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Abstract

Person re-identification (Re-ID) has become increasingly im-
portant as it supports a wide range of security applications.
Traditional person Re-ID mainly relies on optical camera-
based systems, which incur several limitations due to the
changes in the appearance of people, occlusions, and human
poses. In this work, we propose a WiFi vision-based system,
3D-ID, for person Re-ID in 3D space. Our system leverages
the advances of WiFi and deep learning to help WiFi devices
“see”, identify, and recognize people. In particular, we lever-
age multiple antennas on next-generation WiFi devices and
2D AoA estimation of the signal reflections to enable WiFi to
visualize a person in the physical environment. We then lever-
age deep learning to digitize the visualization of the person
into 3D body representation and extract both the static body
shape and dynamic walking patterns for person Re-ID. Our
evaluation results under various indoor environments show
that the 3D-ID system achieves an overall rank-1 accuracy
of 85.3%. Results also show that our system is resistant to
various attacks. The proposed 3D-ID is thus very promising
as it could augment or complement camera-based systems.

1 Introduction

Intelligent surveillance is gaining increasing attention due to
the growing demand for public and private security [69]. It
has been progressively deployed in public, workplace, and
home, providing a wide range of security applications, such
as facility security, perimeter monitoring, and abnormal be-
havior detection [26,58]. Among these applications, person
re-identification (Re-ID) is a fundamental one, which identi-
fies individuals in public and private spaces across time and
locations [68]. Person Re-ID is also a basic component for
access control, suspicious behavior tracking, and physical in-
trusion detection [45]. The rising of the Internet of Things
(IoT) is also boosting the adaptation of the person Re-ID
system in many emerging applications [21]. For instance, an
integrated person Re-ID system can facilitate customized ser-
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vices and prevent unauthorized access to security-sensitive
resources in a smart home environment [80].

Traditional methods for person Re-ID mainly rely on com-
puter vision approaches, in which the camera-captured optical
images or videos are analyzed for human behavior monitor-
ing and person Re-ID [22,42]. Despite much progress has
been made by incorporating deep learning, the camera-based
systems have several limitations [5]. For example, it cannot
work in non-line-of-sight (NLoS) or poor lighting conditions,
such as when a person is behind an obstacle or in a dark en-
vironment [15]. Moreover, the optical camera-based system
is sensitive to the variation in an individual’s appearance due
to changes in clothes, viewpoints, and unconstrained human
poses [2]. It has to ensure that surveillance cameras do not
point to private areas and the captured camera data is stored
or transmitted securely [11, 14].

In recent years, WiFi devices have become more and more
ubiquitous in public and private places including airports, train
stations, offices, and homes. While nearly 1 billion surveil-
lance cameras have been deployed worldwide in 2021 [9], this
number is about 22.2 billion for WiFi devices [3]. The number
of WiFi devices is thus an order of magnitude larger than that
of the cameras. This difference will be further magnified by
the increasing usage of IoT devices. For instance, the WiFi
devices will increase by 50% in the next 4 years and will reach
31 billion by 2025 [63]. As both visible lights and WiFi sig-
nals are electromagnetic waves, we could leverage the more
pervasive WiFi signals to illuminate the human body and
analyze the reflections for person Re-ID to augment or com-
plement camera-based systems. Compared to camera-based
systems, the WiFi-based approach has several advantages. For
example, it can work in NLoS or poor lighting conditions as
the WiFi signal can traverse occlusions and illuminate the hu-
man body in dark environments. Moreover, as the WiFi signal
traverses clothes but is reflected off the human body, it is less
affected by an individual’s appearances such as changes in
clothes. In addition, the WiFi-based approach will not create
sensitive data such as colorful or high-resolution visual data
like that of the cameras.



Unlike cameras, the commodity WiFi devices do not have
CCD/CMOS sensors to sense the intensity of the signal re-
flections at megapixel resolution. Instead, they rely on omni-
directional antennas to sense the total intensity of the signal
reflected from the entire environment. Thus, it cannot provide
any spatial information to distinguish objects or persons lo-
cated at different physical locations. Existing work in using
WiFi for human sensing uses a black-box approach by directly
inputting the received WiFi signals into deep learning mod-
els for activity and person identification [44, 71, 72]. Their
assumption is that similar activities or people will interrupt
the WiFi signals similarly, resulting in similar signal change
patterns. This may be useful for applications with pre-defined
activities and controlled users but is less applicable for secu-
rity applications, such as person Re-ID. It is because, given a
signal change pattern, it may correspond to a large number of
uncontrolled users or many unknown free-from activities. It
is thus less robust for unseen environments and people. More-
over, the black-box-based deep learning approach is more
sensitive to adversarial attacks, where maliciously interrupted
WiFi signals can bypass the surveillance and person Re-ID
system [28, 34, 73]. Indeed, recent work has demonstrated
such a vulnerability in existing WiFi-based user identification
systems [38].

In this work, we propose a WiFi vision-based approach
for person Re-ID in 3D physical space. We leverage the ad-
vancement of WiFi technology and deep learning to help WiFi
devices “see”, identify, and recognize persons as we humans
do. Our system, 3D-ID, helps WiFi devices “see” a person
by leveraging (i) the multiple antennas on next-generation
WiFi devices, and (ii) the two-dimensional angle of arrival
(2D AoA) estimation of the WiFi signal reflections. First, the
next generation of WiFi supports a fairly large number of
antennas, which can be re-used to discern the signal reflected
from spatially separated objects and persons, providing spatial
resolution similar to that of the optical image. In particular,
the new generation of WiFi 6 devices support up to 8 an-
tennas [25], whereas the next generational WiFi 7 further
increases it to 16 antennas [12]. With spatially distributed
antennas at the WiFi receiver, the signal reflections from the
different directions could be separated with signal processing
techniques, providing the theoretical foundation to derive spa-
tial information of the physical space. Second, we leverage
the 2D AoA of the signal reflections to visualize a person in
the physical space. In particular, we derive the 2D AoA in
terms of the azimuth and elevation, where azimuth is an an-
gular measurement of the signal reflection on the horizon and
elevation is the angular measurement of the same reflection in
the vertical direction. With multiple antennas and the 2D AoA
estimation, the WiFi devices could generate a visualization of
the signal reflections from the surrounding environment, thus
providing the ability for the WiFi devices to “see” a person in
the physical world as we humans do.

We then propose to extract intrinsic features of a person

including both the static body shape and dynamic walking pat-
terns for person Re-ID. Specifically, we digitize multiple 2D
AoA images of a person into a 3D human body representation,
which is independent of the angle of view. To extract the static
body shape, we innovatively use the graph neural network
(GNN) to learn the person’s static features from thousands of
unordered and discrete 3D point clouds of the 3D human body
under various poses or activities. Moreover, to better extract
dynamic walking patterns, we leverage the gated recurrent
units (GRUs) to process joint accelerations from time-series
poses of the 3D human body. These features are essentially
the static and dynamic biometrics of the human, which are
relatively stable over time, enabling a more robust person Re-
ID system and more explainable. At last, we use a Siamese
network architecture to train the Re-ID network, which can
identify people by comparing the similarity between people.
We experimentally evaluate the 3D-ID system with 28 peo-
ple in various indoor environments including the laboratory,
classroom, and home. We perform person Re-ID across dif-
ferent environments, as well as under various attacks, where
an adversary tries to evade or deceive the system. We also
compare our system to the vision-based and prior WiFi-based
person Re-ID systems. Experimental results show that our
Re-ID system is highly accurate across time and space. The
main contributions of our work are summarized as follows:

* We propose a WiFi vision-based approach for person
Re-ID in 3D space. Our approach leverages multiple
antennas on next-generation WiFi devices and the 2D
Ao0A estimation of the signal reflections to visualize the
person.

We propose to extract intrinsic and persistent static body
shape and dynamic walking patterns of a person to per-
form person Re-ID. Thus, our system is more robust and
has better explainability than prior WiFi-based systems.

Extensive experiments in various indoor environments
demonstrate that our system can achieve rank-1, rank-
2, and rank-3 accuracies of 85.3%, 91.7%, and 96.3%,
respectively. Moreover, our system is resistant to various
attacks.

2 Related Work

We categorize existing work in surveillance and person Re-
ID/identification into three categories: computer vision-based
approaches, RF sensing-based approaches, and others.
Computer Vision-based. Many computer vision-based
intelligent surveillance and person Re-ID/identification sys-
tems have been proposed due to the advancement of deep
learning algorithms and the increasing availability of vision
datasets. For example, some systems can leverage images
with a deep learning network [1, 6, 22,32, 40, 77] to iden-
tify different people. More specifically, given a pair of im-



ages as input, these systems output a similarity value indi-
cating whether the two input images depict the same person.
Some research efforts [2, 35,42, 68] further developed spatial-
temporal network architectures for video-based person Re-ID,
which utilizes a convolutional neural network (CNN) with
recurrent neural network (RNN) layers to capture both ap-
pearance and motion information of the person. Moreover,
recent vision-based works [5, 79] explore the prior knowl-
edge of the 3D body structure which can be recovered from
2D images or videos [27] and improve the robustness of per-
son identification by using the information of a person’s 3D
shape. However, computer vision-based systems cannot work
in NLoS or poor lighting scenarios. The changes in a person’s
poses and clothes can also mislead the identification [15].
Furthermore, vision-based techniques frequently incur a non-
negligible cost [51].

RF Sensing-based. In recent years, researchers have
leveraged radio frequency (RF) sensing-based techniques
for various sensing tasks, such as large-scale activity sens-
ing [61, 64], small-scale motion sensing [37, 60], indoor lo-
calization [36, 57, 78], object sensing [50, 62], and human
pose estimation [51, 52]. Furthermore, researchers demon-
strate the possibility of utilizing RF signals to conduct person
Re-ID and identification. For instance, Fan et al. [15] pro-
posed RF-RelD, a person Re-ID system using FMCW radio
signals. The FMCW radio can traverse clothes and reflect off
the human body. Therefore, it can extract persistent features
(e.g., body shape) for human identification. This system, how-
ever, relies on specialized hardware that transmits FMCW
signals over a wide bandwidth that is dozens of times greater
than that of WiFi. It also needs a carefully designed and syn-
chronized T-shape antenna array. Meanwhile, many systems
utilize WiFi devices to enable potential mass adoption as
WiFi devices are pervasive and can be found in a home en-
vironment [59]. There has been work to use WiFi signals
for eavesdropping keystrokes [16] and voice liveness detec-
tion [44]. WiWho [71] is a framework for identifying a person
using the gait information detected via WiFi signals in the
time domain. WiFi-ID [72] both identify a person’s walking
steps and gait patterns by extracting statistical information
from WiFi signals in the frequency domain. Instead of using
handcraft features, more and more WiFi-based systems lever-
age deep neural networks to boost person identification. Shi
et al. [56] utilized CNN to extract unique human behavioral
characteristics inherited from their daily activities sensed by
WiFi signals for identification. Some systems develop user
identification using CNN and WiFi signals that can work
under various scales of environmental dynamics [55,73] or
multi-user scenarios [29]. However, instead of exploring ex-
plainable domain knowledge of humans (e.g., body shape and
walking dynamics), these WiFi-based systems use a black-
box-based approach to indirectly input the WiFi signals to
deep learning networks. We note that Huang et al. [23] did
primiparity work to image a simple object using specialized

WiFi devices. Particularly, they require the use of the cus-
tomized device of USRP. And their image resolution is too
low to visualize the human body or activities as no spatial
or frequency diversity was exploited. We also note that our
system is different from the traditional radar systems [41].
The radar systems utilize expensive specialized hardware to
generate high-energy signal beams and are not designed for
indoor environments.

Other Approaches. Other person identification approaches
could leverage physiological biometrics like fingerprint [8],
face [17, 31], voice [24,43, 74, 75], signature [48, 49], ear
canal [67], and teeth [66] to identify the person. However,
dedicated biometric hardware and user involvement are re-
quired for these approaches, which incur extra costs. More-
over, some wearable sensor-based approaches [46,47] require
a user to wear or carry various sensors and collect gait infor-
mation for person identification. For example, Ren et al. [46]
leveraged the accelerometer embedded in mobile devices to
record distinctive gait patterns for user identification. Nev-
ertheless, wearable sensor-based systems require the user to
carry or wear one or more physical sensors, which can be
intrusive, inconvenient, and cumbersome due to the explicit
involvement of users.

3 Preliminaries

3.1 WiFi Sensing Basics

The prevalence of WiFi networks in public and at home pro-
vides us the opportunity to utilize the pervasive WiFi signals
to sense humans and interpret activities. Similar to visible
lights, WiFi signals travel through space, reflect from the
human body and physical objects, and undergo wave phe-
nomena such as diffraction. The WiFi signals thus capture a
considerable amount of information about the environment
including humans and their activities. Unlike cameras that use
CCD/CMOS sensors to sense the intensity of visible lights
at the megapixel resolution, older versions of WiFi devices
equipped with one omnidirectional antenna can only capture
one received signal strength (RSS) per packet, which char-
acterizes the overall energy of the signals reflected from the
entire environment. This basically means it can only produce
one “pixel” value when compared to that of an optical image.
Still, based on the change of a single “pixel”, certain appli-
cations can be built, such as intrusion detection in restricted
areas [70].

The current WiFi standard employs OFDM technology to
provide fast and reliable communication. It partitions each
WiFi channel into multiple OFDM subcarriers and transmits
data on each of the subcarriers. It thus provides channel state
information (CSI), which contains amplitude and phase mea-
surements separately for each OFDM subcarrier. For example,
on a standard 20MHz channel, WiFi radios measure ampli-
tude and phase for each of the 56 OFDM subcarriers. This



means that current commodity WiFi devices could provide
up to 56 “pixel” values per packet by leveraging CSIL.

The CSI exported from the commodity WiFi devices only
provides information on how each OFDM subcarrier was in-
terrupted by humans and their activities. It however offers no
explicit spatial information regarding human body shape or
poses. Existing WiFi sensing systems mainly employ a black-
box approach, in which deep learning techniques are utilized
to model the relationship between the CSI changes and hu-
man activities. They assume similar activities or persons will
result in similar signal change patterns. This approach may
work for a limited number of pre-defined activities from con-
trolled users, for example, to distinguish family members with
several pre-defined activities for controlling smart home ap-
pliances. However, it lacks reliability and is less applicable to
security-sensitive applications as one signal change pattern
may correlate with an infinite number of free-form activi-
ties or uncontrolled users. Moreover, the black-box-based
approach is also subject to malicious attacks, where an ad-
versary could manipulate WiFi signals to bypass the person
Re-ID systems [28, 73]. This type of attack has already been
demonstrated in recent WiFi-based person identification sys-
tems [38]. Therefore, existing WiFi-based person identifica-
tion methods cannot be directly leveraged to build a secure
and robust person Re-ID system.

3.2 2D AoA-based WiFi Sensing

As the next generation of WiFi supports a large number of
antennas at each WiFi device (e.g., WiFi 7 supports up to 16
antennas), we leverage multiple spatially separated antennas
to estimate the direction of the signal reflections to visualize
a person in the environment. Given the intensity of the signal
reflections in each direction, we could derive a visualization of
the person in the environment similar to that of an optical gray-
scale image. Thus, the fairly large number of antennas on next-
generation WiFi devices become an enabler for generating
2D AoA-based visualizations for person Re-ID. It enables the
WiFi devices to “see” the visual world as humans do.

Let’s assume the multiple antennas on a WiFi receiver form
an L-shaped distribute antenna layout (array), as shown in
Figure 1. We note that the L-shaped antenna array is among
the best to estimate 2D AoA in terms of azimuth and elevation
angles [19]. Specifically, the azimuth (¢) is an angular mea-
surement of the signal on the horizon, whereas the elevation
(0) is the angular measurement of the same signal in the verti-
cal direction. Then, the direction of an incident signal to the
receiver in physical space (e.g., incident signal 1 in Figure 1)
can be uniquely determined by azimuth and elevation (i.e.,
2D AoA).

We assume that there are S incident signals and K antennas
in Figure 1. For simplicity, we omit the line-of-sight (LoS)
signal as well as other signal reflections from the environment.
That is, we only illustrate the signals reflected from the human
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Figure 1: 2D AoA-based WiFi sensing.

body (i.e., incident signals) in Figure 1. These signals are
arriving at the antenna array in the X —Y — Z coordinates.
The phase shift for the s™ incident signal on the k™ antenna
can be denoted as:

(s, 0,) = ¢ (000 UJe (1)
where c is the speed of light, 1; = [xt,yx,z]” is the position
vector of antenna k that depends on the geometry of the an-
tenna array (in our system y; = 0 ) and d,(@y,0;) is unit
vector pointing towards incident signal s. Assuming that the
incident signal arrives from azimuth ¢ and elevation 6, we
have d(¢,0) = [cos(®)sin(8),sin(¢)sin(8),cos(@)]. There-
fore, the phase shifts for the s™ incident signal across all K
antennas in a given antenna array can be written as:

a(9,0) = [® (@5, 05) P2(@s,05) ... q)M((PSaGS)]T- @)

Here, a(@,0) is also called the steering vector for 2D AoA.
Thus, the steering matrix for all S incident signals is

A((p,G) = [a(q)lael>7 ...,a((PS,GS)]~ (3)

Given the steering matrix A(@,0), the azimuth angle and
elevation angle of each incident signal can be derived by
using the MUSIC algorithm [54] and shown as the peaks in
the 2D AoA spectrum. We refer to the estimated 2D AoA
spectrum as an “image” or visualization in our work.

The example of the 2D AoA image is shown in the right
part of Figure 1, in which the horizontal axis represents the
azimuth, the vertical axis represents the elevation and the
color represents the signal power. We can observe the shape
of a walking person in the spectrum. However, compared
with images generated by a camera that have thousands of
pixels or even megapixels, the spatial resolution provided by
multiple antennas is still very limited. Therefore, we cannot
distinguish different body parts of a person such as the head,
torso, and limbs, nor can we observe the pose of the person.
Thus, such a resolution is insufficient for person Re-ID and
requires further improvements, which will be illustrated in
Section 5.2.1.



4 System and Threat Model
4.1 System Model and Applications

Our system requires multiple antennas to sense and iden-
tify people. However, there is no specific requirement on
the antenna layouts. Although the L-shaped distributed an-
tenna layout achieves the best performance, any antenna lay-
out could work including circular layout, rectangular layout,
etc. Our system could be a software update using existing
WiFi networks that can export CSI such as Intel and Atheros
NICs. More NICs vendors are open to exporting CSI as a
new standard in IEEE 802.11, known as IEEE 802.11bf [13],
is being finalized to enhance sensing capabilities through
802.11-compliant waveforms.

The Re-ID system aims to identify people across different
times and locations. Our system could support various security
applications and may also augment traditional camera-based
systems. Such a person Re-ID system can enable security
monitoring. Assuming a shop was stolen and the thief escaped.
When the thief shows up elsewhere, the system will identify
him/her and raise alerts. Also, person Re-ID can be applied in
public areas for person tracking. If one person (e.g., a child)
is lost in a large shopping mall, we can use the WiFi devices
around the mall to track and find the person even if the person
is blocked by some obstacles. Moreover, the Re-ID system
could be used for access control. The system can identify
people outside the door. If a person is not a legitimate user
and approaches the property, the system will raise alerts or
prevent unauthorized access.

4.2 Threat Model

In the threat model, an adversary aims to evade or deceive our
Re-ID system. That is to say, the adversary is to avoid being
captured by the system or to cause the system to retrieve a
person of the wrong identity. The attacks can be divided into
two categories: naive attacks and advanced attacks. For naive
attacks, the adversary launches attacks on our system in the
same way as attacking vision-based systems. They include (a)
the adversary can change clothes (e.g., color and style) which
leads to the change of appearance; (b) the adversary can hide
behind an obstacle that could result in the NLoS scenarios. For
advanced attacks, the adversary has some knowledge about
our Re-ID system and can launch sophisticated attacks in-
cluding (c) the adversary can deliberately change the walking
behaviors; (d) the adversary can generate wireless interfer-
ences to disrupt the WiFi channel.

S System Design

5.1 System Overview

The key idea of our WiFi vision-based approach for person
Re-ID is to leverage the advances of WiFi and deep learning
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to help WiFi devices “see”, identify, and recognize people. As
illustrated in Figure 2, the system takes as input time-series
CSI measurements at multiple antennas of the WiFi receivers
when a person is walking around in the environment. The
system can reuse existing WiFi devices and take advantage
of CSI measurements from existing traffic, or if insufficient
network traffic is available, the system might also generate
periodic traffic for measurement purposes. The WiFi signals
reflected from the human body (e.g., head, torso, arms, and
legs) will travel through different paths and arrive at the re-
ceiver in various directions (i.e., azimuth and elevation angles).
The CSI measurements of received signals then go through
the 2D AoA estimation component to calculate the azimuth
and elevation angles of the signal reflections. Next, our system
performs human enhancement to segment signal reflections of
the human body from irrelevant reflections of the surrounding
environments. It then performs multi-frame aggregation to
fully capture signal reflections of the human body.

After the WiFi devices “see” a human, we need to extract
static body shape and dynamic walking patterns independent
of the angle of view. Thus, we leverage deep learning mod-
els to digitize the 2D human images into a 3D human body
representation. Specifically, our system constructs a 3D hu-
man body based on the Skinned Multi-Person Linear model
(SMPL) [39]. Once we obtain the time-series 3D human body,
our system extracts persistent and long-term features includ-
ing static body shape and dynamic walking patterns for person
Re-ID. We leverage a GNN-based method to extract the static
body shape features from the 3D human body. We choose a
GNN-based method because the surface of the 3D body con-
sists of unordered and discrete 3D point clouds that cannot
be processed by traditional CNN but can be considered as a
graph and handled by GNN. Meanwhile, we calculate the ac-
celeration of each joint of the 3D body and take it as input to
multi-layer GRUS to extract dynamic walking patterns. After
that, our system fuses both static body shapes and dynamic
walking patterns via an attentional feature fusion method. At
last, we use a Siamese network architecture to train the neural
network to perform person Re-ID.

Our proposed system could leverage the prevalence of WiFi



signals in public and at homes and reuse pervasive WiFi de-
vices for person Re-ID. It thus presents tremendous cost-
saving when compared with dedicated camera-based systems.
As the WiFi signals can traverse occlusions and clothes and
can illuminate the human body, the proposed 3D-ID system
can work under NLoS or poor lighting conditions and is less
affected by an individual’s appearance. Our system leverage
domain knowledge of human (i.e., both static body shape and
dynamic walking features), which makes our system more
robust and explainable than prior black-box WiFi systems.

5.2 WiFi-based Human Body Imaging

In this subsection, we describe the details of the 2D AoA-
based human imaging, which is the foundation of our pro-
posed WiFi vision-based person Re-ID.

5.2.1 2D AoA Imaging

To achieve 2D AoA-based human body imaging, we utilize
four-dimensional information: time diversity of multiple WiFi
packets, spatial diversity of both receiving and transmitting
antennas, and the frequency diversity of OFDM subcarriers.
We first leverage a time sequence of WiFi packets (i.e., time
diversity) to obtain a signal matrix. By using more WiFi
packets, the estimation variance for the covariance matrix in
the MUSIC algorithm will decrease [33], which will result in
sharper peaks in the derived AoA spectrum. By doing this, it is
easier to distinguish various signal reflections from different
subjects or body parts, thus improving the quality of the 2D
AoA-based image. In this work, we empirically leverage 100
WiFi packets for the time diversity of WiFi packets since
using a larger number will lead to a longer processing delay.

The resolution of an optical image depends on the number
of pixels produced by the CCD/CMOS sensor. Similarly, the
resolution of the 2D AoA-based image depends on the number
of antennas the WiFi receiver used to receive and discern the
signal reflections. However, we cannot arbitrarily increase
the number of antennas on the WiFi receiver as this number
is normally limited. For example, the next generation WiFi
7 only supports up to 16 antennas. Instead of increasing the
antennas on the WiFi receiver, we can leverage the multiple
antennas on the WiFi transmitter to improve the resolution of
the 2D AoA estimation. This is because the spatial diversity
in transmitting antennas can also create a phase difference at
each of the receiving antennas. Thus, we can incorporate the
spatial diversity in both transmitting and receiving antennas
to further improve the resolution of the 2D AoA spectrum.
We assume that the WiFi signals are emitted from a linear
antenna array at the transmitter and will be received with
a phase shift I'(®). Note that I'(®) is the function of angle
of departure (AoD) . Thus, the phase difference across
transmitting antennas can be written as:

F(O)S) — efj21tf-dsin((os)/c, )
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Figure 3: The effect of increasing the resolution. The environ-
ment includes the LoS and five main reflectors.

where s is the index of the signal path and d is the distance
between two adjacent transmitting antennas.

Moreover, the current IEEE 802.11 standard using OFDM
technology transmits data over multiple subcarriers. There-
fore, we can leverage the frequency diversity of OFDM sub-
carriers to further improve the resolution as the frequency
diversity creates a phase difference across different frequen-
cies as well. Specifically, for the s path, we denote the time
of flight (ToF) as t,. Such a ToF will introduce a phase shift
across two consecutive OFDM subcarriers. Assuming the fre-
quency difference between two OFDM subcarriers is f5, the
phase difference across OFDM subcarriers can be denoted as:

Q1) = e 25T/, 5)

Now, we can jointly estimate the 2D AoA (azimuth and
elevation) with ToF and AoD by constructing a large virtual
antenna array from all subcarriers of all receiving antennas for
signal streams transmitted from all transmitting antennas. This
information can be obtained from WiFi NICs with MIMO-
OFDM techniques. Let Ng,, Nry, and Ng, be the numbers
of receiving antennas, transmitting antennas, and subcarriers,
respectively. The CSI measurement in the format of Ng, X
Nty X Ng, represents the overall phase shift and attenuation
introduced by the channel measured at each virtual antenna.
Therefore, the virtual antenna array can be constructed using
CSI from all the subcarriers at all of the physical antennas.

Compared to the previous steering vector in Section 3.2,
we have a new steering vector a(@,0,T,®) which is formed
by phase difference introduced at each virtual antenna and it
can be denoted as:

a(,0,7,0) = [2’(¢,0,7), Ta’(9,0,7),....[x"'a’(9,6,7)],

(6)
where Ty, is the abbreviations of I'(®) and a’(¢,0,1) can be
written as:

2’(9,0,7) =[1,..., 05 @), ..., Q5
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where Q:; and @, are the abbreviations of Q(t) and
®(0,0), respectively.
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Figure 4: Results of human image enhancement.

Therefore, we can construct the received signal using the
above new steering vector. Parameters of 2D AoA, ToF and
AoD that maximize the spatial spectrum function [54] can be
given by:

1
aH((p? ea T, m)ENEZa((Pa 97T7 (D)
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where Ey represents the noise subspace. At last, we derive the
2D AoA spectrum as an image by superposing the dimensions
of ToF and AoD.

It is worth noticing we need to perform CSI de-noising to
clean the CSI phase noises before 2D AoA estimation. This
is because the hardware imperfections of WiFi devices could
lead to CSI phase distortions. In particular, the receiver suffers
from a random phase shift caused by the sampling time offset
(STO) and packet detection delay (PDD) across packets. STO
and PDD have a constant effect across all transmitting or
receiving antennas since all the radio chains of WiFi NICs
are time-synchronized. To sanitize such random phase offsets
with each WiFi NIC, we apply a linear fit method proposed
in [30] to unwrapped phase measurements for the two WiFi
NICs respectively.

We show an example in Figure 3 to illustrate the effect
of resolution improvement. For this figure, our setup has the
receiver to receive the LoS signal and there are five main
reflectors involved. The ground truths of their sizes and lo-
cations are also shown in the figure. We first performed 2D
AoA estimation with only 1 WiFi packet, 9 receiving an-
tennas, | transmitting antenna, and 1 subcarrier. The results
are shown in Figure 3(a). We can observe that the majority
of signal reflections are either indistinguishable from each
other or completely indiscernible. For example, the LoS sig-
nal and signal reflections caused by reflector 3 are mixed
together. Signal reflections caused by reflectors 2, 4, and 5 are
not distinguishable from the surrounding environments. We
then performed resolution improvement by using 100 WiFi
packets, 9 receiving antennas, 3 transmitting antennas, and
30 subcarriers. The result is shown in Figure 3(b). We can
clearly observe the signal reflections from different reflectors
in the 2D AoA spectrum, which matches the ground truth.

5.2.2 Human Image Enhancement

As shown in Figure 4(a), similar to an image captured by a
camera, the generated 2D AoA from the previous step pro-

=== Reflected signal

| |-~ Deflected signal
Captured part
Uncaptured part

Elevation (degrees)

180
T80 120 0 [

Azimuth (degrees)

Combined frame

120 60 120

6
Azimuth (degrees)

Frame 2

Azimuth (degrees)

Frame 1

Figure 5: An intuitive example of multi-frame aggregation to
capture the whole human body.

vides spatial information for all reflections which mainly con-
tains the signals reflected from the human and the environ-
ment. However, in person Re-ID, we are only interested in
the human. The static environment could be considered back-
ground noises. Thus, we propose to perform human image
enhancement to highlight the human while mitigating the
impact on the surrounding environment. Therefore, only the
human-dependent reflections will be retained.

Inspired by the spectral subtraction method in digital pro-
cessing [4], which involves subtracting the estimated noise
spectrum from the image, we can enhance the human by sub-
tracting the static component/spectrum in a sequence of 2D
Ao0A images. In this way, the enhanced image will mostly cap-
ture the signals bounced off the human body, and the signals
reflected from the surrounding environments will be removed.
For example, Figure 4(a) shows the 2D AoA image when
the person is walking in the same environment, whereas Fig-
ure 4(b) shows the signals of the static component of the
image including the signals reflected from the background
objects (e.g., desk) and the LoS signal. The LoS signal trav-
eled through a shorter distance and therefore is much stronger
than the signals reflected from the human body. This makes
it very difficult to observe the person of interest. After we
perform the subject enhancement, we can clearly observe the
enhanced signal reflections of the person in Figure 4(c), in
which different parts of the body clearly stand out from the
surrounding environment.

We note that the signals reflected from the human body
may bounce off the static environment again, and such sec-
ondary reflections may be also captured by the receiver. For
example, when a person walks in the environment, the signal
reflected from the person may bounce to the wall and later
be captured by the receiver. Such signal reflections have very
little impact on 2D AoA imaging and can be removed by
applying a threshold since the signal reflected by the human
body is much stronger as it experiences less attenuation.

5.2.3 Multi-frame Aggregation

With respect to WiFi signals, the human body is considered
specular, which means that the human body acts as a reflector
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Figure 6: Results of WiFi vision for various people and activities.

(i.e., a mirror) rather than a scatterer. This is due to the fact that
the wavelength of the WiFi signal is significantly longer than
the roughness of the human body’s surface [76]. Conversely,
the human body scatters visible light as its wavelength is much
shorter. The WiFi signal may be reflected towards or away
from the receiver depending on the direction of the surface
for different body parts. Thus, unlike images generated by
camera systems, in which a single image frame can capture
all unobscured parts of the human body, a single 2D AoA
image frame only captures a subset of the human body while
missing the parts that deflect the WiFi signals.

As shown in Frame 1 of Figure 5, the WiFi signals reflected
from the head and torso are captured by the receiver while the
legs deflect the signal away from the receiver. Thus, the first
frame of the image only captures the upper and middle parts
of the human body and does not capture the low part. On the
contrary, Frame 2 captures the lower part of the human body
but fails to capture other body parts, as shown in Figure 5.
To resolve this issue, we can combine multiple frames of
images to capture a more complete picture of the human body.
Specifically, the design of our deep learning network in later
sections takes into account the specularity of the human body
and aggregates information from multiple (e.g., 15) image
frames.

After multi-frame aggregation, our system can obtain rec-
ognizable, enhanced, and complete 2D AoA images for a
person, as shown in Figure 6. In particular, Figure 6(a) and (b)
show the 2D AoA images of two people with different body
shapes. We can observe that a larger body shape creates a
larger area of signal reflections in the image. Figure 6(c) and
(d) show that the person is performing different activities and
the corresponding 2D AoA image can display the poses of
that person. To summarize, the 2D AoA image is capable of
revealing information about both body shape and pose, thus
providing the foundation for WiFi vision-based person Re-ID.

5.3 3D Human Body Construction

In this subsection, we describe the process of digitizing the
human body into a 3D representation based on multiple 2D
AoA images and a deep learning network. Through this pro-
cess, we can obtain fine-grained domain knowledge of body
shape and walking patterns for person Re-ID.

To generate a realistic 3D human body, we use the Skinned
Multi-Person Linear model (SMPL) [39] as our 3D human
body model. SMPL is a widely used parametric model that
estimates the 3D human body by encoding the human body
into pose and shape information. SMPL outputs a triangulated
mesh with 6890 vertices which can represent people’s height,
weight, and body proportions. Also, the SMPL model can
represent different human poses with coordinates of 24 joints.

The deep learning model for 3D human body construction
is shown in Figure 7. It is worth noting that we utilize two
receivers in orthogonal directions to generate multi-view 2D
AoA images and construct the human body in 3D space. Thus,
we take the tensor with the dimensions of 15 x 2 x 180 x 180
as input of the network, where 15 is the number of frames, 2 is
the number of receivers and 180 means the range of azimuth
or elevation angles (range of the angle is [1, 180] degrees with
a step of 1 degree).

In the model architecture, we first adopt CNN to extract
spatial features from the 2D AoA images. It is because these
images contain the general shape and pose information of the
human body, CNN can help the system map such information
to different vertices of the body. In particular, we use ResNet-
18 which is a widely used CNN architecture [20]. After the
CNN layer, we utilize a max-pooling layer to extract the
most relevant features and remove redundant information.
We then use a two-layer GRU as the recurrent layer which
can model a sequence of temporal dynamics. Because each
frame has a distinct effect on the result over time, we use a
self-attention technique [27] to dynamically learn the relative
contributions of each frame and emphasize the most relevant
frames’ contributions in the final representation. At last, we
map the output of the self-attention layer to the shape and pose
parameters in the SMPL model to generate the 3D human
body. We consider the training of the model as a regression
problem that minimizes the error of both shape and pose
parameters of SMPL. Let o and 3 be the ground truth of
pose and shape parameters, respectively. & and [ represent
the predicted pose and shape parameters, respectively. The
loss function is a weighted sum of pose loss as well as shape
loss which can be written as:
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Figure 7: The 3D human body model.

where T is the number of frames, L; means L; norm, and a,b
are the weights to balance the losses.

Examples of constructed 3D human bodies for two people
who are walking are shown in Figure 8. The top row shows
the time series video frames recorded by an RGB camera for
visual reference. The middle row shows the ground truths
of 3D human bodies which are generated by the state-of-
the-art computer vision-based approach [27]. The last row
illustrates the 3D human bodies constructed by our model.
We can observe that the 3D human bodies constructed by our
system are almost identical to the ground truth. Moreover, we
observe both the shape and walking pose of the constructed
3D human body are different for the two people in Figure 8,
which provide the domain knowledge of human for person
Re-ID.

5.4 Person Re-ID Model

We build a novel network to extract both static shape and
dynamic walking patterns from constructed 3D human bodies
for person Re-ID. As shown in Figure 9, we extract static
features from the body shape by using a GNN-based method,
which considers the 3D body as a graph and produces a vector
representing the person’s static shape biometrics. The dy-
namic walking pattern features contain the gait pattern, arm
and torso gestures, head and body movements. Thus, we com-
pute the acceleration of each of the 24 joints based on each
3D human body. Then, we make acceleration information
flow between time steps by using a recurrent layer and all
time steps are combined using temporal pooling. Next, these
static shape and dynamic walking pattern features are fused
together using an attention-based mechanism. Lastly, the two-
stream sub-networks for two 3D body sequences from two
different people are constructed following the Siamese net-
work architecture, in which the parameters of sub-networks
are shared. Given a pair of 3D body sequences from the same
person, the Siamese architecture is trained to produce feature
vectors that are close in feature space, while given a pair of
3D body sequences from different persons, the network is
trained to produce feature vectors that are separated.
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(a) Constructed 3D human body of one person.
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(b) Constructed 3D human body of
another person.

Figure 8: Examples of the constructed 3D human body for different people.

5.4.1 Static Shape Feature Extraction

Extracting static shape biometrics of the person from the
3D point clouds of 3D bodies is challenging. The reason is
that the 3D body consists of thousands of 3D point clouds,
which are discrete and unordered when compared to the im-
age format [79]. Therefore, we cannot utilize the typical 2D
convolutional operation to extract the static shape biometrics.
To overcome this challenge, we leverage the idea of GNN [53]
to construct a graph according to the distance between points.
Here, we adopt a dynamic graph convolution network (GCN)
to learn from the constructed graph.

In our work, the k-nearest neighbor graph G = (7, E) is
used to model the relationship between neighbor points, where
7 means the vertex set, and £ means the edge set. The k-
nearest neighbors are chosen based on the points value. Then,
we use dynamic graph convolution [65] to learn represen-
tation from the topology structure of the graph. Let x;, be
the point feature (e.g., 3D coordinates) for point p and the
output of the dynamic graph convolution can be denoted as
Xp = Yg:(p.g)c (EpXp +€4Xq), Where Xq means the feature of
neighbor points, and there is one edge from p to g. € is the
learnable parameter. After the dynamic graph convolution
layer, we also use the batch normalization layer and rectified
linear unit to obtain the static shape features.

5.4.2 Dynamic Walking Pattern Extraction

In order to extract dynamic walking pattern features including
gait, arm, body, and head movement patterns, we calculate the
acceleration for each joint [39] (24 joints in total in SMPL)
based on the joint positions in the 3D human body. We then
take accelerations as input feed into a two-layer GRU since
our system needs to recognize a person using a sequence
of bodies. Recurrent connections can help this process by
allowing information to be passed between time steps.
Although GRUs are capable of capturing temporal infor-
mation, the output may be biased towards later time steps. To
resolve this issue, we leverage a temporal pooling layer [42],
which enables the aggregating of information over all time
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Figure 9: The person Re-ID model.

steps, thus preventing bias towards later time steps. The tem-
poral pooling layer can collect the long-term information of
sequence. Moreover, such a layer can capture long-term in-
formation in the sequence and aims to represent information
at all temporal scales within the input.

5.4.3 Attentional Feature Fusion

The static shape and dynamic walking pattern features need
to be fused for the person identification. However, traditional
feature fusion is usually implemented with simple operations
such as summation or concatenation. But those approaches
are not optimal for our system. Thus, we leverage the atten-
tional feature fusion to combine the two feature maps. Let
S and D be the static shape and dynamic pose feature maps,
respectively. The fusion of two feature map can be written
as F=M(SwD)®S+ (1-M(S¥WD))®D, where M is a
multi-scale channel attention module [10] and & means the
initial feature integration. The key point of fusion is that the
network can use the fusion weights to perform a soft selection
or weighted averaging between two types of features.

5.4.4 Siamese Neural Network

The proposed person Re-ID network can be trained using the
Siamese network architecture [7], which includes two sub-
networks with the same weights. The purpose of the Siamese
network is to find a similarity or a relationship between two
comparable objects. Once the Siamese network is trained, it
can compare the body shapes and walking patterns of two peo-
ple and thus can determine if they are the same person. When
a pair of inputs are given to the network, the sub-networks
map them to a pair of feature vectors, which are then com-
pared using Euclidean distance. For our person Re-ID system,
we want to map body sequences from the same person to
feature vectors that are close and map body sequences from
different people to feature vectors that are widely separated.
By computing the distance between the identity feature vec-
tors with feature vectors of other identities, the lowest distance
indicates the most similar identity.

Given the fused feature vectors (F;, F;) for person i and
person j, we utilize the Euclidean distance Hinge loss to train

our model:
| — ], i=j
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where © is the margin to separate features. We also calculate
the identity loss L;p(F;) and L;p(F;) using the cross-entropy
loss. The final loss function is written as Lg.;p = Lsiamese +
Lip(F:) + Lip(Fj).

6 Performance Evaluation

6.1 Experimental Setup

Devices. We conduct experiments using one WiFi transmit-
ter and two receivers. Specifically, the WiFi transmitter is
equipped with a linear antenna array of three antennas. Each
receiver is equipped with an L-shaped antenna array of nine
antennas as shown in Figure 10. Note that we stitch NICs
with shared antennas using splitters to simulate the antenna
configuration of the new generation of WiFi devices. Linux
802.11 CSI tools [18] are used to extract CSI measurements
from 30 subcarriers with a bandwidth of 40 MHz. The default
packet transmission rate is set at 1000 packets per second. We
utilize a camera to record the ground truth for both the 3D
body and Re-ID for the person. We use network time protocol
(NTP) to ensure synchronization for all devices.

Environments. We evaluate our system in four different en-
vironments including two laboratories, a classroom, and a liv-
ing room. As shown in Figure 11, the size of both laboratories
is 4.5m x 4.5m. The two labs have different furniture setups.
The sizes of the classroom and living room are 8.5m x 5.5m
and 6m x 6m, respectively. The deployments of all devices
in each environment are also described in Figure 11. If not
specified, the default distance between the transmitter and
receivers is 2m. We note that the person can walk freely in
WiFi environments. People occasionally change clothes and
the lighting conditions may vary in experiments.

Model Settings. For the 3D human body construction net-
work, we use the ResNet-18 framework as the feature extrac-
tor. We utilize 2 layers of GRU as the residual model, and the
number of the hidden state is set as 2048. The dropout rate
is 0.5. We use two fully-connected layers of size 2048 and
tanh(-) for the self-attention module. The batch size is set to
16 and the learning rate is 0.0001.

For the person Re-ID network, we also implement a 2-
layer GRU. We set the hidden state number as 1024 and
the dropout rate as 0.2. The GNN part consists of a graph
convolutional network, a rectified linear unit (ReLU), and a
batch normalization layer. The network was trained with a
learning rate of 0.0001, and a batch size of one. We implement
both networks in PyTorch. Our models are trained with the
Adam optimizer using the NVIDIA RTX 3090 GPU.

Dataset. In this work, 28 participants (20 males, 8 females)
of varying heights, weights, and ages were recruited for our
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Figure 10: The constructed L-shaped antenna array on each

receiver.

experiments. Our experiments have obtained IRB approval.
We collected synchronized WiFi and vision data of random
everyday activities of these participants over two months time
period. We have collected over 70 million WiFi packets in
total. Moreover, we ask these 28 participants to walk ran-
domly for person Re-ID. Note that each person can walk in
each environment at different times and days. For calculating
ranking accuracy, the whole dataset is randomly split into two
non-overlapping parts: 50% of people (i.e., 14) for training
and the remaining 50% of people (i.e., 14) for testing. The
experiments are repeated 10 times with different training and
test splits and the results are averaged to ensure stable results.

Baselines. To demonstrate the effectiveness of 3D-ID, we
compare our work with state-of-the-art WiFi-based and vision-
based person identification/Re-ID systems. The comparison
is conducted by using the same WiFi CSI data for the WiFi-
based systems or using the synchronized RGB images/videos
for vision-based systems. For RGB images/videos, we place
the camera several meters away from the person to simulate
a surveillance camera. The camera can capture the whole
human body and the images will be used by computer vision-
based systems. We note that about 20% people’s clothes were
changed or NLoS scenarios occurred during the experiments.
The first category is image-based systems which focus on
appearance features (e.g., clothes colors and hairstyles) in im-
ages. In particular, there are two representative systems: Luo
et al. [40] proposed a triplet loss to train the Re-ID model and
Hermans et al. [22] designed the BNNeck structure for image-
based Re-ID. The second category is video-based systems
and we reproduce two typical systems: McLaughlin et al. [42]
extracted both appearance and walking features from video
tracklets, whereas Liu et al. [35] proposed to jointly learn
long-range motion context and appearance from videos. The
third category is WiFi-based systems that directly utilize CSI
to build gait/walking pattern profiles for identification. We
reproduce two classical systems: Zeng et al. [71] calculated
statistical features (e.g., mean, median, entropy) of CSI, and
Zhang et al. [72] used Continuous Wavelet Transformation
(CWT) for CSI processing. The last category is WiFi-based
systems that derive time-frequency features to recognize peo-
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Figure 11: Experimental environments and setup.

ple. There are two most recent state-of-the-art systems: Shi et
al. [56] extracted both time (e.g., mean, skewness, kurtosis)
and frequency (e.g., Short-Time Fourier Transform (STFT))
features, and Kong et al. [29] developed a CNN-RNN feature
extractor for CSI data. Note that all of these systems were
reproduced with the same number of people and the same
data partition in Section 6.1 to ensure a fair comparison.

Evaluation Metrics. We leverage the ranking accuracy to
evaluate our system, which is a common evaluation metric
for person Re-ID. The system is given a WiFi sample of a test
person (i.e., the probe) and only one of the candidates (i.e.,
the gallery) can match the queried WiFi sample of the person.
The system then ranks the candidates based on their distances
with respect to the test person. The top-k ranking accuracy is
defined as the percentage of cases where the correct test per-
son is ranked among the top-k positions of all the candidates
in a test. We report the top-1 to top-5 ranking accuracies in
this work. We also show the performance with the average
Cumulative Matching Characteristics (CMC) curves which
measure the probability of top-k matching.

6.2 Opverall Performance

We first study the overall performance of our system. The
person can appear in one environment and walk into another
one or appear in the same environment at different times with
different walking trajectories, different appearances, or behind
obstacles. We compare our system with the existing vision-
based person Re-ID systems, as well as WiFi-based person
identification systems. As shown in Table 1, our proposed
system slightly outperforms image-based systems and is com-
parable to video-based systems. In particular, our system
has rank-1, rank-2, and rank-3 accuracies of 85.3%, 91.7%,
and 96.3%, respectively. This shows our system has slightly
higher overall ranking accuracies compared to vision-based
systems. It is because the reproduced vision-based person
Re-ID systems rely on extracting appearance features and
walking patterns from LoS images/videos. Thus, the perfor-
mance suffers from degradation due to the changes in the
appearance of people and NLoS scenarios. On the contrary,



Table 1: Overall comparison of our system with existing approaches using ranking accuracy (measured by %).

Modality System

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

RGB image: appearance features

Luo et al. [40]

83.0 85.9 92.7 95.1 99.1

Hermans et al. [22] 82.2 84.5 91.0 94.9 99.0

RGB video: appearance and walking features

McLaughlin et al. [42] 85.8 89.3 95.4 97.9 100

Liu et al. [35]

86.2 90.2 95.5 98.5 100

WiFi: time-frequency features

Kong et al. [29]

62.4 70.3 75.8 79.7 83.4

Shi et al. [56]

63.6 71.1 75.6 80.5 82.9

Zeng et al. [71]

53.8 58.4 64.5 72.1 74.7

WiFi: CSI

Zhang et al. [72] 54.9 58.0 66.2 71.1 72.8

WiFi: 2D AoA 3D-ID

85.3 91.7 96.3 99.0 100

WiFi signals can penetrate obstacles and clothes. Our system
thus can provide robust person Re-ID even when the person
wears different clothes or is under NLoS scenarios.

Additionally, our system significantly outperforms the ex-
isting WiFi-based person identification systems. In particular,
our system performs 22% to 32% better than that of the prior
WiFi-based systems for rank-1 accuracy. For other accuracies,
our system consistently performs better. This is because CSI
is susceptible to background environment changes. Although
the time-frequency feature of WiFi extracts human dynamics,
it may vary with the WiFi device layouts/configurations and
the walking activities of the person. It is thus very hard for
existing WiFi-based systems to reliably distinguish different
people across various environments without leveraging the in-
trinsic features of a person (e.g., static or dynamic biometrics).
Instead, our system utilizes spatial information to generate the
image of a person and further extracts the static and dynamic
biometrics of the person, enabling a more robust and secure
person Re-ID system.

6.3 Impact of Unseen Environments

The person Re-ID system could be trained in one environ-
ment and recognize a person in unseen environments, where
the system has not been trained. Thus, we study the impact
of unseen environments on the performance of our system
and the traditional WiFi-based system [29]. In particular, for
both systems, we collect WiFi data in three environments to
train the model and test it in the unseen (remaining) envi-
ronment. Figure 12 shows the CMC curves in four different
environments for both the proposed 3D-ID system (i.e., solid
lines) and the traditional WiFi-based (abbreviated as Trad
WiFi) system (i.e., dotted lines). Compared with the overall
performance evaluation, this is a more challenging task as the
person needs to be recognized in brand new environments
with totally different backgrounds, transceiver positions, and
orientations.

As shown in Figure 12, we can observe that there is no
significant performance difference for our system across dif-
ferent environments. Specifically, the rank-1 accuracies of all
environments are more than 83% and rank-3 accuracies are

about 96%. However, the traditional WiFi-based system only
achieves the rank-1 accuracy of around 52% in unseen envi-
ronments. The reason is that traditional WiFi-based systems
are tied to the WiFi network configuration, user activities, and
the environment. They are sensitive to activity variations and
could not completely separate the signal reflections of humans
from the surrounding environment. For example, the walk-
ing information derived in prior WiFi-based systems changes
arbitrarily due to the changes in walking path and direction,
and layout of transceivers. Therefore, they are not performing
well when deployed in a new environment. The above result
demonstrates that our system is capable of re-identifying a
person even if the environment has never been seen before.

6.4 Performance Under Attacks

Next, we evaluate the system performance under attacks de-
scribed in Section 4.2. To deceive the system, the adversary
either changes clothes styles from skinny to baggy or from
skirt to pants. In addition, the adversary changed the clothes
to different colors. The results are shown in Figure 13. We can
observe that rank-1 accuracy is 85.1% and there is almost no
performance degradation. The reason is that WiFi signals can
traverse clothes and reflect off the human body. Thus, unlike
vision-based systems, our system is robust to appearance.

To evade detection and identification, the adversary hides
and walks behind a wooden screen (i.e., NLoS). As shown
in Figure 13, our system still achieves a rank-1 accuracy of
83.2%. Such a result shows that our system can identify peo-
ple even under the NLoS scenario, where the vision-based
systems fail completely. This is because the WiFi signals can
penetrate obstacles, while visible light will be totally blocked.

With some knowledge of our Re-ID system, an adversary
can conduct advanced attacks by deliberately changing walk-
ing behaviors to spoof the system. As illustrated in Figure 13,
the rank-1 accuracy is reduced to 68.4%. The result shows
that changing walking behaviors could degrade performance.
However, as also shown in Figure 13, our system can still
utilize body shape features to identify people (e.g., rank-1
accuracy is about 76%). This is because the body shape is
persistent and cannot be easily changed.
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Moreover, wireless interferences could have an impact on
the WiFi-based person Re-ID system. Therefore, the adver-
sary tries to attack our system using different strengths of
interference signals at the same wireless channel that is used
by WiFi devices. As shown in Figure 14, we report rank-1
and rank-3 accuracies under interference signals of -45dBm,
-55dBm, -65dBm, and -75dBm respectively. We can observe
that when the interference strength is reduced, the system
performance becomes better. We observe that our system can
work properly with the rank-3 accuracy of 79% under very
strong wireless interferences (i.e., -45dBm). We acknowledge
that jamming in WiFi networks may disrupt both sensing and
communication as it overpowers the original signals. But such
jamming signals are very obvious and can be easily detected
and neutralized.

6.5 Impact of Number of People

Ranking accuracy could be affected when increasing the num-
ber of people. Therefore, we evaluate the system performance
by varying the number of people in the test dataset. Figure 15
shows the rank-1 and rank-3 accuracies when the number of
people is varied from 8 to 28. We observe that rank-1 and
rank-3 accuracies are around 80% and 88% for 28 people.
They are 88% and 99% for 8 people, respectively. We can
observe that as we reduce the number of people, the ranking
accuracy increases. This is because it is less likely to have
two people with similar body shapes and walking patterns
in a smaller group of people. In addition, our system still
achieves a good rank-3 accuracy on a dataset that includes all
the people.

6.6 Impact of Number of Antennas

Although new-generation WiFi devices could support up to
16 antennas, many home WiFi devices have a smaller num-
ber of antennas. Hence, we study the impact of the number
of antennas by equipping each receiver with 9, 7, and 5 an-
tennas, respectively. Figure 16 shows that the rank-1 accu-
racies for using 9, 7, and 5 antennas are around 85%, 83%),
and 80%, respectively. The result demonstrates that when the

ence.

ber of people.

number of antennas increases, the system performance be-
comes better. It is because more antennas lead to a higher
resolution of 2D AoA and thus can visualize the subject more
precisely. Moreover, our system can work properly with only
5 antennas which could be the default number of antennas on
next-generation WiFi devices.

6.7 Impact of Walking Duration

In our evaluation, we utilize 100 consecutive frames (probe se-
quence length) by default for each person in the test. Note that
our system generates 30 frames per second and 100 frames
represent 3.3s. However, the duration of walking can vary
from person to person. Therefore, we study the impact of
walking duration with 50 frames (1.7s), 100 frames (3.3s),
and 200 frames (6.7s). As shown in Figure 17, a longer du-
ration can improve system performance as our system can
obtain more temporal information. Still, the rank-1 accuracy
is 82% even when we only use 50 frames. The reason is that
our system identifies people leveraging both static and dy-
namic biometrics information. Even with limited dynamic
walking information, our system can still utilize static shape
information to maintain a good performance.

6.8 Impact of Sensing Range

To study the impact of sensing range change on performance,
our system was evaluated with various sensing ranges: 2.8m,
3.5m, and 4.2m. According to the CMC curves shown in Fig-
ure 18, we can observe that the system performance increases
as the sensing range decreases. This is due to the fact that
a shorter propagation distance results in a stronger received
signal. However, the system performance is still comparable
at different distances. Thus, our system can work well in a
typical room with a variety of distances. Note that by employ-
ing higher gain antennas, the WiFi transmission power can
be increased and the corresponding maximum sensing range
will be extended.
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7 Discussion

The 3D-ID system shows that our proposed WiFi vision-based
person Re-ID is very promising. However, the current imple-
mentation still has some limitations.

Crowded Space. Currently, we assume that only one per-
son is walking in an indoor environment. Identifying a large
number of people simultaneously in a crowded space (e.g.,
a train station and shopping mall) is still a challenge. Under
crowded spaces, human bodies could overlap, and a large num-
ber of people would cause very complicated signal reflections.
This is also a challenging problem in the computer vision
community. One promising research direction to address this
challenge is to segment each person based on high-resolution
2D AoA images and then perform identification one by one,
similar to the approaches used in computer vision. Still, it is
an open question of how many persons can be supported si-
multaneously with the proposed WiFi vision-based approach
on next-generation WiFi devices.

Sensing Range. Although we have demonstrated our sys-
tem can work at several meters’ sensing range, it is still limited
when compared to a camera-based system. As our approach
relies on the signal reflections, whose power is normally sev-
eral orders of magnitude weaker than that of the signal that
went through LoS propagation. The sensing range of the pro-
posed WiFi vision-based approach is thus much shorter than
the communication range of the WiFi. This issue, however,
could be mitigated by leveraging the pervasively deployed
WiFi devices, i.e., every location could be covered by WiFi
devices several meters away, or by leveraging directional an-
tennas.

Limited Users. Our current evaluation only involves 28
participants, which is limited. Although the performance of
our system is comparable to the computer vision-based ap-
proaches under the same number of participants, the system
could benefit from a stress test by involving a large number of
participants. After the COVID-19 pandemic, we would like
to recruit more participants for a long-term study.

ferent walking durations.

ferent sensing ranges.

8 Conclusion

Person Re-ID in traditional optical camera-based systems
is challenging due to changes in the appearance of people,
occlusions, and unconstrained human poses. We propose a
WiFi vision-based person Re-ID system, 3D-ID, which is
very promising to mitigate these challenges and augment
traditional camera-based systems. Specifically, we exploit
multiple antennas on next-generation WiFi devices and 2D
AoA of the WiFi signal reflections to visualize a person in the
physical environment. Our system extracts intrinsic features
of the body shape and dynamic walking patterns from the
digitized 3D human body for person Re-ID. Our system is
thus resistant to the changes in the appearance of people as
well as the unconstrained poses. Our system can also work
under NLoS scenarios as the WiFi signals traverse occlusions
and actively illuminate the human body. Extensive experi-
ments in various indoor environments demonstrate that the
3D-ID system is effective in identifying a number of people
and that it can achieve an overall rank-1 accuracy of 85.3%.
Our system is also resistant to various attacks.
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