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Abstract

We propose the use of U-statistics to reduce variance for gradient estimation in importance-
weighted variational inference. The key observation is that, given a base gradient estimator
that requires m > 1 samples and a total of n > m samples to be used for estimation,
lower variance is achieved by averaging the base estimator on overlapping batches of size m
than disjoint batches, as currently done. We use classical U-statistic theory to analyze the
variance reduction, and propose novel approximations with theoretical guarantees to ensure
computational efficiency. We find empirically that U-statistic variance reduction can lead
to modest to significant improvements in inference performance on a range of models, with
little computational cost.

1 Introduction

An important recent development in variational inference (VI) is the use of ideas from Monte Carlo sampling
to obtain tighter variational bounds (Burda et al., 2016; Maddison et al., 2017; Le et al., 2018; Naesseth et al.,
2018; Domke & Sheldon, 2019). Burda et al. (2016) first introduced the importance-weighted autoencoder
(IWAE), a deep generative model that uses the importance-weighted evidence lower bound (IW-ELBO) as its
variational objective. The IW-ELBO uses m samples from a proposal distribution to bound the log-likelihood
more tightly than the conventional evidence lower bound (ELBO), which uses only 1 sample. Later, the
IW-ELBO was also connected to obtaining better approximate posterior distributions for pure inference
applications of VI (Cremer et al., 2017; Domke & Sheldon, 2018), or “IWVT”. Similar connections were made
for other variational bounds (Naesseth et al., 2018; Domke & Sheldon, 2019).

The IW-ELBO is attractive because, under certain assumptions [see Burda et al. (2016); Domke & Sheldon
(2018)], it gives a tunable knob to make VI more accurate with more computation. The most obvious
downside is the increased computational cost (up to a factor of m) to form a single estimate of the bound
and its gradients. A more subtle tradeoff is that the signal-to-noise ratio of some gradient estimators degrades
with m (Rainforth et al., 2018), which makes stochastic optimization of the bound harder and might hurt
overall inference performance.

To take advantage of the tighter bound while controlling variance, one can average over r independent
replicates of a base gradient estimator (Rainforth et al., 2018). This idea is often used in practice and
requires a total of n = rm samples from the proposal distribution.

$Work done while at UMass.


https://openreview.net/forum?id=oXmwAPlbVw

Published in Transactions on Machine Learning Research (02/2023)

Our main contribution is the observation that, whenever using r > 1 replicates, it is possible to reduce
variance with little computational overhead using ideas from the theory of U-statistics. Specifically, instead
of running the base estimator on r independent batches of m samples from the proposal distribution and
averaging the result, using the same n = rm samples we can run the estimator on k > r overlapping batches
of m samples and average the result. In practice, the extra computation from using more batches is a small
fraction of the time for model computations that are already required to be done for each of the n samples.
Specifically:

e We describe how to take an m-sample base estimator for the IW-ELBO or its gradient and reduce
variance compared to averaging over r replicates by forming a complete U-statistic, which averages the
base estimator applied to every distinct batch of size m. This estimator has the lowest variance possible
among estimators that average the base estimator over different batches, but it is usually not tractable
in practice due to the very large number of distinct batches.

e We then show how to achieve most of the variance reduction with much less computation by using
incomplete U-statistics, which average over a smaller number of overlapping batches. We introduce a
novel way of selecting batches and prove that it attains a (1 — 1/£) fraction of the possible variance
reduction with k& = ¢r batches.

e As an alternative to incomplete U-statistics, we introduce novel and fast approximations for IW-ELBO
complete U-statistics. The extra computational step compared to the standard estimator is a single sort
of the n input samples, which is very fast. We prove accuracy bounds and show the approximations
perform very well, especially in earlier iterations of stochastic optimization.

e We demonstrate on a diverse set of inference problems that U-statistic-based variance reduction for the
IW-ELBO either does not change, or leads to modest to significant gains in black-box VI performance,
with no substantive downsides. We recommend always applying these techniques for black-box TWVI
with r > 1.

o We empirically show that U-statistic-based estimators also reduce variance during IWAE training and lead
to models with higher training objective values when used with either the standard gradient estimator or
the doubly-reparameterized gradient (DReG) estimator (Tucker et al., 2018).

2 Importance-Weighted Variational Inference

Assume a target distribution p(z,z) where x € R is observed and z € R%Z is latent. VI uses the following
evidence lower bound (ELBO), given approximating distribution g4 with parameters ¢ € R% , to approximate
Inp(x) (Saul et al., 1996; Blei et al., 2017):

= np(Z,m) np(z ~

The inequality follows from Jensen’s inequality and the fact that E [

p(Z,x)
a4 (2)

Burda et al. (2016) first showed that a tighter bound can be obtained by using the average of m importance
weights within the logarithm. The importance-weighted ELBO (IW-ELBO) is

Z;Z(%)} = p(x), that is, the importance

weight is an unbiased estimate of p(z).

- (Zi,x) iid
‘Cm:Elni —— Slnpa:, lerlvq 1
[ it q¢(Zi)] (=) ¢ (1)

m  p(Z;,x)
i=1 q4(Z;)°
average of m unbiased estimates, remains unbiased for p(z). Moreover, we expect Jensen’s inequality to
provide a tighter bound because the distribution of this sample average is more concentrated around p(z)
than the distribution of one estimate. Indeed, £,, > L, for m > m’ and £,, — lnp(x) as m — oo (Burda
et al., 2016).

This bound again follows from Jensen’s inequality and the fact that % > which is the sample
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In importance-weighted VI (IWVI), the IW-ELBO £,,, is maximized with respect to the variational param-
eters ¢ to obtain the tightest possible lower bound to Inp(z), which simultaneously finds an approximating
distribution that is close in KL divergence to p(z|x) (Domke & Sheldon, 2018). In practice, the IW-ELBO
and its gradients are estimated by sampling within a stochastic optimization routine. It is convenient to
define the log-weight random variables V; = Inp(Z;, ) — Ing4(Z;) for Z; ~ g4 and rewrite the IW-ELBO as

1 m
Loy =ER(Vim)], h(vi.m) =In — Vi, 2
PVim)l o) =10 35 )
Then, an unbiased IW-ELBO estimate with r replicates, using n = rm i.i.d. log-weights (‘/}Z)gﬂzzl is
. 1 —
Lom =~ > h(Vias o Vi) (3)
j=1

In ﬁmn, we use the subscript n to denote the total number of input samples used for estimation and m for
the number of arguments of h, which determines the IW-ELBO objective to be optimized.

For gradient estimation, an unbiased estimate for the IW-ELBO gradient V4L, is:

. 1 « iid
gn,m: ;Zg(Zj,la"'7Zj,m)7 ZJ,’L Nq¢7 (4)
j=1

where g(21.,,) is any one of several unbiased “base” gradient estimators that operates on a batch of m samples
from gy, including the reparameterization gradient estimator (Kingma & Welling, 2013; Rezende et al., 2014),
the doubly-reparameterized gradient (DReG) estimator (Tucker et al., 2018), or the score function estimator
(Fu, 2006; Kleijnen & Rubinstein, 1996).

2.1 IWVI Tradeoffs: Bias, Variance, and Computation

Past research has shown that by using a tighter variational bound, IWVI can improve both learning and
inference performance, but also introduce tradeoffs such as those pointed out by Rainforth et al. (2018). In
fact, there are several knobs to consider when using IWVI that control its bias, variance, and amount of
computation. These tradeoffs can be complex so it is helpful to review the key elements as they relate to
our setting, with the goal of understanding when and how IWVI can be helpful and providing self-contained
evidence that the setting where U-statistics are beneficial can and does arise in practice.

Consider the task of maximizing an IW-ELBO objective L,, to obtain the tightest final bound on the log-
likelihood. This requires estimating £,, and its gradient with respect to the variational parameters in each
iteration of a stochastic optimization procedure. Assume there is a fixed budget of n independent samples
per iteration, where, for convenience, n = rm for an integer r > 1, as above. The parameters m and r can
be adjusted to control the estimation bias and variance at the cost of increased computation. Specifically:

« For a fixed m, by setting ' > r, we can reduce the variance of the estimator in Equation (4) by increasing
the computational cost to r'm > rm samples per iteration.

o For a fixed r, by setting m’ > m we can reduce the bias of the objective — that is, the gap in the bound
L, <Inp(x) — by increasing the computational cost to rm’ > rm samples per iteration.

However, Rainforth et al. (2018) observed that increasing m may also have the negative effect of worsening
the signal-to-noise (SNR) ratio of gradient estimation (but also that this could be counterbalanced by
increasing r). Later, Tucker et al. (2018) showed that, for the DReG gradient estimator, increasing m
can increase SNR; see also the paper by (Finke & Thiery, 2019) for a detailed discussion of these issues.

Overall, while the effect of increasing the number of replicates r to reduce variance is quite clear, the effects
of increasing m are sufficiently complex that it is difficult to predict in advance when it will be beneficial.

3
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However, an important premise of our work is that 375
the optimal setting of m is often strictly between
1 and n, since this is the setting where U-statistics 3:50
can be used to reduce variance. To understand this, 3.05
we can first reason from the perspective of a user
that is willing to spend more computation to get 5 >0
a better model. Assuming the variational bound is 2.75 n
not already tight, this user can increase m as much 250 [ ;g
as desired to tighten the bound, and then, increase — 64
r as needed to control the gradient variance. This 225 128
argument predicts that, for a sufficiently large com- 500 2%
putational budget and complex enough model (so 2 8 32 128
that the bound is not already tight with m = 1), a "
value m > 1 will often be optimal. Figure 1: Distribution of the distance (error) between

From the perspective of a user with fixed computa- the distribution’s covariance and that of the approx-
tional budget, in which the number of optimization imating distribution as a function of m for different
iterations is also being fixed, we could instead ask: numbers of sampled points n, after training an approx-
“for a fixed n, what are the optimal choices of m imating distribution using the standard IW-ELBO es-
and 7 = n/m”? This question can be addressed em- timator. As we increase n, the optimal m also in-
pirically. Rainforth et al. (2018) reported in their —creases, but at a slow rate. [See Section 6 for details.]
Figure 6 that the extreme values, i.e., m = 1 or

m = n, were never the best values. We found empirically that for some models, this result also holds for
black box VI, i.e., the optimal choice of m is strictly greater than 1 and less than n, as shown in Figure 1.
See also Figure 5, which shows that similar observations apply when using the DReG estimator. In our
analysis of 17 real Stan and UCI models, with n = 16, around half of them achieved the best performance
for an intermediate value of m, depending on the approximating distribution and base gradient estimator
[see Table 8 and 9 in Appendix G]. And we further conjecture that the fraction of real-world models with
this property will increase as n increases.

For the rest of this work we focus on methods that can reduce variance for the case when 1 < m < n.

3 U-Statistic Estimators

We now introduce estimators for the IW-ELBO and its gradients based on U-statistics, and apply the theory
of U-statistics to relate their variances. The theory of U-statistics was developed in a seminal work by
Hoeffding (1948) and extends the theory of unbiased estimation introduced by Halmos (1946). For detailed
background, see the original works or the books by Lee (1990) and van der Vaart (2000).

The standard estimators in Eqs. (3) and (4) average the base estimators h(vi.,,) and g(21.,) on disjoint
batches of the input samples. The key insight of U-statistics is that variance can be reduced by averaging
the base estimators on a larger number of overlapping sets of samples.

We will consider general IW-ELBO estimators of the form

Ls(vrm) = %Zh(vsl,...,%m), 5)

seS

where S is any non-empty collection of size-m subsets of the indices [n] := {1,...,n}, and s; is the ith
smallest index in the set s € S. Since Eh(Vi.m) = Ly, it is clear (by symmetry and linearity) that
IEEAS(VLH) = L,,, that is, the estimator is unbiased. For now, we will call this a “U-statistic with kernel h”,
as it is clear the same construction can be generalized by replacing h by any other symmetric function of
m variables!, or “kernel”, while preserving the expected value. Later, we will distinguish between different
types of U-statistics based on the collection S.

1Recall that a symmetric function is a function invariant under all permutations of its arguments.
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We can form U-statistics for gradient estimators by using base gradient estimators as kernels. Let g(z1.m)
be any symmetric base estimator such that E g(Z1.,,) = V4Ly,. The corresponding U-statistic is

g Zln |8|Zg S19c m) (6)

seS

and satisfies E Gg(Z1.,) = VoL

3.1 Variance Comparison

How much variance reduction is possible for IWVI by using U-statistics? In this section, we first define the
standard IW-ELBO estimator and complete U-statistic IW-ELBO estimator, and then relate their variances.
For concreteness, we restrict our attention to IW-ELBO objective estimators, but analagous results hold for
gradients by using a base gradient estimator as the kernel of the U-statistic.

We first express the standard IW-ELBO estimator ﬁnym in the terminology of Eq. (5):

Estimator 1. The standard IW-ELBO estimator ﬁn,m of Eq. (3) is the U-statistic Ls formed by taking S
to be a partition of [n] into disjoint sets, i.e., S = {{1,...,m},{m+1,....2m},... . {(r—=1)m+1,...,rm}}.

Estimator 2. The complete U-statistic IW-ELBO estimator LU is the U-statistic Ls with S = ([[7’;]]), the

n,m
set of all distinct subsets of [n] with exactly m elements.

We will show that the variance of the ﬁgm is never more than that of [inm“ and is strictly less under certain
conditions (that occur in practice), using classical bounds on U-statistic variance due to Hoeffding (1948).

Since Lg m 1S an average of terms, one for each s € ([[::Lﬂ), its variance depends on the covariances between

pairs of terms for index sets s and s’, which in turn depend on how many indices are shared by s and s'.
This motivates the following definition:

Definition 3.1. Let Vi,..., Vs, be iid. log-weights. For 0 < ¢ < m, take s,s’ € ([2::]]) with [sNs'| = c.
Using h from Eq. (2), define

o= Cov[h( e Vi), h(stl,...,V;;n)},
which depends only on ¢ and not the particular s and s’.

In words, this is the covariance between two IW-ELBO estimates, each using one batch of m i.i.d. log-weights,
and where the two batches share ¢ log-weights in common. For example, when m = 2 we have

=0, ¢ =Cov[in(de Vi +1 e"?), In(4e Vi +1 )], and, (= Var[In(3 Vl—i— 12y,

Then, due to Hoeffding’s classical result,

Proposition 3.2. With (1, and (,, defined as above, the standard IW-ELBO estimator ljmm (Estimator 1)
and complete U-statistic estimator (Estimator 2) with n = rm and r € N satisfy

mTQQ < Var[ﬁ,({’m} < B = Var[ﬁmm].

Moreover, for a fized m, the quantity nVar[LU | tends to its lower bound m?(; as n increases.

Proof. The inequalities and asymptotic statement follow directly from Theorem 5.2 of Hoeffding (1948). The
equality follows from the definition of (,,. O

Hoeffding proved that m{; < (,,,. We observe in practice that there is a gap between the two variances that
leads to practical gains for the complete U-statistic estimator in real VI problems.

A classical result of Halmos (1946) also shows that complete U-statistics are optimal in a certain sense: we

describe how this result applies to estimator ,Cn m in Appendix B.
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Finally, we conclude this discussion by stating the main analogue of Proposition 3.2 for gradient estimation.
The result, also following from Theorem 5.2 of Hoeffding (1948), states that the complete U-statistic gradient
estimator has total variance and expected squared norm no larger than that of the standard estimator:

Proposition 3.3. Let g}hm and g}{m be the standard and complete- U-statistic gradient estimators formed
using a symmetric base gradient estimator g(z1.m) that is unbiased for V4L, and the same index sets as

ﬁmm and LV respectively. Then tr(Var[gAg,m]) < tr(Var[gAmm]) and E HQAEJ”H% <E ||Qnm\|§

n,m?’

We provide a proof in Appendix B.1.

3.2 Computational Complexity

There are two main factors to consider for the computational complexity of an IW-ELBO estimator:

1) The cost to compute n log-weights V; = lnp(Z;,x) — Inq(Z;) for i € [n], and

2) the cost to compute the estimator given the log-weights.

A problem with the complete U-statistics ﬁgm and Qg m 15 that they use |([[:1]])| = (') distinct subsets
of indices in Step 2), which is expensive. It should be noted that these log-weight manipulations are very
simple, while, for many probabilistic models, computing each log-weight is expensive, so, for modest m and
n, the computation may still be dominated by Step 1). However, for large enough m and n, Step 2) is

impractical.

4 Incomplete U-Statistic Estimators

In practice, we can achieve most of the variance reduction of the complete U-statistic with only modest
computational cost by averaging over only k < (TZ) subsets of indices selected in some way. Such an
estimator is called an incomplete U-statistic. Incomplete U-statistics were introduced and studied by Blom
(1976).

A general incomplete U-statistic for the IW-ELBO has the form in Eq. (5) where S C ([[;]]) is a collection
of size-m subsets of [n] that does not include every possible subset. We will also allow S to be a multi-set,
so that the same subset may appear more than once. Note that the standard IW-ELBO estimator ﬁn’m is
itself an incomplete U-statistic, where the & = r = I index sets are disjoint. We can improve on this by
selecting k > r sets.

Estimator 3 gRandom subsets). The random-subset incomplete-U-statistic estimator for the IW-ELBO is
the estimator Ls, where Sy is a set of k subsets (s;)%_; drawn uniformly at random (with replacement) from

[»]
We next introduce a novel incomplete U-statistic, which is both very simple and enjoys strong theoretical
properties.

Estimator 4 (Permuted block). The permuted block estimator is computed by repeating the standard
IW-ELBO estimator ¢ times with randomly permuted log-weights and averaging the results. Formally, the
permuted-block incomplete-U-statistic estimator for the IW-ELBQO is the estimator ﬁslg[ with the collection

St defined as follows. Let m denote a permutation of [n]. Define S, as the collection obtained by permuting
indices according to 7 and then dividing them into r disjoint sets of size m. That is,

S = {{r(V. 7@, .ow(m)} {xlm +1...w@m)}, . fx((r— Dm 4 1), wem)} ).

Now, let Sf; = W), .y Sx where IT is a collection of ¢ random permutations and | denotes union as a multiset.
The total number of sets in Sf is k = r.

Both incomplete-U-statistic estimators can achieve variance reduction in practice for a large enough number
of sets k, but the permuted block estimator has an advantage: its variance with k subsets is never more
than that of the random subset estimator with k£ subsets, and never more than the variance of the standard
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IW-ELBO estimator (and usually smaller). On the other hand, the variance of the random subset estimator
is more than that of the standard estimator unless k > kg for some threshold kg > r.

Proposition 4.1. Given m and n = rm, the variances of these estimators satisfy the following partial

ordering:
standard

N (a) N
Var[ﬁ%m] < Var[Lg] . (7)
—— < Var[ls,]
———

complete permuted block (c)
random subset

Moreover, if the number of permutations £ > 1 and Var[ﬁ%m] < Var[L,.m], then (b) is strict; if r = —>1,
then (c) is strict. (Note that the permuted and random subset estimators both use k = r¢ subsets.)

Proof. By Def. 3.1, if s and s’ are uniformly drawn from ([[fnﬂ) and Kk = |([[Zﬂ)|, we have

Clsns’| E[h(V; ,...,%m)h(%a,...,vggn)] . .
E[<|sﬂs/|] = Z 2 = Z ! 2 - E[ﬂg,m]g = Var[‘C'r({,m]' (8)
s,s’e([[:,;]]) s,s’E([[:fl]])
Let 7y, ..., 7 be the random permutations. Observe that for s,s" € Sy, distinct, i.e., two distinct sets within

the ith block, s and s’ are disjoint and then h(Vj,,...,V;, ) is independent of A(Vy,,..., Vs ). Hence, all
dependencies between different sets are due to relations between permutations, i.e., each of the r terms will
have a dependency with the (¢ — 1)r terms not in the same permutation. Therefore, it follows from (8) that
the total variance of £ st 18

Var[Lg:] = £¢m + (1 — 3) Var[£Y ], (9)

£
I
i.e., a convex combination of £(, = Var[£,,m] and Var[ﬁ,l{)m]. Hence, using Proposition 3.2, (a) and (b)
holds.

By a similar argument, the total variance of EASM is
Var[ﬁsre] = ﬁCm + (1 - #) Var[ﬁg,m]'

Then, (c) holds because . A A
Var[ﬁslgl] — Var[Ls,,] = %(% -1 Var[ﬁg’m} < 0.

O

A remarkable property of the permuted-block estimator is that we can choose the number of permutations ¢
to guarantee what fraction of the variance reduction of the complete estimator we want to achieve. Say we
would like to achieve 90% of the variance reduction; then it suffices to set £ = 10. The following Proposition
formalizes this result.

Proposition 4.2. Given m andn = rm, for £ € N the permuted-block estimator achieves a (1—1/¢) fraction
of the variance reduction provided by the complete U-statistic IW-ELBO estimator, i.e.,

A

Var[Lpm] = Var[lse] = (1—§)(Var[Ly,m] = Var[£] ,.]).

———
standard permuted block standard complete
Proof. This follows directly from Eq. (9). O

The conclusions of Propositions 4.1 and 4.2 do not depend on the kernel. This means they provide strong
guarantees for our novel and simple permuted-block incomplete U-statistic with any kernel, which may be
of general interest, and also imply the following result for gradients:

Proposition 4.3. The conclusion of Proposition 4.2 holds with Var[£] replaced by either E[||G|2] or
tr([Var[G]), for each pair (L,G) of objective estimator and gradient estimator that use the same collection S
of index sets, and for any base gradient estimator g(v1.m)-
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5 Efficient Lower Bounds

In the last section, we approximated the complete U-statistic by averaging over k < (7””) subsets. For
example, by Proposition 4.2, we could achieve 90% of the variance reduction with 10x more batches than
the standard estimator, and the extra running-time cost is often very small in practice. An even faster
alternative is to approximate the kernel in such a way that we can compute the complete U-statistic without
iterating over subsets. In this section, we introduce such an approximation for the IW-ELBO objective,
where the extra running-time cost is a single sort of the n log-weights, which is extremely fast. Furthermore,
Proposition 5.2 below will show that it is always a lower bound to ﬁgm and has bounded approximation
error, so its expectation lower bounds £,, and Inp(z); thus, it can be used as a surrogate objective within
VI that behaves well under maximization. We then introduce a “second-order” lower bound, which has
provably lower error. Unlike the last two sections, these approximations do not have analogues for arbitrary
gradient estimators such as DReG or score function estimators. For optimization, we use reparameterization
gradients of the surrogate objective.

Estimator 5. The approzimate complete U-statistic IW-ELBO estimator is

~1
ﬁ;‘,m(vlm) = <n> Z max(Vs,,..., Vs, ) —Inm.

m
se(ﬂlﬂ)

This estimator uses the approximation In >"}" ; e” ~ max{v1, ..., vy, } for log-sum-exp. The following Propo-
sition shows that we can compute ﬁ;im ezactly without going over the (::L) subsets but instead taking only
O(nlnn) time. The intuition is that each of the n log-weights will be a maximum element of some number
of size-m subsets, and each such term in the summation for ﬁﬁ’m will be the same. Moreover, we can reason

in advance how many times each log-weight will be a maximum.

Proposition 5.1. For any vi., € R", it holds that

-1 n
ﬁﬁ)m(vl:n) = (Z) Zbiv[i} —Inm,
i=1

where b; = ("), ifi € [n— (m —1)] (and 0 otherwise), and [-]: [n] — [n] is a permutation s.t., the
sequence of log-weights v(y, ..., V[, 8 non-increasing.

Proof. For s € ([[::lﬂ), let vg = (vs,,..., s, ). We can see that max vg = v;) where i is the smallest index in
s. Thus,

Z max vg = Zn: bivpis
i=1

SG(H::LH)

where b; is the number of sets s € ([[7’7’}) with minimum index equal to i. The conclusion follows because
there are n — 4 indices larger than i, but we can take m — 1 of them only when i € [n — (m — 1)]. O

To further understand both the computational simplification and the quality of this approximation, con-
sider this real example of computing the (non-approximate) complete U-statistic IW-ELBO estimator ‘C4U,2'
Suppose that the sampled log-weights are

v = (—6034.091, —4351.335, —4157.236, —5419.201).

Given the (3) sets, we can evaluate the kernel h(v;,v;) = In(e¥ + €% ) —In2 on each of them to generate the

following table:
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(vi, ;) h(vi, v;)
(—6034.091, —4351.335) | —4352.028
(—6034.091, —4157.236) | —4157.930
(—6034.091, —5419.201) | —5419.895
(- )
(- )
(= )

4351.335, —4157.236) | —4157.930
4351.335, —5419.201) | —4352.028
4157.236, —5419.201) | —4157.930

Mean —4432.956

At three decimal points of precision, we see that h(v;,v;) = max(v;,v;) + In2 and therefore —4157.930,
—4352.028, and —5419.895 each appear (f) times, (f) times, and once, respectively.

—1150

objective
objective

objective
|
I

standard IW

permuted

—1250

— mean difference

0 2000 4000 6000 8000 10000 0 500 1000 1500 2000 0 1000 2000 3000 4000 5000
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Figure 2: Median envelope of the objective using the permuted-block and standard IW-ELBO estimators
for the mushrooms (left), mesquite (center) and electric-one-pred (right) models. In all cases we used
n = 16 and m = 8. For reference there is a line segment of length similar to the average objective difference,
respectively, 202.08, 0.97, and —3.91.

5.1 Accuracy and Properties of the Approximation

It is straightforward to derive both upper and lower bounds of the complete U-statistic IW-ELBO estimator
L,’{,m from this approximation.

Proposition 5.2. For any set of log-weights vi.,, € R™, it holds that
ﬁﬁ,m(vlzn) S ﬁgﬂn(vl:n) S ﬁﬁm(vl:n) + In m. (10)

Moreover, the first inequality is strict unless m = 1. On the other hand, the second inequality is an equality
when all log-weights are equal.

Proof. This is a direct application of well-known inequalities for log-sum-exp. Let h(vy,...,v,) =In Zf\il evi
and f(v1,...,vy) = max{vy,...,vy}. Then, for all vy, € R™,
f(vlzm) S h(vl:m) S f(vl:m) + Inm. (11)
To see this, write & = max{vy,..., vy} Then,
m
Let < L Ze“f <e’ (12)
j=1

Eq. (11) follows from applying In to (12). Eq. (10) then follows from (11) and the definitions of ﬁﬁm and
LY. . O

One comment about the approximation quality is in order: in the limit as the variance of the log-weights de-
creases, the second inequality in the bounds above becomes tight, and the approximation error of EA;fm (V1:n)
approaches its maximum Inm. This can be seen during optimization when maximizing the IW-ELBO, which
tends to reduce log-weight variance [cf. Figure 4].
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5.2 Second-Order Approximation

A

7 ms We can add a correction term to obtain

Based on our understanding of the approximation properties of L
a second-order approximation.

Estimator 6. For 2 < m < n, the second-order approximate complete-U-statistic IW-ELBO estimator is
n—(m—1)
ﬁfﬁl(vl:n) = Lim(vl:n) + (Z)_l Z b;In(1 + eAvm), (13)
i=1

where AV}, = V1) — V) and b = (nflfi).

m—2

This can still be computed in O(nlnn) time and gives a tighter approximation than ﬁﬁm

Proposition 5.3. For all vi., € R™,
ﬁﬁ,m(vlln) < ﬁﬁfn(vln) < ﬁr({,m(vlln)'

Moreover, the second inequality is an equality exactly when m =n = 2.

Proof. The first inequality follows directly because the terms in the summation of (13) are positive reals.

For the second inequality, take s € ([[:;H) and let ¢ be the smallest index in s. If s is one of the ("T;:l) sets
on which ¢ is the smallest index and ¢ + 1 € s, then

evlil eVli+1]
Leva(] 4 vy = X 1 S e
m m - m
sEs

Ifi4+1¢s, we know that %e“[ﬂ < LS e¥i. We finish by applying logarithm to both inequalities and

—m Jj=1

the definition of ﬁﬁm and ﬁf{m O

In contrast to EAf’m,
of ﬁgm

Note 5.4. To use the approximations as an objective, we need them to be differentiable. If the distribution
of W is absolutely continuous, then the approximations are almost surely differentiable because sort is
almost surely differentiable, with Jacobian given by the permutation matrix it represents [cf. Blondel et al.
(2020)].

the second-order approximation is not a U-statistic. However, it is a tighter lower-bound

6 Experiments

In this section, we empirically analyze the methods proposed in this paper. We do so in three parts: we first
study the gradient variance, VI performance, and running time for IWVI in the “black-box” setting?; we
then focus on a case where the posterior has a closed-form solution, using random Dirichlet distributions;
and finally, we study the performance of the estimators for Importance-Weighted Autoencoders.

For black-box IWVI, we experiment with two kinds of models: Bayesian logistic regression with 5 different
UCI datasets (Dua & Graff, 2017) using both diagonal and full covariance Gaussian variational distributions,?
and a suite of 12 statistical models from the Stan example models (Stan Development Team, 2021; Carpenter
et al., 2017), with both diagonal (all models) and full covariance Gaussian (10 models*) approximating

2That is, VI that uses only black-box access to Inp(z,z) and its gradients.

3That is, p(y | 0) = Hiil Bernoulli (yi; logistic(HTaci)) for fixed z; € R® and p(0) = N'(6; 0,021;),and V = Inp(0, y) —In q(0)
for 6 ~ q(0) with either q(8) = N(0; u,diag(w)) or ¢(8) = N(0; u, LLT); we optimize over (u,w) or (i, L), with w constrained
to be positive (via exponential transformation) and L constrained to be lower triangular with positive diagonal (via softplus
transformation). Parameters were randomly initialized prior to transformations from iid standard Gaussians.

4The irt-multilevel model diverged for all configurations using a full covariance Gaussian.
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distributions. We provide additional information regarding the models in Appendix C. For each model,
the variational parameters were optimized using stochastic gradient descent with fixed learning rate for
15 different logarithmically spaced learning rates. We used n = 16 samples per iteration except for the
running time analysis, and experimented with m € {2,4,8}. Since this is a stochastic optimization problem,
we ran every combination of model, learning rate, n, and m, using 50 different random seeds to assess
typical performance. We used the reparameterization gradient estimator as the base gradient estimator, and
also provide in Appendix D and G (very similar) results for the doubly-reparameterized (DReG) gradient

estimator.
10
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(a) Ratio of gradient’s total variance. (b) Ratio of the objective’s variances.

Figure 3: Ratios of the trace of the variance (i.e., the total variance) of different proposed gradient estimators
to that of the standard gradient estimator, and objective’s variances (b) for the mushrooms dataset (d = 96).
All ratios are below 1, which indicates variance reduction. The estimators can be ordered by variance:
the complete-U-statistic estimator and second-order approximation are lowest, followed by the permuted-
block and first-order approximation, and finally the random subsets estimator. Since ¢ = 20, we expect
the permuted-block estimator to achieve 1 — % = 0.95 of the variance reduction; the estimated variance

reduction is 91.24% and 95.72% for the objective.

Gradient Variance We first confirm empirically that U-statistics reduce the variance of gradients within
IWVI. For each random seed, we performed IWVI using the complete U-statistic ﬁf{m for 10,000 iterations.
Every 200 iterations, we computed the gradients, given the values of the parameters at that time, for
each of the alternative gradient estimators: the standard estimator, the complete U-statistic estimator, its
approximations, the permuted-block estimator with £ = 20, and the random subsets estimator with k = 20>
(a number pf sets equal to the permuted version). In all cases we used n = 16 and m = 8. For each gradient

A

estimator G, we estimate the total variance tr(Var[G]) using 200 independent gradient samples.

Figure 3—(a) shows the total variance of each estimator as a fraction of that of the standard estimator
(that is, the ratio tr(Var[Q]) / tr(Var[gAn,m])) for Bayesian logistic regression with the mushrooms dataset.
The ratios are between 60% and 70% for all methods, with the random subsets estimator showing the
highest variance and the complete U-statistic the lowest. This confirms it is possible to reduce gradient
variance with U-statistics. Moreover, the estimators can be ordered by their gradients’ total variance. The
complete U-statistic estimator and the 2nd order approximation have the smallest variance, the permuted-
block estimator has slightly higher variance, and the random subsets estimator has the highest variance (but
still less than that of the standard estimator). Recall that, according to Prop. 4.2, £ = 20 implies that the
permuted estimator achieves 95% of the variance reduction provided by the complete-U-statistic IW-ELBO.
In this case, we estimated the variance reduction of the permuted-block estimator to be 91.24% of that
of the complete-U-statistic estimator. We also show the ratio of the objective’s variances in Figure 3—(b).
Most estimators have a ratio of around 80%, but the permuted-block estimator achieves a 95.72% variance
reduction provided by the complete U-statistic estimator.

11
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Table 1: For Bayesian logistic regression (a) and Stan models (b), difference in nats of the average objective
(higher is better) when trained using the permuted estimator vs. the standard IW-ELBO estimator. The
variational distribution is a Gaussian distribution using either a full rank covariance matrix (first column)
or a diagonal one (second column). The entry is “—” when the model diverged for all configurations, and
NaN when it diverged for the specific configuration (other configurations are found in the Appendix).

(a) Bayesian logistic regression models. (b) Stan models.

permuted — standard IW-ELBO permuted — standard IW-ELBO

Dataset m =28 Dataset m=2_8
Full Covariance Diagonal Full Covariance Diagonal
ala 112.42 4.48 congress 19.80 7.33
australian 3.36 1.38 election88 1133.70 6.94
ionosphere 16.58 0.06 election88Exp NaN 32.76
mushrooms 202.56 8.69 electric 80.46 4.32
sonar 50.62 0.19 electric-one-pred -3.45 -3.91
hepatitis NaN 0.65
hiv-chr 283.19 15.84
irt 16077.03 1.00
irt-multilevel — 62.32
mesquite 1.41 2.00
radon 268.98 14.83
wells -0.03 -0.11

VI Performance Ultimately, our goal is to provide a more efficient optimization method. To measure typ-
ical stochastic optimization performance, we first took the maximum objective value across learning rates in
each iteration to construct the optimization envelope for each method and random seed [cf. Geffner & Domke
(2018)]. The purpose of the envelope is to eliminate the learning rate as a nuisance parameter since stochastic
optimization methods are very sensitive to learning rate, and one common benefit of variance reduction is to
allow a larger learning rate. Then, for each method we used the median envelope across the 50 random seeds
as a measure of its typical optimization behavior over iterations. Examples can be seen in Figure 2. As a final
metric for each method we computed the average objective value (of the median envelope) across iterations up
to 10,000 iterations,® excluding the first 50 iterations, which were highly noisy and sensitive to initialization.
This is a useful summary metric to measure the tendency of one method to “stay ahead” of another (see
the examples in Figure 2). Agrawal et al. (2020) found a similar metric effective for learning rate selection.

Table 2: Times for 1000 iterations of optimiza- Taple 1 shows the average objective difference between
tion with .dlfferent estimators on the mushrooms 1, permuted-block and standard IW-ELBO estimators
dataset with n = 24, m = 12, averaged over 100 ¢, 1, — 8 with positive numbers indicating better per-

trials. formance for permuted-block. We focus on permuted-
Time (3) block here because it consistently achieves an excellent
Method Moan | Std tradeoff between variance reduction and running time.
o112 standard TW-ELBO 547 | 004 Ip Appendix D we present similar resu}ts f(?r two addi-
£, complete U 1573.97 | 2.12 tional methods—the 2nd order approximation and the
J2412 permuted-block estimator with DReG as the base gra-
Ls. ,, random subsets 6.49 | 0.09 ) . . ;
oo 12 dient estimator—and for different values of m; in Ap-
‘éir[ permuted block 6.45 | 0.09 pendix G we show the median envelopes themselves for
éffg? approx. 5.25 | 0.02 many combinations of models, methods, and m. The ex-
L5415 approx. 2nd order 5.54 | 0.04 amples in Figure 2 were selected to show cases where the

difference is big (left), small (center), and negative (right);
to contextualize our summary metric, we also added a ref-
erence vertical bar showing an iteration where the difference between the two envelopes is approximately

5For some datasets, such as sonar, we observed early convergence by visual inspection and computed the metric only up to
that point. See Figures in Appendix G.
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equal to the average objective difference. These results make it clear that the permuted-block estima-
tor improves the convergence of stochastic optimization for VI across a range of models and settings. In
electric-one-pred, permuted-block was consistently worse, but we verified that it still had lower-variance
gradients; we speculate this is an unstable model where higher variance gradients help escape local optima.

Running Time Table 2 shows the times required to complete 1000 iterations of optimization with different
estimators for Bayesian logistic regression with the mushrooms data set, averaged over 100 trials. Here we
used n = 24 and m = 12, which makes it a challenging setting for the complete U-statistic estimator,
because there are (?3) = 2,704,156 sets. As expected, the complete U-statistic is orders of magnitude slower.
The approximations are faster than the standard estimator because the smallest m — 1 log-weights do not
contribute to the objective, and thus their gradients are not needed. The permuted-block estimator incurs
an extra cost of less than 1 ms per iteration compared to the standard IW-ELBO estimator for this model
(a 18% increase). However, the increased time only depends on m, n, and ¢, and not on the model. Even for
a very complex model, we would expect the extra time for these settings to be on the order of order of 1 ms
per iteration, and be negligible compared to other costs. For example, for the irt, the standard estimator
took 16.62s (0.11), while the permuted-block estimator took 17.54s (0.12), i.e., a 5% increase.

Incomplete U-Statistics and Approximations Previously, we analyzed the methods by com-
paring them to the standard IW-ELBO estimator. In this part we will use the complete U-

statistics as a baseline: given a realization of log-weights wvq,...,v,, we measure the differ-
ence between the objective value assigned by the complete U-statistic and the alternatives. For
this experiment, we will use n = 16, m = 8 and the Bayesian logistic regression dataset

mushrooms. In Figure 4 we plot the difference measured in nats as a function of the iteration
step. From that plot (especially the inset), it is clear that the approximations are underestimators.
It is also interesting to see the approximations and

the incomplete U-statistic being complementary: as 60 " : 050
the optimization progresses, the error of the approx- o I — :tplrzlr(r]):d W /
imations increases, but the error made by the in- —— approx. 2nd =
complete U-statistics decreases. We expected this 90— random subsets 7 0.00
result because the variance of the log-weights de- 30 |~ permuted ~0.25

creases with the optimization. (The upper-bound of
Eq. (10) is achieved when all v; are equal; but this is
exactly the case when all the incomplete U-statistics
coincide.) 0

20

nats

10

Dirichlet Experiments We conducted experi-
ments with random Dirichlet distributions as de- 0 2000 4000 6000 8000 10000
scribed in (Domke & Sheldon, 2018). The goal was iterations

twofold. First, this is a setting where exact inference
is possible, so we can evaluate IWVI with different
estimators on the accuracy of posterior inference di-
rectly, instead of using the IW-ELBO as a proxy.
Secondly, this is a simple setting to demonstrate
that the optimal value of m is often strictly between
1 and n, which is the regime in which our variance
reduction methods are useful (all but the approxi-
mations coincide when m € {1,n}). We again used
SGD with 15 different learning rates and selected,
for each configuration, the learning rate that achieved the best mean objective after 10k iterations. We
optimized each configuration using, for this experiment, 100 different random seeds. We estimated the accu-
racy of the approximation by computing the distance (error) between the distribution’s covariance and the
estimated covariance of the learned approximation. Figure 1 shows the error as a function of m for different
values of n when using the standard IW-ELBO estimator for a random Dirichlet with 50 parameters. The
figure shows that the optimal m increases with n, but slowly. Figure 5 shows similar results for other esti-

Figure 4: Difference between estimated value using
any of the methods and that of the complete U-
statistic, in nats, for the mushrooms dataset. (25th
and 75th percentiles shown with dashed lines.) As op-
timization progresses, the error of the incomplete U-
statistics decreases, but the error of the approximation
increases. The inset shows the permuted and both ap-
proximations in a region that is 0.5 nats of the target
value.
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mators: permuted, DReG, and permuted-DReG. In all cases, we confirm that, for this model, the optimal
m lies strictly between 1 and n. We provide in Appendix E additional details.

1e-5 permuted 1e-5 DReG 1e-5 permuted-DReG
25 25
5.0
24 24
4.5
23 23 n
_ 40 . _ — 16
o o o
£35 £ 2.2 E 22 — 32
— 64
3.0 2.1 2.1 — 108
2.5 20 20 —— 256
2.0 1.9 1.9
2 8 32 128 2 8 32 128 2 8 32 128
m m m

Figure 5: Distance between the covariance of a random Dirichlet distribution with 50 parameters and the
covariance of its approximation as a function of m for different values of n after training using the permuted
(left), DReG (center) or permuted-DReG (right) estimators.

6.1 Importance-Weighted Autoencoders

To evaluate the performance of the proposed methods on IWAESs, we trained IWAEs on 4 different datasets:
MNIST, KMNIST, FMNIST, and Omniglot. We compare the standard IW-ELBO estimator and DReG estimators
to their permuted versions, i.e., the permuted and permuted-DReG estimators. We also evaluate the second-
order approximation to the complete-U-statistic estimator. We trained each combination of dataset, method,
and value of m using five different random seeds, and the optimization was run for 100 epochs using Adam
(Kingma & Ba, 2015).

In Figure 6, we present the final testing objective for different values of m (using n = 50 in all cases) for
the KMNIST dataset, and we show results for the rest of the datasets in Figure 8 in the Appendix F along
with further details on the experiments. The figure shows that the permuted versions consistently improved
over the base versions, i.e., the permuted estimator improves over the standard-IW estimator in the same
way as the permuted-DReG estimator improves over the estimator. Additionally, we can see that
the second-order approximation outperforms the permuted estimator for small values of m. However, as
m increases, the permuted estimator takes the lead, which is expected since the approximation error grows
with m.

kmnist — m =5 kmnist — m = 10 kmnist — m = 25

—201.5 2
x = ¢ $
z 2020 * ¢ o standard IW
% —202.5 S X ! % * #®  permuted
E - : ([ § ] ®  approx. 2nd
E 2030 % = < o X = [ DReG
X n 4 X ¢ permuted-DReG
< o A u
—2035 & X L =
o
—204.0 L ®

method method method
Figure 6: Objective’s distribution for KMNIST with n = 50 and different combinations of methods and m.

We also compared the total wall-clock time required to complete the optimization with different estimators
in Figure 9 in the Appendix. It can be seen that there is not a significant time increase for using our proposed
methods.
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7 Related and Future Work

Gradient variance reduction is an active topic in VI because of its impact on stochastic optimization. Our
complete- and incomplete-U-statistic methods are complementary to other variance reduction techniques:
they are compatible with different base estimators, including the Doubly Reparameterized Gradient Estima-
tor (DReG) of Tucker et al. (2018) and the generalization of Bauer & Mnih (2021). Another broad approach
to variance reduction is the use of control variates (Miller et al., 2017; Mnih & Gregor, 2014; Ranganath
et al., 2014; Geffner & Domke, 2018; 2020). In the case of IWVI, the control variates of Mnih & Rezende
(2016) and Liévin et al. (2020), which are designed for the score function estimator, could work as a base
estimator from which a U-statistic can be built. We leave its empirical evaluation for future work.

Importance-weighted estimators are also being used for the Reweighted Wake-Sleep (RWS) procedure (Born-
schein & Bengio, 2015; Le et al., 2020) and its variations (Dieng & Paisley, 2019; Kim et al., 2020). Given
the connection between the gradient estimators of RWS and that of the IW-ELBO [see Kim et al. (2020)],
these estimators could be potentially improved by using the ideas of the complete- and incomplete-U-statistic
methods.

The numerical approximations of Section 5 follow a different principle of approximating the objective; it is an
open question if such an approximation can be used in conjunction with other variance reduction methods.
Interestingly, the first-order approximation expresses the objective as a convex combination of the ordered
log-weights (minus a constant), which has a form similar to the objective presented in Wang et al. (2018),
albeit with different coefficients.

It would be an interesting future line of work to extend the order of Proposition 4.1 to a partial order of
random variables in the sense of Mattei & Frellsen (2022).

Nowozin (2018) introduced Jackknife-VI (JVI), which uses complete-U statistics to reduce bias instead of
variance. In Appendix A we briefly discuss possible applications of our methods to JVI.

8 Conclusion

We introduced novel methods based on U-statistics to reduce gradient and objective variance for importance-
weighted variational inference, and found empirically that the methods improve black-box VI performance
and IWAEs training. We recommend using the permuted-block estimator in any situation with r > 1
replicates: it never increases variance, and can be tuned based on computational budget to achieve any
desired fraction of the possible variance reduction. In practice, a 95% fraction of possible variance reduction
can be achieved at a very low cost. The approximations of Section 5 are extremely fast and provide substantial
variance reduction, but are not universally better than the standard estimator because they introduce some
bias that can hurt performance, especially in easier models near the end of optimization.
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A Experiments with Jackknife

The relation between the jackknife estimator and complete U-statistics was made explicit early on by Mantel
(1967). Recently, Nowozin (2018) used the jackknife estimator as a way to diminish the bias in IW-VI,
proposing jackknife VI (JVI). Using the notation of Section 3, the jackknife estimator is

T

[::r];r(vl:n) = Zc(nvrvj)ﬁg,n—j(‘/lm)’ (14)
=0

where /3,[{,”_]- is the complete U-statistic IW-ELBO estimator, and the ¢(n,r, j) are the Sharot coefficients
[cf. Nowozin (2018)].

In the original version (14), it evaluates a collection of r complete U-statistics with m ranging from n to
n — r. However, there is no need to constrain m in that way, i.e., we can instead compute the following

estimator
.

ﬁ,{fn(Vln) = Z c(m,r, HNLY . (Vim), for r <m < n,

n,m—j
=0

because the bias is a function of m. This means that once m is fixed, we can pick the number of independent
samples n > m to reduce the variance of the estimation.

For our experiment, we optimized a variational
approximation to the posterior of the mushrooms
wm;l‘j::‘U dataset as in Section 6. We used the complete-U-
approx. 2nd statistic IW-ELBO estimator for optimization (n’ =
penmuted (£.=20) 16 and m = 8), and we choose the configuration with

permuted (¢ = 100) ) ;
the highest final bound.

—160
—170
3710 We evaluated the trained model using the Jackknife
estimator with n = 24, r = 1 and m = 8. For

the inner estimator we used the
estimator, a variation of the permuted-

—190

~=—= 1111

¢ block IW-ELBO estimator® with ¢ = 20 and with
- 4 , and the second order approximation. Fig-
complete-U approx. 2nd permuted (£ = 20) permuted (£ = 100) ure 7 ShOWS that’ When using the permuted estima-

method

tor with ¢ = 20, the increased variance gets trans-
lated into an increased variance in the final estima-
tion. However, it can be reduced by increasing the
number of permutations to £ = 100. In the follow-
ing table, we show the time taken to compute the
Jackknife estimator without accounting for the time

Figure 7: Distributions of the objective using the Jack-
; ) AJ,1 . .

knife estimator £} ¢ on an approximation of the pos-

terior of the mushrooms dataset, using different esti-

mators.

of building the index set.”

Method | Mean time (ms) | Std
complete-U 23.98 | 2.28
approx. 2nd 0.71 | 0.05
permuted (¢ = 20) 0.69 | 0.02
permuted (¢ = 100) 0.86 | 0.03

In this case, we observed that the alternatives are approximately 30 times faster than using the complete-
U-statistic.

6Since n is not an integer multiple of m — 1, we reduced the total number of sets to m| -]
"We pre-computed the index set for the complete-U-statistic, which in this case requires 735471 + 346104 = 1081575 sets,
taking 1.34 seconds.
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B Additional Theoretical results

In this section, we apply a result of Halmos (1946) to the estimation of the IW-ELBO. Subject to certain
conditions, the estimator ﬁ,’{m has the smallest variance of any unbiased estimator of the IW-ELBO. The
technical conditions are needed to define the class of “unbiased estimators” as ones that are unbiased for all
log-weight distributions in a non-trivial class.

Proposition B.1. Let Ep[-] and Varp[-] denote expectation and variance with respect to log-weights
Vi,...,Vn drawn independently from distribution F, and let L, (F) = Ep [11‘1%(221 eVi)] be the IW-
ELBO with log-weight distribution F. Let F denote the set of distributions supported on a finite subset of
R. Suppose ® is any estimator such that Ez[®(Vi.)] = L (F) for all F € F. Then,

Varp [ﬁg,m(vl;n)] < Varp[®(Vi.,)]

whenever the latter quantity is defined, for any distribution F on the real numbers (up to conditions of
measurability and integrability).

Proof. The result is a direct application of Theorem 5 of Halmos (1946). O

For IW-ELBO estimation, the conditions are rather mild: we expect an IW-ELBO estimator to work for
generic log-weight distributions. For gradient estimation, we take the conclusion lightly, because gradient
estimators often use specific properties of the underlying distributions, such as having a reparameterization.

B.1 Additional Proofs

In this section, we provide a proof of Proposition 3.3. We first need to define a quantity similar to Def-
inition 3.1. Recall, from the statement of the Proposition, that g: R%> — R%, and let g; denote its ith
component.

Definition B.2. Let Z1, ..., Zoy, be iid. drawn from q4, and 1 <i <ds. For0<c<m, takes,s € ([[2;7]])
with [sNs’'| = ¢. Using g from Proposition 3.3, define

§C(’L) = Cov gi(Zslw ) Zsm), gz(Zs’la .- '7Zs’m)i|a

which depends only on ¢ and not the particular s and s’.

We can now proceed with the proof.

Proof of Proposition 3.3. For 1 < ¢ < dg, using Eq. (4) and (6), it follows from Theorem 5.2 of Hoeffding
(1948) that

Var[(G)),)i] < el = Var[(Ga,m)il.

From the definition of the covariance matrix, we get

de de
tr(Var[gAgm]) = Z Var[(gAf{,m)i] < Z Var[(Gn.m)i] = tr(Var[Gp.m]).

i=1 i=1

Using again that GU,, and G, ,,, are unbiased, that is, E[Q,[{ ] = E[Gp.m], then

n,m

dg dé’

E|IGnmll3 = Y (Varl(Grl )il + EG)il*) < D (Varl(Gum)i] + El(Gnm)il®) = E [|Gnml[3.

i=1 i=1
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C Dataset description

We provide a brief description of the datasets and models used for the experiments. The models used for
Bayesian logistic regressions were taken from the UCI Machine Learning Repository Dua & Graff (2017).
The rest of the models are part of the Stan Example models Stan Development Team (2021); Carpenter
et al. (2017).

For the dataset used for Bayesian logistic regression, whenever there was a categorical variable with k
categories, we dummified it by creating k—1 dummies variables. Additionally, for the ala dataset, continuous
variables were discretized into quintiles following the work of Platt (1999). However, since we were unable
to find the file describing the actual process used for the discretization, some discrepancies remained.

Table 3: Description of datasets/models.

Num. of Num. of
Name . Comments
variables records
First 1605 instances of the Adult Data Set,

ala 105 1605 following LIBSVM Chang & Lin (2011),

+ discretized continous and dummified.
australian 35 690 From UCI + dummified.
ionosphere 35 351 From UCI
mushrooms 96 8124 From UCI + dummified.
sonar 61 208 From UCI
congress 4 343 Gelman & Hill (2006) Ch. 7
election88 95 2015 Gelman & Hill (2006) Ch. 19
election88Exp 96 2015 Gelman & Hill (2006) Ch. 19
electric 100 192 Gelman & Hill (2006) Ch. 23
electric-one-pred 3 192 Gelman & Hill (2006) Ch. 23
hepatitis 218 288 WinBUGS Lunn et al. (2000) examples
hiv-chr 173 369 Gelman & Hill (2006) Ch. 7
irt 501 30105 Gelman & Hill (2006) Ch. 14
irt-multilevel 604 30015 Gelman & Hill (2006) Ch. 14
mesquite 3 46 Gelman & Hill (2006) Ch. 4
radon 88 919 radon-chr from Gelman & Hill (2006) Ch. 19
wells 2 3020 Gelman & Hill (2006) Ch. 7
MNIST 784 60000 + 10000 | LeCun et al. (2010)
FMNIST 784 60000 + 10000 | Fashion-MNIST, Xiao et al. (2017)
KMNIST 784 60000 + 10000 | Kuzushiji-MNIST Clanuwat et al. (2018)
Omniglot 784 24345 + 8070 | Lake et al. (2015) from Burda et al. (2016)

D Pairwise comparison

In this section we present the mean difference of the medians of the envelopes as described in Section 6. We
compare the methods that used the reparameterized gradients as based gradient estimator, i.e., the permuted-
block estimator and the 2nd order approximation, to the standard IW-ELBO estimator. Additionally, we
compare the standard IW using DReG as a based gradient estimator with a version of the permuted-block
that uses the DReG as a base gradient estimator, namely, the permuted DReG.

Interestingly, in the settings presented in Table 7, only the proposed methods, i.e., the complete-U statistic
with its two approximations, the permuted-block, and the random subsets, converged at some point. All the
other methods diverged, which explains why we cannot compute the difference.

21


https://www.notion.so/a1a-90c39eba44894cd89a21d1f555c89901
https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol3.pdf

Published in Transactions on Machine Learning Research (02/2023)

Table 4: Bayesian logistic regression models using a Gaussian approximation with a covariance matrix of
full rank. Difference in nats of the average objective (higher values are better).

permuted - standard IW | approx. 2nd - standard IW | permuted DReG - DReG

Dataset m
2 4 8 2 4 8 2 4 8
ala 45.36 | 100.56 112.42 | 47.53 | 105.30 122.34 | 27.30 | 111.74 119.51
australian 1.31 2.61 3.36 1.07 2.37 3.22 1.45 1.87 3.94
ionosphere 3.89 | 13.17 16.58 | 4.11 13.55 17.55 | 4.34 | 15.74 17.91
mushrooms | 64.46 | 145.85 | 202.56 | 67.28 | 153.58 214.31 | 93.45 | 186.01 179.02
sonar 30.15 | 61.09 50.62 | 32.94 | 63.34 54.14 | 27.99 | 69.54 90.86

Table 5: Bayesian logistic regression models using a diagonal Gaussian approximation. Difference in nats of
the average objective (higher values are better).

permuted - standard IW | approx. 2nd - standard IW | permuted DReG - DReG

Dataset m
2 4 8 2 4 8 2 4 8
ala 1.54 | 4.01 4.48 1.49 4.08 4.45 1.40 | 12.67 12.86
australian 0.02 | 1.00 1.38 | 0.05 | 0.96 1.28 | -0.07 | 0.06 1.43
ionosphere | -0.10 | -0.10 0.06 | -0.12 | -0.21 0.00 | -0.12 | -0.08 0.31
mushrooms | 1.88 | 2.76 8.69 | 1.74 | 3.30 9.16 | 1.94 4.69 8.50
sonar 0.03 | -0.15 0.19 | -0.02 | -0.18 0.15 | 0.03 | -0.28 0.21

Table 6: Stan models using a diagonal Gaussian approximation. Difference in nats of the average objective
(higher values are better).

permuted - standard IW | approx. 2nd - standard ITW | permuted DReG - DReG

Dataset m
2 4 8 2 4 8 2 4 8
congress 2.50 | 4.61 7.33 | 2.89 4.76 7.63 | 237 4.68 7.02
election88 0.12 | 2.66 6.94 | 0.12 2.84 7.06 | 0.10 2.67 6.83
election88Exp 0.82 | 98.52 32,76 | 4.73 | 117.78 55.27 | -1.89 | 100.09 32.53
electric 0.26 | 1.53 4.32 | 0.16 1.54 4.52 | 0.24 1.56 4.63
electric-one-pred | 0.66 | -0.77 -3.91 0.74 -0.76 -4.38 | 0.69 -0.77 -3.93
hepatitis 0.90 | -0.06 0.65 | 2.06 | 156.53 1.86 | -0.30 0.92 0.69
hiv-chr 0.16 | 2.03 15.84 | 0.34 2.12 21.74 | -0.08 1.45 12.91
irt 0.19 | 0.80 1.00 | 0.15 0.72 0.93 | 0.11 0.61 1.40
irt-multilevel 35.69 | 43.79 62.32 | 29.74 | 48.20 53.64 | 34.66 | 50.26 55.22
mesquite 0.20 | 0.58 2.00 | -0.06 0.28 1.74 | -0.29 0.39 1.99
radon 7.88 | 5.79 14.83 | 7.85 8.91 65.49 | 8.16 7.56 60.92
wells -0.02 | 0.01 -0.11 | -0.20 -0.30 -0.35 | -0.02 -0.04 -0.14
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Table 7: Stan models using a full covariance Gaussian approximation. Difference in nats of the average
objective (higher values are better).

permuted - standard ITW | approx. 2nd - standard IW | permuted DReG - DReG

Dataset m
2 4 8 2 4 8 2 4 8
congress 11.62 | 12.02 19.80 | 12.33 | 12.57 20.46 | 13.55 | 13.11 20.96
election88 NaN 1785 1133 | NaN 2494 2170 | NaN 1776 1116
election88Exp NaN NaN NaN | NaN NaN NaN | NaN NaN NaN
electric NaN | -38.02 80.46 | NaN | -77.53 89.06 | NaN | -43.16 34.91
electric-one-pred | -1.81 | -4.73 -3.45 | -3.18 | -4.77 -4.37 | -1.79 | -4.72 -3.46
hepatitis NaN NaN NaN NaN NaN NaN | NaN NaN NaN
hiv-chr NaN NaN | 283.19 | NaN NaN 325.79 | NaN NaN NaN
irt 17793 | 20064 16077 | 19399 | 22000 17686 | NaN NaN NalN
mesquite 2.57 1.20 1.41 2.43 0.95 1.19 | 2.67 0.53 0.74
radon NaN 1150 | 268.98 | NaN 1316 303.83 | NaN | 11675 269.26
wells 0.02 0.07 -0.03 | -0.29 | -0.31 -0.29 | 0.04 0.02 -0.02

E Random Dirichlet experiment

We follow Domke & Sheldon (2018) for the Random Dirichlet experiment. For a randomly-sampled Dirichlet
Distribution with 50 parameters, we approximate it using a (50 — 1)-dimensional Gaussian distribution
parameterized with a full rank covariance matrix, with its domain constrained to the simplex using PyTorch’s
distributions (Paszke et al., 2019).

We optimize each configuration using 100 different random seeds. We select the learning rate that achieved
the highest objective among all learning rates that converged for all seeds. For each seed, we compute
the Frobenius norm between the empirical covariance of the approximating distribution and that of the
theoretical distribution (the error). The distribution of this error is shown in Figure 1 and 5. We had to
exclude eight outliers with errors greater than 10~* and up to 0.5. Interestingly, those outliers used either
the DReG or permuted-DReG estimators.

F VAE details.

For the variational autoencoders, we used, for all datasets, the architecture used by Burda et al. (2016).
We trained each configuration for a fixed number of epochs (100) using Adam (Kingma & Ba, 2015) with a
learning rate of 10~%. In all cases, we used a batch size of 500, and a latent variable of dimension 50, while
taking n = 50 samples. Datasets were taken from PyTorch, except for the Omniglot, for which we used
the construction provided by Burda et al. (2016). We evaluated using the standard IW-ELBO estimator,
regardless of the estimator used for the optimization.

To get consistent wall-clock time measurements, we trained only using CPU on dedicated servers, with
disabled hyper-threading and a single task per core. Additionally, we used set_flush_denormal to avoid
creating denormal numbers because some estimators create many of such numbers (especially DReG-like
estimators), having a substantial negative impact on performance. Our implementation of DReG is based
on Pyro’s (Bingham et al., 2018) not-yet-integrated implementation. We are not aware of a PyTorch imple-
mentation without the extra time penalty.

In the following plots, we provide the objective distribution for all dataset/method/m configurations and
the distribution of the wall-clock time.
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G Figures of median envelope

For some of the methods presented in the paper, we compute the median envelope during training as described

in Section 6.
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Figure 10: Median envelope for models when using a diagonal Gaussian as approximating distribution for
the estimators complete-U, permuted and the standard TW.
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Figure 11: Median envelope for models when using a diagonal Gaussian as approximating distribution using
the complete-U DReG, permuted DReG and the gradient estimators.
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Figure 12: Median envelope for models when using a Gaussian distribution with full-rank covariance as
approximating distribution for the estimators complete-U, permuted and the standard TW.
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Figure 13: Median envelope for models when using a Gaussian distribution
approximating distribution using the complete-U DReG, permuted DReG and the

estimator

S.
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Table 8: Median objective averaged over the last 200 iterations when using the estimators ,
permuted and the standard IW. It can be seen that for at least 10 models out of 17, using either the di-
agonal Gaussian or the full rank covariance Gaussian approximation, the best objective is achieved with
an intermediate value of m, and it is at least 1 nat larger than the objective with m = 16. These mod-
els are: congress, election88, election88Exp, electric, electric-one-pred, hepatitis, hiv-chr,
irt-multilevel, mushrooms and radon. Optimizations using m = 1 are not shown.

Diagonal Gaussian [ Full Rank Covariance Gaussian

model method m
2 4 8 16 2 4 8 16
ala standard IW -652.8 -649.7 -648.0 -647.6 -639.0 -660.7 -738.1 -772.1
complete-U -652.6 -648.9 -646.7 -647.6 -637.8 -639.0 -663.9 -772.1
permuted -652.6 -649.0 -647.0 -647.7 -637.8 -639.2 -664.1 -771.2
australian standard IW -264.4 -261.2 -259.1 -258.0 -256.8 -256.8 -256.8 -257.2
complete-U -264.8 -261.5 -259.1 -258.0 -256.8 -256.8 -256.8 -257.2
permuted -264.7 -261.4 -259.0 -257.9 -256.8 -256.8 -256.8 -257.1
congress standard ITW 417.1 419.5 419.5 417.6 416.9 417.2 412.4 403.9
complete-U 418.8 420.3 420.3 417.6 419.4 420.3 419.2 403.9
permuted 418.5 420.2 420.4 417.1 419.4 420.2 418.9 402.9
election88 standard IW -1529.5 -1523.3 -1525.0 -1535.6 NaN  -5964.2 -4383.2 NaN
complete-U -1529.7 -1521.5 -1519.8 -1535.6 NaN  -4943.1 -2046.2 NaN
permuted -1529.4 -1520.6 -1520.5 -1535.5 NaN  -5443.7 -3000.9 NaN
election88Exp standard IW -1755.7 -1570.8 -1502.7 -1461.2 NaN NaN NaN NaN
complete-U -1760.0 -1496.5 -1467.0 -1461.2 NaN NaN -3748.2 NaN
permuted -1766.6 -1512.3 -1482.7 -1461.9 NaN NaN NaN NaN
electric standard IW -830.5 -827.7 -826.1 -830.9 NaN  -1421.1 -1166.2 -1207.2
complete-U -830.6 -827.0 -823.0 -830.9 NaN  -1459.2 -1090.3 -1207.2
permuted -830.6 -827.1 -823.5 -830.9 NaN  -1413.6 -1098.1 -1203.4
electric-one-pred standard IW -1148.6 -1147.5 -1146.4 -1144.6 -1153.0  -1145.8 -1141.5 -1141.2
complete-U -1148.3 -1145.2 -1146.8 -1144.6 -1150.7  -1144.1 -1140.3 -1141.2
permuted -1148.3 -1146.6 -1146.5 -1144.6 -1151.0  -1144.5 -1140.0 -1141.2
hepatitis standard IW -561.3 -774.9 -775.4 -774.4 NaN NaN NaN -1693.7
complete-U -561.2 -564.3 -773.1 -774.4 NaN -1664.4 -1592.8 -1693.7
permuted -561.2 -773.8 -775.2 -774.4 NaN  -1779.6 -1715.7 -1682.1
hiv-chr standard IW -606.4 -604.4 -607.5 -603.8 NaN NaN -1879.9 -1945.0
complete-U -606.2 -604.0 -602.6 -603.8 NaN  -3395.8 -1450.6 -1945.0
permuted -606.2 -604.0 -603.1 -603.7 NaN NaN -1486.9 -1960.9
ionosphere standard IW -133.1 -129.2 -127.2 -125.6 -125.3 -126.6 -132.5 -142.3
complete-U -133.2 -129.6 -127.3 -125.6 -124.9 -125.2 -127.2 -142.3
permuted -133.3 -129.6 -127.3 -125.7 -124.9 -125.2 -127.3 -142.2
irt standard IW | -15887.5  -15887.1 -15886.8 -15886.7 -36563 -64934 -68447 NaN
complete-U -15887.4  -15887.0 -15886.8 -15886.7 | -33230 -37383 -50316 NaN
permuted -15887.4  -15887.0 -15886.8 -15886.6 -35620 -37547 -54763 NaN
irt-multilevel standard IW | -15204.7 -15194.1 -15191.3 -15196.8 NaN NaN NaN NaN
complete-U -15198.7 -15164.0 -15185.8 -15196.8 NaN NaN NaN NaN
permuted -15200.3  -15173.0 -15186.2 -15197.0 NaN NaN NaN NaN
mesquite standard ITW -29.9 -29.7 -29.6 -29.3 -29.8 -29.7 -29.6 -29.2
complete-U -29.9 -29.8 -29.6 -29.3 -29.8 -29.7 -29.6 -29.2
permuted -29.9 -29.7 -29.6 -29.2 -29.8 -29.7 -29.6 -29.2
mushrooms standard IW -211.6 -206.5 -204.3 -215.5 -180.8 -194.2 -215.8 -339.0
complete-U -210.6 -204.3 -200.8 -215.5 -180.2 -180.7 -185.6 -339.0
permuted -210.8 -204.5 -201.4 -215.4 -180.2 -180.7 -187.6 -337.3
radon standard IW -1210.5 -1210.4 -1213.3 -1210.4 NaN  -2422.9 -1595.8 -1636.5
complete-U -1210.5 -1210.2 -1210.2 -1210.4 NaN  -1548.0 -1445.9 -1636.5
permuted -1210.5 -1210.2 -1211.8 -1210.4 NaN  -1600.6 -1454.7 -1645.2
sonar standard ITW -136.2 -126.3 -121.3 -117.9 -138.0 -154.9 -200.9 -226.7
complete-U -136.5 -127.4 -121.5 -117.9 -116.6 -120.9 -156.3 -226.7
permuted -136.5 -127.3 -121.5 -117.9 -116.7 -121.5 -158.2 -228.5
wells standard IW -2042.1 -2041.9 -2041.7 -2041.2 -2041.9  -2041.8 -2041.7  -2041.1
complete-U -2042.2 -2042.0 -2041.7 -2041.2 -2041.9  -2041.9 -2041.8 -2041.1
permuted -2042.2 -2041.9 -2041.7 -2041.2 -2041.9  -2041.8 -2041.8 -2041.1
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Table 9: Median objective averaged over the last 200 iterations when using the complete-U DReG,

gradient estimators. It can be seen that for at least 8 models out of 17,
using either the diagonal Gaussian or the full rank covariance Gaussian approximation, the best objective is
achieved with an intermediate value of m, and it is at least 1 nat larger than the objective with m = 16. These
congress, election88, election88Exp, electric, electric-one-pred, irt-multilevel,

and the

models are:

mushrooms and radon. Optimizations using m = 1 are not shown.

Diagonal Gaussian

Full Rank Covariance Gaussian

model method m
2 4 8 16 2 4 8 16
ala DReG -652.7 -649.9 -648.0 -647.0 -659.7 -770.3 -936.6 -1205.4
comp.-DReG -652.5 -648.6 -646.5 -647.0 -655.7 -667.4 -894.2 -1205.4
perm.-DReG -652.5 -648.7 -646.4 -647.1 -655.3 -725.2 -874.7 -1209.8
australian DReG -264.4 -261.2 -259.0 -257.8 -256.7 -256.7 -256.7 -256.9
comp.-DReG -264.7 -261.6 -259.0 -257.8 -256.7 -256.7 -256.6 -256.9
perm.-DReG -264.7 -261.5 -258.9 -257.8 -256.7 -256.7 -256.6 -256.9
congress DReG 417.9 419.7 419.9 418.2 418.5 418.9 413.2 404.5
comp.-DReG 419.6 420.5 420.7 418.2 420.5 420.8 419.8 404.5
perm.-DReG 419.4 420.5 420.7 417.9 420.4 420.7 419.8 404.6
election88 DReG -1529.2 -1522.3 -1524.2 -1534.9 NaN -5964.4 -4349.2 NaN
comp.-DReG -1529.1 -1520.7 -1518.4 -1534.9 NaN  -4950.7 -2079.0 NaN
perm.-DReG -1529.1 -1520.7 -1518.4 -1534.3 NaN  -5439.8 -3041.2 NaN
election88Exp DReG -1755.8 -1571.9 -1502.0 -1461.9 NaN NaN NaN NaN
comp.-DReG -1733.2 -1495.9 -1468.8 -1461.9 NaN NaN -3664.0 NaN
perm.-DReG -1766.8 -1512.3 -1483.3 -1460.1 NaN NaN -3947.5 NaN
electric DReG -830.0 -827.2 -824.8 -826.2 NaN  -1417.4 -1291.3 -1314.0
comp.-DReG -830.2 -826.1 -822.0 -826.2 NaN -1459.2 -1219.0 -1314.0
perm.-DReG -829.9 -826.3 -822.6 -826.3 NaN -1427.2 -1239.1 -1326.1
electric-one-pred DReG -1148.8 -1147.5 -1146.4 -1144.6 -1153.0 -1145.8 -1141.4 -1141.2
comp.-DReG -1148.5 -1146.0 -1146.8 -1144.6 -1150.7 -1144.1 -1140.3 -1141.2
perm.-DReG -1148.3 -1146.7 -1146.5 -1144.6 | -1151.0 -1144.5 -1140.0 -1141.2
hepatitis DReG -561.3 -776.3 -775.1 -774.0 NaN NaN NaN NaN
comp.-DReG -561.1 -772.0 -772.6 -774.0 NaN NaN NaN NaN
perm.-DReG -561.3 -773.5 -774.8 -774.0 NaN NaN NaN NaN
hiv-chr DReG -606.2 -604.1 -605.4 -602.7 NaN NaN NaN NaN
comp.-DReG -606.1 -603.7 -602.2 -602.7 NaN NaN NaN NaN
perm.-DReG -606.1 -603.6 -602.9 -602.7 NaN NaN NaN NaN
ionosphere DReG -133.1 -129.3 -127.1 -125.6 -124.3 -125.8 -130.7 -142.1
comp.-DReG -133.2 -129.6 -127.2 -125.6 -124.2 -124.2 -124.7 -142.1
perm.-DReG -133.3 -129.6 -127.2 -125.6 -124.2 -124.3 -125.7 -142.0
irt DReG -15887.3  -15886.9 -15886.6 -15886.3 NaN NaN NaN NaN
comp.-DReG | -15887.3 -15886.9 -15886.5 -15886.3 NaN NaN NaN NaN
perm.-DReG -15887.3  -15886.9 -15886.5 -15886.3 NaN NaN NaN NaN
irt-multilevel DReG -15226.1 -15199.4 -15195.8 -15224.4 NaN NaN NaN NaN
comp.-DReG | -15206.9 -15188.6 -15188.0 -15224.4 NaN NaN NaN NaN
perm.-DReG -15214.0  -15191.6 -15188.4 -15222.2 NaN NaN NaN NaN
mesquite DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3
comp.-DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3
perm.-DReG -29.9 -29.8 -29.6 -29.4 -29.8 -29.7 -29.7 -29.3
mushrooms DReG -211.6 -206.6 -204.7 -215.9 -192.2 -251.2 -305.6 -405.3
comp.-DReG -210.6 -204.3 -201.1 -215.9 -180.3 -193.6 -253.5 -405.3
perm.-DReG -210.7 -204.4 -201.5 -215.4 -180.4 -194.3 -250.9 -400.8
radon DReG -1210.5 -1210.3 -1219.9 -1210.3 NaN -2410.8 -1624.9 -1650.9
comp.-DReG -1210.4 -1210.1 -1210.2 -1210.3 NaN -1538.0 -1445.7 -1650.9
perm.-DReG -1210.4 -1210.2 -1212.5 -1210.2 NaN  -1593.3 -1466.2 -1642.4
sonar DReG -136.2 -126.2 -121.1 -117.6 -135.4 -152.5 -226.3 -259.6
comp.-DReG -136.5 -127.2 -121.5 -117.6 -115.2 -118.4 -155.6 -259.6
perm.-DReG -136.5 -127.3 -121.3 -117.6 -115.3 -118.9 -156.4 -260.5
wells DReG -2042.2 -2041.9 -2041.8 -2041.2 -2041.9 -2041.9 -2041.8 -2041.2
comp.-DReG -2042.2 -2042.0 -2041.9 -2041.2 | -2041.9 -2041.9 -2041.9 -2041.2
perm.-DReG -2042.2 -2042.0 -2041.8 -2041.2 | -2041.9 -2041.9 -2041.9 -2041.2
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