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A B S T R A C T

Language models show a surprising range of capabilities, but the source of their
apparent competence is unclear. Do these networks just memorize a collection of
surface statistics, or do they rely on internal representations of the process that
generates the sequences they see? We investigate this question in a synthetic
setting by applying a variant of the GPT model to the task of predicting legal
moves in a simple board game, Othello. Although the network has no a priori
knowledge of the game or its rules, we uncover evidence of an emergent nonlinear
internal representation of the board state. Interventional experiments indicate this
representation can be used to control the output of the network. By leveraging
these intervention techniques, we produce “latent saliency maps” that help explain
predictions. 1

1 IN T RODUC T I ON

Recent language models have shown an intriguing range of capabilities. Networks trained on a simple
“next-word” prediction task are apparently capable of many other things, such as solving logic puzzles
or writing basic code. 2 Yet how this type of performance emerges from sequence predictions remains
a subject of current debate.

Some have suggested that training on a sequence modeling task is inherently limiting. The arguments
range from philosophical (Bender & Koller, 2020) to mathematical (Merrill et al., 2021). A  common
theme is that seemingly good performance might result from memorizing “surface statistics,” i.e.,
a long list of correlations that do not reflect a causal model of the process generating the sequence.
This issue is of practical concern, since relying on spurious correlations may lead to problems on
out-of-distribution data (Bender et al., 2021; Floridi & Chiriatti, 2020).

On the other hand, some tantalizing clues suggest language models may do more than collect spurious
correlations, instead building interpretable world models—that is, understandable models of the
process producing the sequences they are trained on. Recent evidence suggests language models
can develop internal representations for very simple concepts, such as color, direction Abdou et al.
(2021); Patel & Pavlick (2022), or tracking boolean states during synthetic tasks (Li et al., 2021) (see
Related Work (section 6) for more detail).

A  promising approach to studying the emergence of world models is used by Toshniwal et al. (2021),
which explores language models trained on chess move sequences. The idea is to analyze the
behavior of a standard language modeling architecture in a well-understood, constrained setting. The
paper finds that these models learn to predict legal chess moves with high accuracy. Furthermore, by
analyzing predicted moves, the paper shows that the model appears to track the board state. The
authors stop short, however, of exploring the form of any internal representations. Such an

Correspondence to k e  l i @ g . h a r v a r d . e d u
1Codes at h t t p s : / / g i t h u b . c o m / l i k e n n e t h / o t h e l l o _ w o r l d
2See Srivastava et al. (2022) for an encyclopedic list of examples.
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investigation will be the focus of this paper. A  key motivation is the hope that ideas and techniques
learned in this simplified setting may eventually be useful in natural-language settings as well.

1.1 T H E G A M E OF OT H E L L O A S  T E S T B E D F O R I N T E R P R E TA B I L I T Y

Toshniwal et al. (2021)’s observations suggest a new approach to studying the representations learned
by sequence models. If we think of a board as the “world,” then games provide us with an appealing
experimental testbed to explore world representations of moderate complexity. As our setting, we
choose the popular game of Othello (Figure 1), which is simpler than chess. This setting allows us to
investigate world representations in a highly controlled context, where both the task and sequence
being modeled are synthetic and well-understood.

As a first step, we train a language model (a GPT variant we call Othello-GPT) to extend partial
game transcripts (a list of moves made by players) with legal moves. The model has no a priori
knowledge of the game or its rules. All it sees during training is a series of tokens derived from the
game transcripts. Each token represents a tile where players place their discs. Note that we do not
explicitly train the model to make strategically good moves or to win the game. Nonetheless, our
model is able to generate legal Othello moves with high accuracy.

Our next step is to look for world representations that might be used by the network. In Othello, the
“world” consists of the current board position. A  natural question is whether, within the model, we
can identify a representation of the board state involved in producing its next move predictions. To study
this question, we train a set of probes, i.e., classifiers which allow us to infer the board state from the
internal network activations . This type of probing has become a standard tool for analyzing neural
networks (Alain & Bengio, 2016; Tenney et al., 2019; Belinkov, 2016).

Using this probing methodology, we find evidence for an emergent world representation. In particular,
we show that a non-linear probe is able to predict the board state with high accuracy (section 3).
(Linear probes, however, produce poor results.) This probe defines an internal representation of the
board state. We then provide evidence that this representation plays a causal role in the network’s
predictions. Our main tool is an intervention technique that modifies internal activations so that they
correspond to counterfactual board states.

We also discuss how knowledge of the internal world model can be used as an interpretability tool.
Using our activation-intervention technique, we create latent saliency maps, which provide insight
into how the network makes a given prediction. These maps are built by performing attribution at a
high-level setting (the board) rather than a low-level one (individual input tokens or moves).

To sum up, we present four contributions: (1) we provide evidence for an emergent world model in a
GPT variant trained to produce legal moves in Othello; (2) we compare the performance of linear and
non-linear probing approaches, and find that non-linear probes are superior in this context; (3), we
present an intervention technique that suggests that, in certain situations, the emergent world model
can be used to control the network’s behavior; and (4) we show how probes can be used to produce
latent saliency maps to shed light on the model’s predictions.

2 “L A N G UAG E MODELING” OF OT H E L L O G A M E T R A N S C R I P T S

Our approach for investigating internal representations of language models is to narrow our focus
from natural language to a more controlled synthetic setting. We are partly inspired by the fact that
language models show evidence of learning to make valid chess moves simply by observing game
transcripts in training data (Toshniwal et al., 2021). We choose the game Othello, which is simpler
than chess, but maintains a sufficiently large game tree to avoid memorization. Our strategy is to see
what, if anything, a GPT variant learns simply by observing game transcripts, without any a priori
knowledge of rules or board structure.

The game is played on an 8x8 board where two players alternate placing white or black discs on the
board tiles. The object of the game is to have the majority of one’s color discs on the board at the end of
the game. Othello makes a natural testbed for studying emergent world representations since the
game tree is far too large to memorize, but the rules and state are significantly simpler than chess.
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A
1        2        3        4        5        6        7        8

B
1        2        3        4        5        6        7        8

C
1        2        3        4        5        6        7        8

Figure 1: A  visual explanation of Othello rules, from left to right: (A) The board is always initialized
with four discs (two black, two white) placed in the center of the board. (B) Black always moves first.
Every move must flip one or more opponent discs by outflanking—or sandwiching—the opponent
disc(s). (C) The opponent repeats this process. A  game ends when there are no more legal moves.

The following subsections describe how we train a system with no prior knowledge of Othello to
predict legal moves with high accuracy. The system itself is not our end goal; instead, it serves as our
object of study.

2.1 DATA S E T S : “CHAMPIONSHIP” AND “S Y N T H E T I C”

We use two sets of training data for the system, which we call “championship” and “synthetic”. Each
captures different objectives, namely data quality vs. quantity. While limited in size, championship
data reflects strategic moves by expert human players. The synthetic data set is far larger, consisting of
legal but otherwise random moves.

Our championship dataset is produced by collecting Othello championship games from two online
sources3, containing 7; 605 and 132; 921 games, respectively. They are combined and split randomly
by 8 : 2 into training and validation sets. The games in this dataset were produced by matches where
human players presumably made moves with a strategic intent to win. Following this, we generate a
synthetic dataset with 20 million games for training and 3; 796; 010 games for validation. We
compute this dataset by uniformly sampling leaves from the Othello game tree. Its data distribution is
different from the championship games, reflecting no strategy.

2.2 MODE L AND T R A I N I N G

Our goal is to study how much Othello-GPT can learn from pure sequence information, so we provide as
few inductive biases as possible. (Note the contrast with a system like AlphaZero (Silver et al.,
2018), where the goal was to win highly competitive chess games.) We therefore use only sequential
tile indices as input to our model. For example, A4 and H6 are indexed as the 4th and the 58th word in
our vocabulary, respectively. Each game is treated as a sentence tokenized with a vocabulary of 60
words, where each word corresponds to one of the 60 tiles on which players put discs, excluding the 4
tiles in the center (Figure 1).

We trained an 8-layer GPT model (Radford et al., 2018; 2019; Brown et al., 2020) with an 8-
head attention mechanism and a 512-dimensional hidden space. The training was performed in an
autoregressive fashion. For each partial game fyt gt = 0  , the computation process starts from indexing
a trainable word embedding consisting of the 60 vectors, each for one word, to get f x  g        . They

are then sequentially processed by 8 multi-head attention layers. We denote the intermediate feature
for the t-th token after the l-th layer as xl .  By employing a causal mask, only the features at the
immediately preceding layer and earlier time steps x l  1 are visible to xl .  Finally, x8 goes through
a linear classifier to predict logits for ŷ  . We minimize the cross-entropy loss between ground-truth
move and predicted logits by gradient descent.

The model starts from randomly initialized weights, including in the word embedding layer. Though
there are geometrical relationships between the 60 words (e.g., C4 is below B4), this inductive bias is
not explicitly given to the model but rather left to be learned.

3 w w w . l i v e o t h e l l o . c o m  and w w w . f f o t h e l l o . o r g .

3
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2.3 OT H E L L O-GPT U S U A L LY  P R E D I C T S L E G A L  MOV E S

We now evaluate how well the model’s predictions adhere to the rules of Othello. For each game in
the validation set, which was not seen during training, and for each step in the game, we ask
Othello-GPT to predict the next legal move conditioned by the partial game before that move. We
then calculate the error rate by checking if the top-1 prediction is legal. The error rate is 0:01% for
Othello-GPT trained on the synthetic dataset and 5:17% for Othello-GPT trained on the championship
dataset. For comparison, the untrained Othello-GPT has an error rate of 93:29%. The main takeaway is
that Othello-GPT does far better than chance in predicting legal moves when trained on both
datasets.

A  potential explanation for these results may be that Othello-GPT is simply memorizing all possible
transcripts. To test for this possibility, we created a skewed dataset of 20 million games to replace the
training set of synthetic dataset. At the beginning of every game, there are four possible opening
moves: C5, D6, E3 and F4. This means the lowest layer of the game tree (first move) has four nodes
(the four possible opening moves). For our skewed dataset, we truncate one of these nodes (C5),
which is equivalent to removing a quarter of the whole game tree. Othello-GPT trained on the skewed
dataset still yields an error rate of 0:02%. Since Othello-GPT has seen none of these test sequences
before, pure sequence memorization cannot explain its performance 4.

If the performance of Othello-GPT is not due to memorization, what is it doing? We now turn to this
question by probing for internal representations of the game state.

3 E X P L O R I N G I N T E R N A L R E P R E S E N TAT I O N S WI TH P RO B E S

We seek to understand if Othello-GPT computes internal representations of the game state. One
standard tool for this task is a “probe” (Alain & Bengio, 2016; Belinkov, 2016; Tenney et al., 2019).
A  probe is a classifier or regressor whose input consists of internal activations of a network,
and which is trained to predict a feature of interest, e.g., part of speech or parse tree depth
(Hewitt & Manning, 2019). If we are able to train an accurate probe, it suggests that a
representation of the feature is encoded in the network’s activations.

In our case, we want to know whether Othello-GPT’s internal activations contain a representation of
the current board state. To study this question, we train probes that predict the board state from the
network’s internal activations after a given sequence of moves. Note that the board state—whether
each tile is empty or holds a black or white disc—is generally a nonlinear function of the input tokens.
On the other hand, it is straightforward to write a program to compute this function, it makes a natural
probe target.5

We take the autoregressive features x l  that summarize the partial sequence y 6 t  as the input to the
probe and study results from different layers l. The output p (x l )  is a 3-way categorical probability
distribution. We randomly split pairs of internal representation and ground-truth tile state by 8 : 2
into training and validation set. Error rates on validation set are reported. A  best random guess yields
52:95%, if the probe always guess the tile is empty.

3.1 L I N E A R  P RO B E S H AV E HIGH E R R O R R AT E S

Our first result is that linear classifier probes have poor relative accuracy. Its function can be written
as p (x l )  =  softmax(W xl ) where  =  fW 2  RF 3 g. F  is the number of dimensions of input xl .
As Table 1 shows, error rates never dip below 20%. As a baseline, we have included probes trained
on a randomly initialized network6 We can see that there is only a marginal improvement in accuracy

4Note that even truncated the game tree may include some board states in the test dataset, since different
move sequences can lead to the same board state. However, our goal is to prevent memorization of input data; the
network only sees moves, and never sees board state directly.

5Classifying a tile as unoccupied or occupied can be written as a linear function of the input sequence, thus
we consider only the 3-way black/white/empty classifiers.

6Probes on the randomized network do better than chance; a constant guess of “empty” has a 47% error rate.
But that performance is not a surprise, since it makes sense that some information about moves is preserved even
by a random network. The key comparison is between the randomized network and the trained network.

4
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when we move to probing a fully-trained network. This result suggests that if there is an internal
representation of the board state, it does not have a simple linear form.

Randomized
Championship

Synthetic

x1             x2             x3             x4             x5             x6             x7             x8

26.7      27.1      27.6      28.0      28.3      28.5      28.7      28.9
24.2      23.8      23.7      23.6      23.6      23.7      23.8      24.3
21.9      20.5      20.4      20.6      21.1      21.6      22.2      23.1

Table 1: Error rates (%) of linear probes on randomized Othello-GPT and Othello-GPTs trained on
different datasets across different layers (x i  represents internal representations after the i-th layer).

3.2 NO N L I N E A R P RO B E S H AV E L OW E R E R R O R R AT E S

Given the poor performance of linear probes, it is natural to ask whether a nonlinear probe would
have higher accuracy. Moving up one notch of complexity, we apply a 2-layer MLP as a probe.
This technique has been used successfully in other language model probing work, e.g., Conneau

et al. (2018); Cao et al. (2021); Hernandez & Andreas (2021). Its function can be written as
p (x l )  =  softmax(W ReLU(W x l ) )  where  =  fW 2  RH 3 ; W 2  R F H g .  H  is the number of
hidden dimensions for the nonlinear probes.

The probe accuracy for trained networks, shown in Table 2, is significantly better than the linear
probe in absolute terms. By contrast, the baseline (probing a randomized network with nonlinear
probes) shows almost no improvement over the linear case. These results indicate that the probe may be
recovering a nontrivial representation of board state in the network’s activations. In section 4, we
describe intervention experiments validating this hypothesis.

Randomized
Championship

Synthetic

x1             x2             x3             x4

25.5      25.4      25.5      25.8
12.8      10.3       9.5        9.4
11.3       7.5        4.8        3.4

x5             x6             x7             x8

26.0      26.2      26.2      26.4
9.8       10.5      11.4      12.4
2.4        1.8        1.7        4.6

Table 2: Error rates (%) of nonlinear probes on randomized Othello-GPT and Othello-GPTs trained
on different datasets across different layers. Standard deviations are reported in Appendix H.

4 VA L I DAT I N G P RO B E S WI TH I N T E RV E N T I O N A L E X P E R I M E N T S

Our nonlinear probe accuracies suggest that Othello-GPT computes information reflecting the board
state. It’s not obvious, however, whether that information is causal for the model’s predictions.
In the following section, we adhere to Belinkov (2016)’s recommendation, performing a set of
interventional experiments to determine the causal relationship between model predictions and the
emergent world representations.

To determine whether the board state information affects the network’s predictions, we influence
internal activations during Othello-GPT’s calculation and measure the resulting effects. At a high
level, the interventions are as follows: given a set of activations from the Othello-GPT, a probe
predicts a baseline board state B .  We record the move predictions associated with B ,  then modify
these activations such that our probe reports an updated board state B0. Through our protocol,
only a single tile s distinguishes B0 from B ’s  board state (an example of which can be seen in
Figure 2). This small modification results in a different set of possible legal moves for B0. If the new
predictions match our expectations for B0—and not the predictions we recorded for B—we conclude
the representation had a causal effect on the model.

4.1 IN T E RV E N T I O N T E C HN I QU E

To implement an intervention that changes the predicted state from a board position B  to a modified
version B0 we must decide (a) which layers to modify activations in, and (b) how to modify those
activations. The first question is subtle. Given the causal attention mechanism of GPT-2, modifying
activations for only one layer is unlikely to be effective as later layer computations incorporate
information from prior board representations unaffected by our intervention. Instead, we select an
initial layer L s  then modify it and subsequent layers’ activations (see Figure 2 (C)). Our modification

5
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A Intervention B
Pre-Intervention

1       2       3       4       5       6       7       8

Post-Intervention
1       2       3       4       5       6       7       8

Predicted

Probability

White

Current State
 (f(x) < 0: White)

16

f(x) 2-Layer
17

Classifier Boundary                                    
18

16

17 16

17       24 (%)

17

22

20

Black 1       2       3       4       5       6       7       8 1       2       3       4       5       6       7       8

Desired State
 (f(x) > 0: Black)

C

s
...

s

...

...
0

0
Timestep T-1

0
0

...

...

...

...

Timestep T-1

...

...

s ...

...

...
0

0
Timestep T-1

... Pred

...

s ...

...

...
0

0
Timestep T-1

Figure 2: (A) explains how we intervene on a board tile. Here, we only want to flip one tile, e.g.
E6, from white to black. In (B), four views present an Othello game in progression, which can
be reliably probed from an internal representation x. The lower left board represents the model’s
perceived world state prior to intervention. The upper left board shows the model’s predictions for
legal moves given this state. Post-intervention, the model’s world state is updated—E6’s state has
been switched from white to black (lower right), leading to a different set of legal move predictions
(upper right). Note that two tiles (E6) are highlighted in the world state boards. This is the tile
that we “intervene” on, changing from white to black. (C) Shows our proposed intervention
scheme. Light blue indicates unmodified activations; dark blue represents activations affected by
intervention. Starting from a predefined layer, we intervene at the temporally-last token (shown in
(A)). We replace original internal representations with the post-intervention one and resume
computation for the next one layer. Part of the misinformation gets corrected (light blue), but we
alternate this intervening and computation process until the last layer, from which the next-step
prediction is made.

uses a simple gradient descent method on the probe’s class score for the particular tile s whose state
is being modified.

Figure 2 illustrates an intervention on a single feature x  into x0 such that the corresponding board
state B  is updated to match the desired B0. We observe the effectiveness of these interventions by
probing the intervened x0 or x  at later layers (see Appendix D), as well as the change in next-step
prediction (see subsection 4.2). Consistent with the training process of probes p , we use cross

entropy loss between the probe-predicted probability distribution and the desired board state, but
rather than optimize probe weights , we optimize x  for intervention 7:

x0 @LCE (p(x); B 0)
@x

At timestep T , the internal activations of an L-layer Othello-GPT can be viewed as an L   T grid of
activation vectors. Our intervention process runs Othello-GPT sequentially, but uses gradient descent to
modify key activation vectors at the last timestep such that their board state class scores change.
Note that if we change activations only at a middle layer, activations at higher layers are directly
affected by pre-intervention information. Thus, we sequentially intervene f x l g L at the last
timestep, on all activations starting from a preset layer L s  until the final layer, illustrated in Figure 2.

7Note that  is the learning rate. See more on the intervention hyper-parameters in Appendix G.

6



s

s

Published as a conference paper at I C L R  2023

Error on Natural Benchmark

Null Intervention Baseline: 2.68

0.12

Error on Unnatural Benchmark

Null Intervention Baseline: 2.59

0.06

Figure 3: Intervention experiment results. Red dashed lines represents average number of errors by
testing pre-intervention predictions on post-intervention ground-truths, representing a null interven-
tion method for contrast. The shaded area represents the 95% confidence interval.

4.2 E V I D E N C E F O R A  C A U S A L  RO L E  F O R T H E R E P R E S E N TAT I O N

To systematically determine if this world representation is causal for model predictions, we create
an evaluation benchmark set. A  test case in this set consists of a triple of a partial game, a targeted
board tile, and a target state. For each case, we give the partial game to Othello-GPT and perform
the intervention described in the previous section. I.e., we extract the model’s activations mid-
computation, modify them to change the representation of the targeted board tile into the target state,
give back the modified world representation and let it make a prediction with this new world state.

The benchmark set consists of two subsets of 1000 intervention cases: one “natural,” one “unnatural.”
The natural subset consists of positions reachable by legal play. The unnatural subset contains position
that are unreachable by legal play. This second subset is designed to be a stringent test, since it is by
definition far from anything encountered in the training distribution.

We measure prediction alignment with the intervened world representation as a multi-label classifica-
tion problem, comparing the top-N predictions against the ground-truth legal next-move set, where
N  is the number of legal next-moves after intervention. We then calculate an error per case (a sum of
false positives and false negatives, shown in Figure 3)8. For both benchmarks, L  =  4 (intervening 5
layers) gives the best result: average errors of 0:12 and 0:06 respectively. Compared to baseline
errors (2:68 and 2:59), the proposed intervention technique is effective even under unnatural board
states, suggesting the emergent representations are causal to model predictions.

5 L AT E N T  S A L I E N C Y  MAPS: AT T R I B U T I O N V I A  I N T E RV E N T I O N

The intervention technique of the previous section provides insight into the predictions of Othello-
GPT. We can also use it to create visualizations which contextualize Othello-GPT’s predictions in
terms of the board state. The basic idea is simple. For each tile s on the board B ,  we ask how much
the network’s prediction probability for the attributed tile p will change if we apply the intervention
technique in section 4 to change the state representation of that tile s. This will yield a value per tile
s 2  B ,  positive or negative, corresponding to its saliency in the prediction of p (see algorithm 1). We

then create a visualization of the board where tiles are colored according to their saliency for the
top-1 prediction for the current board state9. Because this map is based on the network’s latent space
rather than its input, we call it a latent saliency map.

Figure 4 shows latent saliency maps for the top-1 predictions for Othello-GPTs trained on the
synthetic and championship datasets by intervening from L  =  4. The two diagrams show a clear
pattern. The synthetic Othello-GPT shows high saliency for precisely those tiles that are required to
make a move legal. In almost all cases, other tiles have lower saliency values. Even without knowing
how synthetic-GPT was trained, an experienced Othello player might be able to guess its goal. The
latent saliency maps for the championship version, however, are more complex. Although tiles that
relate directly to legality typically have high values, many other tiles show high saliency as well. This
pattern makes sense, too. Expert moves rely on complex global features of the board. The difference

8Qualitative results can be found in Appendix C. We report additional metrics in Appendix F.
9However, ideally we can attribute any prediction. See Appendix E  for more discussion.
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A

B

Figure 4: Latent saliency maps: Each subplot shows a different game state, and the top-1 prediction by
the model is enclosed in a black box. Colors (red is high, blue is low) indicate the contribution of a
square’s state to this prediction. The contribution is higher when changing the internal representation of
this square makes the prediction less likely. The values are normalized by subtracting the mean of
the board. (A) Latent saliency maps for Othello-GPT trained on the synthetic dataset, where the
model learns legal moves. (B) Latent saliency maps for Othello-GPT trained on the championship
dataset. Rather than learning rules, this Othello-GPT learns to make strategically good moves.

between the latent saliency maps for the two versions of Othello-GPT suggests that the visualization
technique is providing useful information about the two systems.

Algorithm 1: Attribution via Intervention on Othello-GPT
Inputs :

B the current board state
p a legal next move which we try to attribute

Output :
f S s g s 2 B assigned sensitivity values for the prediction of p

p f  (x ) / /  p r e - i n t e r v e n t i o n  n e x t - s t e p  p r o b a b i l i t y  f o r  p
for s 2  B  do

x~ Intervention(x ; s)
ps           fp (x~t  1)

s 0 s

6 R E L AT E D  W O R K

Our work fits into a general line of investigation into world representations created by sequence
models. For example, (Li  et al., 2021) fine-tune two language models on synthetic natural language

8
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tasks (Long et al., 2016) and find evidence that semantic information about the underlying world
state is at least weakly encoded in the activations of the network. More direct evidence of a faithful
representation of 3D color space comes from Abdou et al. (2021), who examine activations in the
B E RT  model and find a geometric connection to a standard 3D color space. Another study by (Patel &
Pavlick, 2022) shows that language models can learn to map conceptual domains, e.g., direction and
color, onto a grounded world representation via prompting techniques (Brown et al., 2020). These
investigations operate in natural language domains, but investigate relatively simple world models.

Another related stream of work concerns neural networks that learn board games. There is a long
history of work in A I  to learn game moves, but in general, these systems have been given some
a priori knowledge of the structure of the game. Even one of the most general-purpose game-
playing engines, AlphaZero (Silver et al., 2018), has built-in knowledge of basic board structure
and game rules (although, intriguingly, it seems to develop interpretable models of various strategic
concepts (McGrath et al., 2021; Forde et al., 2022)). Closer to the work described here–and a major
motivation for our research–is Toshniwal et al. (2021) which trains a language model on chess
transcripts. They show strong evidence that transformer networks are building a representation of
internal board state, but they stop short at investigating what form that representation takes.

The intervention technique of section 4 follows an approach of steering model output while keeping
the model frozen. It is related to the ideas behind plug-and-play controllable text generation for
autoregressive (Dathathri et al., 2019; Qin et al., 2020; Krause et al., 2020) and diffusion (Li  et al.,
2022) language models by optimizing the likelihood of the desired attribute and the fluency of
generated texts at the same time. These methods naturally involve a trade-off and require several
forward and backward passes to generate. Our proposed intervention method stands out by only
working on internal representations and requires only one forward pass. Finally, latent saliency maps
can be viewed as a generalization of the T C AV  approach Kim et al. (2018); Ghorbani et al. (2019);
Koh et al. (2020). In the T C AV  setting, attribution is performed via directional derivatives. This is
essentially a linearization of the gradient-descent optimization used in our attribution maps.

7 CO N C L U S I O N

Our experiments provide evidence that Othello-GPT maintains a representation of game board states—
that is, the Othello “world”—to produce sequences it was trained on. This representation appears to
be nonlinear in an essential way. Further, we find that these representations can be causally linked to
how the model makes its predictions. Understanding of the internal representations of a sequence
model is interesting in its own right, but may also be helpful in deeper interpretations of the network.

We have also described how interventional experiments may be used to create a “latent saliency
map”, which gives a picture, in terms of the Othello board, of how the network has made a prediction.
Applied to two versions of Othello-GPT that were trained on different data sets, the latent saliency
maps highlight the dramatic differences between underlying representations of the Othello-GPT
trained on synthetic dataset and its counterpart trained on championship dataset.

There are several potential lines of future work. One natural extension would be to perform the same
type of investigations with other, more complex games. It would also be interesting to compare the
strategies learned by a sequence model trained on game transcripts with those of a model trained with a
priori knowledge of Othello. One option is to compare latent saliency maps of Othello–GPT with
standard saliency maps of an Othello-playing program which has the actual board state as input.

More broadly, it would be interesting to study how our results generalize to models trained on
natural language. One stepping stone might be to look at language models whose training data has
included game transcripts. Will we see similar representation of board state? Grammar engineering
tools (Weston et al., 2015; Hermann et al., 2017; Cote et al., 2018) could help define a synthetic
data generation process that maps world representations onto natural language sentences, providing a
similarly controllable setting like Othello while closing the distance to natural languages. For
more complex natural language tasks, can we find meaningful world representations? Our hope is
that the tools described in this paper—nonlinear probes, layerwise interventions, and latent saliency
maps—may prove useful in natural language settings.
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A V I S UA L I Z I N G T H E G E O M E T RY OF P RO B E S

Figure 5: Geometry of probe weights. The first row is for linear probe weights; the second row is
for the second-layer weights of the nonlinear probes. Three columns from left to right mean:
probes trained on randomly-initialized GPT, on GPTs trained on championship and synthetic datasets
respectively. For each subplot, one dot represents one tile on an Othello board, and neighbouring tiles
have their two dots connected. Top-left and right-bottom corners are labelled for reference. Togglable
3D plots can be found in Supplementary Material.

Both linear and nonlinear probes can be viewed as geometric objects. In the case of linear probes, we
can associate each classifier with the normal vector to the separating hyperplane. In the case of
nonlinear probes, we can treat the second layer of the MLP as a linear classifier and take the same
view. This perspective associates a vector to each grid tile, corresponding to the classifier for that
grid tile.

A  natural question is whether these vectors display any geometric patterns. Figure 5 visualizes their
configuration using PCA plots. To make the connection with board geometry clear, we have overlaid
a grid in which the vector for a given grid tile is connected to the vectors that represent its neighbors.
At left, as a baseline, are weights of probes trained on randomized GPTs; the result is a somewhat
jumbled version of the board’s grid. For classifier vectors, however, we see a somewhat clearer
geometric correlation with the grid shape itself. This shape may reflect a set of correlations between
neighboring grid cells, and could be an interesting object for future study. One point of interest is that
probe geometry for the randomized network does not seem completely random. This may fit with the
fact that linear probe baseline performance is better than chance, indicating some information about
board state can be gleaned from random projections of game move tokens.

B A B L AT I O N ON NO N L I N E A R P RO B E A C C U R A C I E S

Though high accuracies have been observed on nonlinear probes in section 3, we want to develop a
deeper understanding on them. For example, we wish to understand when, during a game, a model
has developed world representations of board tiles, where in Othello-GPT that information is stored,
how difficult it is to decode that information, and when the model may forget that information.

As shown in Figure 6 (B), we plot probe accuracies of two-layer probes varying to two different
experiment settings: (1) Probe Hidden Units: the number of hidden units H  in nonlinear probes; (2)
Layer: at which layer the representations x l  is taken out. With the increase of hidden units, i.e., probe
capacity, probe accuracy is higher as it can capture more knowledge from the hidden space. For
layer l, the accuracy peaks at midway, which is aligned with studies on natural language (Hewitt &
Manning, 2019), where linguistic properties are found to be best probed in mid-layers. The format of
our what-how-where plots is similar to the what-when-where plots in McGrath et al. (2021), except we
ask how many hidden units within our nonlinear probe are necessary to achieve reasonable accuracy
given each layer of the GPT instead of looking into number of training epochs.

We are also curious about when (in terms of game progression) these concepts are captured by
Othello-GPT. Are these concepts updated immediately after each move? Will they persist or be
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A
Randomized Championship Synthetic A c cura c y

B A c cura c y

Figure 6: (A) What-how-where plots and (B) What-how-when plots of nonlinear probes trained on
randomly-initialized GPT, on GPTs trained on championship and synthetic datasets respectively. (A)
presents probe accuracy across an Othello game progression, while (B) presents accuracy across
Othello-GPT layers.

forgotten with newer moves being made? To study this, we divide the data points for probe validation by
how many steps the tile has been in its current state and plot what concept can be probed by how
powerful probes when in the game progression in Figure 6 (A).

For nonlinear probes with a moderate number of hidden units, a parabolic accuracy curve is shown:
concepts are best captured when they have existed for some time but not too long. This tells us: (1)
forgetting happens when Othello-GPT changes its world representations; (2) there is a period of
uncertainty before changes in board states are updated.

C PR E D I C T I O N H E AT M A P S OF C O U N T E R FA C T UA L B OA R D S TAT E S

In Figure 7, we can see one case of how intervention changes model prediction by intervening on the
world representation of Othello-GPT. Note that the set of ground-truth legal moves are also changed
by the intervention. In this case, both pre-intervention and post-intervention predictions have 0 errors.
Figure 3 shows systematic results over 1; 000 cases. A  random subset of 100 cases can be found in
Supplementary Materials.

D I N T E R - P RO B E I N T E R AC T I O N

In Figure 8 we show the same case as in Appendix C  of the world states probed from layers of
Othello-GPT starting the 5th, which is the layer we start to intervene, L  . We can observe that
after intervention is successfully done on the 5th layer at C4, the flipped disc is corrected in the
immediately following layer, as seen in the pre-intervention probing results at the 6-th layer. However,
when the same intervention is done on later layers again, the model is more convinced that C4 should
be black and stops to correct it. A  total of 100 cases can be found in Supplementary Materials,
corresponding to examples in Appendix C.
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Pre-intervention Prediction Heatmap Post-intervention Prediction Heatmap

Figure 7: Heatmaps of the probability allocated to each tile on the board with nonlinear intervention
done on Othello-GPT trained on synthetic dataset. To the left is the pre-intervention heatmap with pre-
intervention legal moves underscored; to the right is post-intervention heatmap, with post-intervention
legal moves underscored.

Pre-intervention Probe Result
at the 5th Layer

Pre-intervention Probe Result
at the 7th Layer

Post-intervention Probe Result
at the 5th Layer

Post-intervention Probe Result
at the 7th Layer

Pre-intervention Probe Result
at the 6th Layer

Pre-intervention Probe Result
at the 8th Layer

Post-intervention Probe Result
at the 6th Layer

Post-intervention Probe Result
at the 8th Layer

Figure 8: The world states predicted by probes pre-and-post-intervention on internal representations
at different layers. Color encodes the confidence of the plotted top-1 prediction for each tile.

E DI S C U S S I O N OF L AT E N T  S A L I E N C Y  MA P S

In the latent saliency maps created by attribution via intervention in Figure 4, when multiple discs are
flipped, only the first one are found contributing, which is slighted misaligned to human understanding of
the Othello rule. However, this is expected from the algorithm we are using because other flipped
discs, even in the opposite states, still make the current prediction legal.

The attribution via intervention method succeeds at visualizing the AND-logic in the Othello rule to
flip one straight line: there should be opponent discs in between and same-color disc at the other end.
However, when the prediction flips more than one straight lines, intervening on one of them does not
nullify the prediction. This is because the Othello rule is an OR-logic on top of the AND-logic: a
move is legal when either one of the eight straight lines can be flipped. How to extract such knowledge
with unlimited amount of intervention experiments at hand? We leave it for future research.
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Natural Benchmark

0.99

Null Intervention Baseline: 0.87

Unnatural Benchmark

0.99

Null Intervention Baseline: 0.88

Figure 9: Same as Figure 3 except for reporting F1  instead of Error.
Natural Benchmark Unnatural Benchmark

Null Intervention Baseline: 0.92

Null Intervention Baseline: 0.64

0.06 0.07

Figure 10: Same as above but for D K L .

F A LT E R N AT I V E  M E T R I C S F O R T H E I N T E RV E N T I O N E X P E R I M E N T

Following the same multi-label classification framework that calculates the error in Figure 3, we
report the F  score in Figure 9. We measure intervention success as a multi-class classification
problem, rather than a top-1 prediction problem like in section 3, considering the fact that the later
metric is almost saturated for the Othello-GPT trained on synthetic dataset and the intervention in
benchmark only cause a set difference of 2:12 tiles on average.

Another line of thought to measure the alignment between model prediction and the intervened world
representation is by measuring the K L  divergence of the predicted next-move probability distribution
from a discrete uniform prior distribution over all legal next-moves. Note that the baseline F  and D

are the averages of the F  and D over all 1000 intervention cases, rather than treating the
whole benchmark as one single multi-label classification problem or distribution distance calculation.

Error (Figure 3), F  (Figure 9), and K L  divergence (Figure 10) show a similar trend, confirming that the
proposed intervention technique is useful and validating the causality from world representations to
model predictions.

G A B L AT I O N S ON I N T E RV E N T I O N H Y P E R - PA R A M E T E R S

Experiments find this optimization process is robust to different configurations of optimizer, learning
rate , and number of steps.

The complete world state, including states of all the 64 board tiles, is encoded in a single internal
representation x, while during intervention experiment, we only wish to change one of them. A
natural question is: will the intervention operation flip tiles we are not not intending? It is possible but
we can mitigate that by considering the cross entropy losses of other tiles as a regularization term,
weighted by a hyper-parameter . That is to say, the loss in main paper can be expanded as:

LC E (p(x); B 0 )  =  
X      

LC E (ps (x); B 0 (s)) +  
X      

LC E (p(x); B (s)):
s 2 B = B 0                                                                                       s 2 B = B 0

We sweep  at the best L  =  5 on the natural benchmark and report average number of errors in
Table 3. We can observe it does not clearly help.

Here we further discuss another hyper-parameter ablated in Figure 3, the starting layer for intervention,
L s .  If we intervene with more than 5 layers, shallow layers which have not developed reliable world
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0.0 0.1
error      0.22      0.31

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.77      0.19      0.51      0.65      0.42      0.45      0.46      0.55

Table 3: Average number of errors under different ’s and L s  =  5 on the natural benchmark.

representations (according to Figure 6) are touched, making intervention hazardous. On the other
hand, if we intervene only at the deepest layers, though the world representation can be intervened
successfully (see Appendix D), the model does not have enough computation to adapt to the newer
world representation and make predictions corresponding to it.

H S TA N DA R D D E V I AT I O N OF P RO B E A C C U R A C Y

In order to exclude the possibility that the differences in probe accuracies in Table 1 and Table 2 are
caused by randomness, we run the same experiment for 100 times with different random seeds and
report the standard deviations of them in Table 4 and Table 5, based on which we conclude that the
probe accuracies are robust to randomness and there are significant differences between the probe
accuracies of linear and nonlinear probes, and also between probes on randomized Othello-GPT and
Othello-GPTs trained on different datasets.

Randomized
Championship

Synthetic

x1             x2             x3             x4             x5             x6             x7             x8

0.04      0.04      0.05      0.06      0.06      0.06      0.09      0.06
0.05      0.04      0.06      0.07      0.06      0.06      0.06      0.06
0.06      0.06      0.07      0.06      0.05      0.04      0.06      0.08

Table 4: Standard deviations of error rates (%) of linear probes on randomized Othello-GPT and
Othello-GPTs trained on different datasets across different layers (x i  represents internal representa-
tions after the i-th layer).

Randomized
Championship

Synthetic

x1             x2             x3             x4             x5             x6             x7             x8

0.05      0.06      0.07      0.04      0.04      0.03      0.04      0.03
0.05      0.09      0.08      0.06      0.05      0.05      0.10      0.06
0.07      0.09      0.04      0.06      0.06      0.09      0.05      0.05

Table 5: Standard deviations of error rates (%) of nonlinear probes on randomized Othello-GPT and
Othello-GPTs trained on different datasets across different layers (x i  represents internal representa-
tions after the i-th layer).
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