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—— Abstract

We consider the Max-3-Section problem, where we are given an undirected graph G = (V, E)

equipped with non-negative edge weights w : E — R+ and the goal is to find a partition of V

into three equisized parts while maximizing the total weight of edges crossing between different

parts. Max-3-Section is closely related to other well-studied graph partitioning problems, e.g.,
Max-Cut, Max-3-Cut, and Max-Bisection. We present a polynomial time algorithm achieving

an approximation of 0.795, that improves upon the previous best known approximation of 0.673.
The requirement of multiple parts that have equal sizes renders Max-3-Section much harder to
cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing

approach of Lassere hierarchy along with a random cut strategy that sufices to give our result.
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1 Introduction

In this paper we study the Max-3-Section problem: given an undirected graph G = (V, E)
equipped with non-negative edge weights w : E — R the goal is to partition the vertex set
V into three equisized parts while maximizing the total weight of edges that cross between
different parts. Max-3-Section is closely related to other classic graph partitioning problems,
where given the same input as in Max-3-Section the goal is to output a partition of the vertex
set V (possibly given some problem specific constraint) while maximizing the total weight of
edges that cross between different parts. Perhaps the most famous of these problems is Max-
Cut, whose constraint is that the partition contains only two parts with no restriction on the
size of these parts. Max-Cut is one of Karp’s 21 NP-hard problems [11]
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and in their seminal work Goemans and Williamson [9] presented an approximation of 0.8786
using semi-definite programming and random hyperplane rounding. It is known that the
latter result is tight, assuming the unique games conjecture, as proved by Khot, Kindler,
Mossel, and O’Donnell [12].

A natural problem that generalizes Max-Cut is Max-k-Cut, whose constraint is that the
partition contains k parts with no restriction on the size of these parts. A simple algorithm
that returns a uniform random solution, i.e., every vertex is assigned independently and
uniformly to one of the k parts, achieves an approximation of 1[11/k. Several works aimed at
improving the guarantee of this simple algorithm, e.g., [6, 8, 4, 14]. For example, a notable
case that attracted much attention is the Max-3-Cut problem [6, 8, 4, 14], whose best
approximation is 0.836 and was given by Goemans and Williamson [8]. Interestingly, the
latter guarantee is worse than the approximation known for Max-Cut. For general values of
k, it was shown by Frieze and Jerrum [6] that an approximation of 10 /k + @(In k/k?) can be
achieved. Further improvements for the approximation guarantee were presented by de Klerk,
Pasechnik and Warners [4].

Adding a single global constraint to Max-Cut that requires both parts to be of equal size
leads to the classic problem of Max-Bisection. Max-Bisection was extensively studied
throughout the years, e.g., [6, 16, 10, 5, 15, 2]. This sequence of works currently culminates
with the works of Raghavendra and Tan [15], who present an approximation of 0.85 that
is based on rounding a Lasserre hierarchy semi-definite program, which was subsequently
improved to 0.877 by Austrin, Benabbas, and Georgiou [2] who improved the former rounding.
The question whether one can obtain for Max-Bisection the same approximation guarantee
that is known for Max-Cut remains a tantalizing open problem.

Both Max-3-Section and Max-Bisection are captured by the Max-k-Section problem
[1, 7, 13, 3], which falls in the above broad family of graph partitioning problems and whose
constraint is that the partition contains k equisized parts. Similarly to Max-k-Cut, it
is known that the simple algorithm that returns a uniform random solution achieves an
approximation of 1] %. Thus, it is no surprise that the goal of past research, e.g., [1, 7, 13],
was to improve upon this guarantee. For the special case of Max-3-Section, Ling [13]
presented an approximation of 0.6733 that is based on rounding a semi-definite programming
relaxation similarly to Max-3-Cut [8]. For general values of k, Andersson [1] presented
an approximation of 10 % + O(1/k3), again by rounding a suitable semi-definite program
relaxation. Additionally, Gaur, Krishnamurti, and Kohli [7] presented a local search algorithm
for a more general problem in which each part has a (possibly different) limit on its size.

The main focus of this work is the Max-3-Section problem. For k = 2, the best known
approximation for Max-Bisection (which is essentially Max-Cut with a single global
constraint on the size of the first part in the partition) equals 0.877 and is (almost) identical to
the best possible approximation of 0.878 for Max-Cut. However, when k = 3, the best
known approximation for Max-3-Section (which is essentially Max-3-Cut with two global
constraints on the size of the first two pieces in the partition) equals 0.6733 and is far from the
best known approximation of 0.836 for Max-3-Cut. Moreover, the former approximation
guarantee of 0.6733 for Max-3-Section only slightly improves upon the2/3 approximation
guarantee of the trivial algorithm that simply returns a uniform random solution. Thus, we
aim to understand and minimize the gap that exists for k = 3.

1.1 Our Results and Techniques

We present the following main algorithmic result for the Max-3-Section problem:

Theorem 1. There is a polynomial time algorithm for Max-3-Section that achieves an
approximation guarantee of at least 0.795.
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It is important to note that the approximation guarantee of the above theorem improves upon
the previous best known algorithm for Max-3-Section [13] that achieves an approximation of
0.6773. As proving the exact approximation guarantee of our algorithm is an involved task
(for reasons that will be clear soon), we also present the following conjecture that is based
on numerical evidence:

Conjecture 2. The algorithm presented to prove Theorem 1 achieves an approximation of
0.8192 for Max-3-Section.

We further show how the algorithm we present for proving Theorem 1 can be extended
to general values of k. First, we prove that the algorithm, alongside its analysis, cannot
provide an improved approximation as k increases (when compared to its approximation for
the case of k = 3). Second, using numeric evidence we conjecture that the approximation of
the algorithm remains 0.8192 for k ranging from 3 up to 6. Hence, the above gives rise to
the following extended conjecture:

Conjecture 3. There is a polynomial time algorithm achieving an approximation of 0.8192
for Max-k-Section for k= 3,4,5.

The above conjecture provides, for k = 4,5, an improved approximation when compared to
the previous best known result. The current best is a small improvement over the trivial
randomized approximation algorithm by Andersson [1] which achieves an approximation of 1
O /k+ O(k™3).

When considering our approach to Max-3-Section we focus on two of its closely related
problems: Max-3-Cut and Max-Bisection and examine the approaches used to design and
analyze algorithms for both. Let us start with Max-3-Cut. The approach used to obtain
the current best known algorithms for Max-3-Cut, e.g., [8, 4, 14], is based on the random
hyperplane rounding method due to Goemans and Williamson [9] (as well as extensions of
this method) of a semi-definite programming relaxation. This approach, when applied to
Max-3-Section, suffers a significant drawback since it does not preserve marginal values (a
marginal value is the likelihood the relaxation assigns to the event that vertex u belongs to
part i). Specifically, the expected number of vertices assigned to every part by the rounding
algorithm might be incomparable to n/3 and therefore applying these ideas as was done by
Ling [13] leads only to a minor improvement over the random solution algorithm. It is worth
noting that this drawback is already present when considering Max-Bisection.

Let us now consider Max-Bisection, and specifically we focus on the approach of
Raghavendra and Tan [15] (as well as Austrin, Benabbas, and Georgiou [2] who build
upon [15]). First, a Lasserre hierarchy of a natural semi-definite programming relaxation for
Max-Bisection is solved. Second, a rounding procedure that preserves the marginal values is
applied to obtain a subset C1 < V of vertices such that: (1) there are suficiently many edges
crossing the cut C; defines; and (2) C1 contains (roughly) n/2 vertices. Third, the solution
is re-balanced to obtain a perfect bisection, i.e., ensuring that |C1| = n/2 without a significant
loss in the number of edges crossing between C1 and C, = V ..C;.

There are two main dificulties when considering this approach in the context of Max-3-
Section. The first dificulty stems from the fact that we have three parts in Max-3-Section,
whereas in Max-Bisection there are only two parts. Therefore, if we use the above rounding
procedure to find C1 < V of size (roughly) n/3 with suficiently many edges crossing the
cut C1 defines, it is not clear how to recurse and further partition V ..C1. We note that
in Max-Bisection no recursion is needed since C> is chosen to be V ..C1. However, in
Max-3-Section V ..Ci still needs to be partitioned into C> and C3. Our solution to this
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dificulty is to condition the marginal values of vertices remaining in V ..C1 on the fact that
each remaining vertex was not chosen to C1. Such a conditioning, intuitively, ensures that
we preserve marginal values overall while recursing on V ..Cy.

The second dificulty in applying this apporach arises from the following observation:
we can show that if one first creates part C1, and then creates part C, (and part Cs is
all remaining vertices), then if the analysis is performed edge-by-edge (as is the case in
both [15, 2]) no approximation better than 0.7192 can be achieved. Specifically, we present a
configuration of the vectors that correspond to the endpoints of an edge that satisfy: (1)
the vectors are feasible for the semi-definite programming relaxation; and (2) the ratio
between the probability of this edge being separated by the rounding algorithm and the
contribution of its vectors to the objective function of the relaxation is at most 0.7192 (refer
to Section 4 for a formal definition of a configuration and to Observation 35 in the full
version of the paper). An approximation of 0.7192, if possible given the above approach,
improves the current best known approximation of 0.6733 [13]. However, we aim for a much
larger improvement. Our solution to this dificulty is to uniformly permute the order in
which the parts are generated. Since the approach based on [15, 2] preserves marginals, this
permutation allows us to better cope with problematic configurations. It is important to
note that a permutation is meaningless for Max-Bisection, since whether a vertex belongs
to C1 immediately implies whether it belongs to C; and vice versa. In Max-3-Section this s
obviously not the case.

Thus, following the above discussion, our approach builds upon the approach for Max-
Bisection with two added ingredients. The first is altering the marginal values the semi-
definite programming relaxation provides via appropriate conditioning when recursing. The
second is uniformly permuting the order in which the rounding algorithm generates the parts.
We note that these two added ingredients introduce two main additional obstacles. The
first obstacle relates to the last re-balancing step. In both [15, 2] the re-balancing succeeds
since it is proved that with a high probability each part by itself is close to being the desired
size. The method this is proved is by bounding the variance of the size of each part alone.
However, in our approach for Max-3-Section the bound on the variance of the size of a
given part depends on the other parts as well. This introduces technical issues and hence
bounding of the variance requires much care. The second obstacle relates to the computer
assisted proof via branch and bound method we employ in order to lower bound the
performance ratio of our algorithm. The expression of the separation probability of an edge by
the rounding algorithm is involved, as both marginal values are altered when recursing and
we employ a random permutation over the order in which the parts are generated.
Moreover, a configuration describing how the semi-definite programming relaxation encodes
an edge involves 7 different vectors (see Sections 3 and 4). Thus, we had to incorporate
many technical ingredients, e.g., analytically bounding the gradient of the separation
probability and restricting the search to specific type of configurations while analytically
bounding the error this incurs, to make the computer assisted proof terminate faster. This
results in about 150, 000 hours of CPU, which is roughly 20 CPU years, to prove Theorem
1.

1.2 Additional Related Work

The Max-Bisection problem has a long and rich history. Frieze and Jerrum [6] presented an
approximation of 0.6514 based on rounding a semi-definite program. Later on, Ye [16],
Halperin and Zwick [10], and Feige and Langberg [5] further improved the approximation
guarantee to 0.699, 0.7016, and 0.7027, respectively. They achieved the above by strengthening
the semi-definite programming relaxation, e.g., by adding triangle inequality constraints,
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and presenting better rounding methods. The next leap in approximating Max-Bisection
came with the work of Raghavendra and Tan [15]. They utilized a higher-level Lasserre
hierarchy semi-definite program, together with an elegant rounding algorithm, and obtained a
0.85-approximation. Later on, Austrin, Benabbas, and Georgiou [2] showed an improved
rounding algorithm, pushing the approximation guarantee up to 0.877. It should be noted
that the latter is very close to the best possibloe approximation of 0.878 for Max-Cut.

Focusing on Max-k-Cut, Frieze and Jerrum [6] presented an approximation algorithm
with better guarantee than the naive random algorithm. They utilized a semi-definite
program relaxation alongside an elegant rounding algorithm that samples k random vectors
and assigns every vertex v € V to the cluster of the random vector that is closest to v’s vector in
the relaxation. Goemans and Williamson [8] presented an improved approximation of 0.836
for Max-3-Cut by using a complex semi-definite program. In [4], de Klerk, Pasechnik, and
Warners presented further improved bounds for Max-k-Cut. Please refer to Table 1 by
Newman [14] for a summary of approximation guarantees.

1.3 Paper Organization

We start by presenting preliminary definitions in Section 2. Next, in Section 3 we present our

semi-definite program for Max-3-Section and show that it can be strengthened to obtain a

solution which is globally uncorrelated. In Section 4 we present our rounding algorithm and

its analysis. To obtain a bound on the approximation guarantee of our rounding algorithm,
we present an analysis which is based on a computer-assisted proof in Section 5.

Furthermore, we discuss the generalization of our algorithm, and its numerical estimation,
in Section 6. Missing proofs appear in the full version of the paper.

2 Preliminaries

We denote by @ : R — [0, 1] the cumulative distribution function of the normal gaussian
distribution and by ®™ : [0, 1] — R its inverse. Specifically, if R [1N[0, 1] then: (1) Vx €
R: Pr[R £ x] = @O(x) (or equivalently Pr[R > x] = 10®(x)); and (2) Vx € [0,1]: Pr[R <
®"1(x)] = x (or equivalently Pr[R > ®"%(x)] = 10x). Moreover, we say that a vector g is a
random gaussian vector if its coordinates are i.i.d standard gaussian N(0, 1) random
variables.

We denote by I : [0, 1]> — [0, 1] the probability that a standard bi-variate gaussian
distribution with correlation t has both its coordinates at most the given quantiles, i.e.,

o - X 0 1
Vg1, g2 € [0,1]: Te(g1, g2) BPr(X < © Yqg1), Y < © g2)], ON -

t
Y 0 1

We define the mutual information between two random variables.

Definition 4. Let X, Y be jointly distributed random variables taking values in [q]. The
mutual information of X and Y is defined as

"X Y) ij)g({q]Pr(x =LY =Jlloe o pn(x 3)pY x5 4)))

For any two disjoint subsets of vertices A, B — V, we denote by 6 (A, B) the collection of
edges having one endpoint in A and another endpoint in B. Hence, |§(A, B)| denotes the
number of edges crossing between A and B.1

1 For simplicity-of presentation, we assume from this point onward that the graph is unweighted. All of
our results apply to graphs equipped with non-negative edge weights, in which case one should
substitute |6 (A, B)| with the total weight of edges crossing between A and B.
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3 The SDP Relaxation for Max-3-Section

In this section, we present a semi-definite programming (SDP) formulation and prove that it
is a relaxation for the Max-3-Section problem. Similarly to previous works on Max-
Bisection, e.g., [2, 15], we strengthen this formulation and obtain additional properties
that will be useful to our rounding algorithm. We define the following SDP formulation for
Max-3-Section:

X X3

(SDP) maximize 10 y, ey, (1)

e=(u,v)eE i=1
st. [yplf=1 (2)
Ty = yg eyl WeV,Vi= 1,23 (3)
WP Dy P Dy = 1 weVv  (4)
y, ey, =0 WeV,i=j (5)
yXL ey, >0 YuveV,Vij=123 (6)
Ty, ? = n/3 Vi= 1,23 (7)

veV

We note that in the above and what follows, for every vector y a square norm of a vector
[y[? is with respect to the & (Euclidean) norm and equals y ey. Next, we prove that
the formulation is a relaxation for our problem. Intuitively, for every vertex v € V the
formulation SDP assigns a distribution over the three clusters via the vectors y%,, yzv, and ys;.
Specifically, yg is a unit vectors (Constraint (2)) that denotes true whereas the zero vector
(that does not appear explicitly in SDP) denotes false. Each vector y‘i indicates how much
vertex v is likely to be assigned to the ith cluster by SDP. Hence, ﬂy\’/ [?, or equivalently
yV’ ey (see Constraint (3)), denotes the marginal probability of assigning vertex v to the jth
cluster by SDP. For every vertex v € V, the sum of these marginal probabilities needs to
sum up to one (Constraint 4). Since every vertex v € V can be assigned to a single cluster
in any integral solution, SDP enforces that the vectors y"'/ and y{/ for i = j are orthogonal
(Constraint (5)). Intuitively, the joint probability SDP assigns for vertices u and v to belong
to the ith and jth clusters, respectively, is non-negative (Constraint (6)). Finally, since the
three clusters are required to be of size n/3 each Constraint (7) is added to SDP. When
focusing on the objective of SDP (see (1)), for every edge (u, v) € E the inner product y, ey;
intuitively indicates the joint probability of both u and v to be assigned to the it" cluster
by SDP. Therefore, intuitively 1y ley Xy, %y, 6 Zly, ¢y, fdicates the likelihood of
separating an edge (u, v) by SDP. Thus, this is the objective of SDP.

The following lemma proves that SDP is a relaxation to the Max-3-Section problem,
i.e., the value of an optimal solution OPTspp to SDP is an upper bound on the value of an
integral optimal solution OPT.

Lemma 5. Given an instance of Max-3-Section let OPTspp be the value of an optimal
solution of SDP (1) and OPT be the value of an optimal integral solution. Then, OPTspp >
OPT.

Proof. Let {C,, C;, C5'} be an optimal solution for the given instance of Max-3-Section
whose value is OPT. Construct the following vector solution to SDP. First, fix an arbitrary
unit vector ygz. Second, for every v € V define y’ ,to be the zero vector if v £ C ,and y!
= Yo ifvecC-. O,ne may notice that all the constraints hold for this solution and the value of
the objective of SDP equals the value of the optimal solution {C-,C-, C } Hencg, OPTspp
> OPT.
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For simplicity of presentation, we denote by Y a solution to SDP. Thus, Y consists of
{yiYuev,i=1,2,3 and yz. A useful property that any feasible solution Y to SDP satisfies is
that y1 + y2 + y3 always equals the vector ygz. This is summarized in the following lemma.

Lemma 6. Let Y be a feasible solution to SDP. Then, for every vertex u € V: y ,+y 2y, 3=
Yo

An immediate corollary of the above lemma is that for every pair of vertices u,v € V:
y, e(yl+ y2+ y3) = Lyl[? (via Constraint (3)).

3.1 Globally Uncorrelated Solution

Next we define when a solution Y to SDP is globally uncorrelated following the framework of
[15]. Global uncorrelation implies that our rounding algorithm returns a solution that has close
to © vertices in each part with high probability (see Lemma 15). The sizes then can be
corrected with a minor loss in approximation ratio by randomly shifting the imbalanced
vertices (see Lemma 16).

A simple fact about any SDP solution is the following: given any two vertices u, v,
there exists a local probability distribution wy,v on {1, 2,3}2 such that Pry, , [Xu = i, Xy = j]
= (y',y/) forevery i,j € {1,2,3} and Pry, ,[Xy, = i] = Oy’ (? for every i € {1,2,3}.The
distribution implies that, at least, locally the semi-definite program is a distribution
over integral solutions that satisfy correct correlations. The last property states that the
distributions are consistent on their intersection which can be at most one vertex.

Definition 7. A solution Y to SDP is e-independent if Ey,v[/y, ,(Xu, Xv)] < € where py,y
is the local probability distribution associated with vertices u and v.

The following lemma is an application of Theorem 4.6 from [15] to our SDP for Max-
3-Section and it shows how to obtain a e-independent solution. The algorithm proving
Lemma 8 follows from solving the O(t?)-level Lasserre hierarchy semi-definite program for
SDP and then inductively conditioning on variables.

Lemma 8. There is an algorithm which, given an integer t > 0 and an instance of Max-3-
Section, runs in time n°P°() and outputs a set of vectors Y consisting of {y' }v¢v,i-1,2,3 and
Y& such that:

1. Y is a feasible solution to SDP.

2. The objective value of SDP (1) when plugging in Y is at least OPTspp [ tl.

3. Y is }-independent.

4 The Rounding Algorithm

In this section we present our rounding algorithm for SDP, which appears in Algorithm 1.
The algorithm receives as input a solution to SDP and outputs a partition {C1, C2, C3} of V
that: (1) has high value compared to the SDP value of the input solution; and (2) is (nearly)
balanced, i.e., for every i = 1,2,3: |C;| is close to n/3. We will conclude the analysis by
proving that one can re-balance the partition without a significant loss in the value of the
solution.
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In order to state the algorithm, we require the following definition. For every vertex
ueV andi= 1,2,3 we denote by zj, the normalized component of y; that is orthogonal to

Vo, i, yi = [yil2yp + © Y217 yj Pz . Equivalently,
Yo ¥ Py

Dy R

Clearly, Z, is a unit vector that is orthogonal to yz. We note that if the marginal of vertex
u and cluster i is integral, i.e., [y’ [? € {0,1}, then z/ is not defined. In this case one can

(8)

i
?)
z, @

simply choose an arbitrary unit vector in the space orthogonal to yz to be z/.

Algorithm 1 Max-3-Section Rounding Algorithm.

Input: solution {y/ }uev,i-1,2,3 and yg to SDP.
Output: a partition of V into three parts.
1 Draw uniformly at random a permutation € X3.
2 Draw independently two random Gaussian vectors g1 and g3.
3 Define the following sets:
n o
Se B ueV:iz"Megi >0t 10 w2
n
Se2)@ ueV :2"?) eg,

\%

\

ot 10 y 210 yrre)

4 Return {Ci, C2, C3} where: Cr(1) BSn(1), Cr(2) @Sn(2) ~Sr(1),
Cn(_a,) "4 .'.(5,[(1) Usn(z)).

We first prove that Algorithm 1 preserves the marginal probabilities of SDP, i.e., [y [?
is the probability vertex u is assigned to cluster C;. This is summarized in the following
lemma.

Lemma 9. For every u € V and i = 1,2,3, it holds that Prlu € C;] = [y’ ?.

Proof. Fix a permutation t € X3, and let us calculate the probability that u € C; conditioned
on the event that m was chosen in the first step of Algorithm 1. Hence, the following holds
for Cn(l)l

PrueCpulm=PrueSyyln=Prz"Meg > 100" 10 yW?|m = oy,

u u u

We observe that the sets S;(1) and S;(2) are constructed with independent vectors g1 and
g2. Therefore, similarly to the above, the following holds for Cr(2):

Pru e Cpalm=PrugSy1) AUESyyT

= Pr u & Sr1)|m ePr ue Sy

_on(2) -

- Ty
10 "2 epr 2" egy > 1007 10 u n
o aTe—
Uj u (17 E7'(1 DZ)U
yr )
u

107 vn(l)fz .
’ (10 y P2

= Lyt

u

Finally, since the events {u € Cy(1)|}, {u € Cr(z2y|t}, and {u € Cp(3)|t} are disjoint and
exactly one of them occurs, i.e., every vertex u € V belongs to exactly one cluster in the
output, we can conclude that:
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Pru e Cp3y|m = 1UPru € Cpyy|mPru € Cppy|m = 10 U0 R 2 2 Oy B2,

u u u

In the above the last equality follows from Constraint (4). Unfixing the conditioning on m by
using the law of total probability concludes the proof.

Our goal is to write an expression for the probability that an edge crosses between two
different parts in the partition that Algorithm 1 outputs. Given a fixed pair of verticesu, v
e Vandi = 1,2, 3, we denote by t; the inner product between z, andl z,. Ohe should note
that Constraint 3 in SDP 1 implies:

_ (y, Oxi eyg) o(y/ Cw; eyg) ai Lxiw;

T Ox 3 e(wilw, P =P (xi Ox;3 o(w; Ow; R~ )

i

where x; B Oy, % and w; @ Oy, 2 are the marginal values the SDP assigns to vertices u and v,
respectively, with respect to the /" cluster, and a; @ y,/ey,/ is the correlation the SDP
assigns for both u and v being assigned to the it cluster. The following lemma gives the

desired expression. We require the following claim for its proof:

Claim 10. Let (X, Y ) be a standard bi-variate Gaussian with correlation t. Then for
every g1, g2 € [0, 1], we have Pr(X > ®™(10q1), Y = ®%(10q2)] = Te(q1, g2).

Lemma 11. For every u,v € V, let Ay, be the event that Algorithm 1 separates u and v:

1 X
PriAyv] =10 = Cteiy Xn(1)s Wrn) + Tep, 10Xr(1), 1 Dwgye

HEZg

#
x7(2) B wr(2) x7(2) wr(2)
o T 10 ey 1Y 1w ¥ 10 10500 Ty

The proof of Lemma 11 appears in the full version of the paper.

Our goal now is to lower bound the expected value of the output of Algorithm 1, before
it is re-balanced (with a negligible loss) to ensure the size of each cluster is exactly n/3. As
our analysis is performed edge-by-edge, i.e., for every edge we lower bound the ratio of the
probability Algorithm 1 separates the edge to the contribution of this edge to the objective
of SDP (1), we introduce the notions of a configuration and a feasible configuration.

A configuration is a vector ¢ = (x1, X2, X3, W1, W2, W3, 01, 002, O3, t1, t2, t3) € R?, such
that for every i = 1,2,3: xj, w;, a; € [0, 1] and t; € [[]1, 1]. We say that a configuration c is a
feasible configuration if it can be realized by vectors in a feasible solution to SDP (as the
following definition states).

Definition 12. A configuration ¢ = (x1, X2, X3, W1, W2, W3, a1, 02, a3, t1, t2, t3) € [0, 1]° x
[(1, 113 is called a feasible configuration if there are vectors yi, y2, y3, yl, y2, y2 and yg
satisfying:

1. The vectors y}, y2, v3, vyl v2 y2 and ygz satisfy Constraints (2) to (6) in SDP.

2. xi = Ly (2, wi= Ly [?Pand aj =y ey, Vi= 1,2,3.

3.t = (ai Dxiwi)/((xi Ox2 ) wi Ow?))Y2, vi= 1,2,3.

The vectors y', y2, y3, yi, y2, y3 and yg are called a realization of c. The set of all feasible
configuration is denoted by X.
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We note that there is some redundancy in the above definition. First, we can reduce the
dimension of the configuration by two simply by substituting x3 with 10x1 Ox, and ws
with 10w Owsa. Second, we can remove t1, t2 and t3 (or a1, a2 and as) since each t; (or a;)
can be derived from all the parameters excluding t1, t2, and t3 (or excluding a1, a2, and as).
In Lemma 21, we give a characterization of X after projecting out t1, t2, t3. This description
consists of linear constraints and we utilize the description for our computer-assisted proof.
For simplicity of the analysis, we will keep all the parameters.

Let us now define two functions over X. The first function f, given a feasible configuration
¢ € X, returns the probability that Algorithm 1 cuts an edge whose associated vectors are a
realization of c. Formally, following Lemma 11:

1 X
f(c)@1ll] c e

neXs

ey Xn(1) Wr(n) ¥ Tepny 10Xn(2), 1 0UWra)®

#
XT[(Z) WT[(Z) XIT(Z) WH(Z)
* Ntz 10 1DX,I(1) ’1j IDWn(l) + i) 1DX,[(1) /1 DWn(l)

The second function g, given a feasible configuration ¢ € X, returns the contribution to the
objective of SDP of an edge whose associated vectors are a realization of c. Formally,
following (1):

g(c)B10ar Day Das.

It is important to note that both f and g can be evaluated for every configuration ¢ €
[0,11° x [, 1)® which might not be necessarily feasible. However, for such a (non feasible)
configuration ¢, f(c) and g(c) lose their “meaning”.

To lower bound the value of the solution {C1, C2, C3} Algorithm 1 outputs, we introduce
the following:

u B inf M . (10)
cex g(c)

Clearly, from the above definition of p, the value of the output {C1, C2, C3} of Algorithm 1is
at least: L eOPTspp > ueOPT (where the inequality follows from Lemma 5 which states that
SDP is a relaxation). Hence, if the output {Ci, C2, C3} of Algorithm 1 was perfectly
balanced, i.e., |C1| = |C2| = |C3| = n/3, Algorithm 1 would achieve an approximation of u to the
Max-3-Section problem. In what follows we show that one can re-balance {C1i, C2, C3}
without a significant loss in the value of the solution. Thus, our goal is to lower bound .
For now, as formally proving the exact value of u is a challenging task, we state the following
conjecture that follows from numeric estimation of p.

Conjecture 13. u > 0.8192.

Assuming the above conjecture regarding u (Conjecture 13), there are two things that
are left in order to conclude the analysis of our algorithm. First, we show that if the solution
Y to SDP is independent (as in Definition 7 and Lemma 8 ) then with a suficiently high
probability every cluster C; is close to the desired size of n/3. This gives rise to the following
Definition 14 and Lemma 15. Second, we show that a solution {C1, C2, C3} that is close to
being perfectly balanced can be eficiently re-balanced without a significant loss in its value.
The latter is summarized in Lemma 16.
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Definition 14. A partition {C1, C2, C3} of a graph on n nodes is e-unbalanced if for every i
=1,2,3:

3(1 Te) < |G| < 3’3(1+ €).

Lemma 15. Let Y be a lt—independent solution to SDP where t = Q(g'*8), and {C1, C2, C3}
be the partition that Algorithm 1 outputs on Y. Then for every i = 1,2,3 it holds that:
h i
Pr ||Ci|(In/3| > Eg < e

Next, we show that such unbalanced partition can be balanced without a large loss in
the objective. That is, we present an algorithm that given a e-unbalanced partition, finds in
polynomial time a balanced partition with small loss in the objective, in expectation.

Lemma 16. There is a polynomial-time algorithm that given a e-unbalanced partition
{C1, C2, C3} with value A = |6(C1, C2)| + |6(C2, C3)| + |6(C1, C3)| finds a balanced partition
{C,, C,, C,} with expected value E[A] > (1 )2€)A.

The proofs of Lemma 15 and Lemma 16 appear in the full version of the paper. We
combine these lemmas and prove the following result.

Theorem 17. For every constant € > 0, there exists a polynomial-time approximation

algorithm for Max-3-Section, that runs in time n®®°(e ") qachieving an approximation of
(102€)(uO(€)).

Proof. Let £ > 0 be a constant, and t an integer satisfying t = Q(e"*8). Lemma 8 shows that
we can compute in polynomial time a solution Y to SDP that is l—indep%endent with only an
additive loss of 1/t in the objective. We repeatedly apply Algorithm 1 to round the above Y
until we obtain a solution {C1, C2, C3} that is e-unbalanced, and then apply Lemma 16 to
re-balance it an obtain our final output.

Let us now analyze the approximation guarantee of the above algorithm. First, It follows
form Lemma 15 and a simple union bound over the three clusters that with a probability of
at least 1 [1 3¢, applying Algorithm 1 to round the above solution Y vyields a clustering
{C1, C2, C3} that is g-unbalanced (as in Definition 14). Let us denote by A the event that
{C1, C2, C3} is e-unbalanced. Hence, Pr[A] > 1[13¢ and Pr[A] < 3e. Moreover, as before, let
us denote by A the value of the solution {C1, C2, C3}. Thus, the expected value of this
solution conditioned on it being e-unbalanced is at least:

E[A] (IPr[A] eE[A|A]
Pr[A]

E[A|A] = > UeOPTspprnH [ Z%PT.

The inequality follows from the facts that: (1) E[A|A] < (3/2) eOPT (since A < m and
OPT > (2/3)m); (2) E[A] > e OPTspprn (definition of u (10)); and (3) Pr[A] < 1, Pr[A] £ 3e.
We note that OPTsppin > OPTspp [1e¥® > OPT (1€, Hence,

E[A|A] > OPT(u L1O(¢g)).
Applying Lemma 16 concludes the proof.

Moreover, in Observation 34 in the full version of the paper we present a configuration ¢

that has a ratio of 2((3 = 0.8192, hence that is an upper bound on p.
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4.1 Towards Estimating u via a Computer Assisted Proof

For our computer assisted proof, we consider a slightly different version of u which speeds
up our code. Consider the following, for some fixed § > 0:
f(c)

M) i LA 11
H cex,gl;?cf)za' gl(c) (11)

The following lemma shows the loss we incur when using u' rather than u is bounded.

Lemma 18. Let {C1, C2, C3} be the output of Algorithm 1 when run on a solution Y to
SDP 1 with objective value SDPyaL. Then we have that
5 E[|6(C1, C2)
+ + > 10 , ’ s
16(Ca, C3)[ + [6(C2, C3)] 2108y M *SBPvar,
The following theorem summarizes the approximation guarantee when p' is used instead

of .

Theorem 19. For any constant € > 0, there is an algorithm that outputs a partition of the
vertex set {C1, C2, C3} with |C1| = |C2| = |C3| satisfying,

5 ,
E[|6(C1, C2)|+]6(C1, C3)[+]6(C2, C3)|] = (1012¢) WZW“ (OPTspp [10(€/2))

with an expected run-time of n°(1/%),

Proof. First we use Lemma 8 to get a 1-independent solution Y for t = Q(e8). Let
OPTspprn denote the objective value of this solution. Next we run Algorithm 1 on Y and
repeat until it outputs sets C'l, C,, C; that are e-unbalanced. We note that by Lemma 15
(C4, C5, C3) is not e-unbalanced with probability at most 3¢, so we run Algorithm 1 at most
1/3€ times in expectation. Since Cj, C5, C5 are e-unbalanced, applying the random shifting
of Lemma 16 to C{, C3, C3 we get C1, C2, C3 satisfying

E[|6(C1, C2)|+]6(C1, C3)|+[6(C2, C3)[] = (1112€)E[|6(C, C )| +]6(C", C Y| +]6(C,, C5l,

From Lemma 18 we have,

E[|6(C1, C2)| + |6(C1, C3)|+ |6(C2, C3)|] = (1102€) 1 /JVOPTSDpr.

0 76,
2(16)
Then applying second item of Lemma 8 gives us that OPTspp-n = OPTspp [1O(e3/2) since
we set t = Q(e18).

5 Computer Assisted Proof

The goal of this section is to lower bound u'. We use a branch and bound procedure to lower
1’ and which gives a guarantee for the approximation factor of our algorithm (Theorem 19) .
We recall the definition of u'

f(c)

ne . (12)

B in
K ceX,g(c)=s"  g(c)

The following claim gives a simple, yet useful, bound on the probability that our rounding
algorithm will separate two vertices in the graph.
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Claim 20. Let u,v e V, let x; = [y [? and w; = [y/[? fori = 1,2,3 and ¢ be a
configuration corresponding to this pair. Then it holds that

|x1 Owal + |[x2 Owa| + |x3 Dwa|

fle) = 5

We characterize the configuration space X which we will consider in the computer assisted
proof.

Lemma 21. Let ¢ = (x1, X2, X3, W1, W2, W3, 01, &2, A3, t1, t2, t3) € X. Then c satisfies the
following:
1. x4+ x2+ X3 = w1+ wa+ w3z= 1.
2. 0< a; £ min{x;, w;} foralli=1,2,3.
3. max{0,x3 [az+ a1 [lwy, wz oz + a1 lIx1} < min{wz [laz, x3 oz, x2 + x3 [1wq +

o1 oo ,Olg}.
4. t;j = x,-\o)l(iuvxdlw\’.\w : ori € [3].

We define the following two polytopes which we will consider when verifying bounding 1.
These polytopes help us to speed up the branch and bound procedure.
1. 2 @ {(x1, X2, X3, w1, Wz, w3, a1, 02, a3, t1, tz, t3)|x1 £ min(x2, w1, wa, w3, x3), X2 < Xx3}.
2. E@{c= (x1, X2, X3, w1, Wz, w3, a1, 02, a3, t1, t, t3)} such that

X3 x; Uw; ,
WM< pgle) gte) > 6.

i=1

The following claim shows why we can restrict to configurations in £ and follows from
the symmetry of f, g.

Claim 22. Let ¢ € X[IZ. Then there exists ¢ € XN X such that f(c) = f(c') and
glc) = g(c).

Then Claim 22 and Claim 20 imply the following.

Claim 23. If infcex~sE %2 p then ' > p.

g
Proof. By Claim 22 we get the following: u' = infccx, g(c)>s fg((% = infeexnz,g(c)ss fg‘%.
Assume for contradiction that g’ = minccxns, gie)zs' &5k < p. Then 3¢’ € XN T with

) g(c)
g(c') = 6 and fa((%*)y < p. We have that ¢’ ¢ E otherwise g(c') > p by the assumption of the
3 Ixilwil o
=1 2
> pg(c).@

P ,
lemma. Then by definition of E, pg(c ), but this is a contradiction by Claim 20

. 4 P 3 Xilwj
since f(c') > I '2"

Thus our goal for the computed assisted proof is to show infcex~s~E f(%; p for some value of
p. Given 12 intervals (/1,..., /12) we define the following polytopes to divide our feasible
region into hypercubes. Consider the following polytope,

O, ..., 12)= (1 x I2...x l12) nX

Note that intervals /; correspond to possible values of x; for j € [3], intervals /3, Ia, Is
correspond to values of wi, wy, ws, intervals 17, Ig, Ig correspond to values of a1, a3, as,
and intervals /10, /11, /12 correspond to ti, t, t3. Our computer assisted proof enumerates
l1, ..., 112 so that the union of all I1(/1, ..., l12) "NZ NE covers XnE NE. For each /1, ..., /12
we show one of the following three:
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1. (1, ..., 12)nENnE= &

2. infeen(n,...,1,)NEAE ’_;7((%); Z p.

3. Divide (/1,...,112) into a collection Y whose union equals (/1,..., /12) so that each
(I,...,115) € Y satisfies one of the first two items.

which implies the hypothesis of Claim 23. The third item is the branching step and the first
two items are how we eliminate branches. For our computer assisted proof we will only consider
X1, X2, W1, W2, t1, tz, t3 as independent variables. The remaining variables ws, x3, a1, a2, as
will always take values wa = 10w1 [wz, x3 = 10x1 [xz, @i = xjwi+t; — (x; O x?)(w; O w?)
for i € [3]. Our algorithm runs in stages. In the first stage we use an LP to eliminate
hypercubes. The first stage works as follows,

1. Enumerate all I = (/1, ..., /12) such that |/;| = n1 forj € {1,2,4,5} and |/;| = na forj =
10, 11, 12 that the union of all (/1, /2, I3, la, l10, 111, 12) covers the region [0, 1]* x [[11, 1]3.
Note that intervals Is, Is, I7 can be determined by the bounds on the other intervals, /;
such thatj & {5, 6, 7}. This follows since bounds on x;, wj, t; imply bounds on a; because «a;
=t (9; X2 (w; Ow2 ]+ x;w;. Similarly, I3, Is are determined by /1, /2 and /a4, Is

. . I 1
respectively since x3 = 10x1 [x2 and w3z = 10wz Ows.

2. For each hypercube I enumerated in the previous step, check that IT1(I) N E n X contains
a feasible point by solving an LP. If yes, save I for further processing.

Partial Derivatives

A crucial ingredient of the branch and bound procedure is to obtain a lower bound on the
function f(c) for any configuration ¢ € I in any cube. This we do by computing f(c") for
some well chosen ¢~ € I and then using bounds on the partial derivatives to infer a bound
f(c) for all other ¢ € I. A tight bound on partial derivatives ensures a smaller branch and
bound tree. We detail the partial derivatives and bounds thus obtained now. Previously, we
defined the notion of configuration and the function f as a function of 12 variables. Since we
only consider (x1, X2, w1, Wa, t1, t2, t3) as variables we have of a_Tadf 0—73‘5/‘ a_T,-O and f, g are
functions of 7 independent variables. We recall the definition of f

1 X
fx, w,a,t)=10 A Cieny Xn(1)yr Wrqn) + Tepqy 10Xn(1), 1 Owpq)e
nels
H
Xn(Z) Wrr(Z) Xn(Z) Wn(Z)
i rtn(z 1 + [tr(2)

) TT0X (1) ,10 TTWnr(1) TT0Xr(1) T T0OWnr(1)

Moreover, for our use we can assume that the domainof f is0< x1+x2 < 1,0< wi+wy < 1,
a1, az, a3 € [0,1] and t3, ta, t3 € [[1, 1]. In the following, we are going to prove bounds on the
partial derivatives of f(x, w, a, t) with respect to x;, w; and t;.

Lemma 24. For each (x, w, a, t) in the domain of configuration, the following bounds on
the partial derivatives of f hold:
1. gflx,w,at)<O0 fori=1,2,3.
2. | @-fx,w, a t)] < § 041 0xs), fori=1,2.3.
|dw—ﬁé(, w,a, t) < ;05 (1ewsy), fori= 1,2
The proof of the lemma is technical and appears in the full version of the paper. We now

have the following claim that gives a lower bound on all configurations in the hypercube as
compared to the point m in it.
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Claim 25. Let I be a hypercube and ® BTI(I)nX NE. Let m € R!? be a point where the
coordinates corresponding to x1, X2, w1, wz are the midpoints /1, /2, 14, Is respectively and
the last 3 coordinates corresponding are t1, t2, t3 which are the upper bounds of /10, /11, /12.
Then the following holds,

) o 1 X X2
min flx1, x2, ..., t1, t2, t3) 2 f(m) [J ~ (5 0(1 Dzsm) Nz Ozi)
c=(x1,.. ., t1,t2,t3) €0 6zefx w =1

Lemma 26. Let I, m, ® be defined as in Claim 25. Then mincco gf((c';)z p if,

1 X X2
flm) [ A (5 (10zzsN(ziTzi) 2 pmaX%(C)
c
ze{x,w} i=1 ©

where Zj, zj for z € {w, x} are the upper and lower bounds given by their corresponding
interval in 1.

Proof. We use the fact that f is non-increasing in t; and Claim 25 to get,

min f(c) > min flxy, x2, ..., t1, 2, t3)
cec® c=(X1,X2,...,t1,t2,t3)€0
1 X X2
> f(m) O c (5 U(10zzm(ziTzi)
ze{x,w} i=1

The first inequality follows since f is non-increasing in t, @ by Lemma 24. The third inequality
follows by Claim 25. Thus by the inequality in the lemma and the relation above, we have
shown: mincee f(c) = p maxceo g(c).

Now we describe the final stage of the experiment which eliminates all remaining cubes
from the first stage.
1. For all remaining hyper cubes I from stage 1 run the following steps until all cubes are
eliminated.
2. Split the intervals I1, /2, 14, Is corresponding to x1, X2, w1, w3 into halves to get 16 smaller
sub-hypercubes (/{,..., 13, l10, 111, 112). We note that this also tightens the intervals
corresponding to x3, ws, a1, a2, az. Check if each smaller hypercube has a feasible pointin
o, ..., 1, l&o, I11, 112) NnZ N E. If yes, then the sub-hypercube can be eliminated.
Otherwise, verify if the inequality in 26 holds. If yes, the sub-hypercube can be eliminated.
4. Otherwise, split the ti, t, t3 intervals into halves to get 8 sub-hypercubes
I' = (I,.-., 03, lip, 111, I15). This also tightens the intervals for a1, a, as. Check if each
smaller hypercube 1" has a feasible point in II(I') "X NE. If yes, then the sub-hypercube
can be eliminated.
5. Otherwise, split the sub-hyper cube into 16 smaller hyper-cubes using Step 2. Repeat
Steps 2-5 until all sub cubes are eliminated.

w

We ran this branch and bound procedure with p = 0.80,8 = 0.01 giving a final approximation
of 0.795.

6 Max-k-Section

Our algorithm for Max-3-Section can be generalized for larger number of sections in the
following way. For a natural number k > 4, one can write a similar SDP formulation, where
each node v € V has k vectors y}, ..., yX, with similar constraints and objective for the SDP
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for Max-3-Section: maximize P{ulv}ef o1 ]Pifl yi eyi). The rounding algorithm will
work in a similar way. For example, we consider k = 4. We draw a random permutation 7t in =4
and three random gaussian vectors g1, 82, 83 with coordinates independently distributed by
N(0, 1). Then, we define S;(1) and Sy(2) in the same way like in the algorithm for Max-3-
Section. Next, we define

( n(3) 2 ! )
Sron @ eV izless 2 0 IDW@”*E%UT[FL@”*”T
u u
and the four clusters in the output will be Cr(1) = Sp(1), Cr(2) = Sr(2) -~Sr(1), Cr(3) =

Sr(z) ASr(2)YSr(1)) and Cr(a) = V (Sr(1) YSr(2) YSr(3)). Then, for any constant k, we can
claim that with high probability the solution is concentrated and can be re-balanced,
similarly to Lemma 15 and Lemma 16.

Our goal now is to bound the approximation factors that these algorithms achieve, for each
k. As we discussed in the previous sections, computing the worst approximation guarantee,
or even bounding it analytically is not an easy task. For k = 3, we used the branch and
bound algorithm and presented a lower bound on the approximation ratio. For larger values
of k, the computer-assisted proof method becomes computationally harder. However, one
possible approach is to try and give a numerical estimation for the approximation factor. We
will do that in the following way: for each k, one can write an optimization problem over
k2 variables that represent the inner products y,jey,, for each i, j € [k], or as we denoted
before, a feasible configuration. Then, we wish to minimize the ratio of the Brobability that
u, v are ki
separated and the contribution of the edge {u, v} to the SDP, whichis 1] ,_;y, ey,. To
solve that optimization problem, we use Matlab and the fmincon functionality which can
find a local minimum for this optimization problem, but only a local minimum. Therefore, we
repeat the experiment for numerous random starting points in the feasible region. The
results of the numerical estimations of the approximation for kK = 3,4,5 are presented in
Conjecture 3.

We note that given a configuration of vectors y} y2 y3 v.2, y2 y2 that has a ratio of
p between the separation probability and the contribution of the edge (u, v) to the SDP
solution for Max-3-section, one can construct a configuration for max-4-section by adding
two zero vectors y4, y¥. That configuration will have the same contribution for the SDP
for max-4-section, and the separation probability will also be the same, even though the
algorithm admits four sections. Therefore, in that way of analysis, the approximation ratio
of our algorithm can only decrease as k increases. However, our numerical estimations show
that for k < 5, the approximation is not worse than 0.8192. In addition, we note that the
simple algorithm that returns a random balanced k-partition achieves a lleapproximation,
hence for k = 3, 4,5 our algorithm surpasses it.
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