
Approximation Algorithms for the Weighted Nash Social Welfare via

Convex and Non-Convex Programs

Adam Brown∗1, Aditi Laddha †2, Madhusudhan Reddy Pittu ‡3, and Mohit Singh∗1

1Georgia Institute of Technology
2Yale University

2Carnegie Mellon University

Abstract

In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible items, G,
and n agents, A, where each agent i ∈ A has a valuation vij ≥ 0 for each item j ∈ G. In addition, every
agent i has a non-negative weight wi such that the weights collectively sum up to 1. The goal is to find an

assignment σ : G → A that maximizes
∏

i∈A

(∑
j∈σ−1(i) vij

)wi

. When all the weights equal to 1
n
, the problem

reduces to the classical Nash Social Welfare problem, which has recently received much attention. In this work,

we present a 5 · exp
(
2 ·DKL(w || 1⃗

n
)
)

= 5 · exp
(
2 logn+ 2

∑n
i=1 wi logwi

)
-approximation algorithm for the

weighted Nash Social Welfare problem, where DKL(w || 1⃗
n
) denotes the KL-divergence between the distribution

w and the uniform distribution on [n].
We generalize the convex programming relaxations for the symmetric variant of Nash Social Welfare

presented in [CDG+17, AGSS17] to two different mathematical programs. The first program is convex and
is necessary for computational efficiency, while the second program is a non-convex relaxation that can be
rounded efficiently. The approximation factor derives from the difference in the objective values of the convex
and non-convex relaxation.

1 Introduction

In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible items G, and a set
of n agents, A. Every agent i ∈ A has a weight wi ≥ 0 such that

∑
i∈A wi = 1 and an additive valuation function

vi : 2
G → R≥0. Let vij := vi({j}). The goal is to find an assignment of items, σ : G → A so that the following

welfare function is maximized:

(1.1)
∏
i∈A

 ∑
j∈σ−1(i)

vij

wi

.

For ease of notation, we will work with the log objective and denote

(1.2) NSW(σ) =
∑
i∈A

wi log

 ∑
j∈σ−1(i)

vij


and OPT = maxσ:G→A NSW(σ) denote the optimal log objective. The case in which w = u where ui =

1
n for

each i ∈ A is the much-studied symmetric Nash social welfare problem, where the objective is the geometric mean
of agents’ valuations.
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Fair and efficient division of resources among agents is a fundamental problem arising in various fields
[BT05, BT96, BCE+16, RW98, Rot15, You94]. While there are many social welfare functions which can be
used to evaluate the efficacy of an assignment of goods to the agents, the Nash Social Welfare function is well-
known to interpolate between fairness and overall utility. The symmetric Nash Social Welfare function first
appeared as the solution of an arbitration scheme proposed by Nash for two-person bargaining games that was
generalized to multiple players [NJ50, KN79]. Since then, it has been widely used in numerous fields to model
resource allocation problems. An attractive feature of the objective is that it is invariant under scaling by any
of the agent’s valuations and therefore each of the agents can specify their utility in their own units (see [CM04]
for a detailed treatment). While the theory of Nash Social Welfare objective was initially developed for divisible
items, more recently it has been applied in the context of indivisible items. We refer the reader to [CKM+19]
for a comprehensive overview of the problem in the latter setting. Indeed, optimizing the Nash Social Welfare
objective also implies notions of fairness such as envy free allocation in an approximate sense [CKM+19, BKV18].

The Nash Social Welfare function with weights (also referred to as asymmetric or non symmetric Nash Social
Welfare) was first studied in the seventies [HS72, Kal77] in the context of two person bargaining games. For
example, in the bargaining context, it allows different agents to have different weights. This flexibility has made
the problem arise in many different domains, including bargaining theory [CM04, LV07], water resource allocation
[FKL12, HLZ13], and climate agreements [YIWZ17]. From a context of indivisible goods, the study of this problem
has been much more recent [GKK20, GHV21, GHL+23]. In this work, we aim to shed light on this problem,
especially, with a focus on mathematical programming relaxations for the problem.

1.1 Our Results and Contributions In this work, we present a exp
(
2 log 2 + 1

2e + 2DKL(w ||u)
)
≈ 4.81 ·

exp
(
2 log n− 2

∑n
i=1 wi log

1
wi

)
-approximation algorithm for the weighted Nash Social Welfare problem with

additive valuations. When all the weights are the same, this gives a constant factor approximation. Our algorithm
builds on and extends a convex programming relaxation for the symmetric variant of Nash Social Welfare presented
in [CG15, CDG+17, AGSS17]. In the theorem, we state the guarantee in log objective and therefore, the guarantee
becomes an additive one.

Theorem 1.1. Let (A,G,v,w) be an instance of the weighted Nash Social Welfare problem with
∑

i∈A wi = 1
and |A| = n agents. There exists a polynomial time algorithm (Algorithm 1) that given (A,G,v,w) returns an
assignment σ : G → A such that

NSW(σ) ≥ OPT− 2 log 2− 1

2e
− 2 ·DKL(w ||u),

where OPT is the optimal log-objective and DKL(w||u) = log n−
∑

i∈A wi log
1
wi

.

We additionally note that our approach can be modified to give exp
(
2 log 2 + 1

2e +DKL(w ||u)
)
-

approximation that runs in pseudo-polynomial time. The details of this result can be found in the full version

of the paper. Observe that the KL-divergence term DKL(w ||u) =
(
log n−

∑
i∈A wi log

1
wi

)
is always upper

bounded by log(nwmax) which is exactly the guarantee of previous work [GHL+23]. In many settings, the term
DKL(w ||u) can be significantly smaller than nwmax; for example, consider the setting where w1 = 1

logn and

wi =
1

n−1 (1 −
1

logn ) for i = 2, . . . , n, i.e., one agent has significantly higher weight than other. In this case, our

results imply O(1)-approximation while previous results imply O( n
logn )-approximation. A calculation of this can

be found in Example A in Appendix A.
Our algorithm relies on two mathematical programming relaxations for the weighted Nash Social Welfare

problem both of which generalize the convex relaxation for the symmetric version [CDG+17, CG15, AGSS17].
One of the relaxations is non-convex but retains a lot of structural insights obtained for the convex relaxation
in the symmetric version. We show that the same rounding algorithm as in the symmetric version [CG15] gives
a O(1)-approximation for the weighted version when applied to a fractional solution of the non-convex program.
While the rounding algorithm is the same, the analysis requires new ideas as many of the interpretations via
market equilibrium in the symmetric case are no longer present in the weighted version. Unfortunately, due to its
non-convex nature, we cannot solve this relaxation to optimality even though it can be rounded efficiently. Now
the second mathematical programming relaxation comes to the rescue. This relaxation is convex and thus can be
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solved efficiently. We solve the convex relaxation, then use the non-convex relaxation to measure the change in
objective as we process the solution and eventually round to an integral assignment. The approximation factor
of DKL(w ||u) arrives due to the difference in objective values of these two programs. In Section 1.3, we give a
technical overview before giving the details in the later sections.

1.2 Preliminaries
KL-Divergence. For two probability distributions p,q over the same discrete domain X , the KL-divergence

between p and q is defined as

DKL(p ||q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

It is well-known, via Gibb’s inequality, that the KL-divergence between two distributions is non-negative and
is zero if and only if p and q are identical.

We use this fact crucially in the following claim.

Claim 1.1. Given positive z1, . . . , zd, for any y1, y2, . . . , yd ≥ 0,

d∑
j=1

yj log

 d∑
j=1

zj

− d∑
j=1

yj log

 d∑
j=1

yj

 ≥ d∑
j=1

yj log zj −
d∑

j=1

yj log yj .

Proof. Define vectors y = (y1, . . . , yd) and z = (z1, . . . , zd). Let ỹ = y
∥y∥1

and z̃ = z
∥z∥1

. The inequality reads

DKL(ỹ || z̃) ≥ 0.

Moreover, if q is a uniform distribution on X and p an arbitrary distribution on the same domain, then

DKL(p || q) = log |X | −
∑
x∈X

p(x) log
1

p(x)
.

Matching Polytope. Consider a complete bipartite graph G = (G ∪ A, E) where E contains an edge (i, j)
for each i ∈ A and j ∈ G. LetM(A) denote the set of all matchings in G of size |A|, i.e., matchings which have
an edge incident to every vertex in A. Then the convex hullM(A) is given by

b ∈ R|A|×|G|
≥0(1.3) ∑

j∈G
bij = 1 ∀i ∈ A

∑
i∈A

bij ≤ 1 ∀j ∈ G .

We call this polytope the Agent Matching Polytope of (A,G).

1.3 Technical Overview Building on the algorithm of [CG15], [CDG+17] introduced the following relaxation
for the symmetric Nash Social Welfare problem.

max
b,q

1

n

∑
i∈A

∑
j∈G

bij log (vij)−
1

n

∑
j∈G

(∑
i∈A

bij

)
log

(∑
i∈A

bij

)
(CVX-Sym)

s.t.
∑
j

bij = 1 ∀i ∈ A

∑
i

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

They showed that (CVX-Sym) is a convex relaxation of the Nash Social Welfare objective, and the prices used
by the algorithm presented in [CG15] can be obtained as dual variables of (CVX-Sym). The convex relaxation is,
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interestingly, not in the assignment variables. Indeed given an optimal assignment σ : G → A, the corresponding
setting of the variables bij is

(1.4) bij =

{
vij∑

k∈σ−1(i) vik
if σ(j) = i

0 otherwise .

One can verify that b satisfies all the constraints in (CVX-Sym) and its objective equal to the log of the geometric
means of the valuations.

Programs for Weighted NSW. While [CDG+17] and [CG15] used intuition from economics and market
equilibrium to arrive at (CVX-Sym), these concepts do not generalize to the case when weights are not uniform.
We take a different, more algebraic approach that relates the use of log-concave polynomials in [AGSS17] to the
convex programming interpretation given in [CDG+17]. More concrete details on this relationship and how it
leads to the two programs can be found in the full version of the paper.

By setting b to be the same value as (1.4), it is natural to see that (CVX-Weighted) is a relaxation of weighted
NSW. However, this program is not easy to round. To circumvent this issue, we introduce an intermediate non-
convex mathematical program in (NCVX-Weighted), which is also a relaxation of weighted NSW.

max
b

fcvx(b) :=
∑
i∈A

∑
j∈G

wi bij log vij

−
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

wi bij

)
+
∑
i∈A

wi logwi

s.t.
∑
j∈G

bij = 1 ∀i ∈ A

∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

(CVX-Weighted)

max
b

fncvx(b) :=
∑
i∈A

∑
j∈G

wi bij log vij

−
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

bij

)

s.t.
∑
j∈G

bij = 1 ∀i ∈ A

∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

(NCVX-Weighted)

Lemma 1.1. (CVX-Weighted) and (NCVX-Weighted) are relaxations of the weighted Nash Social Welfare
problem. Moreover, When the weights are symmetric, i.e., wi = 1/n for all i ∈ A, the programs (CVX-Weighted)
and (NCVX-Weighted) are equivalent to the convex program (CVX-Sym).

We formally prove Lemma 1.1 in Appendix A.
Note that the constraints for both (CVX-Weighted) and (NCVX-Weighted) are identical. We use P(A,G) to

denote this constraint polytope.

Definition 1.1. (Feasibility Polytope) For a set of m indivisible items G, and a set of n agents, A, the
feasibility polytope, denoted by P(A,G) is defined as

P(A,G) :=

b ∈ R|A|×|G|
≥0 :

∑
j∈G

bij = 1 ∀i ∈ A ,
∑
i∈A

bij ≤ 1 ∀j ∈ G

 .

The constraint
∑

j∈G bij = 1 is called the Agent constraint for agent i and the contraint
∑

i∈A bij ≤ 1 is referred
to as the Item constraint for item j.
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We will refer to points in P(A,G) as either feasible points or solutions.
Observe that P(A,G) is identical to the Agent Matching polytope as defined in equation (1.3). So P(A,G) is

the convex hull of the set of matchings between A and G in which every agent is matched.
The two relaxations. We observe that the objective of (CVX-Weighted) is a concave function, and thus

it is a polynomial time tractable convex program. But the objective of (NCVX-Weighted) is not necessarily
concave. Despite this, (NCVX-Weighted) still satisfies many desirable properties: given a point b ∈ P(A,G), one
can efficiently find another point b̃ ∈ P(A,G) without decreasing the objective fncvx such that the graph formed

by support of b̃ is a forest, as stated in the following lemma. We formally define the support graphs in Definition
2.1.

Lemma 1.2. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bforest, in the support
of b such that

fncvx(b
forest) ≥ fncvx(b) .

Such a bforest can be found in time polynomial in |A| and |G|.

Next, we establish that one can efficiently round any feasible point whose support graph is a forest to an
assignment.

Theorem 1.2. For a Nash Social Welfare instance (A,G,v,w), given a vector b ∈ P(A,G) such that the support
of b is a forest, there exists a deterministic polynomial time algorithm (Algorithm 2) which returns an assignment
σ : G → A such that

NSW(σ) ≥ fcvx(b)−DKL(w ||u)− 2 log 2− 1

2e
.

Our rounding algorithm is the same as that of [CG15], however our analysis is quite different. Our analysis
relies crucially on two facts: the relative stability of stationary points of (CVX-Weighted) and the interplay
between the values of fcvx and fncvx. First, we establish that any stationary point of (CVX-Weighted) is relatively
stable, i.e., the difference between the objective values of a stationary point and any feasible solution is independent
of the valuations v, and therefore can be bounded effectively. Second, we show that for any feasible solution, the
difference between fcvx and fncvx is at most the KL-Divergence between the weights and the constant vector.

We use the stability of stationary points of (CVX-Weighted) along with the structure of the feasiblility
polytope to iteratively sparsify a stationary solution to obtain a matching between the agents and bundles of
items while only losing a constant factor in the objective. It is worth noting that the first term in the objective
fncvx (and fcvx) is linear in the variable b. As the constraint set on b is a matching polytope, the solution
optimizing a linear objective would be a matching in which all agents receive exactly one item. While such a
matching would be very suboptimal compared to OPT, our algorithm constructs an augmented graph which
indeed contains a matching with value comparable to OPT. The crux of our algorithm is to find a feasible vector
in the matching polytope for which fncvx is close to OPT and the additional non-linear term in fncvx are relatively
small.

The remaining challenge to our approach is that (NCVX-Weighted) is not a convex program and therefore
we cannot efficiently find a global optima that maximizes fncvx(b). However, we show that the objective of
(NCVX-Weighted) and (CVX-Weighted) differ by at most the DKL(w ||u), as stated in the following lemma. We
leverage this fact to initialize (NCVX-Weighted) with the globally optimal solution of (CVX-Weighted) to obtain
the approximation guarantee.

Lemma 1.3. For any b ∈ P(A,G) and weights w1, . . . , wn > 0 with
∑

i∈A wi = 1,

0 ≤ fcvx(b)− fncvx(b) ≤ DKL(w ||u) = log n−
∑
i∈A

wi log
1

wi
.

By combining Lemma 1.2, Theorem 1.2, and Lemma 1.3 we obtain our main result.

1.4 Related Work The problem of finding the allocation which maximizes the Nash Social Welfare objective
is an NP-hard problem, as was proven by [NNRR14]. Additionally, [Lee17] showed that finding such an allocation
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is also APX-hard. From an algorithmic perspective, the first constant-factor approximation for the symmetric
version was provided in [CG15] using analogies from market equilibrium. [AMGV18] provided an improved
analysis of the algorithm from [CG15, CDG+17] and introduced a convex programming relaxation. Using an
entirely different approach, [AGSS17] also provided a constant factor approximation for the symmetric variant,
where their analysis employed the theory of log-concave polynomials. The best-known approximation factor with
linear valuations of 1.45 is due to [BKV18], where they provide a pseudopolynomial time algorithm that finds an
allocation which is envy-free up to one good. Their algorithm is entirely combinatorial and is polynomial time
when the valuations are bounded.

Another setting of interest is when the valuation of each agent is submodular instead of additive. For
instance, [GHV21] gave a constant factor approximation algorithm for maximizing the symmetric Nash Social
welfare function when the agents’ valuations are Rado, a special subclass of submodular functions. In the weighted
case, the approximation factor of this algorithm depends on the ratio of the maximum weight to the minimum
weight. [LV22] provided a constant factor approximation algorithm for the symmetric case with submodular
valuations. More recently, [GHL+23] gave a local search-based algorithm to obtain an O(nwmax)-approximation
for the weighted case and a 4-approximation for the symmetric case with submodular valuations. Note that this
O(nwmax)-approximation factor was also the previously best-known approximation for the weighted case, even
when considering additive valuations.

2 Approximation Algorithm

Before describing our algorithm, we need the following definitions.

Definition 2.1. (Support Graph) For a vector b ∈ P(A,G), the support graph of b, denoted by Gsupp(b), is
a bipartite graph with vertex set A ∪ G. For any i ∈ A and j ∈ G, the edge (i, j) belongs to the edge set of G if
and only if bij > 0.

Definition 2.2. (Acyclic Solution) A vector b ∈ P(A,G) is called an acyclic solution if the support graph
of b, Gsupp(b), does not contain any cycles.

For ease of notation, given any feasible point b ∈ P(A,G), we use variables q ∈ R|G| to denote the projection
of b to G, i.e.,

qj :=
∑
i∈A

bij

for each j ∈ G. Since q is completely defined by b, with abuse of notation, we will interchangeably use P(A,G)
to denote feasible vectors b as well as (b,q). Similarly, we will use fncvx(b,q) and fcvx(b,q), to also denote the
objective fncvx(b) and fcvx(b), respectively. With a slight abuse of notation, we define

fncvx(b,q) :=
∑
i∈A

∑
j∈G

wi bij log vij −
∑
i∈A

∑
j∈G

wi bij log qj .

for any b ∈ R|A|×|G| and q ∈ R|G|.
Our main algorithm, Algorithm 1, begins by finding the optimal solution b to the convex program (CVX-

Weighted). It then constructs another feasible point, bforest, in support of b such that the support graph of
bforest is a forest. While this may decrease the value fcvx, we show that it is always possible to find bforest such
that bforest has the same fncvx objective value as b. Finally, the algorithm then rounds this solution, bforest, to
an integral solution using Algorithm 2. Theorem 1.2 establishes a bound on the rounding error incurred during
Algorithm 2.

Algorithm 1: Approximation Algorithm for Weighted Nash Social Welfare

1 Input. NSW instance (A,G,v,w)

2 b← optimal solution of (CVX-Weighted)

3 q← vector in R|G| with qj =
∑

i∈A bij
4 (bforest,qforest)← acyclic solution in support of b such that fncvx(b

forest) ≥ fncvx(b)

5 σ ← output of Algorithm 2 with input (A,G,v,w,bforest,qforest)
6 Output. σ
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Lemma 1.2, which we re-state below for the reader’s convenience, guarantees the existence of an acyclic
solution in the support of which does not decrease the fncvx function, ensuring that the algorithm is well-
defined. It is worth mentioning that for the unweighted case, the existence of an acyclic optimum was utilized by
[CG15, CDG+17] for the convex program (CVX-Sym). In the weighted setting, this structural property is not
inherited by the convex program (CVX-Weighted) but is inherited by the non-convex program (NCVX-Weighted).

Lemma 1.2. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bforest, in the support
of b such that

fncvx(b
forest) ≥ fncvx(b) .

Such a bforest can be found in time polynomial in |A| and |G|.

Proof. Let Gsupp(b̄) contain a cycle (i0, j0, i1, . . . , jℓ−1, iℓ) with i0 = iℓ, where ix ∈ A and jy ∈ G. The main
idea is to modify the variables b̄ on this cycle while ensuring the value of q̄ does not change. If q̄ is fixed, then
fncvx(·, q̄) is linear in the input, and as a result, we can cancel the cycle by considering the following vector.
Define δ ∈ R|A|×|G| with δixjx := 1 and δix+1jx := −1 for x ∈ {0, . . . , ℓ− 1}, and δij := 0 otherwise.

Note that
∑

i∈A δij = 0 for any item j. As a result, for each j ∈ G,∑
i∈A

b̄ij + εδij =
∑
i∈A

b̄ij = q̄j .

Therefore, the change in fncvx is given by

fncvx(b̄+ εδ, q̄)− fncvx(b̄, q̄) =
∑
i∈A

∑
j∈G

εwi δij log vij −
∑
i∈A

∑
j∈G

εwi δij log q̄j = ε h(δ, q̄) .

Note that h(δ, q̄) is a linear function in δ. So, if h(δ, q̄) > 0, then setting ε = maxx bix+1jx ensures that
fncvx(b̄+εδ, q̄) ≥ fncvx(b̄, q̄), and b̄+εδ ∈ P(A,G). In addition, the number of cycles in Gsupp(b̄+εδ) is strictly
less than the number of cycles in Gsupp(b̄).

Similarly, if h(δ, q̄) ≤ 0, then setting ε = −maxx bixjx gives the same guarantees. Iterating this cycle
cancelling process until the support does not contain any cycles leads to the required solution.

By combining Lemma 1.2 with Lemma 1.3, we obtain the following corollary.

Corollary 2.1. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bforest, in the
support of b such that

fcvx(b
forest) ≥ fcvx(b)−DKL(w ||u) .

Moreover, such a bforest can be found in time polynomial in |A| and |G|.

It is possible to save the additive factor of DKL(w ||u) in the above corollary by directly finding a first-order
optimal solution to the non-convex program. This would lead to an approximation factor that improves on the
current best O(n · wmax) [GHL+23]. Unfortunately, we can only find such a solution in pseudopolynomial time
where the running time depends on the unary representation of both the weights w and the valuations v. More
details on this approach are provided in the full version of the paper.

Before presenting Algorithm 2, we give the proof of Theorem 1.1, which now follows directly from Theorem 1.2
and Corollary 2.1, as outlined below.

Proof of Theorem 1.1. Let (b,q) and (bforest,qforest), denote the feasible points defined in Steps 1 and 3 of
Algorithm 1, respectively. Let σ⋆ be the assignment returned by Algorithm 2 on input (bforest,qforest). By
Theorem 1.2, we have

NSW(σ⋆) ≥ fcvx(b
forest,qforest)−DKL(w ||u)− 2 log 2− 1

2e
(i)

≥ fcvx(b,q)− 2 ·DKL(w ||u)− 2 log 2− 1

2e
(ii)

≥ OPT− 2 ·DKL(w ||u)− 2 log 2− 1

2e
.

Here, (ii) follows from Corollary 2.1, and (iii) follows from Lemma 1.1.
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2.1 Rounding an Acyclic Solution Given an acyclic solution b, Algorithm 2 returns an assignment with
value comparable to fcvx(b), as stated in Theorem 1.2.

Algorithm 2: Algorithm for Rounding an Acyclic Solution

1 Input. NSW instance (A,G,v,w), acyclic solution (b,q) ∈ P(A,G)
2 (b⋆,q⋆)← optimal solution of (CVX-Weighted) restricted to the support of (b,q)
3 F ⋆ ← Gsupp(b

⋆) with every tree rooted at an agent node

4 Remove edges between item j and its children in F ⋆ whenever q⋆j < 1/2 to get forest F̃ (Pruning)

5 L⋆
i ← set of leaf children of agent i in F̃ and let L⋆ = ∪i{L⋆

i }
6 M⋆ ← matching between A → G\L⋆ in F̃ which maximizes weight function

wF̃ (M) :=
∑

i∈A wi log
(
viM(i) +

∑
j∈L⋆

i
vij

)
1

7 σ⋆ ← assignment of G to A with σ⋆(j) = i if j ∈ {L⋆
i ∪M⋆(i)} (Matching)

8 Output. σ⋆

Given an acyclic solution b, Algorithm 2 first finds an optimal solution, denoted by b⋆ to (CVX-Weighted)
restricted to the support of b, i.e., b⋆ is the optimal solution to (CVX-Weighted) with input A,G, ṽ,w), where
ṽij = 0 if bij = 0, and ṽij = vij otherwise. This is crucial to later utilize the stability properties of stationary
points of (CVX-Weighted).

Next, the algorithm implements a “pruning” step by sparsifying b⋆ by removing edges between any item with
q⋆j < 1/2 and its children in Gsupp(b

⋆). This is equivalent to assigning item j to its parent agent. As a result,
any item with q⋆j < 1/2 is a leaf in this pruned forest. Since removing edges will exclude certain items from being
assigned to some agents, pruning can lead to a sub-optimal solution. We bound this loss in objective by showing
the existence of a fractional solution (bpruned,qpruned) that is feasible in F̃ after pruning, and has an objective
comparable to the objective of (b⋆,q⋆). For concrete details, see Section 3.

It is important to emphasize that the algorithm does not need to find such a solution (bpruned,qpruned). The
mere existence of (bpruned,qpruned) is enough to guarantee that the assignment returned by the algorithm will be
good, as we explain below.

After the pruning step, the algorithm assigns every leaf item in the pruned forest to its parent. We use L⋆
i

to denote the set of leaf items whose parent is agent i and L⋆ = ∪i∈AL
⋆
i to denote the set of all leaf items in the

pruned forest. So, each agent i receives all the items in the bundle L⋆
i . In the matching step, the algorithm assigns

at most one additional item to each agent by finding a maximum weight matching between agents A and items
G\L⋆ (the set of non-leaf items in the pruned forest). This matching is determined using an augmented weight
function, denoted by wF̃ . The weight of a matching M between A and G \ L⋆ in the pruned forest is defined as
follows:

wF̃ (M) :=
∑
i∈A

wi log

viM(i) +
∑
j∈L⋆

i

vij

 ,

where viM(i) = 0 if i is not matched in M . Observe that this weight function exactly captures the weighted Nash
Social Welfare objective when agent i is assigned the item set Si := {M(i)∪L⋆

i } for each i ∈ A. Moreover, finding
the optimal matching M can be easily formulated as a maximum weight matching problem in a bipartite graph.

Since the standard linear programming relaxation for the bipartite matching problem is integral, it is enough
to demonstrate the existence of a fractional matching with a large weight wF̃ in the pruned forest. In Section
3.2, we show how to construct a fractional matching corresponding to bpruned, such that the objective for the
matching problem can be compared to the objective fncvx(b

pruned,bpruned). We emphasize that this matching
corresponding to bpruned is only required for the sake of analysis: to lower bound the performance of the matching
returned by the algorithm. We do not require bpruned for the execution of the algorithm.

1If agent i in unmatched in M , we let viM(i) = 0
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3 Rounding via the Non-Convex Relaxation

In this section, we prove Theorem 1.2 by establishing some properties of the set of support restricted optimal
solutions of (CVX-Weighted). First, in Lemma 3.1, we show that any optimum whose support is restricted to a
forest can be “pruned” to a feasible solution while only losing a constant factor in objective. Specifically, we show
that given a support restricted optimum (b⋆,q⋆), we can construct a feasible solution (bpruned,qpruned) such that

any item with qprunedj < 1/2 is a leaf in support graph of bpruned, and fcvx(b
pruned,qpruned) ≥ fcvx(b

⋆,q⋆)− log 2.

Second, in Lemma 3.2, we demonstrate the existence of a matching in support graph of bpruned such that the
augment weight function of this matching differs from fncvx(b

pruned) by a constant factor. After presenting these
two lemmas, we provide the proof of Theorem 1.2.

Lemma 3.1. Let (b⋆,q⋆) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible point
bforest. Let F be the directed forest formed by Gsupp(b

⋆) when every tree is rooted at an agent node. Then, there
exists an acyclic feasible point (bpruned,qpruned) in P(A,G) such that Gsupp(b

pruned) is a subgraph of Gsupp(b
⋆)

and

• qprunedj ≥ q⋆j for any j with q⋆j ≥ 1/2

• each item with q⋆j < 1/2 is a leaf in Gsupp(b
pruned) connected to its parent in F ,

• fcvx(b
pruned,qpruned) ≥ fcvx(b

⋆,q⋆)− log 2 .

The proof of Lemma 3.1 relies on the stability properties of first-order stationary solutions, as outlined in
Section 3.1.

Lemma 3.2. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf in Gsupport(b).
Let S : A → 2G be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then, there exists a matching M in the subgraph
of Gsupp(b) with vertices A ∪ {G\ ∪i {S(i)}} such that

∑
i∈A

wi log

viM(i) +
∑

j∈S(i)

vij

 ≥ fncvx(b,q)− log 2− 1

2e
,

where viM(i) = 0 if agent i is not matched in M .

We prove this lemma in Section 3.2.

Proof of Theorem 1.2. Given (b,q) such that Gsupp(b) is a forest, let (b⋆,q⋆) be the optimal solution of (CVX-

Weighted) restricted to support of b, let F̃ denote the forest obtained after pruning Gsupp(b
⋆). Let

(bpruned,qpruned) be a feasible solution guaranteed by Lemma 3.1 on input (b⋆,q⋆).
Since Gsupp(b

pruned) is a subset of Gsupp(b
⋆), and every item with q⋆j < 1/2 is a leaf in Gsupp(b

pruned), we

conclude that Gsupp(b
pruned) is a subgraph of F̃ . Furthermore, for any agent i, the set of leaf children of i in F̃

is a subset of the leaf children of i in Gsupp(b
pruned). To observe this, note that for any item j with q⋆j < 1/2, j

is a leaf in Gsupp(b
pruned) only connected to its parent in Gsupp(b

⋆). For any item j in F̃ with q⋆j > 1/2, we have

qprunedj > q⋆j . If j is leaf in F̃ connected to agent i, qprunedj ≥ q⋆j and Gsupp(b
⋆) ⊆ F̃ enforces that j is a leaf in

Gsupp(b
⋆) connected to agent i.

Therefore, for each agent i, the set L⋆
i is a subset of the set of leaves of agent i in Gsupp(b

pruned) and L⋆
i

contains all the items with qprunedj < 1/2 in Gsupp(b
pruned). So, the function S(i) = L⋆

i satisfies the constraints

of Lemma 3.2 with input (bpruned,qpruned).
Using Lemma 3.2 on (bpruned,qpruned) with function S(i) = L⋆

i , we conclude that there exists a matching,
M , in Gsupp(b

pruned) such that

∑
i∈A

wi log

viM(i) +
∑
j∈L⋆

i

vij

 =
∑
i∈A

wi log

viM(i) +
∑

j∈S(i)

vij

 ≥ fncvx(b
pruned,qpruned)− log 2− 1

2e
.
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Since Gsupp(b
pruned) is a subgraph of F̃ , the matching M is also a present in F̃ . Therefore, the matching M⋆

(and corresponding assignment σ⋆) returned by Algorithm 2 satisfies

NSW(σ⋆) =
∑
i∈A

wi log

viM⋆(i) +
∑
j∈L⋆

i

vij


(i)

≥
∑
i∈A

wi log

viM(i) +
∑
j∈L⋆

i

vij


(ii)

≥ fncvx(b
pruned,qpruned)− log 2− 1

2e
(iii)

≥ fcvx(b
pruned,qpruned)−DKL(w ||u)− log 2− 1

2e
(iv)

≥ fcvx(b
⋆,q⋆)−DKL(w ||u)− 2 log 2− 1

2e
(v)

≥ fcvx(b,q)−DKL(w ||u)− 2 log 2− 1

2e
.

Here, (i) follows from the optimality of M⋆, (ii) follows from Lemma 3.2 and (iii) follows from Lemma 1.3, (iv)
follows from Lemma 3.2, and (v) follows from optimality of b⋆.

3.1 Pruning Small Items In this section, we prove Lemma 3.1 by establishing some properties of the set of
first-order stationary solutions of (CVX-Weighted) in Lemma 3.3 and Lemma 3.4.

First, we show that any such stationary solution of (CVX-Weighted) is relatively stable, i.e., the change in
function value when moving away from the stationary solution can be quantified in terms of how much we deviate
from that solution. We formalize the stability of a first-order stationary solution of (1) as follows.

Lemma 3.3. Let (b⋆,q⋆) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible point
bforest. Let (b,q) be a feasible point in P(A,G) such that the support of b is a subset of the support of b⋆, and
for any j ∈ G, if q⋆j = 1, then qj = 1. Then

fcvx(b
⋆,q⋆)− fcvx(b,q) =

∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A wi bij∑
i∈A wi b⋆ij

)
.

We provide the proof of this lemma in Appendix A.
Second, in Lemma 3.4, we show that any acyclic first-order stationary point of (CVX-Weighted) can be

pruned to a feasible solution, denoted by bpruned, which is amenable to rounding. Specifically, we show that given
a first-order stationary point (b⋆,q⋆), we can construct a feasible solution (bpruned,qpruned) such that any item

with qprunedj < 1/2 is a leaf in support of bpruned and bprunedij ≤ min{1, 2b⋆ij} for any agent i and item j.

Lemma 3.4. Let (b⋆,q⋆) be any acyclic feasible point in P(A,G). Let F be the directed forest formed by Gsupp(b
⋆)

when every tree is rooted at an agent node. There exists a feasible solution (bpruned,qpruned) of P(A,G) such that
Gsupp(b

pruned) is a subgraph of Gsupp(b
∗),

• q⋆j ≤ qprunedj for each item j with q⋆j ≥ 1/2,

• each item with q⋆j < 1/2 is a leaf in Gsupp(b
pruned) connected to its parent in F , and

• for any (i, j) ∈ A× G, bprunedij ≤ min{1, 2 · b⋆ij} .

Before proving Lemma 3.4, we use Lemma 3.4 along with Lemma 3.3 to prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.4 , there exists a feasible solution (bpruned,qpruned) such that Gsupp(b
pruned)

is a subgraph of Gsupp(b) and (bpruned,qpruned) satisfies the first two items claimed in the lemma. Furthermore,

for any (i, j) ∈ A× G, bprunedij ≤ min{1, 2 · b⋆ij}.
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So using Lemma 3.3, the difference in objective between (b⋆,q⋆) to (bpruned,qpruned) is bounded as follows

fncvx(b
⋆,q⋆)− fncvx(b

pruned,qpruned) =
∑
j∈G

∑
i∈A

wi b
pruned
ij log

(∑
i∈A wi b

pruned
ij∑

i∈A wi b⋆ij

)
.

Since bprunedij ≤ min{1, 2 b⋆ij} for each (i, j), we have
∑

i wi b
pruned
ij ≤ 2

∑
i wi b

⋆
ij .

fncvx(b
⋆,q⋆)− fncvx(b

pruned,qpruned) ≤
∑
j∈G

∑
i∈A

wi b
pruned
ij log 2 .(3.5)

The feasibility of bpruned implies∑
j∈G

∑
i∈A

wi b
pruned
ij =

∑
i∈A

wi

∑
j∈G

bprunedij =
∑
i∈A

wi = 1 .

Plugging this bound in equation (3.5) completes the proof.

Before proving Lemma 3.4, we need the following lemma about the feasibility of a solution when we decrease
the bij for some edge (j → i) in the support forest of b.

Lemma 3.5. Let (b,q) be a feasible point in P(A,G) such that Gsupp(b) is a forest. Let F be the directed forest
formed by Gsupp(b) when every tree is rooted at an agent node. For a non-root agent i in F , let item j be its
parent. Then for any 0 ≤ δ ≤ min{bij , 1 − bij}, there exists a feasible solution, (bδ,qδ) such that bδij = bij − δ,

qδj = qj − δ, qδj′ ≥ qj′ for all j′ ∈ G\{j}, and

bδi′j′

{
≤ min{1, 2bi′j′} if i′, j′ ∈ T (i)

= bi′j′ otherwise ,

where T (x) denotes the subtree in the forrest F rooted at x.

Proof of Lemma 3.4. We will iteratively build the solution (bpruned,qpruned) satisfying these properties while
ensuring that it remains feasible. For a vertex x ∈ A ∪ G, let par(x) denote its in parent in Gsupp(b

⋆), let C(x)
to denote the set of its children in Gsupp(b

⋆), and let T (x) denote the sub-tree rooted at vertex x in Gsupp(b
⋆).

Consider an item j with q⋆j < 1/2. To make the vertex corresponding to j a leaf, the algorithm removes
all the edges between item j and its children C(j). To reflect this change, we will update the solution b⋆ to an

intermediate solution b̃ such that the support of b̃ does not contain any edges between item j and its children. To
maintain feasibility, we require:

q̃j = b̃par(j)j = b⋆par(j)j

b̃ij = 0 for all i ∈ C(j)(3.6)

Note that q⋆j < 1/2 implies b⋆ij ≤ 1/2. As a result, b⋆ij ≤ min{b⋆ij , 1− b⋆ij} for each i ∈ C(j).
By iteratively applying Lemma 3.5 to edge (j → i) with δ = bij for each i ∈ C(j), we arrive at the required

solution (̃b, q̃) such that b̃ij = 0 for each i ∈ C(j) and q̃j = qj −
∑

i∈C(j) bij = bpar(j)j . Since T (j) is the disjoint

union of the sub-trees rooted at nodes in C(j), for distinct i1, i2 ∈ C(j), updating the sub-tree for i1 does not
affect the b values for any edge in T (i2) and vice versa. Therefore, we have q⋆j′ ≤ q̃j′ for any item j′ ∈ T (j) and

b̃i′j′ ≤ min{1, 2b⋆i′j′} for any i′, j′ ∈ T (j).
Since we want to ensure that all items with q⋆j < 1/2 become leaves, we must repeat the above process for

any such item. The following fact is crucial to bound the values after multiple pruning processes: Pruning an
item j only changes b values for edges in T (j), and item j becomes a leaf after that. So, if we prune ancestors of
j after pruning j, the b values of edges in T (j) are not changed.

So let (bpruned,qpruned) be the solution obtained by pruning the set of items J = {j ∈ G : q⋆j < 1/2} in

decreasing order of their height2. Note that pruning item j does not decrease q value for any item other than j.

2Note that pruning items in decreasing order of their height is only an artifact of the analysis. The algorithm can prune items
with q⋆j < 1/2 in any order.
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Therefore, if qprunedj < 1/2, then item j has already been pruned and is a leaf. For any item j with q⋆j ≥ 1/2,
its q value only increases when its nearest ancestor is pruned, and this is the only time its q value changes, we
concludes that qprunedj ≥ q⋆j . This proves the second claim of the lemma.

To establish the third point of the lemma, observe that the b variable for any edge in Gsupp(b
⋆) changes at

most twice during the pruning process: If q⋆j ≥ 1/2, then item j itself is not pruned, and b values of edges incident

to j may change only when the nearest ancestor of j is pruned. By Lemma 3.5, bprunedij ≤ min{1, 2b⋆ij} for each
i ∈ A. If q⋆j < 1/2, the b value of any edge from j to its children becomes zero when j is pruned, and the b value
of the edge (par(j)→ j) does not change when we prune j, and it may increase if j has an ancestor that is also

pruned after j. If so, we have bprunedpar(j)j ≤ min{1, 2b⋆par(j)j}.

3.2 Fractional Matching and Analysis In this section, we prove Lemma 3.2, which completes the proof of
Theorem 1.2.

We establish Lemma 3.2 by proving two inequalities (in Lemmas 3.6 and 3.6) about the properties fncvx for
any feasible point whose support is a forest. Lemma 3.6 shows that fncvx can be upper bounded by a linear
function in b while losing a constant factor.

Lemma 3.6. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf in Gsupport(b).
Let S : A → 2G be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then

∑
i∈A

wi

 ∑
j /∈S(i)

bij log vij +
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

 ≥ fncvx(b,q)− log 2− 1

2e
.

Lemma 3.7 demonstrates how the linear function obtained from Lemma 3.7 can be used to as a lower bound
for the maximum weight matching. A crucial component of this Lemma is the fact that any feasible b in P(A,G)
corresponds to a point the matching polytope where all agents are matched.

Lemma 3.7. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2 is a leaf in Gsupport(b).
Let S : A → 2G be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with qj < 1/2. Then, there exists a matching M in the subgraph
of Gsupp(b) with vertices A ∪ {G\ ∪i {S(i)}} such that

∑
i∈A

wi log

viM(i) +
∑

j∈S(i)

vij

 ≥∑
i∈A

wi

 ∑
j /∈S(i)

bij log vij +
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

 ,(3.7)

where viM(i) = 0 if agent i is not matched in M .

Lemma 3.6 and Lemma 3.6 together establish Lemma 3.2. In the rest of this section, we provides the proofs
of Lemma 3.6 and Lemma 3.7.

Proof of Lemma 3.6. Recall that

fncvx(b,q) =
∑
i∈A

wi

∑
j∈G

bij log vij −
∑
i∈A

wi

∑
j∈G

bij log qj

=
∑
i∈A

wi

∑
j /∈S(i)

bij log vij −
∑
i∈A

wi

∑
j /∈S(i)

bij log qj +
∑
i∈A

wi

 ∑
j∈S(i)

bij log vij − bij log bij

 .(3.8)

where the last equation follows from the fact that every item in Li is a leaf, i.e., there is exactly one agent ...
Therefore, for any j /∈ L, q̃j ≥ 1/2. As a result,

−
∑
i∈A

wi bij log qj ≤ log 2
∑
i∈A

wi bij .(3.9)
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Plugging this bound into equation (3.8) gives

fncvx(b,q) ≤
∑
i∈A

wi

∑
j /∈S(i)

bij log vij −
∑
i∈A

wi

∑
j /∈S(i)

bij log 2 +
∑
i∈A

wi

 ∑
j∈S(i)

bij log vij − bij log bij

 .(3.10)

As b ∈ P(A,G), we have
∑

j /∈S(i) bij = 1 −
∑

j∈S(i) bij for every agent i. Substituting this in equation (3.10)
yields

fncvx(b,q) ≤
∑
i∈A

wi

∑
j /∈S(i)

bij log vij +
∑
i∈A

wi log 2 +
∑
i∈A

wi

 ∑
j∈S(i)

bij log vij − bij log bij − bij log 2


=
∑
i∈A

wi

∑
j /∈S(i)

bij log vij + log 2 +
∑
i∈A

wi

 ∑
j∈S(i)

bij log vij − bij log bij − bij log 2

 ,(3.11)

where the last equation follows from
∑

i wi = 1.
For each agent i ∈ A, Claim 1.1 implies that

∑
j∈S(i)

bij log vij − bij log bij ≤
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

− ∑
j∈S(i)

bij log

 ∑
j∈S(i)

bij

 .

So, for any agent i,

∑
j∈S(i)

bij log vij − bij log bij − bij log 2 ≤
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

− ∑
j∈S(i)

bij log

 ∑
j∈S(i)

bij

− ∑
j∈S(i)

bij log 2

≤
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

+
1

2e
,(3.12)

where the last inequality follows from −x log(x)− x log 2 ≤ 1/(2e) for all x ≥ 0 applied to x =
∑

j∈S(i) bij .

Substituting (3.12) in (3.11), we get

fncvx(b,q) ≤
∑
i∈A

wi

∑
j /∈S(i)

bij log vij + log 2 +
∑
i∈A

wi

 ∑
j∈S(i)

bij log

 ∑
j∈S(i)

vij

+
1

2e


=
∑
i∈A

wi

 ∑
j /∈S(i)

bij log vij +
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

+ log 2 +
1

2e
,

where the last inequality follows from
∑

i∈A wi = 1.

Proof of Lemma 3.7. In this proof, we will analyze a matching that either assigns the bundle S(i) to an agent or
a single item j /∈ ∪iS(i). Observe that the matching M clearly finds an assignment with a larger objective as

log

viM(i) +
∑

j∈S(i)

vij

 ≥ max

log viM(i), log

 ∑
j∈S(i)

vij

 .

So, for each agent i ∈ A, we create a new leaf item ℓi with viℓi =
∑

j∈S(i) vij corresponding to the sey of

items in S(i). Define S := ∪iS(i) and G̃ := {G\S} ∪ {ℓi}i∈A. We show that the maximum weight matching in

the bipartite graph (A, G̃) suffices to prove the lemma. As the matching polytope is integral, to show there exists
a matching of large objective, it is enough to demonstrate a fractional matching of large value.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Using b, we define fractional assignment variables x as follows:

xij := bij ∀i ∈ A, j ∈ {G\L}

xiℓi :=
∑

j∈S(i)

bij ∀i

Using x, we can re-write the L.H.S. of equation (3.7) as

(3.13)
∑
i∈A

wi

 ∑
j /∈S(i)

bij log vij +
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

 =
∑
i∈A

∑
j∈G̃

xij wi log vij .

Observe that x lies in the convex hull of matchings between agents A and items G̃ in which every agent is matched
as x satisfies the following properties:∑

j∈G̃

xij =
∑

j /∈S(i)

bij +
∑

j∈S(i)

bij = 1 ∀i ∈ A

∑
i∈A

xij ≤ 1 ∀j ∈ G̃ .

Here, the last inequality for item j /∈ S is inherited from the feasibility of b. The constraint for ℓi′ for some i′ ∈ A
is implied by the constraint

∑
i∈A xij = xi′j =

∑
j∈S(i) bij ≤

∑
j∈G bij ≤ 1, where the last constraint follows from

feasibility of b.
Using the integrality of the matching polytope, there exists a matching M̃ : A → G̃ such that

(3.14)
∑
i∈A

∑
j∈G̃

xij wi log vij ≤
∑
i∈A

wi log viM̃(i)
.

Now consider a M : A → G with M(i) = ∅ if M̃(i) = ℓi, and M(i) = M̃(i) otherwise. Then

(3.15)
∑
i∈A

wi log viM̃(i)
≤
∑
i∈A

wi log

viM(i) +
∑

j∈S(i)

vij

 .

Then equations (3.13), (3.14) and (3.15) together imply

∑
i∈A

wi log

viM(i) +
∑

j∈S(i)

vij

 ≥∑
i∈A

wi

 ∑
j /∈S(i)

bij log vij +
∑

j∈S(i)

bij log

 ∑
j∈S(i)

vij

 .

4 Conclusion and Open Questions

In this paper, we introduced a convex and a non-convex relaxation for the weighted (asymmetric) Nash Social
Welfare problem. Both of these relaxations play a crucial role in obtaining the approximation algorithm for
the problem. There are two natural open questions. First, is the factor exp (DKL(w ||u)) necessary in the
approximation guarantee? Equivalently, is it possible to obtain a constant factor approximation for the weighted
Nash Social Welfare problem? It is important to emphasize that we lose the exp (DKL(w ||u)) when relating
the objectives of the two relaxations; we only lose a constant factor when rounding the non-convex relaxation.
There may exist a direct approach to approximately solve the non-convex formulation that gives an improved
approximation guarantee.

The second question is whether the techniques introduced in this work generalize to more general valuation
functions, in particular, submodular valuations for the weighted Nash Social Welfare problem. While there
are constant factor approximation algorithms for symmetric Nash Social Welfare with submodular valuations,
obtaining anything better than O(nwmax)-approximation for the weighted variant of the problem remains an
open question.
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A Omitted Proofs and Lemmas

Example. Consider a weight vector w with w1 = 1
logn and w2 = . . . = wn = 1

n−1

(
1− 1

logn

)
. Then

DKL(w ||u) =
1

log n
log

(
n

log n

)
+

(
1− 1

log n

)
log

(
n

n− 1

(
1− 1

log n

))
= 1− log log n

log n
+

(
1− 1

log n

)
log

(
n

n− 1

)
+

(
1− 1

log n

)
log

(
1− 1

log n

)
≤ 1 + log

(
n

n− 1

)
≤ 2 .

Proof of Lemma 1.1. Let σ : G → A be the optimal assignment of an instance of Nash Social Welfare. For each
agent i ∈ A, define Vi =

∑
j∈σ−1(i) vij . Using σ, we define a vector b ∈ P(A,G) as

bij :=

{
vij

Vi
if σ(j) = i

0 otherwise.

It is easy to verify that
∑

i∈A bij ≤ 1 for each j ∈ G and
∑

i∈G bij = 1 for each i ∈ A. We will now show that
fcvx(b) and fncvx(b) are both equal to NSW(σ).

fcvx(b) =
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log vσ(j)j −

∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
wσ(j)vσ(j)j

Vσ(j)

)
+
∑
i∈A

wi logwi

=
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
Vσ(j)

wσ(j)

)
+
∑
i∈A

wi logwi

=
∑
i∈A

wi

∑
j∈σ−1(i)

vij
Vi

log

(
Vi

wi

)
+
∑
i∈A

wi logwi

=
∑
i∈A

wi log

(
Vi

wi

)
+
∑
i∈A

wi logwi =
∑
i∈A

wi log Vi = NSW(σ) , and

fncvx(b) =
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log vσ(j)j −

∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log

(
vσ(j)j

Vσ(j)

)
=
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)
log Vσ(j) =

∑
i∈A

wi

∑
j∈σ−1(i)

vij
Vi

log Vi

=
∑
i∈A

wi log Vi = NSW(σ) .
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For the second claim in the lemma, when wi = 1/n for each i, for any b ∈ P(A,G), we have

fcvx(b) =
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i∈A bij

n

)
− log n

=
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i∈A

bij

)
+

1

n

∑
i∈A

∑
j∈G

bij log n− log n

=
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i∈A

bij

)
,

where we used
∑

j bij = 1 for every i in the last inequality. Simply substituting wi = 1/n for each i in fncvx
completes the proof.

Proof of Lemma 1.3. We will show that

fcvx(b)− fncvx(b) = DKL(w ||u)−DKL(µ || θ) ,

where µ, θ are two probability distributions on G given by

µ(j) =
∑
i∈A

wi bij and θ(j) =

∑
i∈A bij

n
.

Using
∑

i∈A wi = 1 and
∑

j∈G bij = 1 for each i ∈ A, one can verify that
∑

j∈G µ(j) = 1 =
∑

j∈G θ(j).
Expanding the difference between the functions gives

fcvx(b)− fncvx(b) =
∑
i∈A

wi logwi −
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

wi bij

)
++

∑
i,j

wi bij log

(∑
i∈A

bij

)

=
∑
i∈A

wi logwi −
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A wi bij∑
i∈A bij

)

=
∑
i∈A

wi logwi +
∑
j∈G

∑
i∈A

wi bij log n−
∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)

=
∑
i∈A

wi log(nwi)−
∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)
(using

∑
j bij = 1)

= DKL(w ||u)−DKL(µ || θ) .

As DKL(µ, θ) ≥ 0, the above equation implies

fcvx(b)− fncvx(b) ≤ DKL(w ||u) .

For the lower bound it suffices to show that DKL(µ || θ) ≤ DKL(w ||u). To see this, we can expand the
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definition:

DKL(µ || θ) =
∑
j∈G

(∑
i∈A

wibij

)
log

(
n
∑

i∈A wibij∑
i∈A bij

)

= log(n) +
∑
j∈G

(∑
i∈A

wibij

)
log

(∑
i∈A wibij∑
i∈A bij

)

= log(n) +
∑
j∈G

(∑
i∈A

bij

)(∑
i∈A

bij∑
i∈A bij

· wi

)
log

(∑
i∈A

bij∑
i∈A bij

· wi

)

≤ log(n) +
∑
j∈G

(∑
i∈A

bij

)(∑
i∈A

bij∑
i∈A bij

)
wi log(wi)

= log(n) +
∑
j∈A

wi log(wi)
∑
j∈G

bij

= log(n) +
∑
i∈A

wi log(wi) = DKL(w ||u) .

Here, the only inequality is the convexity of x log(x), and the last equality follows from the feasibility of b.

As a first step to establish the stability of a stationary point of (1), we need the following the property about
its support.

Lemma A.1. Let b⋆ be the optimal solution of (CVX-Weighted) (even with support restriction) with q⋆j =∑
i∈A b⋆ij. Then there exist real numbers {λi}ni=1 and {ηj}mj=1 ≥ 0 such that ηj(1 − q⋆j ) = 0 for all j ∈ G

and if b⋆i,j > 0, then

wi log vij = wi log

(∑
i∈A

wibij

)
+ wi + λi + ηj .

Proof of Lemma A.1. If b⋆ is a first-order stationary solution of 1, then using the KKT conditions, there exist
λi ∈ R and αij , ηj ≥ 0 such that

∂L

∂b⋆ij
= wi log vij − wi − wi log

(∑
i∈A

wib
⋆
ij

)
− λi − ηj + αij = 0(A.1)

and

ηj(1−
∑
i∈A

b⋆ij) = 0

αijb
⋆
ij = 0 .

(Complementary slackness)

Using the complementary slackness condition, if b⋆ij > 0, then

wi log vij = wi + wi log

(∑
i∈A

wib
⋆
ij

)
+ λi + ηj .

Proof. Expanding the difference between the two function values, we get

fcvx(b
⋆,q⋆)− fcvx(b,q) =

∑
i∈A

∑
j∈G

(
b⋆ij − bij

)
· wi log vij −

∑
j∈G

∑
i∈A

wi b
⋆
ij log

(∑
i∈A

wi b
⋆
ij

)

+
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

wi bij

)
.(A.2)
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Since (b⋆,q⋆) is locally optimal, Lemma A.1 implies that there exist real numbers λi for each i ∈ A and ηj ≥ 0
for each j ∈ G such that ηj(1− q⋆j ) = 0 for all j ∈ G, and if b⋆ij > 0, then

wi log vij = wi log

(∑
i∈A

wi b
⋆
ij

)
+ λi + wi + ηj .

Substituting this value of vij in equation (A.2) gives

fcvx(b
⋆,q⋆)− fcvx(b,q) =

∑
i∈A

∑
j∈G

(b⋆ij − bij)

(
wi log

(∑
i∈A

wi b
⋆
ij

)
+ λi + wi + ηj

)

−
∑
j∈G

∑
i∈A

wi b
⋆
ij log

(∑
i∈A

wi b
⋆
ij

)
+
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

wi bij

)

=
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A wi bij∑
i∈A wi b⋆ij

)
+
∑
i∈A

(λi + wi)

∑
j∈G

b⋆ij −
∑
j∈G

bij


+
∑
j∈G

ηj

(∑
i∈A

b⋆ij −
∑
i∈A

bij

)

Using
∑

j∈G bij =
∑

j∈G b⋆ij = 1 for every i ∈ A, we get

fcvx(b
⋆,q⋆)− fcvx(b,q) =

∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A wi bij∑
i∈A wi b⋆ij

)
+
∑
j∈G

ηj
(
q⋆j − qj

)
,

where the last equation follows from the definitions of qj and q⋆j .
Note that by Lemma A.1, ηj(1−q⋆j ) = 0 for any j ∈ G. So if q⋆j < 1, then ηj = 0 and therefore ηj(q

⋆
j −qj) = 0.

If q⋆j = 1, then by the hypothesis of the Lemma, qj = 1, and again we obtain that ηj(q
⋆
j − qj) = 0. Using this

bound in the above equation gives

fcvx(b
⋆,q⋆)− fcvx(b,q) =

∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A wi bij∑
i∈A wi b⋆ij

)
.

Proof of Lemma 3.5. For x ∈ A∪G, let C(x) denote the children of node x in F and let T (x) denote the sub-tree
rooted at node x. We will prove this lemma by induction of the height of agent i by building (bδ,qδ) ∈ P(A,G)
inductively.

For the base case, assume agent i has height 1, i.e., T (i) consists of only leaf item nodes that are the children
of node i. Note that setting bδij = bij − δ and qδj = qj − δ only violates the Agent constraint for agent i. So we
only need to change the values of b in T (i) to make the solution feasible.

By the feasibility of b, bij+
∑

k∈C(i) bik = 1 and for every item node k ∈ C(i), qk = bik < 1. Using Lemma A.2

with α = bij and βk = bik, there exists some δk ∈ R≥0 for each k ∈ C(i) such that

bij − δ +
∑

k∈C(i)

bik(1 + δk) = 1

bik(1 + δk) ≤ 1 ∀k ∈ C(i)

0 ≤ δk ≤ 1 ∀k ∈ C(i) .

So, for each k ∈ C(i), we set qδk = bδik = bik(1 + δk). As every item in C(i) is a leaf, this gives qδk ≤ 1 for all
k ∈ C(i), and ∑

k∈C(i)

bδik = bij − δ +
∑

k∈C(i)

bik(1 + δk) = 1 .
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Therefore (bδ, qδ) is feasible. Additionally, for every k ∈ C(i), qδk = qk(1 + δk) ≤ 2qk as δk ≤ 1.
For the induction hypothesis, assume that the lemma is true whenever the height of agent is at most ℓ − 1

for some integer ℓ ≥ 1. We will show that the statement also holds when the height of agent i is ℓ.
Again, that setting bδij = bij − δ and qδj = qj − δ violates the Agent constraint for agent i. Similar to the base

case, we can find δk ∈ (0, 1) for each k ∈ C(i) such that bik(1 + δk) ≤ 1 and

bij − δ +
∑

k∈C(i)

bik(1 + δk) = 1 .

Setting bδik = bik(1 + δk) for each k ∈ C(i) will ensure that bδ satisfies the Agent constraint for agent i.
However, this can violate the Item constraint for some item k ∈ C(i), as qδk = qk + δkbik. So we inductively
update the values of b and q for the sub-tree rooted at item j for which such a violation occurs.

Consider an item k ∈ C(i) such that qδk = qk + δkbik > 1. Define γ := qk + δkbik − 1. Since qk ≤ 1,
we have γ ≤ δkbik ≤ bik as δk ≤ 1. We will decrease bk to ensure that qδk is at most 1. Using the fact that
qk =

∑
i′∈C(k) bi′k + bik, we can further bound γ as follows.

γ = qk + δkbik − 1 =
∑

i′∈C(k)

bi′k + bik + δkbik − 1

≤
∑

i′∈C(k)

bi′k(using bik(1 + δk) ≤ 1)

Therefore, there exist numbers γi′ ≥ 0 for each i′ ∈ C(k) such that γi′ ≤ bi′k and
∑

i′∈C(k) γi′ = γ.

We set bδi′k = bi′k − γi′ for each i′ ∈ C(k). Then qδk = bδik +
∑

i′∈C(k) b
δ
i′k satisfies the following inequalities.

qδk = bδik +
∑

i′∈C(k)

bδi′k

= bik(1 + δk) +
∑

i′∈C(k)

(bi′k − γi′) = 1 + γ −
∑

i′∈C(k)

γi′ = 1 ≥ qj and

qδk = bik(1 + δk) +
∑

i′∈C(k)

(bi′k − γi′) < bik(1 + δk) +
∑

i′∈C(k)

bi′k

= qk + δkbik < 2qk ,

where we used δk ≤ 1 and bik ≤ qk for the last inequality.
Furthermore, as γi′ ≤ γ ≤ bik, we have γi′ ≤ qk − bi′k ≤ 1− bi′k for any i′ ∈ C(k). So for each i′ ∈ C(k),

γi′ ≤ min{bi′k, 1− bi′k} .

Using the induction hypothesis, for each i′ ∈ C(k), there exists feasible (bγi′ , qγi′ ) which differs from (b, q) only
in the sub-tree rooted at i′ such that for any item j′ ∈ T (i′), qj′ ≤ q

γi′
j′ ≤ min{1, 2qj′}.

For item j′ ∈ T (i′), setting qδj′ = q
γi′
j′ completes the proof.4

Lemma A.2. Let α > 0 and β1, . . . , βk > 0 with α +
∑k

j=1 βi = 1. For any 0 < δ ≤ min{α, 1 − α}, there exist
real numbers (δ1, . . . , δk) such that

α− δ +
∑
j∈[k]

βj(1 + δj) = 1(A.3)

βj(1 + δj) ≤ 1 ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k]

Proof. As the above system contains only linear constraints on δj , we use Farkas’ Lemma to show the existence
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of {δj}kj=1. Re-arranging the constraints gives∑
j∈[k]

βjδj = δ(A.4)

βjδj ≤ 1− βj ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k]

If there do not exist real numbers {δj}kj=1 satisfying (A.4), then by Farkas’ Lemma, there exist real numbers

η, {γj}kj=1, {λj}kj=1 such that

βjη + βjγj + λj ≥ 0 ∀j ∈ [k](A.5)

γj , λj ≥ 0

δη +
∑
j∈[k]

(1− βj)γj +
∑
j∈[k]

λj < 0(A.6)

Adding equation (A.5) for all j ∈ [k], we get

η
∑
j∈[k]

βj +
∑
j∈[k]

βjγj +
∑
j∈[k]

λj ≥ 0 .

Since α +
∑

j∈[k] βj = 1, this implies η(1 − α) +
∑

j∈[k] βjγj +
∑

j∈[k] λj ≥ 0. In addition, since βi > 0, we also
have α < 1. Therefore dividing by 1− α gives

(A.7)
∑
j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj

1− α
≥ −η .

On the other hand, equation (A.6) implies

(A.8) −η >
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj

δ

On combining equations (A.7) and (A.8), we obtain

(A.9)
∑
j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj

1− α
>
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj

δ
.

We will now derive a contradiction to (A.9).
As δ ≤ 1− α , we have 1/(1− α) ≤ 1/δ, we have∑

j∈[k]

λj

1− α
≤
∑
j∈[k]

λj

δ
,(A.10)

where we also use the fact that λj > 0 for all j ∈ [k].
In addition, any j ∈ [k]

βj

1− α
− (1− βj)

δ
≤ βj

1− α
− (1− βj)

α
=

α+ βj − 1

α(1− α)
≤ 0 .(A.11)

Here, the first inequality follows from δ ≤ a and the last inequality follows from the fact that α +
∑

j∈[k] βj = 1
and α, βj > 0.

On adding equation (A.10) with equation (A.11) for all j ∈ [k], we obtain∑
j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj

1− α
≤
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj

δ
,

which contradicts (A.9). Therefore, there exist real numbers {δj}kj=1 satisfying (A.3).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited


	Introduction
	Our Results and Contributions
	Preliminaries
	Technical Overview
	Related Work

	Approximation Algorithm
	Rounding an Acyclic Solution

	Rounding via the Non-Convex Relaxation
	Pruning Small Items
	Fractional Matching and Analysis

	Conclusion and Open Questions
	Omitted Proofs and Lemmas

