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Abstract 

One pedagogical technique that promotes conceptual 
understanding in mathematics learners is self-
explanation integrated with worked examples (e.g., 
Rittle-Johnson et al., 2017). In this work, we 
implemented self-explanations with worked examples 
(correct and erroneous) in a software-based Intelligent 
Tutoring System (ITS) for learning algebra. We 
developed an approach to eliciting self-explanations in 
which the ITS guided students to select explanations that 
were conceptually rich in nature. Students who used the 
ITS with self-explanations scored higher on a posttest 
that included items tapping both conceptual and 
procedural knowledge than did students who used a 
version of the ITS that included only traditional 
problem-solving practice. This study replicates previous 
findings that self-explanation and worked examples in 
an ITS can foster algebra learning (Booth et al., 2013). 
Further, this study extends prior work to show that 
guiding students towards conceptual explanations is 
beneficial. 

Keywords: learning; self-explanation; worked 
examples; Intelligent Tutoring System; middle-school 
algebra 

Introduction 
How can instruction foster learners’ acquisition of deep 
understanding in mathematics? And how can technology-
based learning environments, such as Intelligent Tutoring 
Systems, support this learning? Deep understanding of 
mathematics involves several distinct types of knowledge, 
including knowledge of fundamental concepts, knowledge of 

how to solve problems, and understanding of the connections 
between them (Crooks & Alibali, 2014; Hiebert & LeFevre, 
1986).  

Intelligent Tutoring Systems (ITSs) are computer-based 
programs that administer lessons and learning activities to 
students. ITSs support learning across various domains (for a 
meta-analysis, see Ma et al., 2015). Many studies have 
provided evidence that practice in an ITS can support 
procedural understanding of mathematics (Ma et al., 2015). 
However, current ITSs are less successful at promoting gains 
in conceptual understanding (e.g., Long & Aleven, 2017; 
Pane et al., 2014; but see Aleven & Koedinger, 2002). In this 
research, we extended and tested an ITS for equation solving 
in algebra, with the broad goal of creating an ITS that would 
foster gains in conceptual understanding. 

One pedagogical technique that has been shown to support 
gains in conceptual knowledge in a range of domains is self-
explanation. Self-explanation involves generating 
explanations of to-be-learned material for oneself, in an effort 
to more deeply process that material (Chi et al., 1994). Many 
studies have documented the value of self-explanation as 
means to help students learn and retain new material (for a 
review, see Rittle-Johnson et al., 2017). In a foundational 
study, Chi (1994) prompted some students to provide self-
explanations as they read a brief text about the circulatory 
system. Students who produced self-explanations retained 
more information and generated more accurate inferences 
based on the material than students who did not produce self-
explanations. Other studies have documented the value of 
self-explanation in mathematics (Barbieri & Booth, 2020; 
Barbieri et al., 2019; Hilbert et al., 2008; Rittle-Johnson, 
2017), including in ITSs (Aleven & Koedinger, 2002). 
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In the context of mathematical problem solving, some 
research has suggested that self-explanation can potentiate 
other sorts of learning activities, enhancing their benefits for 
conceptual knowledge. For example, instruction that involves 
both strategy comparison and prompts to self-explain yields 
greater benefits for learning than instruction that involves 
comparison on its own (Sidney & Alibali, 2015). Similarly, 
instruction that involves self-explanations of worked 
examples or problems steps yields greater benefits for 
learning than similar instruction without self-explanation 
prompts (Aleven & Koedinger, 2002; Barbieri et al., 2019).  

In general, self-explanation is thought to be effective 
because it engages constructive processes, such as identifying 
inconsistencies, filling in knowledge gaps, integrating 
different knowledge elements, and monitoring understanding 
(e.g., Roy & Chi, 2005). However, the quality of self-
explanations also matters. High-quality self-explanations–
ones that demonstrate inference generation or knowledge 
integration–are associated with greater benefits for learning 
than lower-quality self-explanations, such as simple 
restatements or paraphrases (Wylie & Chi, 2014).  

Given the established benefits of high-quality self-
explanation for building conceptual understanding, we 
sought to integrate activities that would elicit high-quality 
self-explanations into an Intelligent Tutoring System for 
early algebra. Building on previous research with similar 
aims (e.g., Booth et al., 2013), we extended an ITS so it 
incorporates worked examples produced by hypothetical 
students, and prompts learners to explain the bases of (correct 
or erroneous) problem-solving steps taken by these 
hypothetical students. Rather than have students “build” self-
explanations from pieces (as in Booth et al., 2013)–a process 
that some students find challenging and laborious–we drew 
on previous studies that showed that selecting possible 
explanations from a menu is a practical, time-effective, and 
straightforward way to elicit explanations from students 
(Rittle-Johnson et al., 2017), especially within ITSs. 

Although it is not known whether the cognitive processes 
involved in selecting explanations are the same as those 
involved in generating explanations, past research has 
documented benefits of selecting explanations for student 
learning (e.g., Rau et al., 2015; Rittle-Johnson et al., 2017). 
In designing the self-explanation activities for the ITS, we 
based the set of explanation choices that we offered on self-
explanations that were generated by middle-school students 
in a one-on-one tutorial interaction in a pilot study (Bartel et 
al., 2020). As might be expected, student-generated self-
explanations varied widely in their quality, and many student-
generated self-explanations did not incorporate relevant 
concepts. In our ITS, we included choice options that aligned 
with students’ typical explanations–including non-
conceptual explanations–but when learners selected non-
conceptual explanations, the ITS prompted them to select a 
second explanation that invoked key concepts.    

In brief, in this work we test the effectiveness of an ITS 
that incorporates an approach to self-explanation of worked 

examples that involves (1) students selecting possible 
explanations, and (2) students receiving encouragement to 
consider conceptually rich explanations, if they initially 
select explanations that are not conceptually rich. We 
compare this tutor to a baseline tutor that does not include 
self-explanation activities, and we evaluate participants’ 
gains in both procedural skill and conceptual understanding. 
We hypothesized that students who studied worked examples 
and who provided self-explanations in addition to solving 
problem-solving items would perform better than students 
who received only problem-solving items on measures of 
procedural and conceptual knowledge, and that these students 
would also show enhanced performance on problem-solving 
items in the tutor (i.e., less time spent per step, fewer incorrect 
steps, fewer hint requests).  

Method 

Participants 
Participants were 175 middle-school students recruited via an 
online database and via word of mouth. Six participants were 
excluded due to technical issues (e.g., computer 
malfunctions, n = 5, and incomplete session, n = 1). Two 
additional participants were excluded for having tutor 
interactions (e.g., length of time per steps) that were three 
standard deviations above the mean. Thus, the final analytic 
sample consisted of 167 students (M age = 12.81 years, SD 
age = 0.76 years; 57 6th grade, 73 7th grade, 36 8th grade, 
one declined to respond). Of the 167 participants in the final 
sample, 128 were White, 23 were biracial, six were 
Black/African American, six were Asian, one was Native 
Hawaiian/Pacific Islander, and three declined to report race 
and ethnicity. Ninety-nine of the students identified as male, 
64 as female, three as non-binary, and one declined to report 
their gender. Ninety-three students reported they were in 
advanced math, 73 reported they were not in advanced math, 
and one declined to report. Participants were compensated 15 
USD in the form of a gift card, cash, or check after 
completing the study. 

Design and Procedure  
Data were collected as part of a study assessing the 
effectiveness of a range of interventions on students’ 
conceptual and procedural knowledge of algebra. 
Participants completed the study in a virtual setting, and the 
sessions were conducted by trained experimenters. 

 
Figure 1: Study procedure 
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Figure 2: Participants in the experimental condition received both (A) worked examples and (B) problem solving. 
Participants in the baseline condition only received (B). Both were presented in the Intelligent Tutoring System. 

 
 

Each session lasted for about one hour. Participants were 
randomly assigned to one of five conditions. In four of these 
conditions, participants completed both worked examples 
with self-explanation prompts and practice problems within 
the ITS; these conditions varied in whether participants also 
saw visual representations (yes/no) or engaged in warm-up 
activities (yes/no). Preliminary analyses showed that the 
visual representation and warm-up manipulations had little 
impact on student performance. Thus, for purposes of this 
paper, we collapsed these conditions into a unified 
experimental condition, in which all students used a version 
of the ITS that included self-explanations of worked 
examples (n = 134). We compared students in the unified 
experimental condition against students in a baseline 
condition who used an ITS that included problem-solving 
activities but that did not include self-explanations or worked 
examples (n = 33). 

This study was preregistered on the Open Science 
Framework. The preregistration includes many analyses that 
fall outside the scope of the current report. Here, we focus 
specifically on comparing students who used a version of the 
ITS that included self-explanations of worked examples and 
students who used a version of the ITS that did not include 
these activities (Hypothesis 1 in the preregistration; see 
Figure 1 for a schematic of the study procedure). 

Measures of Learning: Pretest and Posttest Participants 
completed an online pretest and isomorphic posttest that 
assessed algebra knowledge. Specifically, these tests 
assessed students’ procedural knowledge (3 items) and 
conceptual knowledge (8 items) of basic algebra. Items 
assessing procedural knowledge measured students’ abilities 
to solve linear equations, whereas items assessing conceptual 
knowledge measured students’ understanding of underlying 
concepts in algebra, such as understanding inverse operations 
and doing the same thing to both sides of the equation when 
solving problems The posttest contained two additional 
transfer items. Items were adapted from prior literature (Fyfe 
et al., 2018; Nagashima et al., 2020; Rittle-Johnson et al., 
2011). Some items had multiple parts and were thus scored 
accordingly. Participants were given 11 minutes to work on 
the pretest, and 13 minutes to work on the posttest.  

Measures of Performance in the Intelligent Tutoring 
System Participants then solved problems in an Intelligent 
Tutoring System (ITS). The ITS consisted of two sections: 
worked examples (unified experimental condition only) and 
problem solving (all conditions; see Figure 1). Before each 
section, students watched a short instructional video. In both 
the worked examples and problem-solving activities, 
students received immediate feedback on their responses. 
They also could request scaffolded hints from the tutor at any 
time. 

Participants in the unified experimental condition were 
presented with correct and incorrect worked examples (with 
a maximum of 8 problems). In each worked example, 
students were asked to use a drop-down menu to provide 
explanations about what operation a hypothetical student 
performed at a specific step of the equation, as well as to 
identify the conceptual basis of the step (see Figure 2A). 
Students could select from two conceptually-focused 
explanations (e.g., “the step keeps both sides of the equation 
equal” in Figure 2), two procedurally-focused explanations 
(e.g., “the step makes the equation simpler” in Figure 2), and 
two incorrect explanations (e.g., “the step removes the x 
variable” in Figure 2). Unique to this tutor was that students 
had to choose a conceptual response in order to advance. If 
students chose a response that was procedural or incorrect, 
they were asked to choose another response (even if the 
procedural explanation was, in fact, correct) via a prompt 
(e.g., “That’s true but does not tell why the student did this 
step.”) 

Participants in both the unified experimental condition 
and the baseline condition were then presented with linear 
equations to solve (e.g., 3x + 8 = 11; max. 11 problems) in 
increasing levels of difficulty. Participants typed their 
response for each problem-solving step of the equation into 
the ITS and received immediate feedback (Figure 2B).  To 
keep time consistent across conditions, participants in the 
experimental condition had 10 minutes to complete the 
worked example activities and 10 minutes to complete these 
problem-solving items, while participants in the baseline 
condition had 20 minutes to complete the problem-solving 
item. 
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Table 1: Procedural (max: 3) and conceptual (max: 15) pretest and posttest scores and transfer (max: 2) posttest scores, with 
standard deviations in parentheses. 

 

  Procedural Conceptual Transfer 

Condition Pretest Posttest Pretest Posttest Pretest Posttest 

Baseline 2.12 (0.86) 2.33 (0.74) 6.91 (3.17) 9.06 (3.65)   0.64 (0.74) 

Experimental 2.17 (0.97) 2.51 (0.74) 7.55 (3.89) 9.74 (3.63) 0.75 (0.84) 

Demographic Questions Parents were sent a demographic 
questionnaire prior to the study session. Questions included 
age, grade, gender, math level in school, and self-reported 
socioeconomic status. 

Results 

Effects on Learning 
In this section, we report the effect of the intervention on 
three measures of learning: procedural knowledge, 
conceptual knowledge, and transfer. Table 1 presents average 
pretest and posttest scores on each measure. 
 
Procedural knowledge We first examined the effect of the 
intervention on procedural learning. Recall that we 
hypothesized that students who received worked examples 
and self-explanations in addition to problem-solving items 
(i.e., the unified experimental condition) would perform 
better than students who received only problem-solving items 
(i.e., the baseline condition). To analyze the data, we 
constructed a linear regression with procedural posttest score 
as the dependent variable and procedural pretest score, 
condition (coded: baseline = -.5; experimental = .5), grade 
level (coded: 6th grade = -1; 7th grade = 0; 8th grade = 1), 
and number of problem-solving items attempted in the ITS as 
independent variables. We included grade level and number 
of problem-solving items completed in the ITS as covariates 
to account for algebra experience and for the number of   
problem-solving items to which students were exposed. We 
chose to control for number of problem-solving items 
attempted to zero in on whether increases in performance 
were a result of students’ self-explanations of the worked 
examples or because they were able to solve more problems 
and potentially learn more from the problem-solving 
condition.  

Students in the experimental condition scored higher on the 
procedural posttest than students in the baseline condition, β 
= 0.28, F(1, 161) = 5.32, p = 0.022, indicating that students 
who generated self-explanations benefited more than those 
who simply solved a comparable number of problems. 
However, it should be noted that the effect of condition was 
non-significant if the covariate (number of problem-solving 
items attempted) was not included in the model, β = 0.16, p  
 

 
= 0.148. Students with higher pretest scores scored higher on 
the procedural posttest, F(1, 161) = 48.8, p < 0.001, as did 
students who attempted more problems in the ITS, F(1, 161) 
= 7.26, p = 0.008. 

Conceptual Knowledge We next examined the effect of the 
intervention on conceptual knowledge. We constructed a 
linear regression with conceptual posttest score as the 
dependent variable and conceptual pretest score, condition, 
grade level, and number of problem-solving items attempted 
in the ITS as independent variables. Again, grade level and 
number of problem-solving items completed were included 
as covariates to account for algebra experience and exposure 
to problem-solving items in the ITS.   

As hypothesized, students in the experimental condition 
scored higher on the conceptual knowledge posttest than 
students in the baseline condition, β = 1.23, F(1, 161) = 7.18, 
p = 0.008, indicating that students who generated self-
explanations gained more conceptual knowledge than those 
who simply solved a comparable number of problems. Once 
again, the effect of condition was non-significant if the 
covariate (number of problem-solving items attempted) was 
not included in the model, β = 0.35, p = 0.459. Students with 
higher conceptual knowledge at the pretest scored higher on 
the conceptual knowledge posttest, F(1, 161) = 90.62, p < 
0.001, as did students who attempted more problems in the 
ITS, F(1, 161) = 29.23, p < 0.001. 

Procedural Transfer Because transfer items were not 
included in the pretest, we could not test for pre to posttest 
improvement. However, we tested the effect of condition on 
transfer. We constructed a linear regression with transfer 
score as the dependent variable and procedural pretest score, 
condition, grade level, and number of problem-solving items 
attempted in the ITS as independent variables. We also 
included the procedural pretest score in the model because it 
most closely resembled the transfer items. There was not a 
significant effect of condition; however, the pattern of 
findings aligned with those reported above (β = 0.27, F(1, 
161) = 3.41, p = 0.067). There were significant main effects 
of the procedural pretest, F(1, 161) = 12.41, p < 0.001, and 
number of problem-solving items attempted in the ITS, F(1, 
161) = 12.64, p < 0.001.  
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Figure 3: Each performance measure organized by condition. Error bars reflect standard error. 

Effects on Performance in the ITS 
To investigate students’ performance in the ITS, we analyzed 
log data collected by the ITS during problem-solving items. 
Specifically, we explored the total number of problems 
attempted, the average number of incorrect attempts at each 
problem-solving step, the average number of hints requested 
at each step, and the amount of time spent on each step. These 
are standard measures investigated in the ITS literature (Long 
& Aleven, 2013). To examine whether learners in the 
baseline or experimental condition exhibited more efficient 
learning, we conducted four separate linear regressions with 
each of the performance measures in the ITS. In each model, 
condition, pretest score (procedural and conceptual 
separately), and grade level were included as independent 
variables. Additionally, we included the number of problems 
attempted in the ITS as an independent variable in three of 
the models (the ones in which it was not the dependent 
variable, because the number of problems solved was 
strongly/moderately correlated with each of the other 
dependent variables). 

Number of Problems Attempted Students in the baseline 
condition solved more problems (M = 8.97, SD = 2.67) than 
students in the experimental condition (M = 6.83, SD = 3.29), 
β = -2.42, F(1, 161) = 29.30, p < 0.001, presumably  because 
students in the baseline condition received more time to 
complete the problems than students in the experimental 
condition. Moreover, procedural pretest scores, F(1, 161) = 
39.50, p < 0.001, and conceptual pretest  scores, F(1, 161) = 
35.86, p < 0.001, were both positively associated with 
number of problems attempted in the ITS. 
 
Incorrect Attempts per Step Overall, students made about 
one incorrect attempt per two steps (M per step = 0.58, SD 
per step = 0.8). Controlling for pretest (procedural and 
conceptual separately), grade, and problems attempted in the 
ITS, students in the unified experimental condition  
 

 
exhibited fewer incorrect attempts per step than students in 
the baseline condition, β = -0.34, F(1, 160) = 8.75, p = 0.004 
(see Figure 3). Students who attempted more problems also 
made fewer incorrect attempts per step, β = -0.19, F(1, 160) 
= 103.31, p < 0.001. 

Number of Hints per Step Controlling for pretest 
(procedural and conceptual), grade, and number of problems 
attempted in the ITS, students in the unified experimental 
condition requested fewer hints per step than those in the 
baseline condition, β = -0.10, F(1, 160) = 6.97, p = 0.009 (see 
Figure 3), and number of problems attempted in the ITS was 
inversely related to the number of hints used, β = -0.10, F(1, 
160) = 52, p < 0.001.  

Average time spent per step On average, students spent 
13.35 seconds on each step (SD = 15.49). Controlling for 
pretest (procedural and conceptual), grade, and number of 
problems attempted in the ITS, students in the baseline 
condition spent more time on each step, β = -5.83, F(1, 160) 
= 7.84, p = 0.006; see Figure 3. Number of problems 
attempted in the ITS was inversely related with the average 
time spent per step, β = -5.83, F(1, 160) = 108.02, p < 0.001.  

Discussion 
In the current study, we investigated whether a new self-
explanation task integrated with worked examples, in which 
students were guided towards conceptual explanations, 
influenced performance and learning in middle-school 
students learning algebra with an Intelligent Tutoring 
System. Our findings indicate that, indeed, this form of 
intervention helped students gain conceptual and procedural 
knowledge of algebra over and above a problem-solving 
control. Moreover, students who studied worked examples 
and provided explanations solved problems faster, asked for 
fewer hints, and made fewer mistakes within the ITS than 
those in the baseline condition.  
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This study confirms earlier work that showed that worked 
examples with self-explanation can enhance learning within 
an ITS (e.g., Salden et al., 2010). Prior research suggests that 
self-explanation helps learners integrate to-be-learned 
information with prior knowledge, resulting in deeper 
understanding of the content (Bisra et al., 2018; Rittle-
Johnson & Loehr, 2017). 

This study also extends past work on self-explanations and 
worked examples (e.g., Booth et al., 2013) through the design 
of an ITS that guides students towards conceptually-focused 
explanations, and by demonstrating that this new format for 
selecting self-explanations is effective. Like previous efforts 
(Burr et al., 2020; Rittle-Johnson & Loehr, 2017), this 
intervention has menu-based explanations with correctness 
feedback, but unlike some previous efforts, students are 
asked for two-step explanations that ask for the operation and 
the conceptual justification. A special feature of the second 
explanation step is that, included among the menu options 
(for the conceptual justification) are correct procedural 
explanations. These explanations do not “count” as correct, 
but they do give the system an opportunity to give feedback 
stating that these explanations do not get at why the step is 
justified, so they may help the student learn how conceptual 
and procedural explanations differ. In this way, this version 
of the ITS may also help students recognize that–in general–
they should think about, not only what to do, but why it is 
correct.  

Moreover, this intervention led to improvements on 
posttest scores as well performance measures in this ITS. 
These findings suggest that self-explanations and worked 
examples affect both problem-solving accuracy and problem-
solving efficiency. In future work, researchers should explore 
the relations between learning measures (e.g., pre- to posttest 
gains) and ITS performance measures. 

Our findings do not specify the nature of the cognitive 
processes elicited by the self-explanation task or how these 
processes may have yielded the observed benefits of self-
explanation. It is worth noting that our task involved selecting 
potential explanations from a menu, rather than generating 
explanations “from scratch”, and our system also did not 
accept solely procedural explanations, but rather encouraged 
students to consider why steps were correct. It is possible that 
the mechanism of action for this type of self-explanation may 
differ from that for self-explanations that are spontaneously 
generated. To elucidate these mechanisms, future work that 
involves collecting talk-aloud protocols as students perform 
the self-explanation task would be valuable.  

We acknowledge several limitations of this study. First, the 
baseline and experimental conditions had dramatically 
unequal numbers of students, due to the design of the larger 
experiment. We recognize this may violate assumptions 
about equal variance between samples, but we believe that 
our findings hold value as they correspond with the findings 
of previous research. Moreover, this experiment was 
conducted remotely during the COVID-19 pandemic. Given 
the unique context of the study, it may not be warranted to 
generalize conclusions to more typical settings. Lastly, the 

sample of students in this study was fairly homogeneous and 
made up primarily of White students, and it included many 
students who were above grade level in mathematics. Future 
studies are needed to investigate the impact of this 
intervention with students from a wider variety of 
backgrounds. 

Conclusion 
In brief, this study replicates past findings that self-
explanations with worked examples can promote both 
procedural and conceptual understanding, and it introduces a 
new approach to eliciting such explanations within an ITS. 
Like a human tutor, our new version of the ITS encourages 
students to provide more conceptually rich explanations, if 
they initially provide less rich ones. In so doing, this new ITS 
supports students in focusing on the conceptual basis of their 
problem-solving steps, supporting both performance and 
learning.  

Acknowledgements 
This research was supported by NSF Award #1760922 and 

by the Institute of Education Sciences, U.S. Department of 
Education, through award #R305B15003 to the University of 
Wisconsin-Madison. The opinions expressed do not 
represent views of NSF or IES. We thank Tyler Tommasi, 
Brandan Risen, Holden Manhart, Mikayla Petersdorff, Zach 
Buehler, and Alan Zhou for their help designing the 
intervention, collecting, coding, and analyzing data. 

References 
Aleven, V. A., & Koedinger, K. R. (2002). An effective 

metacognitive strategy: Learning by doing and explaining 
with a computer‐based cognitive tutor. Cognitive science, 
26, 147-179. 

 Barbieri, C. A., & Booth, J. L. (2020). Mistakes on display: 
Incorrect examples refine equation solving and algebraic 
feature knowledge. Applied Cognitive Psychology, 34, 
862-878. 

Barbieri, C. A., Miller-Cotto, D., & Booth, J. L. (2019). 
Lessening the load of misconceptions: Design-based 
principles for algebra learning. Journal of the Learning 
Sciences, 28, 381-417. 

 Bartel, A.N., Silla, E.M., Vest, N.A., Nagashima, T., Tang, 
Y., Aleven, V., & Alibali, M.W. (2020, June). Do tape 
diagrams promote a focus on conceptual principles? 
Evidence from equation solving with an Intelligent 
Tutoring System. In T. T. Wong (Chair), Principle 
knowledge in mathematics: its development, cognitive 
predictors, and potential interventions. Symposium 
presented at the Annual Meeting of the Mathematical and 
Cognition Learning Society Conference. 

Bisra, K., Liu, Q., Nesbit, J. C., Salimi, F., & Winne, P. H. 
(2018). Inducing self-explanation: A meta-analysis. 
Educational Psychology Review, 30, 703-725. 

Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. 
J. (2013). Using example problems to improve student 

3471



learning in algebra: Differentiating between correct and 
incorrect examples. Learning and Instruction, 25, 24-34. 

Burr, S. M. D. L., Douglas, H., Vorobeva, M., & Muldner, K. 
(2020). Refuting Misconceptions: Computer Tutors for 
Fraction Arithmetic. Journal of Numerical Cognition, 6, 
355-377. 

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. 
(1994). Eliciting self-explanations improves 
understanding. Cognitive Science, 18, 439-477. 

Crooks, N. M., & Alibali, M. W. (2014). Defining and 
measuring conceptual knowledge in mathematics. 
Developmental Review, 34, 344-377.  

Fyfe, E. R., Matthews, P. G., Amsel, E., McEldoon, K. L., & 
McNeil, N. M. (2018). Assessing formal knowledge of 
math equivalence among algebra and pre-algebra students. 
Journal of Educational Psychology, 110, 87. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural 
knowledge in mathematics: An introductory analysis. In J. 
Hiebert (Ed.), Conceptual and procedural knowledge: The 
case of mathematics (pp. 1-27). Hillsdale, NJ: Erlbaum. 

Hilbert, T. S., Renkl, A., Schworm, S., Kessler, S., & Reiss, 
K. (2008). Learning to teach with worked‐out examples: A 
computer‐based learning environment for teachers. 
Journal of computer assisted learning, 24, 316-332. 

Long, Y., & Aleven, V. (2013, July). Supporting students’ 
self-regulated learning with an open learner model in a 
linear equation tutor. In International conference on 
artificial intelligence in education (pp. 219-228). Springer, 
Berlin, Heidelberg. 

Long, Y., & Aleven, V. (2017). Enhancing learning outcomes 
through self-regulated learning support with an open 
learner model. User Modeling and User-Adapted 
Interaction, 27, 55-88. 

Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). 
Intelligent tutoring systems and learning outcomes: A 
meta-analysis. Journal of Educational Psychology, 106, 
901. 

Nagashima, T.,, Bartel, A. N., Silla, E. M., Vest, N. A., 
Alibali, M. W., & Aleven, V. (2020). Enhancing 
conceptual knowledge in early algebra through scaffolding 
diagrammatic self-explanation. In M. Gresalfi & I. S. Horn 
(Eds.), 14th International Conference of the Learning 
Sciences (pp. 35-43). Nashville, TN: International Society 
of the Learning Sciences.  

Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. 
(2014). Effectiveness of cognitive tutor algebra I at scale. 
Educational Evaluation and Policy Analysis, 36, 127-144. 

Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful 
learning with multiple graphical representations and self-
explanation prompts. Journal of Educational Psychology, 
107, 30. 

Rittle-Johnson, B., & Loher, A. M. (2017). Eliciting 
explanations: Constraints on when self-explanation aids 
learning. Psychonomic Bulletin & Review, 24(5), 1501-
1510. 

Rittle-Johnson, B., Loehr, A. M., & Durkin, K. (2017). 
Promoting self-explanation to improve mathematics 

learning: A meta-analysis and instructional design 
principles. ZDM, 49, 599-611. 

Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & 
McEldoon, K. L. (2011). Assessing knowledge of 
mathematical equivalence: A construct-modeling 
approach. Journal of Educational Psychology, 103(1), 85.  

Roy, M., & Chi, M. T. (2005). The self-explanation principle 
in multimedia learning. The Cambridge handbook of 
multimedia learning, 271-286. 

Salden, R. J. C. M., Koedinger, K. R., Renkl, A., & McLaren, 
B. M. (2010). Accounting for beneficial effects of worked 
examples in tutored problem solving. Educational 
Psychology Review, 22, 379-392. 

Sidney, P. G., & Alibali, M. W. (2015). Making connections 
in math: activating a prior knowledge analogue matters for 
learning. Journal of Cognition and Development, 16, 160-
185. 

Wylie, R., & Chi, M. T. (2014). 17 The Self-Explanation 
Principle in Multimedia Learning. The Cambridge 
handbook of multimedia learning, 413. 

3472




