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Abstract

Integrating visual representations in an interactive learning
activity effectively scaffolds performance and learning.
However, it is unclear whether and how sustaining or
interleaving visual scaffolding helps learners solve problems
efficiently and learn from problem solving. We conducted a
classroom study with 63 middle-school students in which we
tested whether sustaining or interleaving a particular form of
visual scaffolding, called anticipatory diagrammatic self-
explanation in an Intelligent Tutoring System, helps students’
learning and performance in the domain of early algebra.
Sustaining visual scaffolding during problem solving helped
students solve problems efficiently with no negative effects on
learning. However, in-depth log data analyses suggest that
interleaving visual scaffolding allowed students to practice
important skills that may help them in later phases of algebra
learning. This paper extends scientific understanding that
sustaining visual scaffold does not over-scaffold student
learning in the early phase of skill acquisition in algebra.
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Introduction

Studies show that visual representations can benefit learners
in interactive learning environments, such as in Intelligent
Tutoring Systems (ITSs) (Rau et al., 2015; Yung & Paas,
2015). Visual representations make complex concepts, which
are difficult to understand with only verbal information, more
accessible and comprehensible (Larkin & Simon, 1987).

Therefore, visual representations are often considered a type
of instructional scaffolding (Nagashima et al., 2021; Rittle-
Johnson & Koedinger, 2005). When designed well, visual
representations support learners in performing and learning
from tasks that they would otherwise be unable to solve (Pea,
2004).

Despite  the reported effectiveness of  visual
representations, a persistent instructional challenge involves
how to fade visual scaffolding in interactive learning
environments (i.e., how and when to reduce the amount and
level of scaffolding given to learners, Koedinger & Aleven,
2007; Sharma & Hannafin, 2007). Researchers have argued
that scaffolds should serve as temporary support that is
provided with an intention to help learners independently
solve problems and eventually succeed without the support
(Puntambekar & Hubscher, 2005). However, while some
studies have investigated questions around the fading of
visual scaffolding (Rau et al., 2013, 2010), we do not yet fully
understand the effects of sustaining vs. fading visual
scaffolding in interactive learning environments. From a
cognitive science perspective, an investigation on students’
cognitive processes involving learning with and without
visual scaffolding would help eclucidate how visual
scaffolding benefits learners and informs how to design
instruction with visual representations.

One domain in which visual representations are commonly
used as instructional scaffolding is early algebra (Ayabe et



al., 2021; Murata, 2008). A specific type of visual
representation called “tape diagrams” has been used widely
in practice and empirically evaluated (Booth & Koedinger,
2012; Chu et al.,, 2017; Nagashima et al., 2020). Tape
diagrams use Dbar-like representations to visualize
quantitative relationships (Figure 1). Prior research has
shown that integrating tape diagrams in an algebra problem-
solving activity enhances students’ problem-solving
performance, both with interactive technologies (Nagashima
et al., 2021) and without (Booth & Koedinger, 2012; Chu et
al., 2017).
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Figure 1: Example tape diagram (for 3x + 2 = 8).

In the context of early algebra, sustaining or fading visual
scaffolding presents an important question both from a
scientific and a practical perspective. To date, research
investigating learning with visual representations for algebra
has either provided visual support all the time or has not
provided it at all (Booth & Koedinger, 2012; Nagashima et
al., 2020). Practically, this all-or-nothing contrast does not
reflect how classroom teaching is conducted; many
mathematics textbooks mix problems with visuals and
without visuals (Fukuda et al., 2021). Research on sustaining
or fading visual scaffolding in algebra will extend current
scientific knowledge with new insight into whether providing
visual support all the time might or might not over-scaffold
learning. For instance, always providing diagrams may
effectively foster conceptual understanding of problem-
solving procedures because students can connect the visual
information depicted in a diagram with symbolic
representations (Nagashima et al., 2020). On the other hand,
always using such scaffolding in solving equation problems
runs the risk that students become overly reliant on tape
diagrams when solving symbolic equations. That is, students’
learning might get focused on rather superficial diagram-to-
symbols translation knowledge that might not help to acquire
deeper knowledge related to the use of visual representations.
Students might not learn how to strategically solve symbolic
equations without the aid of visual representations, which
may be detrimental when equations become more complex
(for which tape diagrams are no longer useful).

In the current study, we test whether sustaining visual
scaffolding to support problem solving (i.e., providing visual
scaffolding on all problem-solving opportunities), previously
shown beneficial, might over-scaffold student learning in
algebra. We compare sustained scaffolding against partial
visual scaffolding, which we implemented by interleaving
scaffolded problems and non-scaffolded problems (i.e.,
providing visual scaffolding on every other problem).

In what follows, we report findings of the study, which
took place in a middle-school in the U.S. To investigate
students’ learning processes, we conducted analyses of log
data from the tutoring system. Specifically, we explored how

students’ performance (e.g., problem-solving accuracy, time
spent) differed when they solved problems with and without
visual support. Further, we conducted Knowledge
Component modeling (Nguyen et al., 2019) to better
understand how the presence (and absence) of visual
scaffolding affected the types of fine-grained problem-
solving skills that students practice. The current research
extends theoretical understanding of whether and how visual
representations scaffold learning and performance in an
interactive learning environment.

Anticipatory Diagrammatic Self-Explanation

In the current study, we test the effects of a visual scaffolding
strategy called anticipatory diagrammatic self-explanation,
embedded in an ITS (Nagashima et al., 2021). Anticipatory
diagrammatic self-explanation is a form of self-explanation
(Chi et al., 1989) with visual representations that aims to
support students’ learning of problem-solving procedures
(Figure 2). In anticipatory diagrammatic self-explanation,
students explain what to do next in the form of (auxiliary)
diagrams (i.e., students would think, “what would be a correct
and strategic step to take next?” during problem solving) to
support problem solving with the target representation (i.e.,
symbolic representation). There is evidence that anticipatory
diagrammatic self-explanation can lead to more efficient
learning (i.e., better performance in the ITS) with comparable
posttest performance (Nagashima et al., 2021). However,
prior studies provided anticipatory diagrammatic self-
explanation for all practice problems, leaving open the
important question of whether and how partially providing
the visual scaffolding may affect students’ performance
during problem-solving practice and learning.
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Figure 2: In anticipatory diagrammatic self-explanation,
students first (a) select a correct diagram representation for
the given equation. Then, students (b) explain (by selecting

a diagram) a correct next problem-solving step. After

selecting the correct representation, students (c) solve the

step using symbols (on the right-hand side of the screen).

The ITS gives feedback on students’ input. Hints are also
available for both diagrammatic and symbolic steps.



In the current study, we investigate the following research
questions:

RQI: Does interleaving problems with and without visual
scaffolding during algebra problem solving (interleaved
condition) lead to better learning (by reducing over-
scaffolding), compared to sustaining the visual scaffolding
(sustained condition)? Literature on interleaved practice
argues that interleaving different problem types may support
learning because it requires extra cognitive effort conducive
to learning (Rohrer et al., 2015). In the context of anticipatory
diagrammatic explanation, interleaving visual scaffolding
might help foster deeper thinking about problem-solving
procedures because, on problems without visual scaffolding,
students would have to plan problem steps on their own
without visual support. Such deeper thinking and engagement
might result in enhanced conceptual and procedural
knowledge (Crooks & Alibali, 2014; Rittle-Johnson &
Siegler, 1998). As well, when students receive only problems
in which visual scaffolding is provided, they might engage in
shallow processing of the content (i.e., translating what is
shown in the tape diagrams to algebra notation without
deeply engaging with their conceptual and procedural
meanings). Therefore, we hypothesize: HI. Students who
receive interleaved visual scaffolding will make greater gains
in conceptual and procedural knowledge, compared to
students who receive the visual scaffolding all the time.

RQ2: Does providing visual scaffolding at every problem-
solving opportunity during algebra problem solving support
efficient problem-solving performance in the ITS? RQ2
pertains to students’ performance during practice with the
ITS. For the current study, we expect that receiving visual
scaffolding will improve problem-solving performance in the
ITS and that interleaving the visual scaffolding would
negatively impact problem-solving performance due to the
lack of scaffolding on the half of the problems. Therefore, we
hypothesize: H2. Students who receive sustained visual
scaffolding will solve problems in the ITS more efficiently
compared to students who receive interleaved visual
scaffolding.

RQ3: How does the visual support influence students’
performance in the ITS? We examine RQ3 to uncover how
students interact with the visual scaffolding during problem
solving. We specifically examine students’ performance
across the two conditions 1) on problems on which all
students, regardless of the visual support frequency, received
visual support and 2) on problems in which students with
interleaved practice received no visual support whereas
students who were given the visual scaffolding all the time
did. We investigate where any observed differences between
the conditions (if any) come from. We hypothesize: H3.1.
Students in the interleaved condition will not perform
differently from those in the sustained condition on problems
with visual support and H3.2. Students in the interleaved
condition will perform worse on problem-solving items in the
ITS on problems on which only students in the sustained
condition receive the scaffolding.

Lastly, to gain further insights into what types of skills
students practice with and without visual scaffolding, we
conducted “Knowledge Component modeling” (a standard
technique used in the field of educational data mining, Long
etal.,2018; Nguyen et al., 2019). Specifically, we investigate
to what extent students might be using overlapping vs.
separate knowledge on symbolic steps with diagrams and
without diagrams, respectively. By labeling Knowledge
Components, or fine-grained problem-solving skills in an
intelligent tutor (Koedinger et al., 2012) differently for
solving problems with and without the visual scaffolding, we
can examine if students’ actual performance can be modeled
better with such a separation of knowledge. Such an
understanding will help uncover possible mechanisms that
may influence any learning and performance differences. We
hypothesize: H3.3. A Knowledge Component model that
considers problem solving with and without visual
scaffolding separately will show a better fit.

Method

Participants

We conducted an “in-vivo” classroom experiment
(Koedinger et al., 2009) at a public middle school in the
Eastern United States. Participants were 77 7th-grade
students who were taught in five class sections by one
teacher. The school is the only middle school in the school
district where over 65% of students came from low-income
families, and 44.7% of students were considered “below
basic” in terms of their academic performance in 2019. We
conducted the experiment in May 2021 when the school was
operating under a Aybrid teaching mode due to the COVID-
19 pandemic. Thirty students participated remotely from their
own home environment and the remaining 47 joined from
their classroom with their teacher. The teacher noted that
students’ prior exposure to tape diagrams was minimal. Of
the 77 students, 16 students had Individualized Education
Plans (IEP). Students in each class were randomly assigned
to either the sustained condition or the interleaved condition.
Students with IEPs were separately and randomly assigned to
the conditions. Based on teacher-reported information
regarding students’ regular class participation mode (i.e.,
remote or in-person), we randomly assigned students to
conditions separately for those joining remotely and those
joining from the classroom so that the conditions were
balanced with respect to these variables.

Materials

Pretest and Posttest A web-based pretest and posttest were
developed for the study. The tests were designed to measure
students’ conceptual understanding and procedural skills
(Crooks & Alibali, 2014; Rittle-Johnson & Siegler, 1998).
Test items included six conceptual knowledge items (CK)
and seven procedural knowledge items, developed partly
based on items used in the literature (e.g., Rittle-Johnson et
al., 2011). Conceptual knowledge items assessed multiple
concepts of conceptual understanding of algebra, such as



math equivalence. The procedural knowledge items consisted
of four items with no tape diagrams (PK-NoDiagram) and
three problems that show a corresponding tape diagram (PK-
Diagram) (Figure 3). Two isomorphic versions were created
and assigned to students in a counter-balanced way.

10. Solve for x. Please show your work. You can use the diagram to help your

thinking.
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Figure 3: An example procedural item with tape diagrams.

Intelligent Tutoring System with Anticipatory
Diagrammatic Self-Explanation An ITS with anticipatory
diagrammatic self-explanation (Figure 2) was used in the
study. Students in the sustained condition used a version of
the ITS that provided anticipatory diagrammatic self-
explanation support for all problems whereas those in the
interleaved condition used a version that provided such
support only for odd-numbered problems (Figure 4). For
even-numbered problems, students in the interleaved
condition received problems with no diagrammatic steps
available. These two ITS versions differed only in whether
the ITS provided diagrams or not on even-numbered
problems. Regardless of their assigned condition, students
received the same set of algebra problems in a fixed order.
The following problem types were included in both versions:
x+a=b,axtb=c,ax=bx+c,and ax +b=cx + d.
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Figure 4: Sustaining and interleaving visual scaffolding in
the ITS. In the interleaved condition, students received the
visual scaffolding only on odd-numbered problems.

Procedure

The study took place during five regular class periods, in
which approximately half of the students and the teacher were
present live in the actual classroom, and remote learners and
the experimenters joined through a video conferencing

system. In the first class session, students worked on the
pretest for 20 minutes. Then the experimenter showed
students in both conditions a five-minute video describing
how to use the ITS and what tape diagrams represent. Starting
in the second class period, students spent 15-20 minutes using
the assigned ITS version to practice algebra problem solving
in each class period (the total ITS learning time in both
conditions was approximately 60 minutes). On the final day,
students took the web-based posttest for 20 minutes. Students
were given access to both ITS versions about a week after the
study.

Results

Of the 77 participants who completed the pretest (40 in the
interleaved, 37 in the sustained condition), we excluded 14
who did not complete tutor learning, the posttest, or both. The
high attrition may be due to the hybrid mode of instruction
(e.g., the teacher had to pay attention to both in-person and
remote students). The following analyses focus on the
remaining 63 students (32 in the interleaved, 31 in the
sustained condition). The attrition rate did not significantly
differ between the conditions, X* (1, N=77) = .18, p = .67.

Learning

Table 1 presents students’ pretest and posttest scores. To test
H1, we conducted three separate linear regressions, with
posttest scores on conceptual knowledge (CK), procedural
knowledge items with tape diagrams (PK-Diagram), and
procedural knowledge items without tape diagrams (PK-
NoDiagram) as dependent variables, respectively. In all of
the models, condition (as a binary variable, coded as
sustained = 0, interleaved = 1) and prior knowledge (i.e.,
pretest scores) served as predictors. There was no significant
main effect of condition for CK (f =-0.42, #(62) =-1.22,p =
.23), PK-Diagram (ff = -0.17, #(62) = -0.77, p = .44), or PK-
NoDiagram (f =-0.29, #62) =-1.12, p = .27). Therefore, H1
was not supported. The evidence did not support the notion
that interleaving visual scaffolding leads to greater
knowledge gains, nor did it support the notion that sustained
visual scaffolding over-scaffolds learning.

Table 1: Students’ test scores (standard deviations in
parentheses) by condition. PK-D and PK-NoD denote PK-
Diagram and PK-NoDiagram, respectively.

Pretest Posttest
Condition PK- PK-
CK PK-D NoD CK PK-D NoD
Sustained 282 127 218 330 145 221
(1.53) (1.15) (1.42) (1.55) (1.25) (1.45)
278 1.03 1.84 275 1.12 1.72
Interleaved

(139) (1.06) (1.22) (1.50) (1.13) (1.45)

Performance in the ITS

To address H2, we ran three separate linear regressions with
three problem-solving performance measures that are



typically investigated in the ITS literature (average number
of hints requested per symbolic step, average number of
incorrect/error attempts per symbolic step, average time spent
per symbolic step) as dependent variables (Long & Aleven,
2013). To compare the performance measures across the
conditions, we only compared students’ performance on
symbolic steps, and we excluded interactions with the
diagram steps. In all models, condition (as a binary variable,
coded as sustained = 0, interleaved = 1) and pretest score
were included as independent variables. Table 2 shows
descriptive data on the performance measures.

There was a significant main effect of condition on the
average number of hint requests per step (8 = 0.28, #(60) =
2.83, p <.01) and average time spent per step (5 = 3.32, #(60)
=2.21, p=.03), but not on the number of incorrect attempts
made per step (8 = 0.31, #60) = 1.67, p = .10). Overall,
students in the sustained condition solved problems with
fewer hint requests and less time on symbolic steps,
suggesting that students in the sustained condition solved
symbolic steps more efficiently than those in the interleaved
condition, partially supporting H2.

Table 2: Average performance measures per symbolic
step (standard deviations) by condition.

B = 0.19, #(60) = 0.78, p = .44. Therefore, H3.1 was not
supported; students in the sustained condition performed
better on problems in which students in both conditions
received the same scaffolding.

Table 3: Performance measures per symbolic step
(standard deviations) by condition for problems with and
without visual scaffolding.

Odd-numbered Even-numbered
" problems problems
Condition Hints Time Hints Time
Errors ITOT

used spent  used spent
Sustained 023 070 151 008 0.17 751

(0.31) (1.02) (9.15) (0.19) (0.29) (5.14)

0.62 099 214 037 049 146
Interleaved

(0.75) (1.01) (16.0) (0.55) (0.50) (10.4)

Condition Ave. number Ave. number of  Ave. time
of hints used _incorrect attempts spent

Sustained  0.16 (0.23) 0.45 (0.63) 6.85(2.70)

Interleaved  0.53 (0.64) 0.86 (0.92) 12.0 (6.92)

Visual Scaffolding Effects

Performance with and without Visual Scaffold For H3.1
and H3.2, we conducted further analyses to unpack how the
visual scaffolding might have helped students perform in the
learning environment. Specifically, to understand where the
performance difference between the conditions came from,
we looked at students’ performance on odd-numbered
problems, where students in both conditions received the
visual scaffolding, and even-numbered problems where only
students in the sustained condition received scaffolding
(Table 3). Investigating students’ performance on odd-
numbered and even-numbered problems will allow us to find
out if the diagrams’ scaffolding effect is only observed for the
problems in which the scaffolding is present and how
students in the interleaved condition performed differently on
problems with no visual scaffolding.

For H3.1, we compared students’ performance on odd-
numbered problems (i.e., problems with visual scaffolding in
both conditions; see Figure 4). We ran three separate linear
regressions with the number of hints used per symbolic step,
the number of incorrect attempts per symbolic step, and time
spent per symbolic step as dependent variables, and condition
and pretest scores as predictors. Students in the sustained
condition used significantly fewer hints (§ = 0.29, #(60) =
2.48, p = .02) and trended towards spending less time (f =
5.87, #(60) =1.89, p = .06). No significant difference was
found for the number of incorrect attempts per symbolic step,

Then, for H3.2, we compared students’ performance on
even-numbered problems to test whether students in the
interleaved condition performed less well on problems with
no visual scaffolding (see Figure 4). Students in the sustained
condition requested significantly fewer hints (5 = 0.24, #(60)
=2.67, p = .01), made significantly fewer incorrect attempts
(8 =0.30, #60) = 2.85, p = .01), and spent significantly less
time (8 = 6.64, (60) =3.31, p=.01) on symbolic steps. Thus,
students in the sustained condition did better on problems in
which only those students in the sustained condition received
the scaffolding, supporting H3.2.

Knowledge Component Modeling Finally, for H3.3, we
conducted Knowledge Component modeling to investigate
potential mechanisms that may have influenced the observed
differences between the conditions. A Knowledge
Component (KC) is defined as “an acquired unit of cognitive
function or structure that can be inferred from performance
on a set of related tasks” (Koedinger et al., 2012). Studies on
ITSs have used Knowledge Component modeling (i.e.,
modeling student’s knowledge state and growth based on
student’s performance on a set of KCs) to design and improve
instruction in the software (Huang et al., 2021). KC models
use a specialized form of logistic regression known as
Additive Factors Models (Rivers et al., 2016). Improving KC
models is critical for better understanding student learning
and performance, and for better designing instructional
support in intelligent software. Model fit can be evaluated by
three metrics, namely, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), and 3-fold cross
validation metrics reported as root mean squared error
(RMSE), where lower values suggest better model fit
(Nguyen et al., 2019). We applied the KC modeling approach
to our dataset to investigate whether the scaffolding effect of
having diagrams can be manifested in the model fit. To
conduct the KC modeling analysis, we used LearnSphere’s
DataShop (https://pslcdatashop.web.cmu.edw/).

In our ITS log data, the original KC model had nine general
algebra problem-solving KCs (e.g., the skill of subtracting a



constant term). To see if the visual scaffolding effect would
be manifested in KCs, we created an additional set of KCs
that treats the various skills involved in “solving equations
with diagrams” as separate skills, depending on whether the
problems had visual scaffolding or not. For example, for the
skill of subtracting a constant term, we included the skills of
subtracting a constant term when diagrams are absent and
subtracting a constant term when diagrams are present. This
process doubled the total number of KCs, resulting in 18
KCs. We compared the original KC model with an updated
model that considers “solving equations in symbols without
diagrams” and “solving equations with diagrams,” only for
the interleaved condition (because the sustained condition
had diagrams for all problem-solving opportunities). We
found that the updated model improved the model fit on AIC
and all the RMSE values (but not for BIC, see Table 4), which
suggests that treating problem-solving skills with and without
diagrams as distinct better represents the actual student
behavior (Stamper et al., 2013). This suggests that students
were solving equations using different skills between
problems with anticipatory diagrammatic self-explanation
and problems without visual support (H3.3 supported).

Table 4: Model metrics values for the original and
updated KC models. Three types of RMSE values differ
slightly in how the grouping was done in the data.

RMSE RMSE RMSE
(student  (item (un-

blocked) blocked) blocked)
Original 4,431.81 4,894.95 0.3682 0.3088 0.3075
Updated 4,347.60 4,933.32 0.3675 0.3048 0.3047

KC

model AIC BIC

Discussion

Providing the right amount of timely visual scaffolding is a
challenging, important instructional design problem. While
scaffolding can support performance when the scaffold is
present, giving too much scaffolding could result in a
detrimental, over-scaffolding effect. We investigated the
effect of visual scaffolding on students’ learning and
performance using an ITS for early algebra. Our work
focused on anticipatory diagrammatic self-explanation, a
form of interactive visual scaffolding that has been shown
effective in supporting student performance in an ITS. In the
following, we discuss the results from this experiment.

First, providing visual scaffolding for every problem in the
ITS did not over-scaffold learning. We did not find any
difference in posttest performance between students who
received sustained scaffolding and students who received
interleaved visual scaffolding. Yet, sustained visual
scaffolding led to markedly better problem-solving
performance in the ITS. In fact, the students in the interleaved
condition did not have a very smooth learning experience in
the ITS; for them, problem solving was harder and slower,
and did not lead to enhanced learning. The difference in
performance between the conditions existed not only on
even-numbered problems, in which only students in the

sustained condition received the scaffolding, but also on odd-
numbered problems, in which students in both conditions
received visual scaffolding. These results indicate that the
overall performance differences in the tutor did not come
only from problems with no visual scaffolding, but rather
came from the entire learning experience, including students’
interaction with the scaffolded problems.

Why did sustaining visual scaffolding benefit students? The
Knowledge Component modeling analysis provides evidence
that students in the interleaved condition exercised different
types of skills (i.e., Knowledge Components) for problems
with visual scaffolding and those without visual scaffolding.
Students in the sustained condition, on the other hand, were
consistently practicing the skills of “solving problems with
diagrams.” It may be that students who received the
scaffolding for every problem-solving opportunity benefited
because their learning experience was focused and consistent.

However, the findings from the Knowledge Component
modeling also indicate that students in the interleaved
condition were engaged in learning that students in the
sustained condition did not practice (i.e., solving equations
without visual scaffolding). Given that students eventually
need to be able to solve equation problems without visual
scaffolding (e.g., more advanced equation problems), it could
be that students’ practice with interleaved visual scaffolding
may lead to better learning outcomes in later phases of
equation solving that involve more complicated problem
types. The current study did not capture this potential benefit
because these later stages were not reached. Future research
could explore this possibility.

We acknowledge several limitations of the study. Most
important, we are uncertain whether and how far the results
will generalize. The current study used a specific form of
visual scaffolding in a specific domain in an ITS. Other types
of interactive visual scaffolding in other domains might yield
different results as they may involve different kinds of
cognitive processes in using visual scaffolding. Also, because
the study was conducted with a small sample of students at
one school which was operating under a hybrid instruction
mode, future studies are needed to understand how sustained
vs. interleaved visual scaffolding influences learning and
performance with more students and with schools using
different teaching modes (e.g., in-person teaching).

The current paper extends scientific understanding of how
visual scaffolding during problem-solving activities
influences student performance and learning. The study
yielded evidence that over-scaffolding due to visual
scaffolding may not occur very early in skill acquisition, and
that fading (specifically, in the form of interleaving) may
need to be introduced later in skill acquisition. Practically, the
study highlights the benefits of sustaining visual scaffolding
to help students have efficient problem-solving experiences.
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