors across different sample sizes, and the error decreases at
a rate slower than the optimal rate. This is not surprising as local polynomial regression
lacks adaptivity to derivative orders, and we acknowledge that its performance might be
improved had the tuning parameter been chosen that is better suited for the first derivative
of the regression function.
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Figure 6: Log-log plots for local polynomial regression. Left panel: Scatterplot of
(log(ni), log(errori)). Right panel: Slopes from rolling linear regression with mov-
ing windows of 40 observations. The reference lines in red are y = −x/3+constant
(left panel) and y = −1/3 (right panel), both representing the minimax rate.
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7. Discussion

In this paper, we propose a plug-in kernel ridge regression estimator for estimating mixed-
partial derivatives of a nonparametric regression function. The proposed estimator is analyt-
ically given and applicable for multi-dimensional support and sub-Gaussian error, enabling
fast computation, broad practicability, and convenient inference. We study non-asymptotic
behaviors, L∞ convergence rates, and minimax optimality of the proposed estimator. Our
analysis shows that the proposed method automatically adapts to the order of derivatives to
be estimated, leading to easy tuning in practice. Simulations confirm the established mini-
max optimality and suggest favorable performance of the proposed estimator compared to
existing methods under both random and fixed designs.

The present article is based on the commonly used iid error assumption with sub-
Gaussian distributions; extension to heterogeneous or dependent error is beyond our scope
but is an interesting future topic. In addition, while our theory including Theorems 2,
4, 6(b), and 7 accommodates multivariate functions and does not require the regression
function f0 to reside within the RKHS, the minimax optimality in the considered special
examples is established for univariate functions and functions in the RKHS only. Future
work could expand upon our results to consider multivariate and high-dimensional functions;
challenges in this area include defining a practically useful function space (possibly with
dimension-dependent smoothness levels) for interesting derivative estimations, as well as
designing an appropriate kernel and parameter tuning methods that ensure rate optimality.
Finally, we have focused on kernel ridge regression estimators in terms of plug-in properties
for derivatives, and it is interesting to consider other related algorithms and loss functions,
for example, spectral filtering based on the work of Lin et al. (2020) and self-concordant
losses based on the work of Marteau-Ferey et al. (2019).
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Appendix A. Proofs

This section contains proofs of all results. We shall make use of the following Lemma 15
repeatedly in the sequel, which provides an error bound for LK,X − LK under the ‖ · ‖H
norm. The proof of Lemma 15 mainly relies on the McDiarmid inequality and its Bernstein
form, which can be found in Smale and Zhou (2005).

Lemma 15 (Lemma 3 in Smale and Zhou (2005)) For any Mercer kernel K, bounded
f ∈ L2

pX
(X ) and 0 < δ < 1, with probability at least 1− δ, there holds

‖LK,X(f)− LK(f)‖H =

∥∥∥∥∥ 1

n

n∑
i=1

f(xi)Kxi − LKf

∥∥∥∥∥
H

≤ 4κ‖f‖∞
3n

log(1/δ) +
κ‖f‖2√

n
(1 +

√
8 log(1/δ)).

A.1 Proofs in Section 3.2

Proof [Proof of Lemma 1] The proof can be found in Corollary 4.36 in Steinwart and
Christmann (2008) or Theorem 4.7 in Ferreira and Menegatto (2012).

Proof [Proof of Theorem 2] Letting ∆f = f̂n − fλ, we have

LK̃,X(∆f)− LK̃(∆f) = LK̃,X(f̂n)− LK̃,X(fλ)− LK̃(f̂n) + LK̃(fλ).

Noting that LK̃,X(y− f̂n) = f̂n−LK̃(f̂n) and LK̃(f0) = fλ, the preceding display becomes

LK̃,Xy − f̂n − LK̃,X(fλ) + LK̃(fλ) = LK̃,X(y − fλ)−∆f − LK̃(f0 − fλ).

Consequently,

‖∆f‖H̃ ≤ ‖LK̃,X(∆f)− LK̃(∆f)‖H̃ + ‖LK̃,X(y − fλ)− LK̃(f0 − fλ)‖H̃
≤ ‖LK̃,X(∆f)− LK̃(∆f)‖H̃ + ‖LK̃,X(f0 − fλ)− LK̃(f0 − fλ)‖H̃ + ‖LK̃,Xw‖H̃,

where w = y − f0(X) follows a multivariate Gaussian distribution with zero mean and
variance σ2In. Let Ω = [K̃(Xi, Xj)]

n
i,j=1, which implies that ‖LK̃,Xw‖

2
H̃ = n−2wTΩw.

Note that

tr(Ω) ≤
n∑
i=1

K̃(Xi, Xi) ≤ nκ̃2λ and tr(Ω2) =
n∑

i,j=1

K̃(Xi, Xj)
2 ≤ n2κ̃4λ.

According to the Hanson-Wright inequality (Rudelson and Vershynin, 2013), we have with
probability at least 1− 2e−ct

2
that

wTΩw ≤ σ2tr(Ω) + 2σ2
√

tr(Ω2)(t+ t2) ≤ 2σ2nκ̃2λ(t+ 1)2,

for any t > 0 and c > 0 that does not depend on K or n. Therefore, with probability 1− δ,
there holds

‖LK̃,Xw‖H̃ ≤
√

2κ̃λσ√
n

(
1 +

√
2c−1 log(1/δ)

)
.
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Applying Lemma 15 with K̃ twice separately to ∆f and f0 − fλ, with probability at least
1− 3δ, we have

‖∆f‖H̃ ≤
4κ̃λ(‖∆f‖∞ + ‖fλ − f0‖∞)

3n
log(1/δ) +

κ̃λ(‖∆f‖2 + ‖fλ − f0‖2)√
n

(
1 +

√
8 log(1/δ)

)
+

√
2κ̃λσ√
n

(
1 +

√
2c−1 log(1/δ)

)
.

Note that ‖f‖2 ≤ ‖f‖∞ for any f ∈ L2
pX

(X ). Consider any δ ∈ (0, 1/3) such that log(1/δ) >
log 3 > 1. Then the upper bound in the preceding inequality becomes

κ̃λ
√

log(1/δ)√
n

(
4 +

4κ̃λ
√

log(1/δ)

3
√
n

)
(‖∆f‖∞ + ‖fλ − f0‖∞) +

C1κ̃λσ
√

log(1/δ)√
n

,

where C1 > 0 is a universal constant that does not depend on K or n. Therefore, with
probability at least 1− δ for any δ ∈ (0, 1), we have

‖∆f‖H̃ ≤
κ̃λ
√

log(3/δ)√
n

(
4 +

4κ̃λ
√

log(3/δ)

3
√
n

)
(‖∆f‖∞ + ‖fλ − f0‖∞) +

C1κ̃λσ
√

log(3/δ)√
n

.

By Lemma 1 we obtain that with probability at least 1 − δ,

‖∆f‖H̃ ≤
κ̃λ
√

log(3/δ)√
n

(
4 +

4κ̃λ
√

log(3/δ)

3
√
n

)
(κ̃λ‖∆f‖H̃ + ‖fλ − f0‖∞) +

C1κ̃λσ
√

log(3/δ)√
n

= C(n, κ̃λ)‖∆f‖H̃ + κ̃−1λ C(n, κ̃λ)‖fλ − f0‖∞ +
C1κ̃λσ

√
log(3/δ)√
n

, (9)

where

C(n, κ̃λ) =
κ̃2λ
√

log(3/δ)√
n

(
4 +

4κ̃λ
√

log(3/δ)

3
√
n

)
.

The proof is completed by applying Lemma 1 and the triangle inequality.

A.2 Proofs in Section 3.3

Proof [Proof of Lemma 3] This lemma is a variant of Lemma 1 but uses the ‖ · ‖H instead
of ‖ · ‖H̃ norm. The arguments used in proving Lemma 1 go verbatim.

Lemma 16 For any bounded f ∈ L2
pX

(X ), let

E(K,X, f) := (LK,X + λI)−1LK,Xf − (LK + λI)−1LKf

= K(·, X)[K(X,X) + nλIn]−1f(X)− (LK + λI)−1LKf, (10)
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For any δ ∈ (0, 1), it holds with probability at least 1− δ that

‖E(K,X, f)‖H ≤
κ‖f‖∞

√
log(3/δ)√
nλ

(
10 +

4κ
√

log(3/δ)

3
√
nλ

)
.

Proof [Proof of Lemma 16] We introduce an intermediate quantity (LK,X +λI)−1LKf and
decompose E(K,X, f) = (L̃K,Xf − (LK,X +λI)−1LKf) + ((LK,X +λI)−1LKf − L̃Kf). We
will calculate error bounds for both terms by applying Lemma 15 twice. First we have

‖L̃K,Xf − (LK,X + λI)−1LKf‖H
= ‖(LK,X + λI)−1(LK,Xf − LKf)‖H

≤ 1

λ
‖LK,Xf − LKf‖H ,

where the last inequality is due to (5) in the main paper. Applying Lemma 15, then with
probability at least 1− δ, we have

‖L̃K,Xf − (LK,X + λI)−1LKf‖H ≤
4κ‖f‖∞

3nλ
log(1/δ) +

κ‖f‖2√
nλ

(1 +
√

8 log(1/δ)). (11)

On the other hand, we have

‖(LK,X + λI)−1LKf − L̃Kf‖H
= ‖(LK,X + λI)−1(LK + λI)L̃Kf − (LK,X + λI)−1(LK,X + λI)L̃Kf‖H
= ‖(LK,X + λI)−1(LKL̃Kf − LK,X L̃Kf)‖H

≤ 1

λ
‖LKL̃Kf − LK,X L̃Kf‖H.

Applying Lemma 15 to L̃Kf gives

‖(LK,X + λI)−1LKf − L̃Kf‖H ≤
4κ‖L̃Kf‖∞

3nλ
log(1/δ) +

κ‖L̃Kf‖2√
nλ

(1 +
√

8 log(1/δ)).

Letting f = 0 in (6) gives

‖fλ − f0‖22 + λ‖fλ‖2H ≤ ‖f0‖22,

which yields
‖fλ‖2 ≤

√
2‖f0‖2 and ‖fλ‖H ≤ λ−1/2‖f0‖2. (12)

By Lemma 3 we have ‖L̃Kf‖∞ ≤ κ‖L̃Kf‖H. This together with (12) gives

‖(LK,X +λI)−1LKf − L̃Kf‖H ≤
4κ2‖f‖2/

√
λ

3nλ
log(1/δ) +

√
2κ‖f‖2√
nλ

(1 +
√

8 log(1/δ)). (13)

Again consider any δ ∈ (0, 1/3) such that log(1/δ) > log 3 > 1. Then, the two bounds in
equations (11) and (13) become

4κ‖f‖∞
3nλ

log(1/δ) +
4κ‖f‖∞√

nλ

√
log(1/δ),

4κ2‖f‖∞/
√
λ

3nλ
log(1/δ) +

6κ‖f‖∞√
nλ

√
log(1/δ),
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respectively. Consequently, with probability at least 1 − 2δ > 1− 3δ, we have

‖E(K,X, f)‖H = ‖L̃K,Xf − L̃Kf‖H ≤
κ‖f‖∞√

nλ

(
10
√

log(1/δ) +
4

3
√
n

log(1/δ) +
4κ

3
√
nλ

log(1/δ)

)
≤
κ‖f‖∞

√
log(1/δ)√
nλ

(
10 +

4κ
√

log(1/δ)

3
√
nλ

)
.

Therefore, with probability at least 1 − δ for any δ ∈ (0, 1), we have

‖E(K,X, f)‖H ≤
κ‖f‖∞

√
log(3/δ)√
nλ

(
10 +

4κ
√

log(3/δ)

3
√
nλ

)
.

Proof [Proof of Theorem 4] Substituting f = f0 into E(K,X, f) defined in (10) yields
E(K,X, f0) = fX,λ − fλ. By Lemma 16, we have with probability at least 1 − δ that

‖fX,λ − fλ‖H ≤
κ‖f0‖∞

√
log(3/δ)√
nλ

(
10 +

4κ
√

log(3/δ)

3
√
nλ

)
. (14)

Note that

f̂n − fX,λ = K(·, X)[K(X,X) + nλIn]−1w = K(·, X)[K(X,X)/n+ λIn]−1w/n,

where w = y − f0(X) follows a multivariate Gaussian distribution with zero mean and
variance σ2In. Thus,

‖f̂n − fX,λ‖2H =
1

n2
wT [K(X,X)/n+ λIn]−1K(X,X)[K(X,X)/n+ λIn]−1w

≤ 1

n2
κ2wTΣw,

where Σ = [K(X,X)/n+λIn]−2. Since K(X,X)/n is non-negative definite, all eigenvalues
of K(X,X)/n+ λIn are bounded below by λ, which leads to

tr(Σ) ≤ nλ−2 and tr(Σ2) ≤ n2λ−4.

According to the Hanson-Wright inequality (Rudelson and Vershynin, 2013), we have with
probability at least 1− 2e−ct

2
that

wTΣw ≤ σ2tr(Σ) + 2σ2
√

tr(Σ2)(t+ t2) ≤ 2σ2nλ−2(t+ 1)2,

for any t > 0. Therefore, with probability 1 − δ, there holds

‖f̂n − fX,λ‖H ≤
√

2κσ√
nλ

(
1 +

√
2c−1 log(1/δ)

)
≤
C2κσ

√
log(1/δ)√
nλ

, (15)
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where we consider any δ ∈ (0, 1/3) such that log(1/δ) > log 3 > 1 and C2 > 0 is a universal
constant that does not depend on K or n. Combining (14) and (15), it holds that with
probability at least 1− 2δ > 1− 3δ,

‖f̂n − fλ‖H ≤
κ‖f0‖∞

√
log(3/δ)√
nλ

(
10 +

4κ
√

log(3/δ)

3
√
nλ

)
+
C2κσ

√
log(1/δ)√
nλ

.

Hence, for any δ ∈ (0, 1), it holds with probability at least 1 − δ that

‖f̂n − fλ‖H ≤
κ‖f0‖∞

√
log(9/δ)√
nλ

(
10 +

4κ
√

log(9/δ)

3
√
nλ

)
+
C2κσ

√
log(3/δ)√
nλ

.

The proof is completed by applying Lemma 3 and the triangle inequality.

Proof [Proof of Corollary 5] We first simplify H̃-bound. With δ = n−10, we have

C(n, κ̃λ) =
κ̃2λ
√

10 log(3n)√
n

(
4 +

4κ̃λ
√

10 log(3n)

3
√
n

)
.

The condition κ̃2λ = o(
√
n/ log n) yields that C(n, κ̃λ) = o(1) and further κ̃β,λκ̃

−1
λ C(n, κ̃λ) .

κ̃β,λκ̃λ
√

log n/n. Noting that ‖fλ − f0‖∞ = o(1), the second term in H̃-bound is bounded
by the third term. Hence, H̃-bound becomes

‖∂βfλ − ∂βf0‖∞ +
C ′1κ̃β,λκ̃λσ

√
10 log(3n)√
n

.

With δ = n−10, H-bound becomes

‖∂βfλ − ∂βf0‖∞ +
κβκ‖f0‖∞

√
10 log(9n)√

nλ

(
10 +

4κ
√

10 log(9n)

3
√
nλ

)
+
C2κβκσ

√
10 log(3n)√
nλ

.

Comparing the preceding display with H-bound, we can see that if κ̃β,λκ̃λ = o(λ−1), H̃-
bound is asymptotically less than H-bound.

Proof [Proof of Theorem 6] We first prove (a). Rewrite f0 as f0 = LrKg for some g =
L−rK f0 ∈ L2

pX
(X ) and thus fi = µri gi. Representing the function g by g =

∑∞
i=1 giψi, we

have

fλ − f0 = −
∞∑
i=1

λ

µi + λ
µri giψi.

When 1
2 < r ≤ 1, we have

‖fλ − f0‖2H =
∞∑
i=1

(
λ

µi + λ
µri gi

)2

/µi

= λ2r−1
∞∑
i=1

(
λ

µi + λ

)3−2r ( µi
µi + λ

)2r−1
g2i

≤ λ2r−1‖L−rK f0‖22.
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The proof is completed by applying Lemma 3.
For (b), we have ∂βfλ − ∂βf0 = −

∑∞
i=1

λ
µi+λ

µri gi∂
βψi, where {ψi}∞i=1 is the Fourier

basis, i.e., ψ1(x) = 1, ψ2i(x) = cos(2πIi ·x), ψ2i+1 = sin(2πIi ·x); here Ii ∈ Nd0 are ordered
multi-indexes. It follows that

‖∂βfλ − ∂βf0‖∞ ≤
∞∑
i=1

λ

µi + λ
µri |gi||∂βψi|

= λr
∞∑
i=1

(
λ

µi + λ

)1−r ( µi
µi + λ

)r
|gi||∂βψi| ≤ λr

∞∑
i=1

|gi||∂βψi|.

Since g ∈ Cp(X ), the Fourier coefficients satisfy |gi| .
(
i+d
d−1
)
i−p . id−p−1. Moreover,

|∂βψi| . i(i− 1) · · · (i− |β|+ 1) . i|β|. Therefore,

‖∂βfλ − ∂βf0‖∞ ≤ C3λ
r
∞∑
i=1

id−p−1+|β| = C3λ
rζ(p− d+ 1 + |β|).

Proof [Proof of Theorem 7] We write f0 = LrKg for some g = L−rK f0 ∈ L2
pX

(X ) and thus
fi = µri gi. Representing the function g by g =

∑∞
i=1 giψi, then we have

fλ − f0 = −
∞∑
i=1

λ

µi + λ
µri giψi.

We have ∂βfλ−∂βf0 = −
∑∞

i=1
λ

µi+λ
µri gi∂

βψi, where {ψi}∞i=1 is the Fourier basis. Define

{g∗i }∞i=1 such that gi∂
βψi = g∗i i

βψi and let g∗ =
∑∞

i=1 g
∗
i ψi ∈ L2

pX
(X ).

According to Lemma 10 in Fischer and Steinwart (2020), Assumption C implies that the
eigenvalues decay with a polynomial upper bound of order 1/q, i.e., there exists a constant
C4 > 0 such that for all i ∈ N,

µi ≤ C4i
−1/q,

which implies that i|β| ≤ Cq|β|4 µ
−q|β|
i = C4µ

−q|β|
i . Thus,

‖∂βfλ − ∂βf0‖∞ ≤

∥∥∥∥∥
∞∑
i=1

λ

µi + λ
µri gi∂

βψi

∥∥∥∥∥
∞

≤ λ sup
i≥1

µ
r−q/2
i i|β|

µi + λ

∥∥∥∥∥
∞∑
i=1

µ
q/2
i g∗i ψi

∥∥∥∥∥
∞

≤ C4λ sup
i≥1

µ
r−q/2−q|β|
i

µi + λ

∥∥∥Lq/2K g∗
∥∥∥
∞

≤ AC4λ
r−q/2−q|β|‖g∗‖2,

where the last inequality follows from Lemma 25 in Fischer and Steinwart (2020) and As-
sumption C.
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A.3 Proofs in Section 4

Proof [Proof of Lemma 11] When α > m+ 1/2, we have

∂m,mKα(x, x′) =

∞∑
i=1

µiψ
(m)
i (x)ψ

(m)
i (x′) .

∞∑
i=1

i−2αi2m <∞.

Thus, Kα ∈ C2m([0, 1]× [0, 1]).
Recall the definition of κ̃2m,λ in (7). It follows that for any m ∈ N0,

κ̃2α,m,λ = sup
x∈[0,1]

∞∑
i=1

µi
λ+ µi

ψ
(m)
i (x)2

.
∞∑
i=1

i2m

1 + λi2α
≤
∫ ∞
0

(x+ 1)2mdx

1 + λx2α
� λ−

2m+1
2α ,

where the last step holds for α > m+ 1
2 . On the other hand, we have

κ̃2α,m,λ &
∞∑
i=1

[
(2i)2m

1 + λ(2i)2α
cos(2πix)2 +

(2i+ 1)2m

1 + λ(2i+ 1)2α
sin(2πix)2

]

≥
∞∑
i=1

min

{
(2i)2m

1 + λ(2i)2α
,

(2i+ 1)2m

1 + λ(2i+ 1)2α

}

≥ 1

2

∞∑
i=1

i2m

1 + λi2α
� λ−

2m+1
2α ,

where we also need α > m+ 1
2 . The differentiability of K̃α directly follows from the bound-

edness of κ̃2α,m,λ for any fixed λ.

Proof [Proof of Lemma 12] In view of Lemma 1 and Lemma 11, we can see that f ∈ Cm[0, 1]
for any f ∈ H̃α. This is also true for f ∈ Hα since Hα and H̃α contain the same functions.

Now we prove the norm inequality. Let f =
∑∞

i=1 fiψi, where {ψi}∞i=1 is the Fourier
basis. Then, ‖f (m)‖22 �

∑∞
i=1(fii

m)2 for any m ∈ N0. It is equivalent to showing that

κ̃2α,λ ·
∞∑
i=1

f2i i
2m ≤ Cmκ̃2α,m,λ ·

∞∑
i=1

f2i
λ+ µi
µi

,

for some Cm > 0. Hence, it suffices to show that for any i ∈ N,

κ̃2α,λ · f2i i2m ≤ Cmκ̃2α,m,λ · f2i
λ+ µi
µi

.

In view of Lemma 11, we have κ̃2α,m,λ � λ−
2m+1
2α , which also leads to κ̃2α,λ � λ−

1
2α when

taking m = 0. Since µi � i−2α, it is sufficient to show that

λ
m
α i2m ≤ Cm(1 + λi2α),
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for some constant Cm > 0. The above equation trivially holds for Cm = 1 if λ
m
α i2m ≤ 1. If

λ
m
α i2m ≥ 1, then λ

m
α i2m ≤ (λ

m
α i2m)

α
m = λi2α since m < α. Taking Cm = 1 completes the

proof.

Proof [Proof of Lemma 13] Let f0 =
∑∞

i=1 fiψi. Then,

fλ − f0 = −
∞∑
i=1

λ

λ+ µi
fiψi.

Note that

‖fλ − f0‖2H̃α =

∞∑
i=1

(
λ

λ+ µi
fi

)2/ µi
λ+ µi

= λ

∞∑
i=1

λ

λ+ µi

f2i
µi

. λ
∞∑
i=1

i2αf2i ≤ λ

( ∞∑
i=1

iα|fi|

)2

. λ.

Therefore, for any f0 ∈ Hα[0, 1] or f0 ∈ Sα[0, 1], we have ‖fλ − f0‖H̃α . λ
1
2 .

Proof [Proof of Theorem 14] Applying Lemma 12 to (9) and taking δ = n−10 yields with

P(n)
0 -probability at least 1− n−10 that

‖f̂ (m)
n − f (m)

λ ‖2 ≤ κ̃−1α,λκ̃α,m,λ‖f̂n − fλ‖H̃α

≤
κ̃α,m,λκ̃

−2
α,λC(n, κ̃α,λ)

1− C(n, κ̃α,λ)
‖fλ − f0‖∞ +

1

1− C(n, κ̃α,λ)

C1κ̃α,m,λσ
√

10 log(3n)√
n

.

By choosing λ such that κ̃2α,λ = o(
√
n/ log n), we have κ̃−2α,λC(n, κ̃α,λ) �

√
log n/n and

C(n, κ̃α,λ) ≤ 1/2 for sufficiently large n. We arrive at

‖f̂ (m)
n − f (m)

λ ‖2 .
2κ̃α,m,λ

√
log n√

n
‖fλ − f0‖∞ +

2C1κ̃α,m,λσ
√

10 log(3n)√
n

. κ̃α,m,λ

√
log n

n
,

given that ‖fλ − f0‖∞ = o(1). Hence,

‖f̂ (m)
n − f (m)

0 ‖2 . ‖f (m)
λ − f (m)

0 ‖2 + κ̃α,m,λ

√
log n

n
. (16)

In view of Lemma 1 and Lemma 13, we can see that for any f0 ∈ Hα[0, 1] or f0 ∈ Sα[0, 1],

‖fλ − f0‖∞ ≤ κ̃α,λ‖fλ − f0‖H̃α . λ
1
2
− 1

4α = o(1). Invoking Lemma 12, we have

‖f (m)
λ − f (m)

0 ‖2 . κ̃−1α,λκ̃α,m,λ‖fλ − f0‖H̃α . λ
1
4αλ−

2m+1
4α λ

1
2 = λ

1
2
− m

2α .

It follows from (16) that

‖f̂ (m)
n − f (m)

0 ‖2 . λ
1
2
− m

2α + λ−
2m+1
4α

√
log n

n
.
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The upper bound in the preceding display is minimized when λ � (log n/n)
2α

2α+1 , which

satisfies κ̃2α,λ � (n/ log n)
1

2α+1 = o(
√
n/ log n). The optimal rate is derived by substituting

λ. This completes the proof.

Appendix B. Additional simulation results under fixed design

We conduct a Monte Carlo study in the fixed design setting. We consider the same functions
and sample size n = 500 as in Section 6.1 of the main paper and choose fixed design points
Xi = i/500 for i = 1, . . . , 500. We run 100 repetitions and evaluate each estimator according
to RMSE as in Section 6.1.

Figure 7–9 display the boxplots of RMSEs for estimating up to the third derivative in
the fixed design setting. It can be seen that LowLSR performs slightly better than in the
random design setting, especially when estimating the derivatives of f02. Still, the two KRR
methods compare favorably to the benchmarks, and the Matérn kernel gives the best median
RMSEs for almost all cases, with one exception in the left panel of Figure 7 where it ties
with the proposed estimator with Sobolev kernel. This is consistent with our observations
made in the random design setting.

Figure 10 shows the result from one random run in our Monte Carlo study for estimating
the first derivatives in the fixed design setting. We observe similar trends as in the random
design setting in Figure 4. For example, the estimation of LowLSR appears undesirably
wiggly when estimating f ′01. These results suggest that the proposed plug-in KRR estimator
continues to work well in the fixed design setting.
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Figure 7: Boxplots of RMSEs for estimating f ′01 (left) and f ′02 (right) in fixed design setting.
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Figure 8: Boxplots of RMSEs for estimating f ′′01 (left) and f ′′02 (right) in fixed design setting.
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Figure 9: Boxplots of RMSEs for estimating f ′′′01 (left) and f ′′′02 (right) in fixed design setting.
LowLSR is not applicable to estimate the third derivative.
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Figure 10: One random run in the Monte Carlo study for estimating f ′01 (left) and f ′02
(right) under fixed design: true derivative (full line), KRR with Sobolev kernel
(green dashed line), Matérn kernel (red dashed line), locpol (blue long dash),
spline (yellow long dash) and LowLSR (grey long dash).
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