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Abstract

Gradient Descent (GD) is a powerful workhorse

of modern machine learning thanks to its scalabil-

ity and efficiency in high-dimensional spaces. Its

ability to find local minimisers is only guaranteed

for losses with Lipschitz gradients, where it can be

seen as a ‘bona-fide’ discretisation of an underly-

ing gradient flow. Yet, many ML setups involving

overparametrised models do not fall into this prob-

lem class, which has motivated research beyond

the so-called ªEdge of Stabilityº (EoS), where

the step-size crosses the admissibility threshold

inversely proportional to the Lipschitz constant

above. Perhaps surprisingly, GD has been em-

pirically observed to still converge regardless of

local instability and oscillatory behavior. The in-

cipient theoretical analysis of this phenomena has

mainly focused in the overparametrised regime,

where the effect of choosing a large learning rate

may be associated to a ‘Sharpness-Minimisation’

implicit regularisation within the manifold of min-

imisers, under appropriate asymptotic limits. In

contrast, in this work we directly examine the

conditions for such unstable convergence, focus-

ing on simple, yet representative, learning prob-

lems, via analysis of two-step gradient updates.

Specifically, we characterize a local condition in-

volving third-order derivatives that guarantees ex-

istence and convergence to fixed points of the

two-step updates, and leverage such property in

a teacher-student setting, under population loss.

Finally, starting from Matrix Factorization, we

provide observations of period-2 orbit of GD in

high-dimensional settings with intuition of its dy-

namics, along with exploration into more general

settings.
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1. Introduction

Given a differentiable objective function f(θ), where θ ∈
R

d is a high-dimensional parameter vector, the most basic

and widely used optimization method is gradient descent

(GD), defined as

θ(t+1) = θ(t) − η∇θf(θ
(t)), (1)

where η is the learning rate. For all its widespread appli-

cation across many different ML setups, a basic question

remains: what are the convergence guarantees (even to a

local minimiser) under typical objective functions, and how

they depend on the (only) hyperaparameter η? In the mod-

ern context of large-scale ML applications, an additional key

question is not only to understand whether or not GD con-

verges to minimisers, but to which ones, since overparametri-

sation defines a whole manifold of global minimisers, all

potentially enjoying drastically different generalisation per-

formance.

The sensible regime to start the analysis is η → 0, where

GD inherits the local convergence properties of the Gradient

Flow ODE via standard arguments from numerical integra-

tion. However, in the early phase of training, a large learning

rate has been observed to result in better generalization (Le-

Cun et al., 2012; Bjorck et al., 2018; Jiang et al., 2019;

Jastrzebski et al., 2021), where the extent of ªlargeº is mea-

sured by comparing the learning rate η and the curvature of

the loss landscape, measured with λ(θ) := λmax

[
∇2

θf(θ)
]
,

the largest eigenvalue of the Hessian with respect to learn-

able parameters. Although one requires supθ λ(θ) < 2/η to

guarantee the convergence of GD (Bottou et al., 2018) to (lo-

cal) minimisers 1, the work of (Cohen et al., 2020) noticed

a remarkable phenomena in the context of neural network

training: even in problems where λ(θ) is unbounded (as in

NNs), for a fixed η, the curvature λ(θ(t)) increases along the

training trajectory (1), bringing λ(θ(t)) ≥ 2/η (Cohen et al.,

2020). After that, a surprising phenomena is that λ(θ(t)) sta-

bly hovers above 2/η and the neural network still eventually

achieves a decreasing training loss Ð the so-called ªEdge

of Stabilityº. We would like to understand and analyse the

conditions of such convergence with a large learning rate

under a variety models that capture such observed empirical

1One can replace the uniform curvature bound by
supθ;f(θ)≤f(θ(0)) λ(θ).
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behavior.

Recently, some works have built connections between EoS

and implicit bias (Arora et al., 2022; Lyu et al., 2022;

Damian et al., 2021; 2022) in the context of large, over-

parametrised models such as neural networks. In this setting,

GD is expected to converge to a manifold of minimisers, and

the question is to what extent a large learning rate ‘favors’

solutions with small curvature. In essence, these works show

that under certain structural assumptions, GD is asymptoti-

cally tracking a continuous sharpness-reduction flow, in the

limit of small learning rates. Compared with these, we study

non-asymptotic properties of GD beyond EoS, by focus-

ing on certain learning problems (e.g., single-neuron ReLU

networks and matrix factorization). In particular, we charac-

terize a range of learning rates η above the EoS such that GD

dynamics hover around minimisers. Moreover, in the matrix

factorization setup, where minimisers form a manifold with

varying local curvature, our results give a non-asymptotic

analogue of the ‘Sharpness-Minimisation’ arguments from

(Arora et al., 2022; Lyu et al., 2022; Damian et al., 2022).

The straightforward starting point for the local convergence

analysis is via Taylor approximations of the loss function.

However, in a quadratic Taylor expansion, gradient descent

diverges once λ(θ) > 2/η (Cohen et al., 2020), indicating

that a higher order Taylor approximation is required. By

considering a 1-D function with local minima θ∗ of curva-

ture λ∗ = λ(θ∗), we show the existence of fixed points of

two-step updates around the minima with η slightly above

the threshold 2/λ∗, provided its high order derivative satis-

fies mild conditions as in Theorem 1, with generalization

into matrix factorization in Theorem 6 and experiments of

MLPs in Appendix B.3.2. A typical example of such func-

tions is f(x) = 1
4 (x

2 − µ)2 with µ > 0. Furthermore, we

prove that it converges to an orbit of period 2 from a more

global initialization rather than the analysis of high-order

local approximation.

As it turns out, the analysis of such stable one-dimensional

oscillations is sufficiently intrinsic to become useful in

higher-dimensional problems. First, we leverage the analy-

sis to a two-layer single-neuron ReLU network, where the

task is to learn a teacher neuron with data on a uniform high-

dimensional sphere. We show a convergence result under

population loss with GD beyond EoS, where the direction

of the teacher neuron can be learnt and the norms of two-

layer weights stably oscillate, with empirical evidence of

16-neuron networks in Appendix B.3.1. We then focus on

matrix factorization, a canonical non-convex problem whose

geometry is characterized by a manifold of minimisers hav-

ing different local curvature. We provide novel observations

of its convergence to period-2 orbit with comprehensive

theoretical intuition of the dynamics. Finally, we extend

previous works by proposing two models with observations

in matrix factorization compatible for future analysis. A

further discussion is provided in Appendix M.

2. Related Work

Edge of stability. Cohen et al. (2020) observes a two-

stage process in gradient descent, where the first is loss

curvature grows until the sharpness touches the bound 2/η,

and the second is the curvature hovers around the bound

and training loss still decreases in a macro view regardless

of local instability. Gilmer et al. (2021) reports similar

observations in stochastic gradient descent and conducts

comprehensive experiments of loss sharpness on learning

rates, architecture choices and initialization. Lewkowycz

et al. (2020) argues that gradient descent would ªcatapultº

into a flatter region if loss landscape around initialization is

too sharp.

Some concurrent works (Ahn et al., 2022; Ma et al., 2022;

Arora et al., 2022; Damian et al., 2022) are also theoretically

investigating the edge of stability. Ahn et al. (2022) suggests

that unstable convergence happens when the loss landscape

of neural networks forms a local forward-invariant set near

the minima due to some ingredients, such as tanh as the

nonlinear activation. Ma et al. (2022) empirically observes

a multi-scale structure of loss landscape and, with it as

an assumption, shows that gradient descent with different

learning rates may stay in different levels. Arora et al. (2022)

shows the training provably enters the edge of stability with

modified gradient descent or modified loss, and then its

associated flow goes to flat regions. Under mild conditions,

Damian et al. (2022) proves that GD beyond EoS follows an

optimization trajectory subjected to a sharpness constraint

so that a flatter region is found. Note that our learning rate

is strictly larger than that of Damian et al. (2022) so that

their proposed manifold does not exists in our settings, as

discussed in Section 6.2.

More related works on implicit regularization, balancing

effect and learning a single neuron are provided in Ap-

pendix N.

3. Problem Setup

We consider a differentiable objective function f(θ) with

θ ∈ R
d, and the GD algorithm from (1).

Definition 1. A differentiable function f is L-gradient Lips-

chitz if

∥∇f(θ1)−∇f(θ2)∥ ≤ L ∥θ1 − θ2∥ , ∀ θ1, θ2. (2)

The above definition is equivalent to saying that the spectral

norm of the Hessian is bounded by L, or the local curvature

at each point is bounded by L. Then η needs to be bounded

by 1/L in GD so that it is guaranteed to visit an approximate

2
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first-order stationary point (Nesterov, 1998). The perturbed

GD requires η = 1/L to visit an approximate second-order

stationary point (Jin et al., 2021), and stochastic variants

share similar assumptions (Ghadimi & Lan, 2013; Jin et al.,

2021).

However, in practice, such an assumption may be violated,

or even impossible to satisfy when ∥∇2f∥ is not uniformly

bounded. Cohen et al. (2020) observes that, with learning

rate η fixed, the largest eigenvalue λ1 of the loss Hessian of

a neural network is below 2/η at initialization, but it grows

above the threshold along training. Such a phenomena is

more obvious when the network is deeper or narrower. This

reveals the non-smooth nature of the loss landscape of neural

networks.

Furthermore, another observation from Cohen et al. (2020)

is that once λ1 ≥ 2/η, the training loss stops the monotone

decreasing. This is not surprising because GD would diverge

in a quadratic function with such a large curvature. However,

despite of local instability, the training loss still decreases

in a longer range of steps, during which the local curvature

stays around 2/η. A further phenomena is that, when GD is

at the edge of stability, if the learning rate suddenly changes

to a smaller value ηs < η, then the local curvature quickly

grows to 2/ηs Ð indicating the ability to ‘manipulate’ the

local curvature by adjusting the learning rate.

Besides the analysis of GD, the local curvature itself has

also received a lot of attention. Due to the nature of over-

parameterization in modern neural networks, the global

minimizers of the objective f form a manifold of solutions.

There have been active directions to understand the implicit

bias of GD methods, namely where do they converge to

in the manifold, and why some points in the manifold are

more preferable than others. For the former question, it is

believed that (stochastic) GD prefers flatter minima (Barrett

& Dherin, 2020; Smith et al., 2021; Damian et al., 2021; Ma

& Ying, 2021). For the latter, flatter minima brings better

generalization (Hochreiter & Schmidhuber, 1997; Li et al.,

2018; Keskar et al., 2016; Ma & Ying, 2021; Ding et al.,

2022). It would be meaningful if flatter minima could be

obtained via GD with a large learning rate.

More specifically, it has been shown that the eigenvalues

of the hessian of a deep homogeneous network could be

manipulated to infinity via rescaling the weights of each

layer (Elkabetz & Cohen, 2021). Fortunately, gradient flow

preserves the difference of norms across layers along the

training (Du et al., 2018). As a result, a balanced initializa-

tion induces balanced convergence, while GD would break

this balancing effect due to finite learning rate. However,

recently it has been observed that GD with large learning

rates enjoys a balancing effect (Wang et al., 2021), where

it converges to a (not perfect) balanced result despite of

imbalanced initialization.

Motivated by the connections of optimization, loss land-

scape and generalization, we would like to understand the

training behavior of gradient descent with a large learning

rate, from low-dimensional to representative models.

4. Stable oscillation on 1-D functions: fixed

point of two-step update

In this section, we provide conditions of existence of fixed

points of two-step GD on generic 1-D functions, which are

on the third or higher derivatives at the local minima (Theo-

rem 1 and Lemma 1). More specifically, in the regression

setting, these local conditions allow many differentiable

non-linear activation functions to the base model (Prop 1),

and a composition rule is established to build complicated

base models with simple base models (Prop 2).

Within the framework of Theorem 1, we identify a specific

1-D function to investigate more: we show the convergence

to the fixed points (Theorem 2), along with its 2-D extension

in Prop 3, serving as the foundation of nonlinear (Section 5)

and high-dimensional (Section 6) cases. Empirical verifica-

tion of all theorems are provided in Appendix B.

4.1. Existence of fixed points

Definition 2. (Period-2 stable oscillation and fixed point

of two-step update F 2
η .) Consider GD on a function f in

domain Ω. Denote the update rule of GD as Fη(x) for

x ∈ Ω with learning rate η. A period-2 stable oscillation

is ∃ x ∈ Ω such that Fη(Fη(x)) = x and x is not a minima

of f . Equivalently speaking, ∃ x ∈ Ω is a fixed point of the

two-step update F 2
η (·) ≜ Fη(Fη(·)).

Remark. It is obvious that fixed points of F 2
η exist in pairs

by the nature of period-2 oscillation.

We initiate our analysis of existence of fixed point of F 2
η

in 1-D. Starting from a condition on general 1-D functions,

we look into several specific 1-D functions to verify our

arguments. Then, focusing on a function in the form of

f(x) = (x2 − µ)2, we present the convergence analysis as

a foundation for the following discussions. Furthermore, to

shed light on the multi-layer setting, we propose a balancing

effect on a 2-D function to make a connection to the 1-D

analysis.

General 1-D functions. Consider a 1-D function f(x)
with a learnable parameter x ∈ R. The parameter updates

following GD with the learning rate η as

x(t+1) = Fη(x
(t)) := x(t) − ηf ′(x(t)). (3)

3
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Assuming f is differentiable and all derivatives are bounded,

the function value in the next step can be approximated by

f(x(t+1)) = f(x(t))− η[f ′(x(t))]2
(

1− η

2
f ′′(x(t))

)

+o((x(t+1) − x(t))2).

If η < 2/f ′′(x(t)), this approximation reveals that the func-

tion monotonically decreases for each step of GD, ignoring

higher terms. Such an assumption would guarantee the

convergence to a global minimum in a convex function.

However, our interest is what happens if η > 2/f ′′(x).
For instance, if f is a quadratic function, the second-order

derivative f ′′ is constant. As a result, once η > 2/f ′′, GD

diverges except when being initialized at the optimum. How-

ever, when trained with a large learning rate η > 2/f ′′(x̄),
there is still some hope for a function to stay around a local

minima x̄, as stated in the following theorem.

Theorem 1. Consider any 1-D differentiable function f(x)
around a local minima x̄, satisfying (i) f (3)(x̄) ̸= 0, and

(ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists ϵ with

sufficiently small |ϵ| and ϵ ·f (3) > 0 such that: for any point

x0 between x̄ and x̄− ϵ, there exists a learning rate η such

that F 2
η (x0) = x0, and

2

f ′′(x̄)
< η <

2

f ′′(x̄)− ϵ · f (3)(x̄) .

Remark 1. Here obviously we have η > 2/f ′′(x̄) beyond

EoS. If we take f ′′(x0) ≈ f ′′(x̄) − ϵ′f (3)(x̄) with ϵ′ ≈ ϵ,
it holds η < 2

f ′′(x0)
. Symmetrically, it holds 2

f ′′(Fη(x0))
<

2
f ′′(x̄) . Hence, η upper bounded by the EoS at one point in

the period-2 orbit.

Remark 2. We prove the key condition, 3[f (3)]2−f ′′f (4) >
0, in the case of matrix factorization around any minima

as Theorem 6 in Appendix J.1. Meanwhile, we verify this

condition in multi-layer networks on MNIST, as shown

in Figure 9, 10, 11 in Appendix B.3.2.

The details of proof are presented in the Appendix C. As

stated in the Theorem 1, we provide a sufficient condition

for existence of fixed point of F 2
η around a local minima.

But still we cannot tell whether or not some functions have

it with f (3)(x̄) = 0. For instance, a quadratic function

does not satisfy this condition since f (3) = f (4) ≡ 0 and

it diverges when GD is beyond the edge of stability. But

for f(x) = sin(x) around x̄ = −π
2 where f (3)(x̄) = 0, it

turns out the fixed point exists. Therefore, we extend the

argument in Theorem 1 to a higher order case in Lemma 1.

As a result, we verify that the sine function does allow

stable oscillation as in Corollary 1, because its lowest order

of nonzero derivative (except f ′′) at the local minima is

f (4)(x̄) < 0.

Lemma 1. Consider any 1-D differentiable function f(x)
around a local minima x̄, satisfying that the lowest order

non-zero derivative (except the f ′′) at x̄ is f (k)(x̄) with

k ≥ 4. Then, there exists ϵ with sufficiently small |ϵ| such

that: for any point x0 between x̄ and x̄− ϵ, and

1. if k is odd and ϵ · f (k)(x̄) > 0, f (k+1)(x̄) < 0, then

there exists η ∈ ( 2
f ′′ ,

2
f ′′−f(k)ϵk−2 ),

2. if k is even and f (k)(x̄) < 0, then there exists η ∈
( 2
f ′′ ,

2
f ′′+f(k)ϵk−2 ),

such that F 2
η (x0) = x0.

The details of proof are presented in the Appendix D.

L2 loss on general 1-D functions. However, we have to

admit that the local conditions above are 1) too abstract to

directly write down a meaningful function in this family, or

2) too complicated to compute the higher-order derivatives

of a given non-trivial function.

Fortunately, both Theorem 1 and Lemma 1 provide a guaran-

tee that squared-loss on any base function g provably allows

stable oscillation once g satisfies some mild conditions, as

stated in Prop 1. Moreover, we provide a straightforward

method to build a more complicated model from two simple

base models, as stated in Prop 2.

Proposition 1. Consider a 1-D function g(x) , and define

the loss function f as f(x) = (g(x)− y)2. Assuming (i) g′

is not zero when g(x̄) = y, (ii) g′(x̄)g(3)(x̄) < 6[g′′(x̄)]2,

then it satisfies the condition in Theorem 1 or Lemma 1 have

a fixed point of F 2
η around x̄.

This setup covers a broad family of generic non-linear least

squares problems, including the base model g being sine,

tanh, high-order monomial, exponential, logarithm, sig-

moid, softplus, gaussian, etc. Many of these nonlinear

(activation) functions are widely used in empirical or the-

oretical deep learning, together with the composition rule

(Prop 2), shedding light for future analysis of practical mod-

els with these as building blocks.

Proposition 2 (Composition Rule). Consider two 1-D func-

tions p, q. Assume both p(x), q(y) at x = x̄, y = p(x̄)
satisfies the conditions of g in Prop 1. Then q(p(x)) also

satisfies the conditions to have a fixed point of F 2
η around

x = x̄.

In Appendix D and E, we provide the proof details of these

settings of g(x) as Corollaries 1-8, along with all lemmas

and proposition.

After the above discussions on local conditions, a natural

question rises up as

4
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Q1: with existence of a fixed point of F 2
η , can iterative

runnings of F 2
η converge to it?

With such a question, we are going to present a careful

analysis on g(x) = x2.

4.2. Convergence to fixed points

A special 1-D function. Consider f(x) = 1
4 (x

2 − µ)2
with µ > 0, f (3)(

√
µ) = 6

√
µ, f ′′(

√
µ) = 2µ. Note that

this function is more special to us because it can be viewed

as a symmetric scalar factorization problem subjected to the

squared loss. Later we will leverage it to gain insights for

asymmetric initialization, two-layer single-neuron networks

and matrix factorization. Before that, we would like to show

where it converges to when η > 2
f ′′(

√
µ) as follows.

Theorem 2. For f(x) = 1
4 (x

2 − µ)2, consider GD with

η = K · 1
µ where 1 < K <

√
4.5 − 1 ≈ 1.121, and

initialized on any point 0 < x0 <
√
µ. Then it converges to

an orbit of period 2, except for a measure-zero initialization

where it converges to
√
µ. More precisely, the period-2 orbit

are the solutions x = δ1 ∈ (0,
√
µ), x = δ2 ∈ (

√
µ, 2
√
µ)

of solving δ in

η =
1

δ2
(√

µ
δ2 − 3

4 + 1
2

) . (4)

The details of proof are presented in the Appendix F. As

shown above, Theorem 1 and Theorem 2 stand in two dif-

ferent levels: Theorem 1 restricts the discussion in a local

view because of Taylor approximation, while Theorem 2

starts from local convergence and then generalizes it into

a global view. However, Theorem 1 builds a foundation

for Theorem 2 because the latter would degenerate to the

former when K is extremely close to 1.

A special 2-D function. Similarly, consider a 2-D function

f(x, y) = 1
2 (xy − µ)2 under different initialization for x

and y, which we would call ªin-balancedº initialization.

Note that all the global minima in 2-D case form a manifold

{(x, y)|xy = µ} while the 1-D case only has two points of

global minima. So we need to distinguish all points in the

manifold by their sharpness. When xy = µ, the leading

eigenvalue of the loss Hessian is λ1 = (x−y)2+2µ. Hence,

in the global minima manifold, the local curvature of each

point is larger if its two parameters are more imbalanced.

Among all these points, the smallest curvature appears to be

λ1 = 2µ when x = y =
√
µ. In other words, if the learning

rate η > 2/2µ, all points in the manifold would be too

sharp for GD to converge. We would like to investigate the

behavior of GD in this case. It turns out the two parameters

are driven to a perfect balance although they initialized

differently, as follows.

Theorem 3. For f(x, y) = 1
2 (xy − µ)

2
, consider GD with

learning rate η = K · 1
µ . Assume both x and y are al-

ways positive during the whole process {xi, yi}i≥0. In

this process, denote a series of all points with xy > µ
as P = {(xi, yi)|xiyi > µ}i≥0. Then |x − y| decays to 0

in P , for any 1 < K < 1.5.

Theorem 3 shows an effect that the two parameters are

squeezed to a single variable, which re-directs to our 1-

D analysis in Theorem 2. Therefore, actually both cases

converge to the same orbit when 1 < K < 1.121, as stated

in Prop 3.

Proposition 3. Follow the setting in Theorem 3. Further

assume 1 < K <
√
4.5−1 ≈ 1.121. Then GD converges to

an orbit of period 2. The orbit is formally written as {(x =
y = δi)|i = 1, 2}, with δ1 ∈ (0,

√
µ), δ2 ∈ (

√
µ, 2
√
µ) as

the solutions of solving δ in

η =
1

δ2
(√

µ
δ2 − 3

4 + 1
2

) .

A natural follow-up question is what implications Theo-

rem 2 and Prop 3 bring, because 1-D and 2-D is far from the

practice of neural networks that contain multi-layer struc-

tures, nonlinearity and high dimensions. We precisely in-

corporate two layers and nonlinearity in Section 5, and high

dimensions in Section 6.

5. On a two-layer single-neuron homogeneous

network

We denote a two-layer single-neuron network as f(x; θ) =
v · σ(w⊤x) where v ∈ R, w ∈ R

d, the set of trained pa-

rameters θ = (v, w⊤) ∈ R
d+1, and the nonlinearity σ is

ReLU. We will keep such an order in θ to view it as a vector.

The input x ∈ R
d is drawn uniformly from a unit sphere

Sd−1. The parameters are trained by GD subjected to L2

population loss, as

θt+1 = θt − η∇θL(θt), L(θt) = Ex∈Sd−1

(
f(x; θt)− y

)2
.

We generate labels from a single teacher neuron function, as

y|x = σ(w̃⊤x). Hence w̃ is our target neuron to learn. We

denote the angle between w and w̃ as α ≥ 0. Note that α is

set as non-negative because the loss function is symmetric

w.r.t. the angle. Moreover, the rotational symmetry of the

population data distribution results in a loss landscape that

only depends on w through the angle α and the norm ∥w∥.
Indeed, from the definition, we have

∇θL =
1

d

[

v ∥w∥22 −
∥w∥
π

(
sinα+ (π − α) cosα

)
∥w̃∥

v2w − v
π (π − α+ 1

2 sin 2α) · w̃ − v
π (− 1

2 cos 2α+ 1
2 ) ∥w̃∥ w̃⊥

]

,

5
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where we denote w̃⊥ as the normalized of w − projw̃ w.

Consider the Hessian

H ≜
[
∂2vL ∂w∂vL
∂v∂wL ∂2wL

]

if vw = w̃
===

1

d

[

∥w∥2 vw⊤

vw v2I

]

∈ R
(d+1)×(d+1).

(5)

Hence, in the global minima manifold where vw = w̃, the

eigenvalues of the Hessian are λ1 = ∥w∥2+v2

d , λ2...d =
v2

d , λd+1 = 0. Therefore, the largest eigenvalue λ1 mea-

sures the imbalance (i.e., | ∥w∥− v|) between the two layers

again as λ1 = (∥w∥−v)2+2∥w̃∥
d similar to the 2-D case in

Section 4.2. So we would like to investigate where GD

converges if η > 2
2∥w̃∥/d = d/ ∥w̃∥ that is too large even

for the flattest minima. Note that a key difference between

the current case and the previous 2-D analysis is that the

current one includes a neuron as a vector and a nonlinear

ReLU unit.

From the second row of ∇θL, which is ∇wL, it is clear

that updates of w always stay in the plane spanned by w̃
and w(0). Hence, this problem can be simplified to three

variables (v, wx, wy) with the target neuron w̃ = [1, 0]. The

three variables stand for

v(t) := v(t), w(t)
x := projw̃ w

(t),

w(t)
y := projw̃⊥

w(t) =

√
∥
∥w(t)

∥
∥
2 − (w

(t)
x )2.

We keep wy as nonnegative because the loss L is invariant

to its sign and our previous notation α ≥ 0 requires a non-

negative wy . Then we show that wy decays to 0 as follows.

Theorem 4. In the above setting, consider a teacher neuron

w̃ = [1, 0] and set the learning rate η = Kd with K ∈
(1, 1.1]. Initialize the student as

∥
∥w(0)

∥
∥ = v(0) ≜ ϵ ∈

(0, 0.10] and ⟨w(0), w̃⟩ ≥ 0. Then, for t ≥ T1 + 4, w
(t)
y

decays as

w(t)
y < 0.1 · (1− 0.030K)t−T1−4, T1 ≤

⌈

log2.56
1.35

πβ2

⌉

,

β =

(

1 +
1.1

π

)

ϵ.

The details of proof are presented in the Appendix I.

With the guarantee of wy decaying in the above theorem,

the dynamics of the single-neuron ReLU network follow the

convergence of the 2-D case in Section 4.2, with a conver-

gence result as follows.

Proposition 4. The single-neuron model in Theorem 4 con-

verges to a period-2 orbit where wy = 0 and (v, wx) ∈ γK
with γK = {(δ1, δ1), (δ2, δ2)}. Here δ1 ∈ (0, 1), δ2 ∈
(1, 2) are the solutions δ in

K =
1

δ2
(√

1
δ2 − 3

4 + 1
2

) . (6)

Remark. Actually this convergence is close to the flattest

minima because: if the learning rate decays to infinitesi-

mal after sufficient oscillations, then the trajectory walks

towards the flattest minima (v = wx = 1, wy = 0). Note

that we provide an experiment on 16-neuron networks

in Appendix B.3.1, where GD converges to the period-2

orbit near the flattest minima while being initialized near

unbalanced (sharp) minima.

To summarize, the single-neuron model goes through three

phases of training dynamics, with an intialization of the

angle ∡(w, w̃) as π
2 at most. First, the angle decreases

monotonically but, due to the growth of norms, the absolute

deviation wy still increases. Meanwhile, the imbalance v −
wx stays in a bounded level. Second, wy starts to decrease

and the parameters fall into a basin within four steps. Third,

in the basin, wy decreases exponentially and, after wy at a

reasonable low level, the model approximately follows the

dynamic of the 2-D case and the imbalance v−wx decreases

as well, following Theorem 3. The model converges to a

period-2 orbit as in the 1-D case in Theorem 2.

6. Matrix Factorization and beyond

In the last two sections, we have presented theoretical re-

sults that GD beyond EoS converges to the fixed points of

F 2
η from initialization that is far away. In this section, we

address these follow-up questions, by raising observations

in Matrix Factorization and discuss whether existing models

can explain our observations or not:

Q2: does such a period-2 orbit exist in more complicated

settings?

Q3: what does the appropriate model need to cover such

oscillation in high-dim problems?

Q4: what will happen if the learning rate grows more?

6.1. Observations from Matrix Factorization

Consider a matrix factorization problem, parameterized by

learnable weights Y ∈ R
d×d, Z ∈ R

d×d, and the target ma-

trix is C ∈ R
d×d, which is symmetric and positive definite.

The loss L is defined as

L(Y,Z) =
1

2

∥
∥YZ⊤ −C

∥
∥
2

F
. (7)

Obviously {(Y,Z) : YZ⊤ = C} forms a minimum mani-

fold. Although we prove that the necessary 1-D condition

holds around minimum as Theorem 6 (in Appendix A.2),

which is analogous to Theorem 1, it is more attracting to

investigate GD in high dimensions. We propose our first ob-

servation that Matrix Factorization converges to a period-2

orbit, i.e., fixed points of F 2
η , as follows.

Observation 1 (Matrix Factorization with period-2 or-

bit). Consider GD with learning rate η satisfying ησ2
1 ∈

6
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(1, 1.121) and η
(
σ2
1 + σ2

2

)
< 2 where σ2

1 , σ
2
2 are the first

and second largest eigenvalues of C. Then, there exists

non-measure-zero initialization, from which GD converges

to a period-2 orbit in the form of (i ∈ {1, 2})

Y = ρiuv
⊤ +

d∑

j=2

σy,juy,jv
⊤
y,j ,

Z = ρiuv
⊤ +

d∑

j=2

σz,juz,jv
⊤
z,j ,

YZ⊤ −C = (ρ2i − σ2
1)uu

⊤,

where u is the leading eigenvector of C, v is arbitrary unit

vector in R
d, {ρi}i=1,2 are the two positive roots of

ησ2
1 =

1

ρ2
(√

1
ρ2 − 3

4 + 1
2

) , (8)

and the decompositions of Y,Z are SVD.

Remark. At any minimizer (X,Y) satisfying XY⊤ = C,

the largest eigenvalue of loss Hessian w.r.t. parameters is

σmax(X)2 + σmax(Y)2. Consequently, the flattest min-

ima has sharpness as 2σ2
1 , because σ2

1 = λmax(C) ≤
σmax(X)σmax(Y) ≤ 0.5

(
σmax(X)2 + σmax(Y)2

)
.

To our knowledge, this observation is beyond all previous re-

sults. Damian et al. (2022) tracks the trajectory’s projection

onto the manifold with sharpness < 2/η. Wang et al. (2021)

proposes that GD in a sharper region (sharpness> 2/η) con-

verges to flatter region (sharpness< 2/η) for matrix factor-

ization problem. But such a manifold (or flatter region)

containing any minimizer does not exist in our setting be-

cause ησ2
1 > 1 makes the flattest minima sharper than 2/η,

which means the probability of converging to a stationary

point is zero (Ahn et al., 2022).

However, it is difficult to prove Observation 1 rigorously.

Meanwhile, general initialization cannot illustrate well the

phenomena that GD walks to flatter minima from a sharper

one. Therefore, we provide an observation of a limited ver-

sion of matrix factorization, called quasi-symmetric, along

with sufficient intuition on its dynamics and careful discus-

sion on what is remaining to prove it.

Definition 3 (Quasi-symmetric Matrix Factorization).

Given a symmetric and positive definite target matrix C ≜
X0X

⊤
0 , where X0 = R

d×d. Quasi-symmetric MF is solv-

ing the factorization problem with initialization near an

unbalanced minima, where the minima is (αX0, 1/αX0)
with α ̸= 1.

Observation 2 (Quasi-symmetric Matrix Factorization with

period-2 orbit). Consider the above quasi-symmetric ma-

trix factorization with learning rate η ∈ (1/σ2
1, 1.121/σ

2
1).

Consider a minima (Y0 = αX0,Z0 = 1/αX0), α > 0.

The initialization is around the minimum, as Y1 = Y0 +
∆Y1,Z1 = Z0 +∆Z1. When

η ·max

{

(
σ2
1

α2
+ σ2

2α
2,
σ2
2

α2
+ σ2

1α
2)

}

≤ 2 (9)

GD would converge to a period-2 orbit γη approximately

with error in O(ϵ), formally written as, (i = 1, 2)

(Yt,Zt)→ γη + (∆Y,∆Z), ∥∆Y∥ , ∥∆Z∥ = O(ϵ),
γη = {

(
Y0 + (ρi − α)σ1u1v⊤1 ,Z0 + (ρi − 1/α)σ1u1v

⊤
1

)
},

where ρ1 ∈ (1, 2), ρ2 ∈ (0, 1) are the same as in Eq.(8)

Remark. The intuition on the dynamics in Observation 2 is

provided in Appendix J.2, along with a discussion on what is

missing for rigorous proof for future development. Without

loss of generality, assume X0 = diag([σ1, σ2, . . . , σd]) ∈
R

d×d, where (X0)i,i = σi and 0 in all other entries. Intu-

itively, the dynamics of the system is following

Y =

[
ασ1 0

0 diag([ασi]
d
i=2)

]

+O(ϵ)→
[
ρi 0

0 diag([ασi]
d
i=2)

]

+O(ϵ),

Z =

[
ασ1 0

0 diag([σi/α]di=2)

]

+O(ϵ)→
[
ρi 0

0 diag([σi/α]di=2)

]

+O(ϵ),

YZ⊤ =

[
σ2
1 0

0 diag([σ2
i ]

d
i=2)

]

+O(ϵ)→
[
ρ2i 0

0 diag([σ2
i ]

d
i=2)

]

.

Note that the top singular values of Y,Z are always the

same in the orbit although it is unbalanced at initialization.

A benefit of this is that, if η decays below 1/σ2
1 after reaching

the orbit, it would converge to Y,Z with same top singular

value σ1, satisfying YZ⊤ = C.

How tight are Observation 1 and 2? There are two aspects

we would like to address: ησ2
1 and ησ2

2 . The former ησ2
1 is

a natural constraint because it is necessary to carefully set

its upper bound in 1-D analysis to contain the oscillation

in some finite level set. However, the second ησ2
2 is novel

(and tight) to our knowledge, which is respectively η(σ2
1 +

σ2
2) < 2 in Observation 1 and η ·

(
σ2
1/α2 + σ2

2α
2
)
< 2 in

Observation 2. The tightness of this bound is verified in

Figure 1, where it approximates the linearity of the empirical

boundary between infinite and finite well when ησ2
1 > 1

slightly. Furthermore, although we do not prefer asserting

too much beyond our theorems, the linear trend between ησ2
1

and ησ2
2 keeps well when ησ2

1 goes beyond 1.121 for a long

range. Intuitively, We gain the insight of this bound from the

analysis of Observation 2 in Appendix J.2. More precisely,

it appears in Eq.(203) to guarantee a transition matrix to be

semi-convergent, whose largest absolute eigenvalue is no

larger than 1.

Is there any other phenomena beyond period-2 orbit

when η grows larger? The answer is yes. We conduct

experiments of matrix factorization with generic initial-

ization with different η’s, as shown in Figure 2. It turns

7
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(a) Generic init (b) Quasi-sym init (α = 0.9)

1.0 1.2 1.4 1.6 1.8 2.0
2
1
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1.0

1.5

2.0

2 2

finite
diverge
predicted bound

(c) Symmetric init (α = 1 in Quasi case)

Figure 1. Matrix Factorization: grid search of ησ2
1 v.s. ησ2

2 on

whether GD diverges or not. (a) Generic initialization: it verifies

the condition η
(

σ2
1 + σ2

2

)

< 2. (b-c) Quasi-symmetric initializa-

tion: it verifies the predicted bound η ·
(

σ2
1/α2 + σ2

2α
2
)

< 2 in

Eq.(9) as a sufficient condition.

out when ησ2
1 ∈ (1, 1.23), it converges to period-2 orbit.

When ησ2
1 ∈ (1.23, 1.28), it converges to a period-4 or-

bit, although the period-2 orbit still exists once ησ2
1 < 1.5

as shown in Eq.(36) (because the existence cannot guar-

antee convergence, and even local convergence does not

hold). When ησ2
1 > 1.28, it is rather chaotic. How-

ever, during most of these, the balancing effect holds, i.e.,

σmax(Y) = σmax(Z).

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
2
1

0.4

0.6

0.8

1.0

1.2

m
ax
/

1

max(Y)
max(Z)

Figure 2. Matrix Factorization: σmax(Y), σmax(Z) for different

η’s. For each η, the last 10 iterations are sampled for report, due

to periodic and chaotic phenomenon. Observations: (1) when

ησ2
1 ∈ (1, 1.38), all cases have σmax(Y) = σmax(Z); (2) when

ησ2
1 ∈ (1, 1.23), it converges to a period-2 orbit; (3) when ησ2

1 ∈
(1.23, 1.28), it converges to a period-4 orbit; (4) when ησ2

1 > 1.28,

it is rather chaotic; (5) when ησ2
1 < 1, there is no oscillation.

6.2. Implications for more complicated settings

Existing models from Ma et al. (2022) and Damian et al.

(2022). Ma et al. (2022) proposes a decomposition of high-

dimensional functions into separable functions in eigendi-

rections, in the form of

f(θ) = f1(p
⊤
1 θ) + f2(p

⊤
2 θ) + · · ·+ fd(p

⊤
d θ), (10)

where {pi ∈ R
d} is an orthogonal basis of Rd, θ ∈ R

d is

the parameter and each fi is a function that allows stable

oscillation. Within such a framework, all p⊤i x can stably

oscillation since the dynamics is separable in each eigendi-

rection. However, this framework cannot explain the dy-

namics of matrix factorization, because our experiments in

Figure 1 have shown that GD will blow up once ησ2 > 1,

which means the eigen-directions associated with σ2
1 and

σ2
2 cannot be disentangled in this case.

Damian et al. (2022) proposes to track the trajectory’s pro-

jection onto manifold M = {θ : λ(θ) < 2/η,∇L(θ) ·
u(θ) = 0}, where λ(θ) and u(θ) are the leading eigenvalue

and eigenvector of Hessian of loss L. However, such a

manifold does not exist in the 2-D case we have studied in

Section 4.1 because our setting is strictly beyond EoS. Fur-

thermore, in high-order cases, such a manifold containing

any minimizer does not exist (Proposition 7).

Proposition 5. For L(x, y) = 1/2(xy − 1)2 with η > 1 on

{x > 0, y > 0}, such a manifoldM does not exist.

Proposition 6. For L(x, y) = 1/2(xy − 1)2 with η < 1
on {x > 0, y > 0}, M = {(x, y) : xy = 1, x + y <
√

2 + 2/η}.
Proposition 7. For L({xi}ni=1) =

1
n (
∏n

i=1 xi − 1)2 with

η > 1 on {xi > 0, ∀i}, such a manifoldM containing any

minimizer does not exist.

Moreover, althoughM exists when η < 1 (Proposition 6),

the size ofM is limited, which means the trajectory’s pro-

jection onto it stays unchanged in the early steps, although

the trajectory is moving efficiently from sharper region to

flatter region, as shown in Figure 3(b).

0.0 0.5 1.0 1.5 2.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

trajectory
xy=1

0.0 0.5 1.0 1.5 2.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y

trajectory
xy= 1

 from Damian et al.

(a) η = 1.08 (b) η = 0.95

Figure 3. Trajectories of minimizing L(x, y) = 1/2(xy− 1)2 with

η = 1.08, 0.95. For η = 1.08, the manifold M proposed by

Damian et al. (2022) does not exist. For η = 0.95, the manifold

M exists, but the projection onto it does not change for the first

few steps.
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Two candidate models. From the above discussion, we

would like to raise two candidate models to contain the

observations from matrix factorization, based on the models

proposed in Damian et al. (2022) and Ma et al. (2022).

Following Damian et al. (2022), we would like to propose

Definition 4 (Projection onto manifold). Mc = {θ :
λ2(θ) < 2/η,∇L(θ) · u(θ) = 0}, where λ2(θ) and u(θ)
are the second largest eigenvalue and the leading eigenvec-

tor of Hessian of loss L.

The motivation of Mc is to contain points that have the

leading eigenvalue greater than 1. For example, in the case

of 1/2(xy − 1)2, it isMc = {(x, y) : xy = 1} allowing to

track the trajectory walking from sharper region to flatter

region. Instead of constraining λ < 2/η, we set λ2 < 2/η to

make it compatible with our observations in matrix factor-

ization.

The gap between Ma et al. (2022) and observations from

matrix factorization is that they assume the orthogonal de-

composition of the loss function. However, even in the

simplest setting of matrix factorization, this assumption

does not hold. Taking a symmetric matrix factorization as

an example, we have

L(X) =
1

4

∥
∥
∥
∥
XX⊤ −

[
1 0
0 1

]∥
∥
∥
∥

2

F

=
1

4

((

∥X0,:∥2 − 1
)2

+
(

∥X1,:∥2 − 1
)2

+

2 (⟨X0,:,X1,:⟩)2
)

, (11)

where the first two terms in the last line are fi(p
⊤
i x) in

Eq.(10) since the included are orthogonal to each other.

However, the last term ⟨X0,:,X1,:⟩ breaks the separability

in the decomposition. Meanwhile, (⟨X0,:,X1,:⟩)2 is im-

plicitly (⟨X0,:,X1,:⟩ − 0)
2
, because X0,:,X1,: ∈ R

2 are

expressive enough to form an orthogonal pair satisfying the

constraints of norms.

In a similar spirit, we propose an extensive model of

Eq.(10) (Ma et al., 2022) as follows

f(θ) =

d∑

i=1

gi(p
⊤
i θ; ai) +

d∑

(i,j)∈E
hij(p

⊤
i θ, p

⊤
j θ; bij),

(12)

where gi, hij are functions allowing stable oscillation pa-

rameterized by ai, bij , {pi}di=1 are orthogonal basis of Rd

and E ⊂ [d] × [d] is a selected subset of tuples. A sim-

ple but effective example to imitate matrix factorization is

gi(x; a) ≜ (∥x∥2 − a)2 and hij(x, y|b) ≜ (⟨x, y⟩ − b)2

and E = [d] × [d]. Intuitively, such a model with larger

|E| allows fewer eigenvalues of Hessian to go beyond 2/η.

Conversely, if E = ∅, it allows all eigenvalues beyond 2/η,

which degenerates to Eq.(10) (Ma et al., 2022).

7. Conclusions

In this work, we investigate gradient descent with a large

step size that crosses the threshold of local stability, via

investigating convergence of two-step updates instead of

convergence of one-step updates. In the low dimensional

setting, we provide conditions on high-order derivatives that

guarantees the existence of fixed points of two-step updates.

For a two-layer single-neuron ReLU network, we prove its

convergence to align with the teacher neuron under pop-

ulation loss. For matrix factorization, we prove that the

necessary 1-D condition holds around any minima. We pro-

vide novel observations of its convergence to period-2 orbit

with comprehensive theoretical intuition of the dynamics.

Finally, we extend previous works by proposing two mod-

els with observations in matrix factorization compatible for

future analysis.

Acknowledgements

We are grateful to Alex Damian, Zhengdao Chen, Zizhou

Huang, Yifang Chen and Kaifeng Lyu for helpful conver-

sations. This work was partially supported by the Alfred P.

Sloan Foundation, NSF RI-1816753, NSF CAREER CIF

1845360, NSF CHS-1901091, Capital One and Samsung

Electronics. This research also received support by the gen-

erosity of Eric and Wendy Schmidt by recommendation of

the Schmidt Futures program.

References

Ahn, K., Zhang, J., and Sra, S. Understanding the un-

stable convergence of gradient descent. arXiv preprint

arXiv:2204.01050, 2022.

Arora, S., Li, Z., and Panigrahi, A. Understanding gradi-

ent descent on edge of stability in deep learning. arXiv

preprint arXiv:2205.09745, 2022.

Barrett, D. and Dherin, B. Implicit gradient regularization.

In International Conference on Learning Representations,

2020.

Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q.

Understanding batch normalization. Advances in neural

information processing systems, 31, 2018.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization

methods for large-scale machine learning. Siam Review,

60(2):223±311, 2018.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,

A. Gradient descent on neural networks typically occurs

9



Beyond the Edge of Stability via Two-step Gradient Updates

at the edge of stability. In International Conference on

Learning Representations, 2020.

Damian, A., Ma, T., and Lee, J. D. Label noise sgd prov-

ably prefers flat global minimizers. Advances in Neural

Information Processing Systems, 34, 2021.

Damian, A., Nichani, E., and Lee, J. D. Self-stabilization:

The implicit bias of gradient descent at the edge of stabil-

ity. arXiv preprint arXiv:2209.15594, 2022.

Ding, L., Drusvyatskiy, D., and Fazel, M. Flat minima

generalize for low-rank matrix recovery. arXiv preprint

arXiv:2203.03756, 2022.

Du, S. S., Hu, W., and Lee, J. D. Algorithmic regulariza-

tion in learning deep homogeneous models: Layers are

automatically balanced. Advances in Neural Information

Processing Systems, 31, 2018.

Elkabetz, O. and Cohen, N. Continuous vs. discrete opti-

mization of deep neural networks. Advances in Neural

Information Processing Systems, 34, 2021.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order

methods for nonconvex stochastic programming. SIAM

Journal on Optimization, 23(4):2341±2368, 2013.

Gilmer, J., Ghorbani, B., Garg, A., Kudugunta, S.,

Neyshabur, B., Cardoze, D., Dahl, G., Nado, Z., and

Firat, O. A loss curvature perspective on training insta-

bility in deep learning. arXiv preprint arXiv:2110.04369,

2021.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural

computation, 9(1):1±42, 1997.

Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G. B., Wang,

H., Xiong, C., Socher, R., Cho, K., and Geras, K. J.

Catastrophic fisher explosion: Early phase fisher matrix

impacts generalization. In International Conference on

Machine Learning, pp. 4772±4784. PMLR, 2021.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and

Bengio, S. Fantastic generalization measures and where

to find them. arXiv preprint arXiv:1912.02178, 2019.

Jin, C., Netrapalli, P., Ge, R., Kakade, S. M., and Jordan,

M. I. On nonconvex optimization for machine learning:

Gradients, stochasticity, and saddle points. Journal of the

ACM (JACM), 68(2):1±29, 2021.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,

M., and Tang, P. T. P. On large-batch training for deep

learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836, 2016.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278±2324, 1998.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.

Efficient backprop. In Neural networks: Tricks of the

trade, pp. 9±48. Springer, 2012.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J.,

and Gur-Ari, G. The large learning rate phase of

deep learning: the catapult mechanism. arXiv preprint

arXiv:2003.02218, 2020.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.

Visualizing the loss landscape of neural nets. Advances

in neural information processing systems, 31, 2018.

Lyu, K., Li, Z., and Arora, S. Understanding the generaliza-

tion benefit of normalization layers: Sharpness reduction.

arXiv preprint arXiv:2206.07085, 2022.

Ma, C. and Ying, L. The sobolev regularization ef-

fect of stochastic gradient descent. arXiv preprint

arXiv:2105.13462, 2021.

Ma, C., Wu, L., and Ying, L. The multiscale structure of

neural network loss functions: The effect on optimization

and origin. arXiv preprint arXiv:2204.11326, 2022.

Nesterov, Y. Introductory lectures on convex programming,

1998.

Smith, S. L., Dherin, B., Barrett, D. G., and De, S. On

the origin of implicit regularization in stochastic gradient

descent. arXiv preprint arXiv:2101.12176, 2021.

Vardi, G. and Shamir, O. Implicit regularization in relu

networks with the square loss. In Conference on Learning

Theory, pp. 4224±4258. PMLR, 2021.

Vardi, G., Yehudai, G., and Shamir, O. Learning a single

neuron with bias using gradient descent. Advances in

Neural Information Processing Systems, 34, 2021.

Wang, Y., Chen, M., Zhao, T., and Tao, M. Large learn-

ing rate tames homogeneity: Convergence and balancing

effect. arXiv preprint arXiv:2110.03677, 2021.

Ye, T. and Du, S. S. Global convergence of gradient descent

for asymmetric low-rank matrix factorization. Advances

in Neural Information Processing Systems, 34, 2021.

Yehudai, G. and Ohad, S. Learning a single neuron with

gradient methods. In Conference on Learning Theory, pp.

3756±3786. PMLR, 2020.

10



Beyond the Edge of Stability via Two-step Gradient Updates

Contents

1 Introduction 1

2 Related Work 2

3 Problem Setup 2

4 Stable oscillation on 1-D functions: fixed point of two-step update 3

4.1 Existence of fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.2 Convergence to fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 On a two-layer single-neuron homogeneous network 5

6 Matrix Factorization and beyond 6

6.1 Observations from Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6.2 Implications for more complicated settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Conclusions 9

A Additional Results 12

A.1 On a 2-D function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A.2 On Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B Additional Experiments 14

B.1 Proven Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 2-D function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.3 High dimension and MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C Proof of Theorem 1 23

D Proof of Lemma 1 23

E Proof of Prop 1 25

F Proof of Theorem 2 27

G Proof of Theorem 3 30

H Proof of Lemma 2 32

I Proof of Theorem 4 34

J Proof of Matrix Factorization 49

11



Beyond the Edge of Stability via Two-step Gradient Updates

J.1 Asymmetric Case: 1D function at the minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

J.2 Quasi-symmetric case: walk towards flattest minima . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

K Useful lemmas 60

L Illustration of period-2 and period-4 orbits 60

M Discussions 60

M.1 Connections between theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

M.2 Implications from low-dimension to high-dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

N Extensive related works 62

A. Additional Results

A.1. On a 2-D function

Similar to f(x) = 1
4 (x

2 − µ)2, consider a 2-D function f(x, y) = 1
2 (xy− µ)2. Apparently, if x and y initialize as the same,

then (x(t), y(t)) would always align with the 1-D case from the same initialization. Therefore, it is significant to analyze this

problem under different initialization for x and y, which we would call ªin-balancedº initialization. Meanwhile, another

giant difference is that all the global minima in 2-D case form a manifold {(x, y)|xy = µ} while the 1-D case only has two

points of global minima. It would be great if we could understand which points in the global minima manifold, or in the

whole parameter space, are preferable by GD.

Note that reweighting the two parameters would manipulate the curvature to infinity as in (Elkabetz & Cohen, 2021), so the

inbalance strongly affects the local curvature. Viewing f(x) as a symmetric scalar factorization problem, we treat f(x, y) as

asymmetric scalar factorization. The update rule of GD is

x(t+1) := x(t) − η(x(t)y(t) − µ)y(t), y(t+1) := y(t) − η(x(t)y(t) − µ)x(t). (13)

Consider the Hessian as

H ≜
[
∂2xf ∂y∂xf
∂x∂yf ∂2yf

]

=

[
y2 2xy − µ

2xy − µ x2

]

. (14)

When xy = µ, the eigenvalues of H are λ1 = x2 + y2, λ2 = 0. Note that λ1 = (x− y)2 +2µ. Hence, in the global minima

manifold, the local curvature of each point is larger if its two parameters are more inbalanced. Among all these points, the

smallest curvature appears to be λ1 = 2µ when x = y =
√
µ. In other words, if the learning rate η > 2/2µ, all points in the

manifold would be too sharp for GD to converge. We would like to investigate the behavior of GD in this case. It turns out

the two parameters are driven to a perfect balance although they initialized differently, as follows.

Theorem 5 (Restatement of Theorem 3). For f(x, y) = 1
2 (xy − µ)

2
, consider GD with learning rate η = K · 1µ . Assume

both x and y are always positive during the whole process {xi, yi}i≥0. In this process, denote a series of all points with

xy > µ as P = {(xi, yi)|xiyi > µ}. Then |x− y| decays to 0 in P , for any 1 < K < 1.5.

Proof sketch The details of proof are presented in the Appendix G. Start from a point (x(t), y(t)) where x(t)y(t) > µ.

Because y(t+1) − x(t+1) = (y(t) − x(t))(1 + η(x(t)y(t) − µ)), it suffices to show

∣
∣
∣
∣

y(t+2) − x(t+2)

y(t) − x(t)
∣
∣
∣
∣
= |(1 + η(x(t)y(t) − µ))(1 + η(x(t+1)y(t+1) − µ))| < 1. (15)

Since 1 + η(x(t)y(t) − µ) > 1, the analysis of 1 + η(x(t+1)y(t+1) − µ) is divided into three cases considering the coupling

of (x(t), y(t)), (x(t+1), y(t+1)). □
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Remark. Actually, for a larger K ≥ 1.5, it is possible for GD to converge to an inbalanced orbit. For instance, Figure 15 in

(Wang et al., 2021) shows inbalanced orbits for f(x) = 1
2 (xy − 1)2 with K = 1.9.

Combining with the fact that the probability of GD converging to a stationary point that has sharpness beyond the edge

of stability is zero (Ahn et al., 2022), Theorem 3 reveals x and y would converge to a perfect balance. Note that this

balancing effect is different from that of gradient flow (Du et al., 2018), where the latter states that gradient flow preserves

the difference of norms of different layers along training. As a result, in gradient flow, inbalanced initialization induces

inbalanced convergence, while in our case inbalanced-initialized weights converge to a perfect balance. Furthermore,

Theorem 3 shows an effect that the two parameters are squeezed to a single variable, which re-directs to our 1-D analysis in

Theorem 2. Therefore, actually both cases converge to the same orbit when 1 < K < 1.121, as stated in Prop 3. Numerical

results are presented in Figure 7.

Proposition 8 (Restatement of Prop 3). Following the setting in Theorem 3. Further assume 1 < K <
√
4.5− 1 ≈ 1.121.

Then GD converges to an orbit of period 2. The orbit is formally written as {(x = y = δi)|i = 1, 2}, with δ1 ∈ (0,
√
µ), δ2 ∈

(
√
µ, 2
√
µ) as the solutions of solving δ in

η =
1

δ2
(√

µ
δ2 − 3

4 + 1
2

) .

Remark. Actually this convergence is close to the flattest minima because: if the learning rate decays to infinitesimal after

sufficient oscillations, then the trajectory walks towards the flattest minima.

However, one thing to notice is that the inbalance at initialization needs to be bounded in Theorem 3 because both x and y
are assumed to stay positive along the training. More precisely, we have

x(t+1)y(t+1) = x(t)y(t)(1− η(x(t)y(t) − µ))2 − η(x(t)y(t) − µ)(x(t) − y(t))2, (16)

and then x(t+1)y(t+1) < 0 when |x(t)−y(t)| is large with x(t)y(t) > µ fixed. Therefore, we provide a condition to guarantee

both x, y positive as follows, with details presented in the Appendix H.

Lemma 2. In the setting of Theorem 3, denote the initialization as m = |y0−x0|√
µ and x0y0 > µ. Then, during the whole

process, both x and y will always stay positive, denoting p = 4

(m+
√
m2+4)

2 and q = (1 + p)2, if

max

{

η(x0y0 − µ),
4

27
(1 +K)

3
+

(
2

3
K2 − 1

3
K +

qK2

2(K + 1)
m2

)

qm2 −K
}

< p.

A.2. On Matrix Factorization

In this section, we present two additional results of matrix factorization.

A.2.1. ASYMMETRIC CASE: 1D FUNCTION AT THE MINIMA

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inherently, we squeeze X,Y
into a vector θ = vec(X,Y) ∈ R

mp+pq, which vectorizes the concatnation. As a result, we are able to represent the loss

Hessian w.r.t. θ as a matrix in R
(mp+pq)×(mp+pq). Meanwhile, the support of the loss landscape is in R

mp+pq . Similarly, we

use (∆X,∆Y) in the same shape of (X,Y) to denote . In the following theorem, we are to show the leading eigenvector

∆ ≜ vec(∆X,∆Y) ∈ R
mp+pq of the loss Hessian. Since the cross section of the loss landscape and ∆ forms a 1D function

f∆, we would also show the stable-oscillation condition on 1D function holds at the minima of f∆.

Theorem 6. For a matrix factorization problem, assume XY = C. Consider SVD of both matrices as X =
∑min{m,p}

i=1 σx,iux,iv
⊤
x,i and Y =

∑min{p,q}
i=1 σy,iuy,iv

⊤
y,i, where both groups of σ·,i’s are in descending order and both top

singular values σx,1 and σy,1 are unique. Also assume v⊤x,1uy,1 ̸= 0. Then the leading eigenvector of the loss Hessian is

∆ = vec(C1ux,1u
⊤
y,1, C2vx,1v

⊤
y,1) with C1 =

σy,1√
σ2
x,1+σ2

y,1

, C2 =
σx,1√

σ2
x,1+σ2

y,1

. Denote f∆ as the 1D function at the cross

section of the loss landscape and the line following the direction of ∆ passing vec(∆X,∆Y). Then, at the minima of f∆, it

13
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satisfies

3[f
(3)
∆ ]2 − f (2)∆ f

(4)
∆ > 0. (17)

The proof is provided in Appendix J.1. This theorem aims to generalize our 1-D analysis into higher dimension, and it turns

out the 1-D condition is sastisfied around any minima for two-layer matrix factorization. In Theorem 1 and Lemma 1, if

such 1-D condition holds, there must exist a period-2 orbit around the minima for GD beyond EoS. However, this is not

straightforward to generalize to high dimensions, because 1) directions of leading eigenvectors and (nearby) gradient are

not necessarily aligned, and 2) it is more natural and practical to consider initialization in any direction around the minima

instead of strictly along leading eigenvectors. Therefore, below we present a convergence analysis with initialization near

the minima, but in any direction instead.

B. Additional Experiments

In Appendix B.1, we provide numerical experiments to verify our theorems. Then, we provide additional experiments on

MLP and MNIST.

B.1. Proven Settings

1-D functions. As discussed in the Section 4.1, we have f(x) = 1
4 (x

2 − 1)2 satisfying the condition in Theorem 1 and

g(x) = 2 sin(x) satisfying Lemma 1, so we estimate that both f and g allow stable oscillation around the local minima. It

turns out GD stably oscillates around the local minima on both functions, when η > 2
f ′′(x̄) slightly, as shown in Figure 4.
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f(x
)
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x

1.75 1.50
x

2.000

1.975

1.950

1.925

f(x
)

100 101 102

epochs

1.8

1.6

1.4

x

Figure 4. Running GD around the local minima of f(x) = 1
4
(x2 − 1)2 (left two) and f(x) = 2 sin(x) (right two) with learning rate

η = 1.01 > 2
f ′′(x̄)

= 1. Stars denote the start points. It turns out both functions allow stable oscillation around the local minima.

Two-layer single-neuron model. As discussed in the Section 5, with a learning rate η ∈ (d, 1.1d], a single-neuron network

f(x) = v · σ(w⊤x) is able to align with the direction of the teacher neuron under population loss. We train such a model

in empirical loss on 1000 data points uniformly sampled from a sphere S1, as shown in Figure 5. The student neuron is

initialized orthogonal to the teacher neuron. In the end of training, wy decays to a small value before the inbalance |v − wx|
decays sharply, which verifies our argument in Section 5. With a small wy, this nonlinear problem degenerates to a 2-D

problem on v, wx. Then, the balanced property makes it align with the 1-D problem where v and wx converge to a period-2

orbit. Note that the small residuals of |v − wx| and wy are due to the difference between population loss and empirical loss.

Quasi-symmetric matrix factorization. As discussed in the Section 6, with mild assumptions, the quasi-symmetric

case stably wanders around the flattest minima. We train GD on a matrix factorization problem with X0X
⊤
0 = C ∈ R

8×8.

The learning rate is 1.02× EoS threshold. Following the setting in Section 6, for symmetric case, the training starts near

(X0,X0) and, for quasi-symmetric case, it starts near (αX0, 1/αX0) with α = 0.8, as shown in Figure 6. Although starting

with a re-scaling, the quasi-symmetric case achieves the same top singular values in Y and Z, which verifies the balancing

effect of 2-D functions in Theorem 3. Then, the top singular values of both cases converge to the same period-2 orbit, which

verifies Observation 2.
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Figure 5. Running GD in the teacher-student setting with learning rate η = 2.2 = 1.1d, trained on 1000 points uniformly sampled from

sphere S1 of ∥x∥ = 1. The teacher neuron is w̃ = [1, 0] and the student neuron is initialized as w(0) = [0, 0.1] with v(0) = 0.1.
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Figure 6. Symmetric and Quasi-symmetric Matrix factorization: running GD around flat (α = 1) and sharp (α = 0.8) minima. In both

cases, their leading singular values converge to the same period-2 orbit (about 6.1 and 5.3). (Left: Training loss. Middle: Largest singular

value of symmetric case. Right: Largest singular values of quasi-symmetric case.)

B.2. 2-D function

As discussed in the Appendix A.1, on the function f(x, y) = 1
2 (xy − 1)2, we estimate that |x − y| decays to 0 when

η ∈ (1, 1.5), as shown in Figure 7. Since it achieves a perfect balance, the two parameters follows convergence of the

corresponding 1-D function f(x) = 1
4 (x

2 − 1)2. As shown in Figure 7, xy with η = 1.05 converges to a period-2 orbit, as

stated in the 1-D discussion of Theorem 2 while xy with η = 1.25 converges to a period-4 orbit, which is out of our range in

the theorem. But still it falls into the range for balance in Theorem 3.

B.3. High dimension and MNIST

We perform two experiments in relatively higher dimension settings. We are to show two observations that coincides with

our discussions in the low dimension:

Observation 1: GD beyond EoS drives to flatter minima.

Observation 2: GD beyond EoS is in a similar style with the low dimension.

B.3.1. 2-LAYER HIGH-DIM HOMOGENEOUS RELU NNS WITH PLANTED TEACHER NEURONS

We conduct a synthetic experiment in the high-dimension teacher-student framework. The teacher network is in the form of

y|x := fteacher(x; θ̃) =

16∑

i=1

ReLU(e⊤i x), (18)
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Figure 7. Running GD on f(x, y) = 1
2
(xy − 1)2 with learning rate η = 1.05 (top) and η = 1.25 (bottom). When η = 1.05, it converges

to a period-2 orbit. When η = 1.25, it converges to a period-4 orbit. In both cases, |x− y| decays sharply.

where x ∈ R
16 and ei is the i-th vector in the standard basis of R16. The student and the loss are in forms of

f(x; θ) =

16∑

i=1

vi · ReLU(w⊤
i x), (19)

L(θ; θ̃) =
1

m

16∑

i

(f(x; θ)− y|xi)2 . (20)

Apparently, the global minimum manifold contains the following setM as (w.l.o.g., ignoring any permutation)

M = {(vi, wi)
16
i=1 | ∀i ∈ [16], wi = ki · ei, vi =

1

ki
, ki > 0}. (21)

However, different choices of {ki}16i=1 induce different extents of sharpness around each minima. Our aim is to show that

GD with a large learning rate beyond the edge of stability drives to the flattest minima from sharper minima.

Initialization. We initialize all student neurons directionally aligned with the teachers as wi ∥ ei but choose various ki, as

ki = 1 + 0.0625(i− 1). Obviously, such a choice of {ki}16i=1 is not at the flattest minima, due to the isotropy of teacher

neurons. Also we add small noise to wi to make the training start closely (but not exactly) from a sharp minima, as

wi = ki · (ei + 0.01ϵ), ϵ ∼ N (0, I). (22)

Data. We uniformly sample 10000 data points from the unit sphere S15.

Training. We run gradient descent with two learning rates η1 = 0.5, η2 = 2.6. Later we will show with experiments that

the EoS threshold of learning rate is around 2.5, so η2 is beyond the edge of stability. GD with these two learning rates starts

from the same initialization for 100 epochs. Then we extend another 20 epochs with learning rate decay to 0.5 from 2.6 for

the learning-rate case.
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Results. All results are provided in Figure 8. Both Figure 8 (a, b) present the gap between these two trajectories, where

GD with a small learning rate stays around the sharp minima, while that with a larger one drives to flatter minima. Then GD

stably oscillates around the flatter minima.

Meanwhile, from Figure 8 (b), when we decrease the learning rate from 2.6 to 0.5 after 100 epochs, GD converges to a

nearby minima which is significantly flatter, compared with that of lr=0.5.

Figure 8 (c) provides a more detailed view of
∥wi∥
vi

for all 16 neurons. All neurons with lr=0.5 stay at the original ratio k2i .

But those with lr=2.6 all converge to the same ratio around k2 = ∥w∥
v = 1.21, as shown in Figure 8 (d). We compute the

relationship between the sharpness of global minima inM and different choices of k, as shown in Figure 8 (e, f). Actually,

k2 = 1.21 is the best choice of {ki}16i=1 such that the minima is the flattest.

Therefore, we have shown that, in such a setting of high-dimension teacher-student network, GD beyond the edge of

stability drives to the flattest minima.
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B.3.2. 3, 4, 5-LAYER NON-HOMOGENEOUS MLPS ON MNIST

We conduct an experiment on real data to show that our finding in the low-dimension setting in Theorem 1 is possible to

generalize to high-dimensional setting. More precisely, our goals are to show, when GD is beyond EoS,

1. the oscillation direction (gradient) aligns with the top eigenvector of Hessian.

2. the 1D function at the cross-section of oscillation direction and high-dim loss landscape satisfies the conditions in

Theorem 1.

Network, dataset and training. We run 3, 4, 5-layer ReLU MLPs on MNIST (LeCun et al., 1998). The networks have 16

neurons in each layer. To make it easier to compute high-order derivatives, we simplify the dataset by 1) only using 2000

images from class 0 and 1, and 2) only using significant input channels where the standard deviation over the dataset is at

least 110, which makes the network input dimension as 79. We train the networks using MSE loss subjected to GD with

large learning rates η = 0.5, 0.4, 0.35 and a small rate η = 0.1 (for 3-layer). Note that the larger ones are beyond EoS.

Definition 5 (line search minima). Consider a function f , learning rate η and a point x ∈ domain(f). We call x̃ as the line

search minima of x if

x̃ = x− c∗ · η∇f(x), (23)

c∗ = argminc∈[0,1] f (x− c · η∇f(x)) . (24)

The line search minima x̃ can interpreted as the lowest point on the 1D function induced by the gradient at x. If GD is

beyond EoS, x̃ stays in the valley below the oscillation of x.

Results. All results are presented in Figure 9, 10 and 11.

Take the 3-layer as an example. From Figure 9 (a, b), GD is beyond EoS during epochs 10-14 and 21-60. For these epochs,

cosine similarity between the top Hessian eigenvector v1 and the gradient is pretty close to 1, as shown in Figure 9 (c),

which verifies our goal 1.

In Figure 9 (d), we compute 3[f (3)]2 − f (2)f (4) at line search minima along training, which is required to be positive in

Theorem 1 to allow stable oscillation. Then it turns out most points have 3[f (3)]2 − f (2)f (4) > 0 except a few points, all

of which are not in the EoS regime, and these few exceptional points might be due to approximation error to compute the

fourth-order derivative since their negativity is quite small. This verifies our goal 2.

Both the above arguments are the same in the cases of 4 and 5 layers as shown in Figure 10 and 11.
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Figure 8. Result of 2-layer 16-neuron teacher-student experiment.
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Figure 9. Result of 3-layer ReLU MLPs on MNIST. Both (c) and (d) are for learning rate as 0.5.
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Figure 10. Result of 4-layer ReLU MLPs on MNIST.
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C. Proof of Theorem 1

Theorem 7 (Restatement of Theorem 1). Consider any 1-D differentiable function f(x) around a local minima x̄, satisfying

(i) f (3)(x̄) ̸= 0, and (ii) 3[f (3)]2 − f ′′f (4) > 0 at x̄. Then, there exists ϵ with sufficiently small |ϵ| and ϵ · f (3) > 0 such

that: for any point x0 between x̄ and x̄ − ϵ, there exists a learning rate η such that the update rule Fη of GD satisfies

Fη(Fη(x0)) = x0, and
2

f ′′(x̄)
< η <

2

f ′′(x̄)− ϵ · f (3)(x̄) .

Proof. For simplicity, we assume f (3)(x̄) > 0. Imagine a starting point x0 = x̄ − ϵ, ϵ > 0. We omit

f ′(x̄), f ′′(x̄), f (3)(x̄), f (4)(x̄) as f ′, f ′′, f (3), f (4). After running two steps of gradient descent, we have

x0 = x̄− ϵ,

f ′(x0) = f ′ − f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3 +O(ϵ4)

= −f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3 +O(ϵ4),

x1 = x0 − ηf ′(x0) = x̄− ϵ− η
(
− f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3

)
+O(ϵ4),

f ′(x1) = f ′′ · (x1 − x̄) +
1

2
f (3) · (x1 − x̄)2 +

1

6
f (4) · (x1 − x̄)3 +O(ϵ4),

x2 = x1 − ηf ′(x1),
x2 − x0

η
= −

(

−f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3

)

− f ′′ ·
(

−ϵ− η
(
− f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3

)
)

− 1

2
f (3)

(

−ϵ− η
(
− f ′′ϵ+ 1

2
f (3)ϵ2 − 1

6
f (4)ϵ3

)
)2

− 1

6
f (4) · (−ϵ− η(−f ′′ϵ))3 +O(ϵ4)

= (2f ′′ − ηf ′′f ′′) ϵ+
(

−1

2
f (3) +

1

2
ηf ′′f (3) − 1

2
f (3)(−1 + ηf ′′)2

)

ϵ2

+

(
1

6
f (4) − 1

6
ηf ′′f (4) +

1

2
(−1 + ηf ′′)ηf (3)f (3) − 1

6
(−1 + ηf ′′)3f (4)

)

ϵ3 +O(ϵ4).

When η = 2
f ′′ , it holds

x2 − x0
η

=

(
1

2
ηf (3)f (3) − 1

3
f (4)

)

ϵ3 +O(ϵ4), (25)

which would be positive if 1
2ηf

(3)f (3) − 1
3f

(4) = 1
3f ′′ (3[f

(3)]2 − f ′′f (4)) > 0 and |ϵ| is sufficiently small.

When η = 2
f ′′−ϵ·f(3) then ηf ′′ = 2 + 2 f(3)

f ′′ ϵ+O(ϵ2), it holds

x2 − x0
η

= −2f (3)ϵ2 +
(

−1

2
f (3) + f (3) − 1

2
f (3)

)

ϵ2 +O(ϵ3) = −2f (3)ϵ2 +O(ϵ3), (26)

which is negative when |ϵ| is sufficiently small.

Therefore, there exists a learning rate η ∈ ( 2
f ′′ ,

2
f ′′−ϵ·f(3) ) such that x2 = x0 due to the continuity of (x2 − x0) with respect

to η.

The above proof can be generalized to the case of x0 = x̄ − ϵ′ with ϵ′ ∈ (0, ϵ] and the learning rate is still bounded as

η ∈ ( 2
f ′′ ,

2
f ′′−ϵ·f(3) ).

D. Proof of Lemma 1

Lemma 3 (Restatement of Lemma 1). Consider any 1-D differentiable function f(x) around a local minima x̄, satisfying

that the lowest order non-zero derivative (except the f ′′) at x̄ is f (k)(x̄) with k ≥ 4. Then, there exists ϵ with sufficiently

small |ϵ| such that: for any point x0 between x̄ and x̄− ϵ, and
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1. if k is odd and ϵ · f (k)(x̄) > 0, f (k+1)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′−f(k)ϵk−2 ),

2. if k is even and f (k)(x̄) < 0, then there exists η ∈ ( 2
f ′′ ,

2
f ′′+f(k)ϵk−2 ),

such that: the update rule Fη of GD satisfies Fη(Fη(x0)) = x0.

Proof. (1) If k is odd, assuming f (k) > 0 for simplicity, we have

x0 = x̄− ϵ,

f ′(x0) = −f ′′ϵ+
1

(k − 1)!
f (k)ϵk−1 − 1

k!
f (k+1)ϵk +O(ϵk+1),

x1 = x0 − ηf ′(x0) = x̄− ϵ+ ηf ′′ϵ− 1

(k − 1)!
ηf (k)ϵk−1 +

1

k!
ηf (k+1)ϵk +O(ϵk+1),

f ′(x1) = f ′′ · (x1 − x̄) +
1

(k − 1)!
f (k) · (x1 − x̄)k−1 +

1

k!
f (k+1) · (x1 − x̄)k +O(ϵk+1),

x2 − x0
η

=
x1 − ηf ′(x1)− x0

η
= −f ′(x0)− f ′(x1)

= (2f ′′ − ηf ′′f ′′) ϵ

+

(

− 1

(k − 1)!
f (k) +

1

(k − 1)!
ηf ′′f (k) − 1

(k − 1)!
f (k) · (−1 + ηf ′′)k−1

)

ϵk−1

+

(
1

k!
fk+1 − 1

k!
ηf ′′f (k+1) − 1

k!
f (k+1) · (−1 + ηf ′′)k

)

ϵk +O(ϵk+1)

When η = 2
f ′′ , it holds

x2 − x0
η

= − 2

k!
f (k+1)ϵk +O(ϵk+1). (27)

When η = 2
f ′′−f(k)ϵk−2 then ηf ′′ = 2 + 2 f(k)

f ′′ ϵ
k−2 +O(ϵ2k−4), then it holds

x2 − x0
η

= −2f (k)ϵk−1 +O(ϵk). (28)

Since k is odd and ϵ · f (k)(x̄) > 0, f (k+1)(x̄) < 0, the above two estimations of x2−x0/η have one positive and one negative

exactly. Therefore, due to the continuity of x2 − x0 wrt η, there exists a learning rate η ∈ ( 2
f ′′ ,

2
f ′′−f(k)ϵk−2 ) such that

x2 = x0.

The above proof can be generalized to any x0 between x̄ and x̄− ϵ with the same bound for η.

(2) If k is even, we have

x0 = x̄− ϵ,

f ′(x0) = −f ′′ϵ−
1

(k − 1)!
f (k)ϵk−1 +O(ϵk),

x1 = x0 − ηf ′(x0) = x̄− ϵ+ ηf ′′ϵ+
1

(k − 1)!
ηf (k)ϵk−1 +O(ϵk),

f ′(x1) = f ′′ · (x1 − x̄) +
1

(k − 1)!
f (k) · (x1 − x̄)k−1 +O(ϵk),

x2 − x0
η

=
x1 − ηf ′(x1)− x0

η
= −f ′(x0)− f ′(x1)

= (2f ′′ − ηf ′′f ′′) ϵ

+

(
1

(k − 1)!
f (k) − 1

(k − 1)!
ηf ′′f (k) − 1

(k − 1)!
(−1 + ηf ′′)k−1

)

ϵk−1 +O(ϵk).

24



Beyond the Edge of Stability via Two-step Gradient Updates

When η = 2
f ′′ , it holds

x2 − x0
η

= − 2

(k − 1)!
f (k)ϵk−1 +O(ϵk).

When η = 2
f ′′+c·f(k)ϵk−2 with c > 0 as some constant implying ηf ′′ = 2(1− c f(k)

f ′′ ϵ
k−2) +O(ϵ2k−4), then it holds

x2 − x0
η

= 2

(

c− 1

(k − 1)!

)

f (k)ϵk−1 +O(ϵk),

where we then set c = 1.

Hence, the above two estimations of x2−x0/η have one positive and one negative with sufficiently small |ϵ|. Therefore, due

to the continuity of x2 − x0, there exists a learning rate η ∈ ( 2
f ′′ ,

2
f ′′+f(k)ϵk−2 ) such that x2 = x0.

The above proof can be generalized to any x0 between x̄ and x̄− ϵ with the same bound for η.

Corollary 1. f(x) = sin(x) allows stable oscillation around its local minima x̄.

Proof. Its lowest order nonzero derivative (expect f ′′) is f (4)x̄ = sin(x̄) = −1 < 0 and the order 4 is even. Then Lemma 1

gives the result.

E. Proof of Prop 1

Proposition 9 (Restatement of Prop 1). Consider a 1-D function g(x) , and define the loss function f as f(x) = (g(x)−y)2.

Assuming (i) g′ is not zero when g(x̄) = y, (ii) g′(x̄)g(3)(x̄) < 6[g′′(x̄)]2, then it satisfies the condition in Theorem 1 or

Lemma 1 to allow period-2 stable oscillation around x̄.

Proof. From the definition, we have

f ′′(x) = 2[g(x)− y]g′′(x) + 2[g′(x)]2, (29)

f (3)(x) = 2[g(x)− y]g(3)(x) + 6g′′(x)g′(x), (30)

f (4)(x) = 2[g(x)− y]g(4)(x) + 6g′′(x)g′′(x) + 8g′(x)g(3)(x). (31)

Then at the global minima where g(x) = y, we have f ′′(x) = 2[g′(x)]2 and f (3)(x) = 6g′′(x)g′(x). If we assume y is not

a trivial value for g(x), which means g′(x) ̸= 0 at the minima, and g is not linear around the minima (implies g′′ ̸= 0), then

f satisfies f (3)(x̄) ̸= 0 in Theorem 1. Meanwhile, we need 3f (3)f (3) − f ′′f (4) > 0 as in Theorem 1, hence it requires

1

2g′(x)g′(x)
36g′′(x)g′′(x)g′(x)g′(x)− 1

3

(

6g′′(x)g′′(x) + 8g′(x)g(3)(x)
)

> 0 (32)

6g′′(x)g′′(x) > g′(x)g(3)(x). (33)

The remaining case is, if g′(x) ̸= 0 and g′′ = 0 at the minima, it satisfies the condition for Lemma 1 with k = 4, because

f (3) = 0 and f (4) < 0 due to (31, 33)

Corollary 2. f(x) = (x2 − 1)2 allows stable oscillation around the local minima x̄ = 1.

Proof. With g(x) = x2, it has g′(1) = 2 ̸= 0, g′′(1) = 2 ̸= 0. All higher order derivatives of g are zero. Then Prop 1 gives

the result.

Corollary 3. f(x) = (sin(x)− y)2 allows stable oscillation around the local minima x̄ = arcsin(y) with y ∈ (−1, 1).

Proof. With g(x) = sin(x), it has g′(x̄) = cos(x̄) ̸= 0, g(3)(x̄) = − cos(x̄). We have g(3)(x̄) is bounded as g′g(3) −
6[g′′]2 = − cos2(x̄)− 6 sin2(x̄) < 0. Then Prop 1 gives the result.
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Corollary 4. f(x) = (tanh(x)− y)2 allows stable oscillation around the local minima x̄ = tanh−1(y) with y ∈ (−1, 1).

Proof. With g(x) = tanh(x), it has g′(x̄) = sech2(x̄) ̸= 0, and g(3)(x̄) = −2sech4(x̄) + 4sech2(x̄) tanh2(x̄) is bounded

as

g′g(3) − 6[g′′]2 = −2sech6 + 4sech4 tanh2−24sech4 tanh2 = −2sech6 − 20sech4 tanh2 < 0.

Then Prop 1 gives the result.

Corollary 5. f(x) = (xα − y)2 (with k ∈ Z, k ≥ 2) allows stable oscillation around the local minima x̄ = y1/α except

y = 0.

Proof. With g(x) = xα, it has g′(x̄) = αxα−1, g′′(x̄) = α(α− 1)xα−2, g(3)(x̄) = α(α− 1)(α− 2)xα−3. Then we have

g′g(3) − 6[g′′]2 = α2(α− 1)(−5α+ 4)x2α−4 < 0. Then Prop 1 gives the result.

Corollary 6. f(x) = (exp(x)− y)2 allows stable oscillation around the local minima x̄ = log y for y > 0.

Proof. With g(x) = expx, it has g′(x̄) = g′′(x̄) = g(3)(x̄) = exp(x̄). Then we have g′g(3) − 6[g′′]2 < 0. Then Prop 1

gives the result.

Corollary 7. f(x) = (log(x)− y)2 allows stable oscillation around the local minima x̄ = exp y.

Proof. With g(x) = logx, it has g′(x̄) = 1
x̄ , g

′′(x̄) = − 1
x̄2 , g

(3)(x̄) = − 2
x̄3 . Then we have g′g(3) − 6[g′′]2 < 0. Then

Prop 1 gives the result.

Corollary 8. f(x) = ( 1
1+exp(−x) − y)2 allows stable oscillation around the local minima x̄ = sigmoid−1(y) for y ∈ (0, 1).

Proof. With g(x) = 1
1+exp(−x) , it has g′(x̄) = exp(−x)

(exp(−x)+1)2 , g
′′(x̄) = − exp(x)(exp(x)−1)

(exp(x)+1)3 , g(3)(x̄) =
exp(x)(−4 exp(x)+exp(2x)+1)

(exp(x)+1)4 . Then we have g′g(3) − 6[g′′]2 ∝ −4 exp(x) + exp(2x) + 1 − 6(exp(x) − 1)2 < 0. Then

Prop 1 gives the result.

Proposition 10 (Restatement of Prop 2). Consider two functions f, g. Assume both f(x), g(y) at x = x̄, y = f(x̄) satisfies

the conditions in Prop 1 to allow stable oscillations. Then g(f(x)) allows stable oscillation around x = x̄.

Proof. Denote F (x) ≜ g(f(x)). Then we have

F ′(x) = g′(f(x))f ′(x),

F ′′(x) = g′′(f(x))[f ′(x)]2 + g′(f(x))f ′′(x),

F (3)(x) = g(3)(f(x))[f ′(x)]3 + 3g′′(f(x))f ′(x)f ′′(x) + g′(f(x))f (3)(x).

Thus, omitting all variables x̄ and f(x̄) in the derivatives, it holds

F ′(x̄)F (3)(x̄)− 6[F ′′(x̄)]2 = g′f ′
(

g(3)(f ′)3 + 3g′′f ′f ′′ + g′f (3)
)

− 6
(
g′′(f ′)2 + g′f ′′

)2

≤ −9g′g′′(f ′)2f ′′,
where the inequality is due to all conditions in Prop 1. So the only problem is whether we can achieve g′g′′f ′′ > 0. The

good news is that, even if it holds g′g′′f ′′ < 0, we can still find functions to re-represent g(f(x)) as ĝ(f̂(x)) such that

ĝ′ĝ′′f̂ ′′ < 0 and all other conditions in Prop 1 are satisfied by ĝ, f̂ .

For g′g′′f ′′ < 0, construct ĝ(y) ≜ g(−y), f̂(x) ≜ −f(x). In this sense, it holds ĝ(f̂(x̄)) = g(f(x̄)). It is easy to verify

that both ĝ, f̂ at y = −f(x̄), x = x̄ satisfy the conditions in Prop 1, because

ĝ′(y) = −g′(−y) = −g′(f(x̄)), ĝ′′(y) = g′′(−y) = g′′(f(x̄)), ĝ(3)(y) = −g(3)(−y) = −g(3)(f(x̄)),
f̂ ′(x̄) = −f ′(x̄), f̂ ′′(x̄) = −f ′′(x̄), f̂ (3)(y) = −f (3)(x̄).

Then, it has ĝ′(y)ĝ′′(y)f̂ ′′(x) = −g′g′′f ′′ > 0 at y = −f(x̄), x = x̄. Therefore, we have F ′(x̄)F (3)(x̄)− 6[F ′′(x̄)]2 < 0
and Prop 1 gives the result.
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F. Proof of Theorem 2

Theorem 8 (Restatement of Theorem 2). For f(x) = 1
4 (x

2−µ)2, consider GD with η = K · 1µ where 1 < K <
√
4.5−1 ≈

1.121, and initialized on any point 0 < x0 <
√
µ. Then it converges to an orbit of period 2, except for a measure-zero

initialization where it converges to
√
µ. More precisely, the period-2 orbit are the solutions x = δ1 ∈ (0,

√
µ), x = δ2 ∈

(
√
µ, 2
√
µ) of solving δ in

η =
1

δ2
(√

µ
δ2 − 3

4 + 1
2

) . (34)

Proof. Assume the 2-period orbit is (x̄0, x̄1), which means

x̄1 = x̄0 − η · f ′(x̄0) = x̄0 + η · (µ− x̄20)x̄0,
x̄0 = x̄1 − η · f ′(x̄1) = x̄1 + η · (µ− x̄21)x̄1.

First, we show the existence and uniqueness of such an orbit when K ∈ (1, 1.5] via solving a high-order equation, some

roots of which can be eliminated. Then, we conduct an analysis of global convergence by defining a special interval I . GD

starting from any point following our assumption will enter I in some steps, and any point in I will back to this interval

after two steps of iteration. Finally, any point in I will converge to the orbit (x̄0, x̄1).

Before diving into the proof, we briefly show it always holds x > 0 under our assumption. If xt−1 > 0 and xt ≤ 0, the GD

rule reveals η(µ−x2t−1) ≤ −1 which implies x2t−1 ≥ µ+ 1
η . However, the maximum of x+η(µ−x2)x on x ∈ (0,

√

µ+ 1
η )

is achieved when x2 = 1
3 (µ + 1

η ) so the maximum value is
√

1
3 (µ+ 1

η )(
2
3 + 2

3ηµ) ≤ 1.4
√

1
3 (µ+ 1

η ) <
√

µ+ 1
η . As a

result, it always holds x > 0.

Part I. Existence and uniqueness of (x̄0, x̄1).

In this part, we simply denote both x̄0, x̄1 as x0. This means x0 in all formulas in this part can be interpreted as x̄0 and x̄1.

Then the GD update rule tells, for the orbit in two steps,

x0 7→ x1 := x0 + η(µ− x20)x0,
x1 7→ x0 = x1 + η(µ− x21)x1,

which means

0 = η(µ− x20)x0 + η
(

µ−
(
x0 + η(µ− x20)x0

)2
) (
x0 + η(µ− x20)x0

)
,

0 = µ− x20 +
(

µ−
(
x0 + η(µ− x20)x0

)2
) (

1 + η(µ− x20)
)
.

Denote z := 1 + η(µ− x20), it is equivalent to

0 = µ− x20 + (µ− z2x20)z = (z + 1)(−x20z2 + x20z + µ− x20)

= (z + 1)

(

−x20(z −
1

2
)2 + µ− 3

4
x20

)

.

If z + 1 = 0, it means x1 = −x0 which is however out of the range of our discussion on the x > 0 domain. So we require

−x20(z − 1
2 )

2 + µ− 3
4x

2
0 = 0. To ensure the existence of solutions z, it is natural to require

µ− 3

4
x20 ≥ 0.

Then, the solutions are

z =
1

2
±
√

µ

x20
− 3

4
.
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However, z = 1
2 −

√
µ
x2
0
− 3

4 can be ruled out. If it holds, η(µ− x20) = z − 1 < − 1
2 which means x20 > µ+ 1

2η . Since we

restrict ηµ ∈ (1, 1.121], it tells x20 > µ(1 + 1
1.242 ) contradicting with µ ≥ 3

4x
2
0.

Hence, z = 1
2 +

√
µ
x2
0
− 3

4 is the only reasonable solution, which is saying

η(µ− x20) = −
1

2
+

√

µ

x20
− 3

4
.

Given a certain η, the above expression is a third-order equation of x20 to solve. Apparently x20 = µ is one trivial solution,

since for any learning rate, the gradient descent stays at the global minimum. Then the two other solutions are exactly the

orbit (x̄0, x̄1), if the equation does have three different roots. This also guarantees the uniqueness of such an orbit.

Assuming x20 ̸= µ, the above expression can be reformulated as

η =
1

x20

(√
µ
x2
0
− 3

4 + 1
2

) . (35)

One necessary condition for existence is µ ≥ 3
4x

2
0. Note that here x0 can be both x̄0, x̄1, one of which is larger than

√
µ. For

simplicity, we assume x̄0 <
√
µ < x̄1. Since η from Eq(35) is increasing with x20 when µ < x20, let x20 = 4

3µ and achieve

the upper bound as

ηµ ≤ 3

2
, (36)

which is satisfied by our assumption 1 < ηµ <
√
4.5− 1 ≈ 1.121.

Therefore, we have shown the existence and uniqueness of a period-2 orbit.

Part II. Global convergence to (x̄0, x̄1).

The proof structure is as follows:

1. There exists a special interval I := [xs,
√
µ) such that any point in I will back to this interval surely after two steps of

gradient descent. And x̄0 ∈ I .

2. Initialized from any point in I , the gradient descent process will converge to x̄0 (every two steps of GD).

3. Initialized from any point between 0 and
√
µ, the gradient descent process will fall into I in some steps.

(II.1) Consider a function Fη(x) = x+η(µ−x2)x performing one step of gradient descent. Since F ′
η(x) = 1+ηµ−3ηx2,

we have F ′
η(x) > 0 for 0 < x2 < 1

3

(

µ+ 1
η

)

and F ′
η(x) < 0 otherwise. It is obvious that the threshold has x2s :=

1
3

(

µ+ 1
η

)

< µ. In the other words, for any point on the right of xs, GD returns a point in a decreasing manner.

To prove anything further, we would like to restrict x̄0 ≥ xs, which is

x̄20 ≥
1

3

(

µ+
1

η

)

=
1

3

(

µ+ x̄20

(√

µ

x̄20
− 3

4
+

1

2

))

.

Solving this inequality tells

x̄20 ≥
3 +
√
2

7
µ. (37)

Consequently, by applying Eq(35), we have

ηµ ≤
√
4.5− 1 ≈ 1.121. (38)
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With the above discussion of xs, we are able to define the special internal I := [xs,
√
µ). From the definition of Fη,

consider a function representing two steps of gradient descent F 2
η (x) := Fη(Fη(x)). From previous discussion, we know

F 2
η (x̄0) = x̄0. What about F 2

η (xs)?

It turns out F 2
η (xs) > xs: we have Fη(xs) = xs(1 + ηµ − ηx2s) = xs · 2

3 (1 + ηµ) and, furthermore, F 2
η (xs) =

Fη(xs · 23 (1 + ηµ)) = xs · 23 (1 + ηµ) ·
(
1 + ηµ− 4

27 (1 + ηµ)3
)
. Then we get F 2

η (xs) > xs because

2

3
(1 + ηµ) ·

(

1 + ηµ− 4

27
(1 + ηµ)3

)

> 1 if ηµ ∈ (1,
√
4.5− 1). (39)

Combining the following facts, i) F 2
η (x)− x is continous wrt x, ii) F 2

η (xs)− xs > 0, and iii) F 2
η (x̄0)− x̄0 = 0 is the only

zero point on x ∈ [xs, x̄0], we can conclude that

F 2
η (x) > x, ∀x ∈ [xs, x̄0). (40)

Meanwhile, we can prove F 2
η (x) < x for any x ∈ (x̄0,

√
µ). Since F 2

η (µ) − µ = 0 and F 2
η (x̄0) − x̄0 = 0 are the only

two zero cases, we only need to show ∃ x̂ ∈ (x̄0,
√
µ), such that F 2

η (x̂) < x̂. We compute the derivative of F 2
η (x)− x at

x2 = µ, which is d
dxF

2
η (x)− x|x2=µ = −1 + F ′(F (x))F ′(x)|x2=µ = −1 + [F ′(

√
µ)]2 = −1 + (1− 2ηµ)2 > 0. Then

combining it with F 2
η (x̄0) = x̄0, there exists a point x̂ ∈ (x̄0,

√
µ) that is very close to

√
µ such that F 2

η (x̂) < x̂. Hence, we

can conclude that

F 2
η (x) < x, ∀x ∈ (x̄0,

√
µ). (41)

Since Fη(·) is decreasing on [xs,∞) and Fη(x) > xs for x ∈ [xs,
√
µ], it is fair to say F 2

η (x) is increasing on x ∈ [xs,
√
µ].

Hence, we have F 2
η (x) ≤ F 2

η (x̄0) = x̄0, ∀x ∈ [xs, x̄0]. And F 2
η (x) ≥ F 2

η (x̄0) = x̄0, ∀x(x̄0,√µ)
Combining the above results, we have

F 2
η (x) ∈ (x, x̄0], ∀x ∈ [xs, x̄0), (42)

F 2
η (x) ∈ [x̄0, x), ∀x ∈ (x̄0,

√
µ). (43)

(II.2) A consequence of Exp(42, 43) is that any point in I will converge to x̄0 with even steps of gradient descent. For

simplicity, we provide the proof for x ∈ [xs, x̄0).

Denote a0 ∈ [xs, x̄0) and an := F 2
η (an−1), n ≥ 1. The series {ai}i≥0 satisfies

x̄0 ≥ an+1 > an > a0. (44)

Since the series is bounded and strictly increasing, it is converging. Assume it is converging to a. If a < x̄0, then

x̄0 ≥ F 2
η (a) > a > F 2

η (an).

Since F 2
η (·) is continuous, so ∃ δ > 0, such that, when |x− a| < δ, we have

|F 2
η (x)− F 2

η (a)| < F 2
η (a)− a. (45)

Since a is the limit, so ∃ N > 0, such that, when n > N , 0 < a− F 2
η (an) < δ. So, combining with Exp(45), we have

|F 2
η (F

2
η (an))− F 2

η (a)| < F 2
η (a)− a.

But LHS = F 2
η (a)− an+2 > F 2

η (a)− a, so we reach a contradiction.

Hence, we have {ai} converges to x̄0.

(II.3) Obviously, any initialization in (0,
√
µ) will have gradient descent run into (i) the interval I , or (ii) the interval on the

right of
√
µ, i.e., (

√
µ,∞). The first case is exactly our target.

Now consider the second case. From the definition of xs in part III.1, we know Fη(xs) = maxx∈[0,
√
µ] Fη(x). So it is fair

to say this case is xn ∈ (
√
µ, Fη(xs)]. Then the next step will go into the interval I , because

Fη(xn) ≥ Fη(Fη(xs)) = F 2
η (xs) > xs,

where the first inequality is from the decreasing property of Fη(·) and the second inequality is due to F 2
η (x) > x on

x ∈ [xs, x̄0).
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G. Proof of Theorem 3

Theorem 9 (Restatement of Theorem 3). For f(x, y) = 1
2 (xy − µ)

2
, consider GD with learning rate η = K · 1µ . Assume

both x and y are always positive during the whole process {xi, yi}i≥0. In this process, denote a series of all points with

xy > µ as P = {(xi, yi)|xiyi > µ}. Then |x− y| decays to 0 in P , for any 1 < K < 1.5.

Proof. Consider the current step is at (xt, yt) with xtyt > µ. After two steps of gradient descent, we have

xt+1 = xt + η(µ− xtyt)yt (46)

yt+1 = yt + η(µ− xtyt)xt (47)

xt+2 = xt+1 + η(µ− xt+1yt+1)yt+1 (48)

yt+2 = yt+1 + η(µ− xt+1yt+1)xt+1, (49)

with which we have the difference evolve as

yt+1 − xt+1 = (yt − xt) (1− η (µ− xtyt)) (50)

yt+2 − xt+2 = (yt+1 − xt+1) (1− η (µ− xt+1yt+1)) . (51)

Meanwhile, we have

xt+1yt+1 = xtyt + η (µ− xtyt)
(
x2t + y2t

)
+ η2 (µ− xtyt)2 xtyt

= xtyt (1 + η (µ− xtyt))2 + η (µ− xtyt) (xt − yt)2 (52)

Note that the second term in Eq(52) vanishes when x and y are balanced. When they are not balanced, if xtyt > µ, it holds

xt+1yt+1 < xtyt (1 + η (µ− xtyt))2. Incorporating this inequality into Eq(50, 51) and assuming yt − xt > 0, it holds

yt+2 − xt+2 < (yt − xt) (1− η (µ− xtyt))
(

1− η
(

µ− xtyt (1 + η (µ− xtyt))2
))

. (53)

To show that |x− y| is decaying as in the theorem, we are to show

1. yt+2 − xt+2 < yt − xt
2. yt+2 − xt+2 > −(yt − xt)

Note that, although xtyt > µ, it is not sure to have xt+2yt+2 > µ. However, for any 0 < xiyi < µ and K < 2, we have

|xi+1 − yi+1|
|xi − yi|

= |1− η (µ− xiyi)| < 1, (54)

which is saying |x− y| decays until it reaches xy > µ. So it is enough to prove the above two inequalities, whether or not

xt+2yt+2 > µ.

Part I. To show yt+2 − xt+2 < yt − xt
Since we wish to have yt+2 − xt+2 < yt − xt, it is sufficient to require

(1− η (µ− xtyt))
(

1− η
(

µ− xtyt (1 + η (µ− xtyt))2
))

< 1. (55)

Since we assume xt+1, yt+1 > 0, Eq (46, 47) tells η (µ− xtyt) > −min{xt

yt
, yt

xt
}, which is equivalent to 1−η (µ− xtyt) <

1 + min{xt

yt
, yt

xt
}.

(I.1) If η(µ− xt+1yt+1) ≥ 1
2

Then we have 1− η(µ− xt+1yt+1) ≤ 1
2 . As a result,

yt+2 − xt+2

yt − xt
= (1− η (µ− xtyt)) (1− η (µ− xt+1yt+1)) <

(

1 + min{xt
yt
,
yt
xt
}
)

× 1

2
(56)

=
1

2
+

1

2
min{xt

yt
,
yt
xt
} (57)
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(I.2) If η(µ− xt+1yt+1) <
1
2 and xt+1yt+1 ≤ x2s = 1

3

(

µ+ 1
η

)

The second condition reveals

yt+2 − xt+2

yt+1 − xt+1
= 1− η (µ− xt+1yt+1) ≤ 1− η

(

µ− 1

3

(

µ+
1

η

))

=
4

3
− 2

3
K. (58)

The first condition is equivalent to xt+1yt+1 > µ− 1
2η . Since the second term in Eq(52) is negative, we have

xtyt (1 + η (µ− xtyt))2 > µ− 1

2η
, (59)

with which we would like to find an upper bound of xtyt.

Denoting b = xtyt, consider a function q(b) = b (1 + η (µ− b))2. Obviously q(µ) = µ. Its derivative is q′(b) =
(1 + ηµ− ηb) (1 + ηµ− 3ηb) < 0 on the domain of our interest. If we can show an (negative) upper bound for the

derivative as q′(b) < −1 on a proper domain, then it is fair to say that, from Exp(59), xtyt < µ+ 1
2η . Then we have

yt+1 − xt+1

yt − xt
= 1− η(µ− xtyt) < 1− η

(

µ−
(

µ− 1

2η

))

=
3

2
. (60)

Then, combining Exp(60, 58), it tells

yt+2 − xt+2

yt − xt
< 2−K. (61)

The remaining is to show q′(b) < −1 on a proper domain. We have q′(b) = (1 + ηµ− 2ηb)2 − (ηb)2, which is equal to

1− 2ηµ < −1 when b = µ. Meanwhile, the derivative of q′(b) is q′′(b) = −2η(ηb+(1+ ηµ− 2ηb)) = −2η(1+ ηµ− ηb),
which is negative when b < µ+ 1

η . As a result, it always holds q′(b) < −1 when b < µ+ 1
η .

(I.3) If xt+1yt+1 ≥ x2s
Denoting again b = xtyt, the above inequality in is saying, with b > µ,

p(b) = (1− η (µ− b))
(

1− η
(

µ− b (1 + η (µ− b))2
))

< 1. (62)

After expanding p(·), we have

p(b)− 1 = η (µ− b)
(

−2 + η (µ− b) + 2ηb− η2b (µ− b)− η3b (µ− b)2
)

.

Apparently p(µ) = 1. So it is necessary to investigate whether p′(b) < 0 on b > µ, as

p′(b) = 2− 2ηb+ (µ− b)
(
η2 (1 + η (µ− b)) (−µ+ 3b) + η3b (µ− b)

)
.

Since ηb > 1 and b > µ, it is enough to require

(1 + η (µ− b)) (−µ+ 3b) + ηb (µ− b) > 0

(1 + η(µ− b))(−µ+ b) + ηb(µ− b) + 2b(1 + η(µ− b)) > 0.

It suffices to show

η(µ− b) + 2(1 + η(µ− b)) = 2 + 3η(µ− b) > 0. (63)

Since xt+1yt+1 ≥ x2s = 1
3

(

µ+ 1
η

)

, it holds

b (1 + η(µ− b))2 ≥ 1

3

(

µ+
1

η

)

2 + 3η(µ− b) ≥

√
√
√
√3

(

µ+ 1
η

)

b
− 1 > 0,
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where the last inequality holds because: if b ≥ 3
(

µ+ 1
η

)

, then 1 + η(µ− b) ≤ −2ηµ− 2 < 0, which contradicts with the

assumption that both xt+1, yt+1 are positive. As a result, the above argument gives

yt+2 − xt+2

yt − xt
< p(b) < 1− 2(K − 1)(b− µ). (64)

Part II. To show yt+2 − xt+2 > −(yt − xt)
Since xtyt > µ, we have 1− η(µ− xtyt) > 1. Combining with 1− η(µ− xtyt) < 2, it holds

yt+1 − xt+1

yt − xt
= 1− η(µ− xtyt) ∈ (1, 2).

So the remaining is to have
yt+2−xt+2

yt+1−xt+1
> −0.5. Actually it is 1− η(µ− xt+1yt+1) ≥ 1− ηµ = 1−K. Therefore, we have

yt+2 − xt+2

yt − xt
> −1 + (3− 2K), (65)

as required.

Part III. To show yt − xt converges to 0

From Exp (57, 61, 64, 65), we have for points in P , |y − x| is a monotone strictly decreasing sequence lower bounded by

0. Hence it is convergent. Actually it converges to 0. If not, assuming it converges to ϵ > 0, the next point will have the

difference as ϵ̃ < ϵ as well as all following points. Hence, the contradiction gives the convergence to 0.

H. Proof of Lemma 2

Lemma 4 (Restatement of Lemma 2). In the setting of Theorem 3, denote the initialization as m = |y0−x0|√
µ and x0y0 > µ.

Then, during the whole process, both x and y will always stay positive, denoting p = 4

(m+
√
m2+4)

2 and q = (1 + p)2, if

max

{

η(x0y0 − µ),
4

27
(1 +K)

3
+

(
2

3
K2 − 1

3
K +

qK2

2(K + 1)
m2

)

qm2 −K
}

< p.

Proof. Considering xtyt > µ, one step of gradient descent returns

xt+1 = xt + η(µ− xtyt)yt
yt+1 = yt + η(µ− xtyt)xt.

To have both xt+1 > 0, yt+1 > 0, it suffices to have

η(xtyt − µ) < min

{
yt
xt
,
xt
yt

}

. (66)

This inequality will be the main target we need to resolve in this proof.

First, we are to show

min

{
y0
x0
,
x0
y0

}

>
4

(
m+

√
m2 + 4

)2 .

With the difference fixed as m = (y0 − x0)/√µ, assuming y0 > x0, we have m/y0 = (1− x0/y0)/√µ. if x0y0 increases,

both x0 and y0 increase then m/y0 decreases, which means x0/y0 increases. As a result, we have

min

{
y0
x0
,
x0
y0

}

> min

{
y0
x0
,
x0
y0

}
∣
∣
∣
∣
∣
x0y0=µ

=
4

(
m+

√
m2 + 4

)2 .
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Therefore, at initialization, to have positive x1 and y1, it is enough to require

η(x0y0 − µ) <
4

(
m+

√
m2 + 4

)2 ≜ r.

From Theorem 3, it is guaranteed that |xt − yt| < |x0 − y0| with t ≥ 2 until it reaches xtyt > µ, with which r is still a

good lower bound for min{yt/xt, xt/yt}. So what remains to show is it satisfies η(xtyt − µ) < r for the next first time

xtyt > µ. If this holds, we can always iteratively show, for any xtyt > µ along gradient descent,

η(xtyt − µ) < r < min

{
yt
xt
,
xt
yt

}

.

Note that r itself is independent of xtyt and all the history, so it is ideal to compute a uniform upper bound of η(xtyt − µ)
with any pair of (xt−1, yt−1) satisfying xt−1yt−1 < µ. Actually it is possible, since we have |xt−1 − yt−1| bounded as in

Theorem 3.

Assume xiyi > µ and it satisfies the condition of η(xiyi − µ) < r and |xi − yi| < |x0 − y0|. As in (50), we have

xi+1 − yi+1

xi − yi
= 1− η (µ− xiyi) ∈ (1, 1 + r). (67)

Hence, it suffices to get the maximum value of g(z), with z ∈ (0, µ), as

g(z) = z (1 + η(µ− z))2 + η(µ− z)(1 + r)2(x0 − y0)2, (68)

which is from (52). Denote z̄ = argmax g(z). Obviously z̄ < 1
3 (µ + 1

η ) ≜ zb, because the first term of g(z) achieves

maximum at z = 1
3 (µ+ 1

η ) and the second term is in a decreasing manner with z. Then let’s take the derivative of g(z) as

g′(z) = (1 + η(µ− z)) (1 + ηµ− 3ηz)− η(1 + r)2(x0 − y0)2

= (1 + η(µ− z))
(

1 + ηµ− 3ηz − η(1 + r)2(x0 − y0)2
1 + η(µ− z)

)

,

where the first term is always positive, so we have

1 + ηµ− 3ηz̄ − η(1 + r)2(x0 − y0)2
1 + η(µ− z̄) = 0, (69)

which means

z̄ =
1

3η

(

1 + ηµ− η(1 + r)2(x0 − y0)2
1 + η(µ− z̄)

)

(70)

>
1

3η

(

1 + ηµ− η(1 + r)2(x0 − y0)2
1 + η(µ− 1

3 (µ+ 1
η ))

)

(71)

=
1

3

(

µ+
1

η
− 3(1 + r)2

2(η + 1)
(x0 − y0)2

)

(72)

≜ zs, (73)

where the inequality is from z̄ < 1
3 (µ+ 1

η ). As a result, it is safe to say

g(z) ≤ z (1 + η(µ− z))2
∣
∣
∣
∣
z=zb

+ η(µ− z)(1 + r)2(x0 − y0)2
∣
∣
∣
∣
z=zs

(74)

=
4

27
(1 + ηµ)3 · 1

η
+ η(1 + r)2

(
2

3
µ− 1

3η
+

2

ηµ+ 1
(x0 − y0)2

)

(x0 − y0)2, (75)

with which we are able to compute max η(g(z)− µ), which is exactly the final result.

33



Beyond the Edge of Stability via Two-step Gradient Updates

I. Proof of Theorem 4

Theorem 10 (Restatement of Theorem 4). In the above setting, consider a teacher neuron w̃ = [1, 0] and set the learning

rate η = Kd with K ∈ (1, 1.1]. Initialize the student as
∥
∥w(0)

∥
∥ = v(0) ≜ ϵ ∈ (0, 0.10] and ⟨w(0), w̃⟩ ≥ 0. Then, for

t ≥ T1 + 4, w
(t)
y decays as

w(t)
y < 0.1 · (1− 0.030K)t−T1−4, T1 ≤

⌈

log2.56
1.35

πβ2

⌉

, β =

(

1 +
1.1

π

)

ϵ.

Proof sketch The proof is divided into two stages, depending on whether wy grows or not. The key is that the change of

wy follows (omitting all superscripts t)

∆wy

wy
∝ −vwx +

1

π

wy

wx

1 + (
wy

wx
)2
, w(t+1)

y = |wy +∆wy| . (76)

where the second term in ∆wy/wy is bounded in [0, 1
2π ]. In stage 1 where vwx is relatively small, we show the growth ratio

of wy is smaller than those of wx and vwx, resulting in an upper bound of number of iterations for vwx to reach 1
2π , so

max(wy) is bounded too. Although the initialization is balanced as v(0) =
∥
∥w(0)

∥
∥ for simplicity of proof, v − wx is also

bounded at the end of stage 1. From the beginning of stage 2, thanks to the relatively narrow range of K, we are able to

compute the bounds of three variables (including v −wx, vwx and wy) and they turn out to fall into a basin in the parameter

space after four iterations. In this basin, wy decays exponentially with a linear rate of 0.97 at most. □

Proof. We restate the update rules as

∆v(t) := v(t+1) − v(t) = Kw(t)
x

[

(−v(t)w(t)
x + 1)− v(t)w(t)

y

w
(t)
y

w
(t)
x

− 1

π

(

arctan

(

w
(t)
y

w
(t)
x

)

− w
(t)
y

w
(t)
x

)]

,

= Kw(t)
x

[

(−v(t)w(t)
x + 1)− 1

π

(

arctan

(

w
(t)
y

w
(t)
x

)

− w
(t)
x w

(t)
y

∥
∥w(t)

∥
∥
2

)]

+K
(w

(t)
y )2

v(t)

(

−(v(t))2 + v(t)w
(t)
y

π
∥
∥w(t)

∥
∥
2

)

(77)

∆w(t)
x := w(t+1)

x − w(t)
x = Kv(t)

[

(−v(t)w(t)
x + 1)− 1

π

(

arctan

(

w
(t)
y

w
(t)
x

)

− w
(t)
x w

(t)
y

∥
∥w(t)

∥
∥
2

)]

, (78)

∆w(t)
y = w(t)

y ·K
(

−(v(t))2 + v(t)w
(t)
y

π
∥
∥w(t)

∥
∥
2

)

, (79)

w(t+1)
y =

∣
∣
∣w(t)

y +∆w(t)
y

∣
∣
∣ . (80)

For simplicity, we will omit all superscripts of time t unless clarification is necessary. From (80), if the target is to show wy

decaying with a linear rate, it suffices to bound the factor term in (79) (by a considerable margin) as

−2 < K

(

−v2 + vwy

π ∥w∥2

)

< 0. (81)

The technical part is the second inequality of (81). If v, wx > 0, it is equivalent to

vwx >
wxwy

π ∥w∥2
=

wxwy

π(w2
x + w2

y)
,

where the RHS is smaller than or equal to 1
2π . Hence, 1

2π is a special threshold with which we will frequently compare

vwx. Another important variable to control is v − wx that reveals how the two layers are balanced. If it is too large, for the

iteration v(t+1)w
(t+1)
x may explode as shown in the 2-D case.

The main idea of our proof is that
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• Stage 1 with vwx ≤ wxwy

π∥w∥2 : in this stage, wy grows but it grows in a smaller rate than that of v and wx. Therefore,

since we have an upper bound for vwx to stay in this stage, we are able to compute the upper bound of #iterations to

finish this stage, which is T1 in the theorem. At the end of this stage, both of v − wx and wy are bounded under our

assumption of initialization.

• Stage 2 with vwx >
wxwy

π∥w∥2 : in this stage, wy decreases. Since our range of a large learning rate is relatively narrow

(1 < K ≤ 1.1), we are able to compute bounds of vwx, v − wx and wy. After eight iterations, it falls into (and stays

in) a bounded basin of these three terms, in which wy decays at least in a linear rate.

Stage 1.

We are to show that, in the last iteration of this stage, there are three facts: 1) vwx ≤ 1
2π , 2) v − wx ∈ [−0.017, 0.17], and

3) wy ≤ 0.44.

At initialization, we assume v(0) =
∥
∥w(0)

∥
∥. Denote α0 = arctan(w

(0)
y /w

(0)
x ) ∈ [0, π/2]. So for next iteration we have

w(1)
y = v(0)

(

1 +K

(

−(v(0))2 + 1

π
sinα0

))

, (82)

w(1)
x = v(0)

[

cosα0 +K

(

1− (v(0))2 cosα0 +
cosα0 sinα0 − α0

π

)]

. (83)

Apparently w
(1)
y increases with α0 increasing. And

∂α0
w(1)

x = v(0)
[

− sinα0 +K

(

(v(0))2 sinα0 +
− sin2 α0 + cos2 α0 − 1

π

)]

= v(0)
[

− sinα0 +K

((

(v(0))2 − sinα0

π

)

sinα0 +
− sin2 α0

π

)]

.

Since in stage 1 it holds ∆wy > 0 which means −(v(0))2 + 1
π sinα0 > 0 in (82). So it follows ∂α0w

(1)
x ≤ 0. Combining

the above arguments, we have

w(1)
x ≥ w(1)

x |α0=
π
2
=
K

2
v(0),

w(1)
y ≤ w(1)

y |α0=
π
2
=

(

1 +
K

π
−K(v(0))2

)

v(0) ≤
(

1 +
K

π

)

v(0),

w
(1)
y

w
(1)
x

≤ 2 + 2K
π

K
≤ 2.7.

Regarding v
wy

, it has v(0) ≥ w
(0)
y at initialization due to v(0) =

∥
∥w(0)

∥
∥. From (77, 78, 79), we have v∆v = wx∆wx +

wy∆wy. So it holds v∆v ≥ y∆y. Meanwhile,
∆wy

v = K(−vwy +
w2

y

π∥w∥2 ) ∈ [0, Kπ ]. From Lemma 5, given v(t) ≥ w
(t)
y

and
∆wy

v ∈ [0, 1] for any t in this stage, it always holds v(t+1) ≥ w(t+1)
y .

Therefore, it is fair to say

v(1)w
(1)
x

(w
(1)
y )2

≥ 1

2.7
.

Additionally, to bound the term vwy/ ∥w∥2 in ∆wy , we would like to show it always has vwy ≤ ∥w∥2. At initialization, it
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naturally holds. Then, for the every next iteration, given it holds in the last iteration, we have

(v +∆v)(wy +∆wy)− [(wx +∆wx)
2 + (wy +∆wy)

2]

= (v +
wx∆wx + wy∆wy

v
)(wy +∆wy)− [(wx +∆wx)

2 + (wy +∆wy)
2]

= vwy + v∆wy + wx∆wx(
wy

v
+

∆wy

v
) + (wy∆wy + (∆wy)

2)
wy

v
− [(wx +∆wx)

2 + (wy +∆wy)
2]

≤ vwy + v∆wy + wy∆wy
wy

v
− (w2

x + w2
y + 2wy∆wy + (∆wx)

2)

≤ v∆wy + wy∆wy
wy

v
− 2wy∆wy − (∆wx)

2

= v∆wy(1−
wy

v
)2 − (∆wx)

2

≤ v∆wy − (∆wx)
2

where the first equality uses v∆v = wx∆wx + wy∆wy, the first inequality uses the proven v ≥ wy and v ≥ ∆wy, the

second inequality uses the assumption vwy ≤ ∥w∥2. Now we are to show v∆wy − (∆wx)
2 ≤ 0. We have

v∆wy − (∆wx)
2 ≤ Kv2 w2

y

π ∥w∥2
−K2v2

(

1− 1

2π
− γ(t)

)2

,

γ(t) =
1

π

(

arctan

(

w
(t)
y

w
(t)
x

)

− w
(t)
x w

(t)
y

∥
∥w(t)

∥
∥
2

)

.

Since we have proven w
(1)
y /w

(1)
x ≤ 2.7, it is easy to check that

1

π

(

1 + (w
(1)
x

w
(1)
y

)2
) ≤ (1− 1

2π
− γ(1))2.

As a result, v∆wy − (∆wx)
2 ≤ 0 at time 1. Furthermore, by checking each term, v∆wy − (∆wx)

2 decreases with wy/wx

decreasing. We will soon show that wy/wx itself decreases, by showing the growth ratio of wx is larger than that of wy .

Our target lower bound of the growth ratio of wx is that

∆wx

wx
≥ 1− 1

π
− γ, (84)

which is larger than the growth ratio of wy bounded by 1
π due to v∆wy < ∥w∥2. So it suffices to show Kv/wx ≥ 1.

Assuming Kv/wx ≥ 1 for the current step, we need to show Kv(t+1)/w
(t+1)
x ≥ 1 also holds for the next step. Let’s denote

A(t) = K

[

(−v(t)w(t)
x + 1)− 1

π

(

arctan

(

w
(t)
y

w
(t)
x

)

− w
(t)
x w

(t)
y

∥
∥w(t)

∥
∥
2

)]

. (85)

Then

(v +∆v)− 1

K
(wx +∆wx) ≥ v +Awx −

wx

K
− Av

K

= (v − wx

K
)(1−KA) + v(K − 1

K
)A. (86)

If KA ≤ 1, since K > 1 and A > 0, we have (86) as positive, which is what we need. If KA > 1, then

(86) ≥ (v − wx

K
)(1−K2) + v(K − 1

K
)A

= ((−K +A)v + wx) (K −
1

K
),
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where the first inequality is due to A ≤ K and the assumption of Kv(t)/w
(t)
x ≥ 1. Then it suffices to show (−K +A)v +

wx ≥ (−K + 1
K )v + wx ≥ 0. Note that −K + 1/K ∈ (−0.2, 0] when K ∈ (1, 1.1]. It is easy to verify that v(1) ≤ 5w

(1)
x .

Then, for the next step, we need to show v(t+1) ≤ 5w
(t+1)
x given v(t) ≤ 5w(t+1). To prove this, we are to bound v −wx, as

v(t+1) − w(t+1)
x = (1−A)(v − w) +K

w2
y

v
(−v2 + vwy

π ∥w∥2
)

≤ 0.4(v − w) +Kwy

w2
y

π ∥w∥2
≤ 0.4(v − w) + Kwy

π
, (87)

where the first inequality is due to, when wy/wx ≤ 2.7,

A = K

[

−v(t)w(t)
x +

1

π

w
(t)
x w

(t)
y

∥
∥w(t)

∥
∥
2

]

+K

[

1− 1

π
arctan

(

w
(t)
y

w
(t)
x

)]

≥ K
[

1− 1

π
arctan

(

w
(t)
y

w
(t)
x

)]

≥ 0.6.

We will later show that v(t+1) − w(t+1) ≥ −0.1(v(t) − w(t)). Combining this with (87), it is safe to say

v(t+1) − w(t+1) ≤ 0.4(v − w) + Kwy

π
≤ 0.4× 4w +

K × 5w

π
≤ 4w,

where the second inequality is due to v ≤ 5w and v ≥ wy. Since w(t+1) ≥ w(t) (due to A > 0) in this stage, we have

v(t+1) ≤ 5w
(t+1)
x .

Combining the above discussion, we have prove (84). Obviously, when wy/wx ≤ 2.7, RHS of (84) is at least 0.55, larger

than 1.1/π, which is the upper bound of the ∆wy/wy . As a result, wy/wx keeps decreasing.

The next step is to show the growing ratio of vwx is much larger than that of wy . From (78, 79), it holds

v(t+1)w(t+1)
x = (v +∆v)(wx +∆wx) ≥ vwx +KA(v2 + w2

x) +K2A2vwx

≥ vwx(1 +A)2,

where the first inequality is due to ∆wy ≥ 0. It follows v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 1.62 = 2.56.

So far, we have shown the following facts: under the defined initialization at time 0, starting from time 1, we have

1. vwx ≤ 1/2π.

2. ∆wx/wx + 1 ≥ 1.55.

3. ∆wy/wy + 1 ≤ 1 +K/π.

4. wy/wx ≤ 2.7 and keeps decreasing.

5. v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 2.56.

6. v ≥ wy .

7. v∆wy < (∆wx)
2.

Now we are to use the above facts to bound vwx, wy and v − wx to the end of stage 1.

For vwx, in previous discussion, we have shown that vwx ≤ 1
2π . Actually, there is another special value

wxwy

π(w2
x + w2

y)
= 0.104 when wy/wx = 2.7. (88)

This value is slightly larger than 1/4π. Hence, we would like to split the analysis into three parts: in the first step of stage 2,
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1. vwx ≥ 1
2π .

2. 1
4π ≤ vwx <

1
2π .

3. vwx <
1
4π .

Note that, although we are discussing the stage 1 in this section, investigating the lower bound of the first step in stage 2

helps calculate the number of iterations in stage 1. Furthermore, it helps bound several variables in stage 1.

Case (I). If vwx ≥ 1
2π in first step of stage 2:

Since we have prove
v(1)w(1)

x

(w
(1)
y )2

≥ 1/2.7 and v(t+1)w
(t+1)
x /v(t)w

(t)
x ≥ 2.56, the number of iterations for vwx to reach 1/2π

is at most

T1 ≤
⌈

log2.56

1
2π

(w
(1)
y )2/2.7

⌉

. (89)

Meanwhile, starting from time 1, the growth ratio of wy is

(wy +∆wy)/wy ≤ 1 +K(−v2 + 1/π) ≤ 1 + 1.1/π − (v(1))2 ≤ 1 + 1.1/π − (w(1)
y )2, (90)

where the first inequality is due to vwy ≤ ∥w∥2, the second is due to K > 1 and the third is from v ≥ wy. Therefore,

combining with (89), we can bound wy in the end of stage 1 as

wy ≤
(

1 + 1.1/π − (w(1)
y )2

)

⌈

log2.56

1
2π

(w
(1)
y )2/2.7

⌉

. (91)

Since it initializes as
∥
∥w(0)

∥
∥ ≤ 0.1, we have w

(1)
y ≤ 0.1(1 + 1.1/π) = 0.135. Then, it can be verified that, when

w
(1)
y ∈ (0, 0.135], it holds

wy ≤ 0.44. (92)

The next is to bound v − wx. Combining the update rules of v and wx in (77, 78), we have

∆(v − wx) := (v(t+1) − w(t+1)
x )− (v(t) − w(t)

x )

= K(v − wx)

(

vwx − 1 +
arctan(wy/wx)− wxwy

∥w∥2

π

)

+K
w2

y

v
(−v2 + vwy

π ∥w∥2
). (93)

Note that

−1 ≤ vwx − 1 +
arctan(wy/wx)− wxwy

∥w∥2

π
≤ −1 + arctan(wy/wx)

π
, (94)

where the left is due to vwx > 0 and , the right is from ∆wy ≥ 0. When wy/wx ≤ 2.7, the RHS follows −1 +
arctan(wy/wx)

π ≤ −0.6. So combining both sides tells

1 +K

(

vwx − 1 +
arctan(wy/wx)− wxwy

∥w∥2

π

)

∈ [−K + 1, 0.4] ⊂ [−0.1, 0.4]. (95)

Since ∆wy ≥ 0, we have 0 ≤ K w2
y

v (−v2 + vwy

π∥w∥2 ) ≤ K
π wy

w2
y

∥w∥2 . Note that at initialization w
(0)
x ≤ v(0). Then it is easy to

verify that

−0.01 ≤ −0.1(v(0) − w(0)) ≤ v(1) − w(1) ≤ (1 +
K

π
− K

2
)v(0) ≤ 0.082. (96)
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Because the coefficient on the positive side in (95) is larger than 0.4 > 0.1, it is appropriate to upper bound the v − wx as

v − wx ≤ max

{

0.082, 0.082 · 0.4T +
T∑

t=1

0.4t−1K

π
w(t)

y

(w
(t)
y )2

∥
∥w(t)

∥
∥
2

}

≤ max







0.082, 0.082 · 0.4T +

T∑

t=1

0.4t−1K

π
w(t)

y

1

1 + 1
2.7

(
1.55

1+K/π

)2(t−1)







≤ max







0.082, 0.082 · 0.4T +

T∑

t=1

0.4t−1 1.1 · 4.4
π

1

1 + 1
2.7

(
1.55

1+1.1/π

)2(t−1)







,

where the second inequality is from the different growth ratios of wx and wy . Note that here we take all T ≥ 1 and pick the

largest value of RHS to bound wy . It turns out

v − wx ≤ 0.17. (97)

Furthermore, to lower bound v − wx, since obviously |v − wx| ≤ 0.17, it follows

v − wx ≥ −0.1 · |v − wx|max ≥ −0.017. (98)

Case (II). If 1
4π ≤ vwx <

1
2π in first step of stage 2:

Similar to the discussion in Case (I), we are able to compute the number of iterations for vwx to reach 1/4π. It is at most

T1 ≤ ⌈log2.56
1
4π

(w
(1)
y )2/2.7

⌉. (99)

Accordingly, wy is bounded as

wy ≤
(

1 + 1.1/π − (w(1)
y )2

)⌈log2.56

1
4π

(w
(1)
y )2/2.7

⌉
≤ 0.37. (100)

For simplicity, we just keep the bounds for v − wx as in Case (I), as

v − wx ∈ [−0.017, 0.17]. (101)

Case (III). If vwx <
1
4π in first step of stage 2:

From the condition, we know vwx <
1
4π as well in the last step of stage 1. Since ∆wy > 0 in stage 1, it tells

1

π

wxwy

∥w∥2
< vwx ≤

1

4π
, (102)

which means

max{wx

wy
,
wy

wx
} ≥ 2 +

√
3. (103)

Since 2 +
√
3 > 2.7, if wy/wx ≥ 2 +

√
3, then for time 1, (v(1), w

(1)
x , w

(1)
y ) is already in the stage 2. However, it is not

possible because
∥
∥w(0)

∥
∥ = v(0) ≤ 0.1, which means v(1)w

(1)
x can not reach 1

π
2.7

1+2.72 .

Therefore, the only possible is wx

wy
≥ 2 +

√
3. In this case, we are able to bound wy as

wy ≤ (2−
√
3)wx ≤ (2−

√
3)

(√

1

4π
+ 0.00852 + 0.0085

)

≤ 0.078, (104)
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where the second inequality is due to vwx ≤ 1
4π and v − wx ≥ −0.017. Note that here we still use the bound of v − wx

from Case (I), although it is loose somehow but it is enough for our analysis.

We leave the analysis of the bound of number of iterations to the end of this section.

Stage 2.

In the case (I) of stage 1, where the first step in stage 2 is with vwx ≥ 1
2π , it has v − wx ∈ [−0.017, 0.17] and wy ≤ 0.44.

In the case (II), where the first step of stage 2 is with vwx ∈ [ 1
4π ,

1
2π ], it has v−wx ∈ [−0.017, 0.17] and wy ≤ 0.37. In the

case (III), where the first step of stage 2 is with vwx ∈ [ 1
4π ,

1
2π ], it has v − wx ∈ [−0.017, 0.17] and wy ≤ 0.078.

To upper bound vwx in the first step of stage 2, there are two candidates. One is from the case (I),

v(t+1)w(t+1)
x = vwx



1 +K(1− vwx −
arctan(

wy

wx
)− wy/wx

1+(wy/wx)2

π
)





2

+K
wxw

2
y

v

(

−v2 + vwy

π ∥w∥2

)

+K(v − wx)
2



1 +K(1− vwx −
arctan(

wy

wx
)− wy/wx

1+(wy/wx)2

π
)





≤ vwx (1 +K(1− vwx))
2
+K

wxw
2
y

wx

(

−vwx +
wxwy

π ∥w∥2

)

+K(v − wx)
2 (1 +K(1− vwx))

≤ 1

2π

(

1 + 1.1(1− 1

2π
)

)2

+ 1.1 · 0.442
(

− 1

4π
+

1

2π

)

+ 1.1 · 0.172
(

1 + 1.1(1− 1

2π
)

)

≤ 0.668, (105)

where we use vwx ≥ 1/4π, x/(1 + x2) ≤ 0.5 for any x.

One is from the case (II),

v(t+1)w(t+1)
x ≤ vwx (1 +K(1− vwx))

2
+K

wxw
2
y

wx

(

−vwx +
wxwy

π ∥w∥2

)

+K(v − wx)
2 (1 +K(1− vwx))

≤ 1

4π

(

1 + 1.1(1− 1

4π
)

)2

+ 1.1 · 0.372
(

1

2π

)

+ 1.1 · 0.172
(

1 + 1.1(1− 1

4π
)

)

≤ 0.48, (106)

where we use vwx ≤ 1/4π, x/(1 + x2) ≤ 0.5 for any x.

Therefore, we can see that, in the first step of stage 2,

vwx ≤ 0.668. (107)

Next we are going to show how the iteration goes in the stage 2. In Case (I), there are three facts:

1. wy ≤ 0.44.

2. v − wx ∈ [−0.017, 0.17].

3. vwx ∈ [ 1
2π , 0.668].

Similarly, in Case (II), there are three facts as well:

1. wy ≤ 0.37.
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2. v − wx ∈ [−0.017, 0.17].

3. vwx ∈ [ 1
4π ,

1
2π ].

The main idea is to find a basin that any iteration with the above properties (i.e., in the interval) will converge to and then

stay in. The method is to iteratively compute the ranges of the variables for several steps, thanks to the narrow range of K.

Before explicitly computing the ranges, let’s write down the computing method, depending on whether or not vwx ≥ 1.

Consider any iteration with vwx ∈ [m1,m2], v −wx ∈ [d1, d2], wy ≤ e, we compute the bounds of v(t+1)w
(t+1)
x , v(t+1) −

w
(t+1)
x , w

(t+1)
y in the following process (naturally assuming d1 < 0 < d2)

1. If m1 ≥ 1:

(a) Compute wx ≥
√

m1 + (d2/2)2 − d2/2 ≜ f .

(b) Compute
wy

wx
≤ e/f ≜ g.

(c) Compute
arctan(wy/wx)−wxwy

∥w∥2

π ≤ arctan(g)−g/(1+g2)
π ≜ h.

(d) Compute v(t+1)w
(t+1)
x ≥ m2(1 + 1.1(1−m2 − h))2 + 1.1(1−m2 − h)max{|d1|, |d2|}2 − 1.1e2m2. This is

from

v(t+1)w(t+1)
x ≥ vwx (1 +K(1− vwx − h))2 +K

wxw
2
y

v

(

−v2 + vwy

π ∥w∥2

)

+K(v − wx)
2 (1 +K(1− vwx − h))

≥ vwx (1 +K(1− vwx − h))2 −Kw2
y · vwx

+K(v − wx)
2 (1 +K(1− vwx − h)) .

(e) Compute v(t+1)w
(t+1)
x ≤ m1(1 + 1.0(1−m1))

2. This is due to x(1 +K(1− x))2 decreases with x increasing

when x ≥ 1.

(f) Compute v(t+1)−w(t+1)
x ∈ [d1(1+1.1(m2−1+h)−1.1e2 ·(

√

m2 + (d2/2)2+d2/2)), d2(1+1.1(m2−1+h))].
This is due to

∆v −∆wx = K(v − wx)

(

vwx − 1 +
1

π
(arctan(α)− wxwy

∥w∥2
)

)

+K
w2

y

v

(

−v2 + vwy

π ∥w∥2

)

,

where vwx ≥ 1, the last term is between −Kvw2
y and 0.

(g) Compute w
(t+1)
y ≤ e ·max{|j1|, |j2|}, where

j1 = 1 + 1.1

√

m1 + (d2/2)2 + d2/2
√

m1 + (d2/2)2 − d2/2
· (−m2), (108)

j2 = 1 + 1.0

√

m1 + (d1/2)2 − d1/2
√

m1 + (d1/2)2 + d1/2
· (−m1 +

1

2π
). (109)

This is due to
∆wy

wy
= K

v

wx
(−vwx +

1

π

wxwy

∥w∥2
),

then we would like to have the smallest value as j1 − 1 and the largest value as j2 − 1. Since wy is always

non-negative, taking the maximum absolute value gives the upper bound.

2. If m2 < 1:

(a) Compute wx ≥
√

m1 + (d2/2)2 − d2/2 ≜ f .

(b) Compute
wy

wx
≤ e/f ≜ g.
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(c) Compute
arctan(wy/wx)−wxwy

∥w∥2

π ≤ arctan(g)−g/(1+g2)
π ≜ h.

(d) Compute v(t+1)w
(t+1)
x ≥ minx∈[m1,m2] x(1 + 1.0(1− x− h))2 − 1.1e2x. Compared with the case of m1 ≥ 1,

we drop the term 1.1(1−m2 − h)max{|d1|, |d2|}2 because it is possible to have v − wx = 0 in some iterations.

(e) Compute v(t+1)w
(t+1)
x ≤ maxx∈[m1,m2] x(1 + 1.1(1− x))2 + 1.1(1− x)max{|d1|, |d2|}2. Compared with the

case of m1 ≥ 1, we add a term depending on the |v − wx|max because it enlarges vwx in the in-balanced case.

(f) Compute v(t+1)−w(t+1)
x ∈ [d1(1+1.1(m2−1+h)−1.1e2 ·(

√

m2 + (d2/2)2+d2/2)), d2(1+1.1(m2−1+h))].
In fact, a rigorous left bound should include more terms to select a minimum from. Here it is simple because it

keeps 1 +K(m1 − 1) ≥ 0 in the following computing, so we do not need to worry about the flipping sign of d1
and d2.

(g) Compute w
(t+1)
y ≤ e ·max{|j1|, |j2|}, where j1, j2 are the same with those in the case of m1 ≥ 1.

Therefore, with the above process, we are able to brutally compute the ranges of v(t+1)w
(t+1)
x , v(t+1) − w(t+1)

x , w
(t+1)
y

from the current ranges. Note that this process plays a role of building a mapping from one interval to another interval,

which covers all points from the source interval. However, it is loose to some extent because gradient descent is a mapping

from a point to another point. The advantage of such a loose method is feasibility of obtaining bounds while losing tightness.

To achieve tightness, later we will also include some wisdom in a point-to-point style.

Also note that, a nice way to combine tightness and efficiency in this method is to split and to merge intervals when

necessary.

For Case (I):

Now we are to compute the ranges starting from the interval where I = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈
[ 1
2π , 0.668]}. First, we split it into three intervals:

1. I1 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [0.213, 0.4]}.

2. I2 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [0.4, 0.668]}.

3. I30 = {wy ≤ 0.44, v − wx ∈ [−0.017, 0.17], vwx ∈ [ 1
2π , 0.213]}.

Then, following the above method with splitting and merging intervals, we have

1. Starting from I1,

(a) Step 1: I1 mapps to I3 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.55, 1.12131]}.
(b) Step 2: Splitting I3, we have

i. I4 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.55, 0.8]}.
ii. I5 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.8, 0.9]}.

iii. I6 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [0.9, 1.0]}.
iv. I7 = {wy ≤ 0.416, v − wx ∈ [−0.162, 0.068], vwx ∈ [1.0, 1.12131]}.
Then, we have

i. I4 mapps to

I8 = {wy ≤ 0.214, v − wx ∈ [−0.309, 0.0545], vwx ∈ [0.942, 1.25786]}.
ii. I5 mapps to

I9 = {wy ≤ 0.0966, v − wx ∈ [−0.335, 0.0613], vwx ∈ [0.880, 1.19649]}.
iii. I6 mapps to

I10 = {wy ≤ 0.0756, v − wx ∈ [−0.362, 0.068], vwx ∈ [0.777894, 1.11178]}.
iv. I7 mapps to

I11 = {wy ≤ 0.134, v − wx ∈ [−0.394, 0.0782], vwx ∈ [0.595, 1]}.
(c) Step 3: Splitting and merging I8, I9, I10, I11, we have

i. I12 = {wy ≤ 0.134, v − wx ∈ [−0.394, 0.078], vwx ∈ [0.595, 0.777]}.
ii. I13 = {wy ≤ 0.214, v − wx ∈ [−0.394, 0.078], vwx ∈ [0.777, 1]}.
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iii. I14 = {wy ≤ 0.214, v − wx ∈ [−0.362, 0.068], vwx ∈ [1, 1.11178]}.
iv. I15 = {wy ≤ 0.214, v − wx ∈ [−0.309, 0.061], vwx ∈ [1.11178, 1.25786]}.
Then, we have

i. I12 mapps to

I16 = {wy ≤ 0.0372, v − wx ∈ [−0.317, 0.061], vwx ∈ [1.14493, 1.31246]}.
ii. I13 mapps to

I17 = {wy ≤ 0.0432, v − wx ∈ [−0.448, 0.078], vwx ∈ [0.943633, 1.24393]}.
iii. I14 mapps to

I18 = {wy ≤ 0.0662, v − wx ∈ [−0.462, 0.077], vwx ∈ [0.77846, 1]}.
iv. I15 mapps to

I20 = {wy ≤ 0.0998, v − wx ∈ [−0.456, 0.0785], vwx ∈ [0.550, 0.878]}.

2. Starting from I2,

(a) Step 1: I2 mapps to I21 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈ [0.864, 1.25894]}
(b) Step 2: Splitting I21, we have

i. I22 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈ [0.864, 1]}.
ii. I23 = {wy ≤ 0.332, v − wx ∈ [−0.205, 0.114], vwx ∈ [1, 1.125894]}.
Then, we have

i. I22 mapps to

I24 = {wy ≤ 0.081, v − wx ∈ [−0.336, 0.114], vwx ∈ [0.858, 1.14813]}.
ii. I23 mapps to

I25 = {wy ≤ 0.184, v − wx ∈ [−0.409, 0.148], vwx ∈ [0.463, 1]}.
(c) Step 3: Splitting and merging I24, I25, we have

i. I26 = {wy ≤ 0.184, v − wx ∈ [−0.409, 0.148], vwx ∈ [0.463, 1]}.
ii. I27 = {wy ≤ 0.081, v − wx ∈ [−0.336, 0.114], vwx ∈ [1, 1.14813]}.
Then, we have

i. I26 mapps to

I28 = {wy ≤ 0.083, v − wx ∈ [−0.452, 0.148], vwx ∈ [0.952783, 1.31778]}.
ii. I27 mapps to

I29 = {wy ≤ 0.034, v − wx ∈ [−0.399, 0.133], vwx ∈ [0.777, 1]}.

3. Starting from I30,

(a) Step 1: I30 mapps to I31 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.422, 0.767]}
(b) Step 2: Splitting I31, we have

i. I32 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.422, 0.5]}.
ii. I33 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.5, 0.6]}.

iii. I34 = {wy ≤ 0.44, v − wx ∈ [−0.124, 0.037], vwx ∈ [0.6, 0.767]}.
Then, we have

i. I32 mapps to

I35 = {wy ≤ 0.301, v − wx ∈ [−0.218, 0.0185], vwx ∈ [0.901, 1.20971]}.
ii. I33 mapps to

I36 = {wy ≤ 0.262, v − wx ∈ [−0.245, 0.023], vwx ∈ [0.96322, 1.25093]}.
iii. I34 mapps to

I37 = {wy ≤ 0.213, v − wx ∈ [−0.288, 0.029], vwx ∈ [0.947, 1.25345]}.
(c) Step 3: Splitting and merging I35, I36, I37, we have

i. I38 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [0.901, 1]}.
ii. I39 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [1, 1.1]}.

iii. I40 = {wy ≤ 0.301, v − wx ∈ [−0.288, 0.029], vwx ∈ [1.1, 1.25093]}.
iv. I41 = {wy ≤ 0.262, v − wx ∈ [−0.245, 0.029], vwx ∈ [1.25093, 1.25345]}.
Then, we have

43



Beyond the Edge of Stability via Two-step Gradient Updates

i. I38 mapps to

I42 = {wy ≤ 0.0404, v − wx ∈ [−0.392, 0.029], vwx ∈ [0.888, 1.11696]}.
ii. I39 mapps to

I43 = {wy ≤ 0.0740, v − wx ∈ [−0.428, 0.033], vwx ∈ [0.741, 1]}.
iii. I40 mapps to

I44 = {wy ≤ 0.125, v − wx ∈ [−0.482, 0.038], vwx ∈ [0.497, 0.891]}.
iv. I41 mapps to

I45 = {wy ≤ 0.109, v − wx ∈ [−0.400, 0.038], vwx ∈ [0.534, 0.702]}.
(d) Step 4: Splitting and merging I42, I43, I44, I45, we have

i. I46 = {wy ≤ 0.125, v − wx ∈ [−0.482, 0.038], vwx ∈ [0.497, 0.891]}.
ii. I47 = {wy ≤ 0.074, v − wx ∈ [−0.428, 0.033], vwx ∈ [0.891, 1]}.

iii. I48 = {wy ≤ 0.041, v − wx ∈ [−0.40, 0.029], vwx ∈ [1, 1.11696]}.
Then, we have

i. I46 mapps to

I49 = {wy ≤ 0.0424, v − wx ∈ [−0.442, 0.034], vwx ∈ [1.07853, 1.34708]}.
ii. I47 mapps to

I50 = {wy ≤ 0.0110, v − wx ∈ [−0.435, 0.033], vwx ∈ [0.993, 1.13943]}.
iii. I48 mapps to

I51 = {wy ≤ 0.0109, v − wx ∈ [−0.454, 0.033], vwx ∈ [0.497, 0.891]}.

For Case (II):

Now we are to compute the ranges starting from the interval where I = {wy ≤ 0.37, v − wx ∈ [−0.017, 0.17], vwx ∈
[ 1
4π ,

1
2π ]}. First, we denote it as

1. I52 = {wy ≤ 0.37, v − wx ∈ [−0.017, 0.17], vwx ∈ [ 1
4π ,

1
2π ].

Then, following the above method with splitting and merging intervals, we have

1. Starting from I52,

(a) Step 1: I52 mapps to I53 = {wy ≤ 0.37, v − wx ∈ [−0.079, 0.0271], vwx ∈ [0.222, 0.616]}.
(b) Step 2: I53 mapps to I54 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈ [0.621, 1.24894]}.
(c) Step 3: Splitting I54, we have

i. I55 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈ [0.621, 1}.
ii. I56 = {wy ≤ 0.343, v − wx ∈ [−0.171, 0.017], vwx ∈ [1, 1.24894]}.
Then, we have

i. I55 mapps to

I57 = {wy ≤ 0.150, v − wx ∈ [−0.305, 0.017], vwx ∈ [0.840, 1.25908]}.
ii. I56 mapps to

I58 = {wy ≤ 0.137, v − wx ∈ [−0.367, 0.022], vwx ∈ [0.472, 1]}.
(d) Step 4: Splitting and merging I57, I58, we have

i.

ii. I59 = {wy ≤ 0.150, v − wx ∈ [−0.367, 0.022], vwx ∈ [0.472, 1}.
iii.

iv. I60 = {wy ≤ 0.150, v − wx ∈ [−0.305, 0.017], vwx ∈ [1, 1.25908}.
Then, we have

i. I59 mapps to

I61 = {wy ≤ 0.0705, v − wx ∈ [−0.393, 0.022], vwx ∈ [0.971, 1.304]}.
ii. I60 mapps to

I62 = {wy ≤ 0.0613, v − wx ∈ [−0.421, 0.0219], vwx ∈ [0.583, 1]}.
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For both Cases (I, II):

From I16−20, I28, I29, I49−51, I61, I62, we can see that it has fallen into an interval If = {wy < 0.1, v − wx ∈
[−0.462, 0.148], vwx ∈ [0.497, 1.34078]}. Something special here is that wy has been much smaller than wx. More

broadly, let’s define an interval Is generated by Ig = {wy = 0, v−wx ∈ [−0.464, 0.148], vwx ∈ [1, 1.5]}. Here ªgeneratedº

means

Is =
⋃

T≥t

{(v(T ), w(T )
x , w(T )

y )|(v(t)t , w(t)
x , w(t)

y ) ∈ Ig}. (110)

Then each element (v, wx, wy) ∈ Is has the following properties:

1. wy = 0.

2. vwx ∈ [0.181, 1.5].

3. If vwx ≤ 1, then v − wx ∈ [−0.735, 0.23]. If vwx > 1, then v − wx ∈ [−0.474, 0.148].

The first property is obvious. The third can be proven as follows: for each element (v, wx, wy) ∈ Ig , it has v(t+1)−w(t+1)
x =

(v−wx) (1 +K(vwx − 1)), where the ratio 1+K(vwx− 1) ∈ [1, 1+1.1(1.5− 1)] when vwx ∈ [1, 1.5]. Furthermore, in

the proven 2-D case, we have shown that ªif vwx > 1 with some mild conditions, then
v(t+2)−w(t+2)

x

v−wx
∈ (−1, 1)º. Actually

it can be tighter as
v(t+2)−w(t+2)

x

v−wx
∈ (−0.2, 1) because here K ≤ 1.1 while the original bound is for K ≤ 1.5. The condition

of bounded |v − wx| can also be verified, the purpose of which is to keep v, wx always positive. Then the bound [−0.2, 1]
will tell v − wx ∈ [−0.474, 0.148] on vwx ≥ 1, because

0.148

0.474
> 0.2,

0.474

0.148
> 0.2.

For the second property, the left bound can be verified as

min
x∈[1,1.5]

x(1 + 1.1(1− x))2 + 1.1(1− x) · 0.4742 =

(

x(1 + 1.1(1− x))2 + 1.1(1− x) · 0.4742
)∣
∣
∣
∣
x=1.5

≥ 0.181.

The right bound can be verified as

max
x∈[0,1]

x(1 + 1.1(1− x))2 + 1.1(1− x) ∗ 0.7352 < 1.5.

After proving these three properties, we would like to bound how far If is away from Is. More precisely, the distance is

measured by wy . We are going to show wy decays exponentially.

Remind the update rules in (77, 78). Denote γ = 1
π (arctan(α)−

wxwy

∥w∥2 ) again and δ = K
w2

y

v (−v2 + vwy

π∥w∥2 ), then it is

∆v = Kwx(−vwx + 1)−Kwxγ + δ, (111)

∆wx = Kv(−vwx + 1)−Kvγ, (112)

δ ∈ [−Kvw2
y, 0]. (113)

Note that both γ and δ are very small, so we are to show their effects separately, which is enough to be a good approximation.

Consider an iteration where v(t)w
(t)
x > 1 and the corresponding γ(t). Let’s denote v(t+1), w

(t+1)
x as the next parameters

with no corruption from γ(t). Similarly, we denote v̂(t+1), ŵx
(t+1) are corrupted with γ(t). From the 2-D analysis, we

know

v(t+2) − w(t+2)
x

v(t) − w(t)
x

= (1 +K(v(t)w(t)
x − 1))(1 +K(v(t+1)w(t+1)

x − 1)) < 1. (114)
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We would like to show, with a small γ(t) and ignoring δ,

v̂(t+2) − ŵx
(t+2)

v(t) − w(t)
x

= (1 +K(v(t)w(t)
x − 1 + γ(t)))(1 +K(v̂(t+1)ŵx

(t+1) − 1 + γ(t+1))) ⪅ 1, (115)

where γ(t+1) is in time (t+ 1) accordingly. The difference of LHS of the above two expressions turns out to be

(115)− (114) = Kγ(t)(1 +K(v(t+1)w(t+1)
x − 1))

+ (1 +K(v(t)w(t)
x − 1))K(v̂(t+1)ŵx

(t+1) − v(t+1)w(t+1)
x + γ(t+1)) +O(γ2)

= Kγ(t)(1 +K(v(t+1)w(t+1)
x − 1))

+K(1 +K(v(t)w(t)
x − 1))(−K(v(t))2γ(t) −K(w(t)

x )2γ(t) + γ(t+1)) +O(γ2)

≤ Kγ(t)
(

1 + (1 +K(v(t)w(t)
x − 1))

(
−K(v(t))2 −K(w(t)

x )2 +
γ(t+1)

γ(t)
)
)

+O(γ2)

≤ Kγ(t)
(

1 + (1 +K(v(t)w(t)
x − 1))

(
− 2Kv(t)w(t)

x +
γ(t+1)

γ(t)
)
)

+O(γ2). (116)

Since ∆wx

wx
= K v

wx
(−vwx + 1− γ), we have

w
(t+1)
x

w
(t)
x

= 1 +K
v(t)

w
(t)
x

(−v(t)w(t)
x + 1− γ(t)) < 1. (117)

Also we have

γ(t+1)

γ(t)
=

arctan(
w(t+1)

y

w
(t+1)
x

)− w(t+1)
x w(t+1)

y

∥w(t+1)∥2

arctan(
w

(t)
y

w
(t)
x

)− w
(t)
x w

(t)
y

∥w(t)∥2
. (118)

Since w
(t+1)
y ≤ w(t)

y and

arctan(mx)− mx
1+m2x2

arctan(x)− x
1+x2

≤ m3, for any m > 0, x > 0, (119)

we have

γ(t+1)

γ(t)
≤ 1
(

1 +K v(t)

w
(t)
x

(−v(t)w(t)
x + 1− γ(t))

)3 . (120)

For general vwx ∈ (1, 1.5], (120) holds as

γ(t+1)

γ(t)
⪅

1

(1 + 1.1
√
1+0.0742+0.074√
1+0.0742−0.074

(−1.5 + 1))3
≤ 22. (121)

Since 1 +K(v(t)w
(t)
x − 1) ≤ 1 + 1.1 ∗ 0.5 = 1.55, it is fair to say

(115)− (114) ⪅ Kγ(t)(1 + 1.55 ∗ (−2 + 22)) +O(γ2) = 35.2γ(t) +O(γ2). (122)

Actually γ(t) is bounded by

w
(t)
y

w
(t)
x

≤ 0.099√
1 + 0.0742 − 0.074

= 0.1066, (123)

γ(t) ≤
arctan(x)− x

1+x2

π
≤ 2.6× 10−4. (124)
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As a result,

(115)− (114) ⪅ 0.0084. (125)

Note that this small value is very easy to cover in (114), requiring

1− v(t+2) − w(t+2)
x

v(t) − w(t)
x

≥ 0.0084, (126)

except when vwx is pretty close to 1. When vwx −→ 1, from the analysis of 2-D case, (derived from the case of

xt+1yt+1 ≥ x2s)

1− v(t+2) − w(t+2)
x

v(t) − w(t)
x

≥ (2K − 2)(v(t)w(t)
x − 1). (127)

For (115)− (114), denote a function p(x) as

p(x) = 1 + (1 +Kx)




−2K(x+ 1) +

1
(

1 +K v
wx

(−x)
)3




 , (128)

where x = v(t)w
(t)
x − 1 in (116, 120). It is obvious that p(0) = 1 + (−2K + 1) < 0. When x is small, it turns out

p(x) = −2K + 2 +K

(

−2K − 1 + 3
v(t)

w
(t)
x

)

x+O(x2) (129)

As a result, (115)− (114) < 0 when vwx − 1 = o(K − 1). What if vwx − 1 = Ω(K − 1)? Actually, we can get a better

bound by a more care analysis, as

(115)− (114)

Kγ(t)
≤ 1 + (1 +K(v(t)w(t)

x − 1))
(
−K(v(t))2 −K(w(t)

x )2 +
γ(t+1)

γ(t)
)

+K
[

v(t)w(t)
x (1 +K(1− v(t)w(t)

x ))2 − 1
]

, (130)

where the last term is due to v(t+1)w
(t+1)
x ≤ v(t)w

(t)
x (1 +K(1− v(t)w(t)

x ))2. Hence, with this bound, by expanding the

last term, (129) becomes

p(x) = −2K + 2 +K

(

−2K − 1 + 3
v(t)

w
(t)
x

)

x+K(1− 2K)x+O(x2) (131)

= −2K + 2 +K

(

−4K + 3
v(t)

w
(t)
x

)

x+O(x2), (132)

which is definitely negative because

v(t)

w
(t)
x

≤
√
1 + 0.0742 + 0.074√
1 + 0.0742 − 0.074

< 1.16 <
4

3
. (133)

Meanwhile, we are to prove the δ in (111) will not make Ĩs make v − wx < −0.474 starting from v − wx ≥ −0.462. First,

in the region of {vwx ∈ [1, 1.5], v−wx ≤ 0.148}, we have Kvw2
y ≤ 1.1 · (

√
1.5 + 0.0742+0.074) ∗ 0.12 ≤ 0.0144. Also

note that in this region with v − wx ≥ −0.462, we have

w
(t+1)
y

wy
≤ 1−

√
1 + 0.2312 − 0.231√
1 + 0.2312 + 0.231

= 0.37. (134)

Hence Kv(w
(t)
y )2 +Kv(w

(t+1)
y )2 ≤ 0.0144 ∗ (1 + 0.372) = 0.0164. Since |v(t+2) −w(t+2)| < |v(t) −w(t)| if there is no

δ, we shall see that there is no need to discuss the case of v − wx ≥ −0.462 + 0.0164 = −0.4456 because it still holds
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v(t+1) − w(t+1)
x > −0.462. When v(t) − w(t)

x ∈ [−0.462,−0.4456], we shall see that in (55), after adding the term of δ in

v,

v(t+2) − w(t+2)
x

v(t) − w(t)
x

≤ 1− (1 +K(vwx − 1)) ·Kwxδ, (135)

which means the absolute value of v − wx decays at least by a margin depending on δ. After multiplying the current

difference v(t) − w(t)
x on both side, it gives

(v(t+2) − w(t+2)
x )− (v(t) − w(t)

x ) ≥ v(t)w(t)
x w(t)

x δ. (136)

Note that here v(t+2) −w(t+2)
x does not include δ(t) and δ(t+1). As stated above, we have δ(t+1)

δ(t)
≤ 0.372 ≤ 0.16 due to the

decay of wy . So it is safe to say δ(t) + δ(t+1) ≥ 1.16δ(t). Combining with the above inequality, it gives

(v(t+2) − w(t+2)
x )− (v(t) − w(t)

x ) + δ(t) + δ(t+1) ≥ (v(t)w(t)
x w(t)

x + 1.16)δ(t), (137)

where

v(t)w(t)
x w(t)

x + 1.16 ≤ vwx · (
√

vwx + (
0.4456

2
)2 − 0.4456

2
) + 1.16 ≤ 0.6. (138)

Furthermore, from our previous discussion, w
(t+2)
y < w

(t+2)
y gives that the sum of (137) is bounded by

0.6

1− 0.16
δ(t) ≥ 0.6

1− 0.16
· (−0.0144) ≥ −0.0103. (139)

Since −0.474− (−0.462) < −0.0103, we shall see that the term of δ cannot drive v−wx < −0.472. Note that (137) shall

include a factor (< 1) in front of δ(t), but we have ignored it to show a more aggressive bound.

Therefore, we are able to say an Interval Îs generated by If also has the following properties: for each element (v, wx, wy) ∈
Îs,

1. vwx ∈ [0.181, 1.5].

2. If vwx ≤ 1, then v − wx ∈ [−0.735, 0.23]. If vwx > 1, then v − wx ∈ [−0.472, 0.148].

Then the decreasing ratio of ∆wy/wy is bounded by

∆wy

wy
= K

v

wx

(

−vwx +
1

π

wxwy

∥w∥2

)

(140)

∈
[

−1.1(
√

1.5 + 0.0742 + 0.074)2,−0.030K
]

(141)

= [−1.87,−0.030K]. (142)

Hence, wy decays with a linear ratio of 0.97 (or 1− 0.030K) at most for Cases (I, II) in stage 2.

For Case (III), in the first step of stage 2, it already has wy ≤ 0.078 and v − wx ∈ [−0.017, 0.17]. So surely it will also

converge to Is.

Here we present the time analysis for Case (III) of both stages. The number of iterations in the first stage is apparently

similar to that of case (I, II), as

T1 ≤ log2.56

⌈
2.7ψ

β2

⌉

, (143)

48



Beyond the Edge of Stability via Two-step Gradient Updates

where ψ < 1
4π is the value of vwx in the first step of stage 2. In stage 2, since our target is to find how many steps are

necessary to get vwx ≥ 0.181, so it is

v(t+1)w(t+1)
x ≥ v(t)w(t)

x



1− 0.181 + 1−
arctan(2−

√
3)− 2−

√
3

1+(2−
√
3)2

π
− 1.1w2

y



 (144)

≥ 3.28v(t)w(t)
x . (145)

where obviously it still holds
wy

wx
≤ 2−

√
3 and w2

y < 0.12 in stage 2. Since 3.28 > 2.56, we have the total number of steps

to have vwx > 0.181 bounded as

⌈

log2.56
2.7ψ

β2

⌉

+

⌈

log3.28
0.181

ψ

⌉

≤
⌈

log2.56
0.675

πβ2

⌉

+

⌈

log3.28
0.181

1
4π

⌉

+ 2

≤
⌈

log2.56
0.675

πβ2

⌉

+ 3

<

⌈

log2.56
1.35

πβ2

⌉

+ 4,

which is not beyond the bound for Cases (I, II).

J. Proof of Matrix Factorization

Consider a two-layer matrix factorization problem, parameterized by learnable weights X ∈ R
m×p, Y ∈ R

p×q, and the

target matrix is C ∈ R
m×q . The loss L is defined as

L(X,Y) =
1

2
∥XY −C∥2F . (146)

Obviously {X,Y : XY = C} forms a minimum manifold. Focusing on this manifold, our targets are: 1) to prove our

condition for stable oscillation on 1D functions holds at the minimum of L for any setting of dimensions, and 2) to provide

an observation of walking towards flattest minima with theoretical intuition.

J.1. Asymmetric Case: 1D function at the minima

Before looking into the theorem, we would like to clarify the definition of the loss Hessian. Inherently, we squeeze X,Y
into a vector θ = vec(X,Y) ∈ R

mp+pq, which vectorizes the concatnation. As a result, we are able to represent the loss

Hessian w.r.t. θ as a matrix in R
(mp+pq)×(mp+pq). Meanwhile, the support of the loss landscape is in R

mp+pq. In the

following theorem, we are to show the leading eigenvector ∆ ≜ vec(∆X,∆Y) ∈ R
mp+pq of the loss Hessian. Since the

cross section of the loss landscape and ∆ forms a 1D function f∆, we would also show the stable-oscillation condition on

1D function holds at the minima of f∆.

Theorem 11. For a matrix factorization problem, assume XY = C. Consider SVD of both matrices as X =
∑min{m,p}

i=1 σx,iux,iv
⊤
x,i and Y =

∑min{p,q}
i=1 σy,iuy,iv

⊤
y,i, where both groups of σ·,i’s are in descending order and both top

singular values σx,1 and σy,1 are unique. Also assume v⊤x,1uy,1 ̸= 0. Then the leading eigenvector of the loss Hessian is

∆ = vec(C1ux,1u
⊤
y,1, C2vx,1v

⊤
y,1) with C1 =

σy,1√
σ2
x,1+σ2

y,1

, C2 =
σx,1√

σ2
x,1+σ2

y,1

. Denote f∆ as the 1D function at the cross

section of the loss landscape and the line following the direction of ∆ passing vec(∆X,∆Y). Then, at the minima of f∆, it

satisfies

3[f
(3)
∆ ]2 − f (2)∆ f

(4)
∆ > 0. (147)

Proof. To obtain the direction of the leading Hessian eigenvector at parameters (X,Y), consider a small deviation of the

parameters as (X+∆X,Y +∆Y). With XY = C, evaluate the loss function as

L(X+∆X,Y +∆Y) =
1

2
∥∆XY +X∆Y +∆X∆Y∥2F . (148)
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Expand these terms and split them by orders of ∆X,∆Y as follows:

Θ(∥∆X∥2 + ∥∆Y∥2) : 1

2
∥∆XY +X∆Y∥2F , (149)

Θ(∥∆X∥3 + ∥∆Y∥3) : ⟨∆XY +X∆Y,∆X∆Y⟩, (150)

Θ(∥∆X∥4 + ∥∆Y∥4) : 1

2
∥∆X∆Y∥2F . (151)

From the second-order terms, the leading eigenvector of ∇2L is the solution of

vec(∆X,∆Y) = argmax
∥∆X∥2

F+∥∆Y∥2
F=1

∥∆XY +X∆Y∥2F . (152)

Since both the top singular values of X,Y are unique, the solution shall have both ∆X,∆Y of rank 1. Actually the solution

is (here for simplicity we eliminate the sign of both)

∆X =
σy,1

√

σ2
x,1 + σ2

y,1

ux,1u
⊤
y,1, ∆Y =

σx,1
√

σ2
x,1 + σ2

y,1

vx,1v
⊤
y,1. (153)

Equipped with the top eigenvector of Hessian, vec(∆X,∆Y), we consider the 1-D function f∆ generated by the cross-

section of the loss landscape and the eigenvector, passing the minima (X,Y). Define the function as

f∆(µ) = L(X+ µ∆X,Y + µ∆Y), µ ∈ R. (154)

Then, around µ = 0, we have

f∆(µ) =
1

2
∥∆XY +X∆Y∥2F · µ2 + ⟨∆XY +X∆Y,∆X∆Y⟩ · µ3 +

1

2
∥∆X∆Y∥2F · µ4. (155)

Therefore, the several order derivatives of f∆(µ) at µ = 0 can be obtained from Taylor expansion as

f
(2)
∆ (0) = ∥∆XY +X∆Y∥2F , (156)

f
(3)
∆ (0) = 6⟨∆XY +X∆Y,∆X∆Y⟩, (157)

f
(4)
∆ (0) = 12 ∥∆X∆Y∥2F . (158)

Then we compute the condition of stable oscillation of 1-D function as

[
3[f

(3)
∆ ]2 − f (2)∆ f

(4)
∆

]
(0) = 108⟨∆XY +X∆Y,∆X∆Y⟩2 − 12 ∥∆XY +X∆Y∥2F ∥∆X∆Y∥2F (159)

= 96 ∥∆XY +X∆Y∥2F ∥∆X∆Y∥2F > 0, (160)

because all of ∆XY,X∆Y,∆X∆Y are parallel to ux,1v
⊤
y,1 and v⊤x,1uy,1 ̸= 0.

J.2. Quasi-symmetric case: walk towards flattest minima

Observation 3 (Restatement of Observation 2). Consider the quasi-symmetric matrix factorization with learning rate

η = 1
σ2
1
+ β. Assume 0 < βσ2

1 <
√
4.5 − 1 ≈ 1.121. Consider a minimum (Y0 = αX0,Z0 = 1/αX0), α > 0. The

initialization is around the minimum, as Y1 = Y0 +∆Y1,Z1 = Z0 +∆Z1, with the deviations satisfying u⊤1 ∆Y1v1 ̸=
0, u⊤1 ∆Z1v1 ̸= 0 and ∥∆Y1∥ , ∥∆Z1∥ ≤ ϵ. The second largest singular value of X0 needs to satisfy

η ·max

{

(
σ2
1

α2
+ σ2

2α
2,
σ2
2

α2
+ σ2

1α
2)

}

≤ 2. (161)

Then GD would converge to a period-2 orbit γη approximately with error in O(ϵ), formally written as

(Yt,Zt)→ γη + (∆Y,∆Z), ∥∆Y∥ , ∥∆Z∥ = O(ϵ), (162)

γη =

{
(
Y0 + (ρi − α)σ1u1v⊤1 ,Z0 + (ρi − 1/α)σ1u1v

⊤
1

)
}

, (i = 1, 2) (163)
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where ρ1 ∈ (1, 2), ρ2 ∈ (0, 1) are the two solutions of solving ρ in

1 + βσ2
1 =

1

ρ2
(√

1
ρ2 − 3

4 + 1
2

) . (164)

Remark. What is missing for a rigorous proof?

1. Control of error terms in non-asymptotic analysis.

2. Resolving assumptions of spectrum Qα,η,p(yt, zt) in early stages.

Proof. Without loss of generality, we assume X0 = diag([σ1, σ2, . . . , σd]) ∈ R
d×d, where (X0)i,i = σi or 0 in

all other entries. This can be easily achieved by rotating singular vectors of X0. Accordingly, we have Y0 =
diag([σ1α, σ2α, . . . , σdα]) ∈ R

d×d and Z0 = diag([σ1/α, σ2/α, . . . , σd/α]) ∈ R
d×d.

Starting from time t = 1, we denote the learnable parameter matrices as Yt,Zt, and their deviation as ∆Yt ≜ Yt −
Y0,∆Zt ≜ Zt − Z0. By assumptions, we have ∥∆Y1∥ < ϵ, ∥∆Z1∥ < ϵ. Furthermore, we split ∆Yt,∆Zt as follows,

∆Yt =

[

①t ③t

②t ④t

]

,∆Zt =

[

⑤t ⑦t

⑥t ⑧t

]

, (165)

①t,⑤t ∈ R, ②t,⑥t ∈ R
(d−1)×1, ③t,⑦t ∈ R

1×(d−1), ④t,⑧t ∈ R
(d−1)×(d−1). (166)

Since the update rules of Yt,Zt are

Yt+1 = Yt − η
(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
(Z0 +∆Zt) (167)

Zt+1 = Zt − η
(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
(Y0 +∆Yt) (168)

The update rules of ①−⑧ are

①t+1 = ①t − ηI⊤1
(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
(Z0 +∆Zt)I1 (169)

②t+1 = ②t − ηI⊤≥2

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
(Z0 +∆Zt)I1 (170)

③t+1 = ③t − ηI⊤1
(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
(Z0 +∆Zt)I≥2 (171)

④t+1 = ④t − ηI⊤≥2

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
(Z0 +∆Zt)I≥2 (172)

⑤t+1 = ⑤t − ηI⊤1
(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
(Y0 +∆Yt) I1 (173)

⑥t+1 = ⑥t − ηI⊤≥2

(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
(Y0 +∆Yt) I1 (174)

⑦t+1 = ⑦t − ηI⊤1
(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
(Y0 +∆Yt) I≥2 (175)

⑧t+1 = ⑧t − ηI⊤≥2

(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
(Y0 +∆Yt) I≥2, (176)

where I1 = (Id):,1 ∈ R
d×1, I≥2 = (Id):,2:d ∈ R

d×(d−1) are the dimension-reduction matrix, defined from blocks of the

d × d identity matrix I. In other words, I1 (respectively I≥2) is to pick the first row/column (respectively all remaining

rows/columns) from a matrix, which is extracting ①t −⑧t from ∆Yt,∆Zt.

Denote Mt ≜
(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
= YtZ

⊤
t −X0X

⊤
0 .

At initialization, we assume all of ①1,②1,③1,④1,⑤1,⑥1,⑦1,⑧1 are in Θ(ϵ), which means all

∥I1M1I1∥ , ∥I≥2M1I1∥ , ∥I1M1I≥2∥ , ∥I≥2M1I≥2∥ are in Θ(ϵ) as well. Our goal is to show that, as t→∞,

1. ①∞, ⑤∞ are in a period-2 orbit,

2. ②∞,③∞,④∞,⑥∞,⑦∞,⑧∞ are in Θ(ϵ),

3. ∥I≥2M∞I1∥ , ∥I1M∞I≥2∥ , ∥I≥2M∞I≥2∥,
∥
∥I

⊤
1 Z∞Z⊤

∞I≥2

∥
∥,
∥
∥I

⊤
≥2Y∞Y⊤

∞I≥2

∥
∥ decay to zero.
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Then, following the above definitions, we have another representation of
(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
, or equiva-

lently its transpose
(
∆ZtY

⊤
0 + Z0∆Y⊤

t +∆Zt∆Y⊤
t

)
, as

I
⊤
1

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
I1 = ①tI

⊤
1 Z

⊤
0 I1 + I

⊤
1 Y0I1⑤t + ①t⑤t + ③t⑦

⊤
t (177)

I
⊤
≥2

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
I1 = ②tI

⊤
1 Z

⊤
0 I1 + I

⊤
≥2Y0I≥2⑦

⊤
t + ②t⑤t + ④t⑦

⊤
t (178)

I
⊤
1

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
I≥2 = ③tI

⊤
≥2Z

⊤
0 I≥2 + I

⊤
1 Y0I1⑥

⊤
t + ①t⑥

⊤
t + ③t⑧

⊤
t (179)

I
⊤
≥2

(
∆YtZ

⊤
0 +Y0∆Z⊤

t +∆Yt∆Z⊤
t

)
I≥2 = ④tI

⊤
≥2Z

⊤
0 I≥2 + I

⊤
≥2Y0I≥2⑧

⊤
t + ②t⑥

⊤
t + ④t⑧

⊤
t . (180)

After substituting with ①t+1 −⑧t+1, we have

I
⊤
1 Mt+1I1 = I

⊤
1 MtI1 − ηI⊤1 Mt(Z0 +∆Zt)I1I

⊤
1 Z

⊤
0 I1 − ηI⊤1 Y0I1I

⊤
1 (Y0 +∆Yt)

⊤
MtI1

− η①tI
⊤
1 (Y0 +∆Yt)

⊤
MtI1 − ηI⊤1 Mt(Z0 +∆Zt)I1⑤t − ηI⊤1 Mt(Z0 +∆Zt)I≥2⑦

⊤
t

− η③tI
⊤
≥2 (Y0 +∆Yt)

⊤
MtI1 + η2I⊤1 Mt(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI1

+ η2I⊤1 Mt(Z0 +∆Zt)I1I
⊤
1 (Y0 +∆Yt)

⊤
MtI1

= I
⊤
1 MtI1 − ηI⊤1 Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 Z

⊤
0 I1

− ηI⊤1 Y0I1I
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)M

⊤
t I1

− η①tI
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1 − ηI⊤1 Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1⑤t

− ηI⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2⑦

⊤
t − η③tI

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

+ η2I⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

+ η2I⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

= I
⊤
1 MtI1 − ηI⊤1 MtI1I

⊤
1 Z0I1I

⊤
1 Z

⊤
0 I1 − ηI⊤1 MtI1⑤tI

⊤
1 Z

⊤
0 I1 − ηI⊤1 MtI≥2⑥tI

⊤
1 Z

⊤
0 I1

− ηI⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 MtI1 − ηI⊤1 Y0I1①tI

⊤
1 MtI1 − ηI⊤1 Y0I1②

⊤
t I

⊤
≥2MtI1

− η①tI
⊤
1 Y0I1I

⊤
1 MtI1 − η①t①tI

⊤
1 MtI1 − η①t②

⊤
t I

⊤
≥2MtI1

− ηI⊤1 MtI1I
⊤
1 Z0I1⑤t − ηI⊤1 MtI1⑤t⑤t − ηI⊤1 MtI≥2⑥t⑤t

− ηI⊤1 MtI1I
⊤
1 Z0I≥2⑦

⊤
t − ηI⊤1 MtI1⑦t⑦

⊤
t − ηI⊤1 MtI1⑧t⑦

⊤
t

− η③tI
⊤
≥2Y0I≥2I

⊤
≥2MtI1 − η③t④

⊤
t I

⊤
1 MtI1 − η③t③

⊤
t I

⊤
≥2MtI1

+ η2I⊤1 Mt(I≥2I
⊤
≥2Z0I≥2 + I1⑦t + I≥2⑧t)(I

⊤
≥2Y0I≥2I

⊤
≥2 + ③

⊤
t I

⊤
1 + ④

⊤
t I

⊤
≥2)MtI1

+ η2I⊤1 Mt(I1I
⊤
1 Z0I1 + I1⑤t + I≥2⑥t)(I

⊤
1 Y0I1I

⊤
1 + ①tI

⊤
1 + ②

⊤
t I

⊤
≥2)MtI1
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I
⊤
≥2Mt+1I1 = I

⊤
≥2MtI1 − ηI⊤≥2Mt(Z0 +∆Zt)I1I

⊤
1 Z

⊤
0 I1 − ηI⊤≥2Y0I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI1

− η②tI
⊤
1 (Y0 +∆Yt)

⊤
MtI1 − ηI⊤≥2Mt(Z0 +∆Zt)I1⑤t − ηI⊤≥2Mt(Z0 +∆Zt)I≥2⑦

⊤
t

− η④tI
⊤
≥2 (Y0 +∆Yt)

⊤
MtI1 + η2I⊤≥2Mt(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI1

+ η2I⊤≥2Mt(Z0 +∆Zt)I1I
⊤
1 (Y0 +∆Yt)

⊤
MtI1

= I
⊤
≥2MtI1 − ηI⊤≥2Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 Z

⊤
0 I1

− ηI⊤≥2Y0I≥2I
⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

− η②tI
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1 − ηI⊤≥2Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1⑤t

− ηI⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2⑦

⊤
t − η④tI

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

+ η2I⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

+ η2I⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI1

= I
⊤
≥2MtI1 − ηI⊤≥2MtI1I

⊤
1 Z0I1I

⊤
1 Z

⊤
0 I1 − ηI⊤≥2MtI1⑤tI

⊤
1 Z

⊤
0 I1 − ηI⊤≥2MtI≥2⑥tI

⊤
1 Z

⊤
0 I1

− ηI⊤≥2Y0I≥2I
⊤
≥2Y0I≥2I

⊤
≥2MtI1 − ηI⊤≥2Y0I≥2③

⊤
t I

⊤
1 MtI1 − ηI⊤≥2Y0I≥2④

⊤
t I

⊤
≥2MtI1

− η②tI
⊤
1 Y0I1I

⊤
1 MtI1 − η②t①tI

⊤
1 MtI1 − η②t②

⊤
t I

⊤
≥2MtI1

− ηI⊤≥2MtI1I
⊤
1 Z0I1⑤t − ηI⊤≥2MtI1⑤t⑤t − ηI⊤≥2MtI≥2⑥t⑤t

− ηI⊤≥2MtI≥2I
⊤
≥2Z0I≥2⑦

⊤
t − ηI⊤≥2MtI1⑦t⑦

⊤
t − ηI⊤≥2MtI≥2⑧t⑦

⊤
t

− η④tI
⊤
≥2Y0I≥2I

⊤
≥2M

⊤
t I1 − η④t③

⊤
t I

⊤
1 MtI1 − η④t④

⊤
t I

⊤
≥2MtI1

+ η2I⊤≥2Mt(I≥2I
⊤
≥2Z0I≥2 + I1⑦t + I≥2⑧t)(I

⊤
≥2Y0I≥2I

⊤
≥2 + ③

⊤
t I

⊤
1 + ④

⊤
t I

⊤
≥2)MtI1

+ η2I⊤≥2Mt(I1I
⊤
1 Z0I

⊤
1 + I1⑤t + I≥2⑥t)(I

⊤
1 Y0I1I

⊤
1 + ①tI

⊤
1 + ②

⊤
t I

⊤
≥2)MtI1
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I
⊤
1 Mt+1I≥2 = I

⊤
1 MtI≥2 − ηI⊤1 Mt(Z0 +∆Zt)I≥2I

⊤
≥2Z

⊤
0 I≥2 − ηI⊤1 Y0I1I

⊤
1 (Y0 +∆Yt)

⊤
MtI≥2

− η①tI
⊤
1 (Y0 +∆Yt)

⊤
MtI≥2 − ηI⊤1 Mt(Z0 +∆Zt)I1⑥

⊤
t − ηI⊤1 Mt(Z0 +∆Zt)I≥2⑧

⊤
t

− η③tI
⊤
≥2 (Y0 +∆Yt)

⊤
MtI≥2 + η2I⊤1 Mt(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI≥2

+ η2I⊤1 Mt(Z0 +∆Zt)I1I
⊤
1 (Y0 +∆Yt)

⊤
MtI≥2

= I
⊤
1 MtI≥2 − ηI⊤1 Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2Z

⊤
0 I≥2

− ηI⊤1 Y0I1I
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

− η①tI
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2 − ηI⊤1 Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1⑥

⊤
t

− ηI⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2⑧

⊤
t − η③tI

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

+ η2I⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

+ η2I⊤1 Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

= I
⊤
1 MtI≥2 − ηI⊤1 MtI≥2I

⊤
≥2Z0I≥2I

⊤
≥2Z

⊤
0 I≥2 − ηI⊤1 MtI1⑦tI

⊤
≥2Z

⊤
0 I≥2 − ηI⊤1 MtI≥2⑧tI

⊤
≥2Z

⊤
0 I≥2

− ηI⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 MtI≥2 − ηI⊤1 Y0I1①tI

⊤
1 MtI≥2 − ηI⊤1 Y0I1②

⊤
t I

⊤
≥2MtI≥2

− η①tI1I
⊤
1 Y0I1I

⊤
1 MtI≥2 − η①t①tI

⊤
1 MtI≥2 − η①t②

⊤
t I

⊤
≥2MtI≥2

− ηI⊤1 MtI1I
⊤
1 Z0I1⑥

⊤
t − ηI⊤1 MtI1⑤t⑥

⊤
t − ηI⊤1 MtI≥2⑥t⑥

⊤
t

− ηI⊤1 MtI≥2I
⊤
≥2Z0I≥2⑧

⊤
t − ηI⊤1 MtI1⑦t⑧

⊤
t − ηI⊤1 MtI≥2⑧t⑧

⊤
t

− η③tI
⊤
≥2Y0I≥2I

⊤
≥2MtI≥2 − η③t③

⊤
t I

⊤
1 MtI≥2 − η③t④

⊤
t I

⊤
≥2MtI≥2

+ η2I⊤1 Mt(I≥2I
⊤
≥2Z0I≥2 + I1⑦t + I≥2⑧t)(I

⊤
≥2Y0I≥2I

⊤
≥2 + ③

⊤
t I

⊤
1 + ④

⊤
t I

⊤
≥2)MtI≥2

+ η2I⊤1 Mt(I1I
⊤
1 Z0I

⊤
1 + I1⑤t + I≥2⑥t)(I

⊤
1 Y0I1I

⊤
1 + ①tI

⊤
1 + ②

⊤
t I

⊤
≥2)MtI≥2
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I
⊤
≥2Mt+1I≥2 = I

⊤
≥2MtI≥2 − ηI⊤≥2Mt(Z0 +∆Zt)I≥2I

⊤
≥2Z

⊤
0 I≥2 − ηI⊤≥2Y0I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI≥2

− η②tI
⊤
1 (Y0 +∆Yt)

⊤
MtI≥2 − ηI⊤≥2Mt(Z0 +∆Zt)I1⑥

⊤
t − ηI⊤≥2Mt(Z0 +∆Zt)I≥2⑧

⊤
t

− η④tI
⊤
≥2 (Y0 +∆Yt)

⊤
MtI≥2 + η2I⊤≥2Mt(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
MtI≥2

+ η2I⊤≥2Mt(Z0 +∆Zt)I1I
⊤
1 (Y0 +∆Yt)

⊤
MtI≥2

= I
⊤
≥2MtI≥2 − ηI⊤≥2Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2Z

⊤
0 I≥2

− ηI⊤≥2Y0I≥2I
⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

− η②tI
⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2 − ηI⊤≥2Mt(I1I

⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1⑥

⊤
t

− ηI⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2⑧

⊤
t − η④tI

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

+ η2I⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I≥2I

⊤
≥2 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

+ η2I⊤≥2Mt(I1I
⊤
1 + I≥2I

⊤
≥2)(Z0 +∆Zt)I1I

⊤
1 (Y0 +∆Yt)

⊤
(I1I

⊤
1 + I≥2I

⊤
≥2)MtI≥2

= I
⊤
≥2MtI≥2 − ηI⊤≥2MtI≥2I

⊤
≥2Z0I≥2I

⊤
≥2Z

⊤
0 I≥2 − ηI⊤≥2MtI≥2⑧tI

⊤
≥2Z

⊤
0 I≥2 − ηI⊤≥2MtI1⑦tI

⊤
≥2Z

⊤
0 I≥2

− ηI⊤≥2Y0I≥2I
⊤
≥2Y0I≥2I

⊤
≥2MtI≥2 − ηI⊤≥2Y0I≥2④

⊤
t I

⊤
≥2MtI≥2 − ηI⊤≥2Y0I≥2③

⊤
t I

⊤
1 MtI≥2

− η②tI
⊤
1 Y0I1I

⊤
1 MtI≥2 − η②t①tI

⊤
1 MtI≥2 − η②t③

⊤
t I

⊤
1 MtI≥2

− ηI⊤≥2MtI1I
⊤
1 Z0I1⑥

⊤
t − ηI⊤≥2MtI1⑤t⑥

⊤
t − ηI⊤≥2MtI≥2⑥t⑥

⊤
t

− ηI⊤≥2MtI≥2I
⊤
≥2Z0I≥2⑧

⊤
t − ηI⊤≥2MtI1⑦⑧

⊤
t − ηI⊤≥2MtI≥2⑧⑧

⊤
t

− η④tI
⊤
≥2Y0I≥2I

⊤
≥2MtI≥2 − η④t③

⊤
t I

⊤
1 MtI≥2 − η④t④

⊤
I
⊤
≥2MtI≥2

+ η2I⊤≥2Mt(I≥2I
⊤
≥2Z0I≥2 + I1⑦t + I≥2⑧t)(I

⊤
≥2Y0I≥2I

⊤
≥2 + ③

⊤
t I

⊤
1 + ④

⊤
t I

⊤
≥2)MtI≥2

+ η2I⊤≥2Mt(I1I
⊤
1 Z0I

⊤
1 + I1⑤t + I≥2⑥t)(I

⊤
1 Y0I1I

⊤
1 + ①tI

⊤
1 + ②

⊤
t I

⊤
≥2)MtI≥2

In the following equations, red terms are expected to be O(1) while blue terms are expected to be O(ϵ).
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①t+1 = ①t − ηI⊤1 Mt(Z0 +∆Zt)I1 (181)

= ①t − ηI⊤1 MtI1I
⊤
1 (Z0 +∆Zt)I1 − ηI⊤1 MtI≥2I

⊤
≥2(Z0 +∆Zt)I1 (182)

= ①t − ηI⊤1 MtI1I
⊤
1 Z0I1 − ηI⊤1 MtI1⑤t − ηI⊤1 MtI≥2⑥t, (183)

②t+1 = ②t − ηI⊤≥2MtI1I
⊤
1 (Z0 +∆Zt)I1 − ηI⊤≥2MtI≥2I

⊤
≥2(Z0 +∆Zt)I1 (184)

= ②t − ηI⊤≥2MtI1I
⊤
1 Z0I1 − ηI⊤≥2MtI1⑤t − ηI⊤≥2MtI≥2⑥t, (185)

③t+1 = ③t − ηI⊤1 MtI1I
⊤
1 (Z0 +∆Zt)I≥2 − ηI⊤1 MtI≥2I

⊤
≥2(Z0 +∆Zt)I≥2 (186)

= ③t − ηI⊤1 MtI1⑦t − ηI⊤1 MtI≥2I
⊤
≥2Z0I≥2 − ηI⊤1 MtI≥2⑧t, (187)

④t+1 = ④t − ηI⊤≥2MtI1I
⊤
1 (Z0 +∆Zt)I≥2 − ηI⊤≥2MtI≥2I

⊤
≥2(Z0 +∆Zt)I≥2 (188)

= ④t − ηI⊤≥2MtI1⑦t − ηI⊤≥2MtI≥2I
⊤
≥2Z0I≥2 − ηI⊤≥2MtI≥2⑧t, (189)

⑤t+1 = ⑤t − ηI⊤1 M⊤
t I1I

⊤
1 (Y0 +∆Yt) I1 − ηI⊤1 M⊤

t I≥2I
⊤
≥2 (Y0 +∆Yt) I1 (190)

= ⑤t − ηI⊤1 M⊤
t I1I

⊤
1 Y0I1 − ηI⊤1 M⊤

t I1①t − ηI⊤1 M⊤
t I≥2②t, (191)

⑥t+1 = ⑥t − ηI⊤≥2M
⊤
t I1I

⊤
1 (Y0 +∆Yt) I1 − ηI⊤≥2M

⊤
t I≥2I

⊤
≥2 (Y0 +∆Yt) I1 (192)

= ⑥t − ηI⊤≥2M
⊤
t I1I

⊤
1 Y0I1 − ηI⊤≥2M

⊤
t I1①t − ηI⊤≥2M

⊤
t I≥2②t, (193)

⑦t+1 = ⑦t − ηI⊤1 M⊤
t I1I

⊤
1 (Y0 +∆Yt) I≥2 − ηI⊤1 M⊤

t I≥2I
⊤
≥2 (Y0 +∆Yt) I≥2 (194)

= ⑦t − ηI⊤1 M⊤
t I1③t − ηI⊤1 M⊤

t I≥2I
⊤
≥2Y0I≥2 − ηI⊤1 M⊤

t I≥2④t, (195)

⑧t+1 = ⑧t − ηI⊤≥2M
⊤
t I1I

⊤
1 (Y0 +∆Yt) I≥2 − ηI⊤≥2M

⊤
t I≥2I

⊤
≥2 (Y0 +∆Yt) I≥2 (196)

= ⑧t − ηI⊤≥2M
⊤
t I1③t − ηI⊤≥2M

⊤
t I≥2I

⊤
≥2Y0I≥2 − ηI⊤≥2M

⊤
t I≥2④t, (197)

By expanding the definition of I1MtI1, the update rules of ①t and ⑤t are

①t+1 = ①t − η(①t
σ1
α

+ σ1α⑤t + ①t⑤t + ③t⑦
⊤
t )(

σ1
α

+ ⑤t)− ηI⊤1 MtI≥2⑥t (198)

= ①t − η(①t
σ1
α

+ σ1α⑤t + ①t⑤t)(
σ1
α

+ ⑤t)− ηI⊤1 MtI≥2⑥t − η③t⑦
⊤
t (
σ1
α

+ ⑤t), (199)

⑤t+1 = ⑤t − η(①t
σ1
α

+ σ1α⑤t + ①t⑤t + ③t⑦
⊤
t )(σ1α+ ①t)− ηI⊤1 M⊤

t I≥2②t (200)

= ⑤t − η(①t
σ1
α

+ σ1α⑤t + ①t⑤t)(σ1α+ ①t)− ηI⊤1 M⊤
t I≥2②t − η③t⑦

⊤
t (σ1α+ ①t) (201)

At initialization t = 1, all of I⊤1 MtI≥2,②t,③t,⑥t,⑦t are in O(ϵ)
Since we have assumed

I
⊤
≥2Mt+1I≥2 ≈ I

⊤
≥2MtI≥2 − ηI⊤≥2MtI≥2I

⊤
≥2Z0I≥2I

⊤
≥2Z

⊤
0 I≥2

− ηI⊤≥2Y0I≥2I
⊤
≥2Y0I≥2I

⊤
≥2MtI≥2

+O(ϵ · ϵt)
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I
⊤
1 Mt+1I≥2 ≈ I

⊤
1 MtI≥2 − ηI⊤1 MtI≥2I

⊤
≥2Z0I≥2I

⊤
≥2Z

⊤
0 I≥2 − ηI⊤1 MtI1⑦tI

⊤
≥2Z

⊤
0 I≥2

− ηI⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 MtI≥2 − ηI⊤1 Y0I1①tI

⊤
1 MtI≥2

− η①tI1I
⊤
1 Y0I1I

⊤
1 MtI≥2 − η①t①tI

⊤
1 MtI≥2

− ηI⊤1 MtI1I
⊤
1 Z0I1⑥

⊤
t − ηI⊤1 MtI1⑤t⑥

⊤
t

− ηI⊤1 MtI1⑦t⑧
⊤
t

+ η2I⊤1 MtI1(I
⊤
1 Z0I

⊤
1 + ⑤t)(I

⊤
1 Y0I1 + ①t)I

⊤
1 MtI≥2

+O(ϵ · ϵt)
= I

⊤
1 MtI≥2 − ηI⊤1 MtI≥2

(
I
⊤
1 Y0I1 + ①t

)2 − ηI⊤1 MtI≥2I
⊤
≥2Z0I≥2I

⊤
≥2Z

⊤
0 I≥2

− ηI⊤1 MtI1

(

I
⊤
1 Z0I1⑥

⊤
t + ⑤t⑥

⊤
t + ⑦t⑧

⊤
t + ⑦tI

⊤
≥2Z

⊤
0 I≥2

)

︸ ︷︷ ︸

=I
⊤
1 (Z0+∆Zt)(Z0+∆Zt)

⊤
I≥2

+ η2I⊤1 MtI1(I
⊤
1 Z0I

⊤
1 + ⑤t)(I

⊤
1 Y0I1 + ①t)I

⊤
1 MtI≥2

+O(ϵ · ϵt)

I
⊤
≥2Mt+1I1 ≈ I

⊤
≥2MtI1 − ηI⊤≥2MtI1I

⊤
1 Z0I1I

⊤
1 Z

⊤
0 I1 − ηI⊤≥2MtI1⑤tI

⊤
1 Z

⊤
0 I1

− ηI⊤≥2Y0I≥2I
⊤
≥2Y0I≥2I

⊤
≥2MtI1 − ηI⊤≥2Y0I≥2③

⊤
t I

⊤
1 MtI1

− η②tI
⊤
1 Y0I1I

⊤
1 MtI1 − η②t①tI

⊤
1 MtI1

− ηI⊤≥2MtI1I
⊤
1 Z0I1⑤t − ηI⊤≥2MtI1⑤t⑤t

− η④t③
⊤
t I

⊤
1 MtI1

+ η2I⊤≥2MtI1(I
⊤
1 Z0I

⊤
1 + ⑤t)(I

⊤
1 Y0I1 + ①t)I

⊤
1 MtI1

= I
⊤
≥2MtI1 − ηI⊤≥2MtI1

(
I
⊤
1 Z0I1 + ⑤t

)2 − ηI⊤≥2Y0I≥2I
⊤
≥2Y0I≥2I

⊤
≥2MtI1

− ηI⊤1 MtI1

(

I
⊤
≥2Y0I≥2③

⊤
t + ②tI

⊤
1 Y0I1 + ②t①t + ④t③

⊤
t

)

︸ ︷︷ ︸

=I
⊤
≥2

(Y0+∆Yt)(Y0+∆Yt)
⊤
I1

+ η2I⊤≥2MtI1(I
⊤
1 Z0I

⊤
1 + ⑤t)(I

⊤
1 Y0I1 + ①t)I

⊤
1 MtI1

I
⊤
1 Mt+1I1 ≈ I

⊤
1 MtI1 − ηI⊤1 MtI1I

⊤
1 Z0I1I

⊤
1 Z

⊤
0 I1 − ηI⊤1 MtI1⑤tI

⊤
1 Z

⊤
0 I1

− ηI⊤1 Y0I1I
⊤
1 Y0I1I

⊤
1 MtI1 − ηI⊤1 Y0I1①tI

⊤
1 MtI1

− η①tI
⊤
1 Y0I1I

⊤
1 MtI1 − η①t①tI

⊤
1 MtI1

− ηI⊤1 MtI1I
⊤
1 Z0I1⑤t − ηI⊤1 MtI1⑤t⑤t

+ η2I⊤1 MtI1(I
⊤
1 Z0I1 + ⑤t)(I

⊤
1 Y0I1 + ①t)I

⊤
1 MtI1
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I
⊤
≥2 (Y0 +∆Yt+1) (Y0 +∆Yt+1)

⊤
I1 = I

⊤
≥2 (Y0 +∆Yt) (Y0 +∆Yt)

⊤
I1

− ηI⊤≥2Mt(Z0 +∆Zt)I≥2③
⊤
t − η(I⊤≥2Y0I≥2 + ④t)I

⊤
≥2(Z0 +∆Zt)

⊤M⊤
t I1

− ηI⊤≥2Mt(Z0 +∆Zt)I1(①t + σ1α)− η②I
⊤
1 (Z0 +∆Zt)

⊤M⊤
t I1

+ η2I⊤≥2Mt(Z0 +∆Zt)I≥2I
⊤
≥2(Z0 +∆Zt)

⊤M⊤
t I1

+ η2I⊤≥2Mt(Z0 +∆Zt)I1I
⊤
1 (Z0 +∆Zt)

⊤M⊤
t I1

= I
⊤
≥2 (Y0 +∆Yt) (Y0 +∆Yt)

⊤
I1

− ηI⊤≥2MtI≥2I
⊤
≥2Z0I≥2③

⊤
t − ηI⊤≥2MtI

⊤
1 ⑦t③

⊤
t − ηI⊤≥2MtI

⊤
≥2⑧t③

⊤
t

− η(I⊤≥2Y0I≥2 + ④t)I
⊤
≥2Z0I≥2I

⊤
≥2M

⊤
t I1 − η(I⊤≥2Y0I≥2 + ④t)⑦

⊤
t I

⊤
1 M

⊤
t I1

− η(I⊤≥2Y0I≥2 + ④t)⑧
⊤
t I

⊤
≥2M

⊤
t I1

− ηI⊤≥2MtI1I
⊤
1 Z0I1(①t + σ1α)− ηI⊤≥2MtI1⑤t(①t + σ1α)

− ηI⊤≥2MtI≥2⑥t(①t + σ1α)

− η②I
⊤
1 Z0I1I

⊤
1 M

⊤
t I1 − η②⑤tI

⊤
1 M

⊤
t I1 − η②⑥

⊤
t I

⊤
≥2M

⊤
t I1

+ η2I⊤≥2Mt(Z0 +∆Zt)I≥2I
⊤
≥2(Z0 +∆Zt)

⊤M⊤
t I1

+ η2I⊤≥2Mt(Z0 +∆Zt)I1I
⊤
1 (Z0 +∆Zt)

⊤M⊤
t I1

≈ I
⊤
≥2 (Y0 +∆Yt) (Y0 +∆Yt)

⊤
I1

− ηI⊤≥2Y0I≥2I
⊤
≥2Z0I≥2I

⊤
≥2M

⊤
t I1

− η(①t + σ1α)(⑤t +
σ1
α
)I⊤≥2MtI1

− ηI⊤1 MtI1

(

②I
⊤
1 Z0I1 + ②⑤tI

⊤
1 + (I⊤≥2Y0I≥2 + ④t)⑦

⊤
t

)

︸ ︷︷ ︸

=I
⊤
≥2

MtI1

+ η2I⊤≥2MtI1(I
⊤
1 Z0I1 + ⑤t)(I

⊤
1 Z0I1 + ⑤t)I

⊤
1 M

⊤
t I1

= I
⊤
≥2 (Y0 +∆Yt) (Y0 +∆Yt)

⊤
I1

− η
(

(①t + σ1α)(⑤t +
σ1
α
) + I

⊤
1 MtI1(1− η(⑤t +

σ1
α
)2)
)

I
⊤
≥2MtI1

− ηI⊤≥2Y0I≥2I
⊤
≥2Z0I≥2I

⊤
≥2M

⊤
t I1

I
⊤
1 (Z0 +∆Zt+1) (Z0 +∆Zt+1)

⊤
I≥2 ≈ I

⊤
1 (Z0 +∆Zt) (Z0 +∆Zt)

⊤
I≥2

− η
(

(①t + σ1α)(⑤t +
σ1
α
) + I

⊤
1 MtI1(1− η(①t + σ1α)

2)
)

I
⊤
1 MtI≥2

− ηI⊤≥2Y0I≥2I
⊤
≥2Z0I≥2I

⊤
1 M

⊤
t I≥2

Therefore, we have built a 4 × 4 matrix to characterize the dynamics of I
⊤
≥2MtI1, I

⊤
1 MtI≥2,
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I
⊤
≥2 (Y0 +∆Yt+1) (Y0 +∆Yt+1)

⊤
I1, I⊤1 (Z0 +∆Zt+1) (Z0 +∆Zt+1)

⊤
I≥2 as, for ∀p ∈ {2, 3, . . . , d}







[I⊤≥2 (Y0 +∆Yt+1) (Y0 +∆Yt+1)
⊤
I1]p

[I⊤1 (Z0 +∆Zt+1) (Z0 +∆Zt+1)
⊤
I≥2]p

[I⊤≥2Mt+1I1]p
[I⊤1 Mt+1I≥2]p






← Qα,η,p(yt, zt)







[I⊤≥2 (Y0 +∆Yt) (Y0 +∆Yt)
⊤
I1]p

[I⊤1 (Z0 +∆Zt) (Z0 +∆Zt)
⊤
I≥2]p

[I⊤≥2MtI1]p
[I⊤1 MtI≥2]p






,

Qα,η,p(yt, zt) ≜







1 0 u1,t −ησ2
p

0 1 −ησ2
p u2,t

−η(ytzt − σ2
1) 0 w1,t 0

0 −η(ytzt − σ2
1) 0 w2,t






,

yt ≜ ①t + σ1α, zt ≜ ⑤t + σ1/αp,

u1,t ≜ −η
(
ytzt + (ytzt − σ2

1)(1− ηz2t )
)
,

u2,t ≜ −η
(
ytzt + (ytzt − σ2

1)(1− ηy2t )
)
,

w1,t ≜ 1− ηz2t − ησ2
pα

2 + η2ytzt(ytzt − σ2
1),

w2,t ≜ 1− ηy2t − ησ2
p/α2 + η2ytzt(ytzt − σ2

1),

where [·]p means the p-th value in a vector.

Recall we have yt, zt following the training dynamics of minimizing 1
2 (σ

2
1 − yz)2 with learning rate η > 1

σ2
1

, where leads to

y = z = γi, with γi (i = 1, 2) are the two roots of solving the 1-D function (4) as δ. We denote their corresponding Q as

Qα,η,p(γ1, γ1) and Qα,η,p(γ2, γ2). We assume that their product Qα,η,p(γ2, γ2)Qα,η,p(γ1, γ1) is diagonalizable with all

eigenvalues falling into (−1, 1), which means its infinite power limk→∞[Qα,η,p(γ2, γ2)Qα,η,p(γ1, γ1)]
k = 0. Meanwhile,

due to the 2-D analysis of dynamics of GD on 1
2 (σ

2
1 − yz)2, we know (yt, zt)→ {(γ1, γ1), (γ2, γ2)} exponentially after

finite steps. This is equivalent to say, there exists finite t0, for any t > t0, there exists i ∈ {1, 2}, constantC0 and Rt ∈ R
4×4,

such that

Qα,η,p(yt+1, zt+1)Qα,η,p(yt, zt) = Qα,η,p(γ3−i, γ3−i)Qα,η,p(γi, γi) +Rt, ∥Rt∥ ≤ C0r
t, 0 < r < 1.

The decay rate r can be estimated via local analysis around the convergence orbit. As a result, it

is safe to say limt→∞ Qα,η,p(y2t+1, z2t+1)Qα,η,p(y2t, z2t) = 0, which means all of I
⊤
≥2MtI1, I

⊤
1 MtI≥2,

I
⊤
≥2 (Y0 +∆Yt+1) (Y0 +∆Yt+1)

⊤
I1, I⊤1 (Z0 +∆Zt+1) (Z0 +∆Zt+1)

⊤
I≥2 exponentially go to zero.

There is one concern here: what happens before t0? More concretely, t0 is dependent of 1/ϵ because it requires more steps

(intuitively proportional to log 1/ϵ) to increase to a certain value from a small ϵ. Assuming t0 ∼ log 1/ϵ holds, the product

{Qα,η,p(y2t+1, z2t+1)Qα,η,p(y2t, z2t)}t≥1 gives a (loose) upper bound with the norm of products grows exponentially

with time log 1/ϵ, which introduces 1/ϵ to the upper bound of
∥
∥I

⊤
≥2MtI1

∥
∥ and

∥
∥I

⊤
1 MtI≥2

∥
∥, breaking the assumption of the

norms staying in O(ϵ). Fortunately, there are two aspects to resolve this. Firstly, with initialization ϵ small enough, for a

relative long time, Qα,η,p(y2t+1, z2t+1)Qα,η,p(y2t, z2t) is approximately having eigenvalues bounded by 1. More precisely,

Q and the product are

Qα,η,p(·, ·) ≈







1 0 −ησ2
1 −ησ2

p

0 1 −ησ2
p −ησ2

1

0 0 1− ησ2
1/α2 − ησ2

pα
2 0

0 0 0 1− ησ2
1α

2 − ησ2
p/α2






, (202)

Λ(Qα,η,p(·, ·)Qα,η,p(·, ·)) = {1, 1, (1− ησ2
1/α2 − ησ2

pα
2)2, (1− ησ2

1α
2 − ησ2

p/α2)2, } (203)

where the eigenvalues in Λ are upper bounded by 1, if assuming η(σ
2
1/α2 + σ2

pα
2) < 2 and 1 − ησ2

1α
2 − ησ2

p/α2 < 2.

As a result, in these steps,
∥
∥I

⊤
≥2MtI1

∥
∥ and

∥
∥I

⊤
1 MtI≥2

∥
∥ stay in O(ϵ) due to Qα,η,p(·, ·)Qα,η,p(·, ·) is a semi-convergent

matrix. Secondly, the eigenvectors of Qα,η,p(·, ·)Qα,η,p(·, ·) corresponding to eigenvalue 1 are [1, 0, 0, 0]⊤ and [0, 1, 0, 0]⊤,

which means
∥
∥I

⊤
≥2MtI1

∥
∥ and

∥
∥I

⊤
1 MtI≥2

∥
∥ are decaying exponentially. Therefore, smaller ϵ strengthens the assumption of

∥
∥I

⊤
≥2MtI1

∥
∥ and

∥
∥I

⊤
1 MtI≥2

∥
∥ staying in O(ϵ) instead of breaking it.

Also note that
∥
∥I

⊤
≥2Mt+1I≥2

∥
∥ ⪅

∥
∥I

⊤
≥2MtI≥2

∥
∥·max{|1−ησ2

(
α2 + 1/α2

)
|, |1−ησd−1

(
α2 + 1/α2

)
|}, so

∥
∥I

⊤
≥2Mt+1I≥2

∥
∥

decays exponentially.
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Since all of
∥
∥I

⊤
≥2MtI1

∥
∥,
∥
∥I

⊤
1 MtI≥2

∥
∥ and

∥
∥I

⊤
≥2Mt+1I≥2

∥
∥ decay exponentially after some steps, all of them are have the

sum upper-bounded, which means ∥②t∥ , ∥③t∥ , ∥④t∥ , ∥⑥t∥ , ∥⑦t∥ , ∥⑧t∥ stay in O(ϵ).
To summarize, it holds

1. ∥②t∥ , ∥③t∥ , ∥④t∥ , ∥⑥t∥ , ∥⑦t∥ , ∥⑧t∥ stay in O(ϵ).

2.
∥
∥I

⊤
1 MtI≥2

∥
∥ and

∥
∥I

⊤
≥2Mt+1I≥2

∥
∥ decays to zero.

3.
∥
∥I

⊤
1 MtI1

∥
∥ stays in a period-2 orbit.

K. Useful lemmas

Lemma 5. Assume a ·∆a ≥ b ·∆b and a ≥ b. All of a, b,∆a,∆b are positive. If ∆b ≤ a, then a+∆a ≥ b+∆b.

Proof. (a+∆a)− (b+∆b) ≥ a+ b∆b
a − b−∆b = (∆b

a − 1)(b− a) ≥ 0.

L. Illustration of period-2 and period-4 orbits

In the setting of f(x) = 1
4 (x

2 − 1)2, local convergence is guaranteed if η <
√
5− 1 ≈ 1.236 by taylor expansion of F 2

η

around the orbit. Conversely, if the learning rate is larger than it, although the period-2 orbit still exists, GD starting from a

point infinitesimally close to the orbit still escapes from it. This is when GD converges to a higher-order orbit.

Figure 12 precisely shows the effectiveness of such a bound where GD converges to the period-2 orbit when η = 1.235 <√
5− 1 and a period-4 orbit when η = 1.237 >

√
5− 1.
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0.08
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lr=1.05

0.8 1.0
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f(x
)

lr=1.235
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0.00

0.02

0.04

0.06

0.08

f(x
)

lr=1.237

Figure 12. The convergent orbits of GD on f(x) = 1
4
(x2 − 1)2 with learning rate=1.05, 1.235 and 1.237. The first two smaller learning

rates drive to period-2 orbits while the last one goes to an period-4 orbit. The significant bound between period-2 and period-4 is

predictable by Taylor expansion around the period-2 orbit, as η =
√
5− 1 ≈ 1.236.

M. Discussions

First, we provide a general roadmap of our theoretical results in Appendix M.1, as illustrated in Figure 13. Then, in

Appendix M.2 we discuss three implications from our current low-dimensional settings to more complicated models for

future understanding of EoS in pratical NNs, where low-dimension theorems are enhanced with high-dim experiments.

M.1. Connections between theoretical results

In this section, we discuss the connections between our presented theoretical results, as illustrated in Figure 13.

Theorem 1 and Lemma 1 present (local) intrinsic geometric properties for a 1-D function to allow stable oscillations. Such

properties provide us the 1-D function f(x) = (µ − x2)2 and, furthermore, we generalize the local property to a global
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Local Geometry (Thm. 1)

High-order LG (Lem. 1) 1-D case (Thm. 2) LG for MF (Thm. 6)

(g(x)− y)2 (Prop. 1) 2-D case (Prop. 3) Balancing effect (Thm. 3)

Composition rule of g (Prop 2) Single-neuron (Prop. 4) Quasi-sym MF (Obs. 2)

wy → 0 (Thm. 4)

Figure 13. Connections between our presented theoretical results. The arrows stand for ªimpliesº. LG stands for Local Geometry. MF

stands for Matrix Factorization.

convergence result in Theorem 2. Then we are to generalize the 1-D analysis to cases of i) multi-parameter, ii) nonlinear and

iii) high-dimension.

(a) Multi-parameter. Compared with 1-D f(x) = (µ− x2)2, the 2-D function f(x, y) = (µ− xy)2 can be viewed as

the simplest setting of two-layer models. We prove that the 2-D case converges to the region of x = y in Theorem 3 in

Section 4.2, which means it shares the same convergence as the 1-D model. Also, x = y means its sharpness is the

flattest.

(b) Nonlinear. We extend the 2-D model to a two-layer single-neuron ReLU model in Section 5. Although the student

neuron can be initialized far from the direction of the teacher neuron, we prove the student neuron converges to the

correct direction (as wy → 0) in Theorem 4. Then the problem degenerates to the above 2-D analysis, which means it

shares the same convergence with the 2-D, where (v, wx) corresponds to (x, y) in 2-D.

(c) High-dimension. We extend the 2-D model to quasi-symmetric matrix factorization in Section 6. Although the

parameters are initialized near a sharp minima, GD still walks towards the flattest minima, as shown in Observation 2.

At convergence, the top singular values of Y,Z are the same, following the 2-D analysis. So the singular values are in

the same period-2 orbit as the 1-D case.

Meanwhile, from Theorem 1 and Lemma 1, we prove a condition for base models g in regression tasks to allow stable

oscillation in Prop 1. Furthermore, we provide a composition rule of two base models to find a more complicated model that

allows stable oscillation in Prop 2.

M.2. Implications from low-dimension to high-dimension

We would like to emphasize that, although our current simple settings are a little far from practical NNs, it still helps

understand the ability of GD at large LRs to discover flat minima in three steps as follows. We include more experiments in

Appendix B.3 to present the following hopes for complicated networks:

(a) By Theorem 1, especially its second condition, we wish to discover an intrinsic geometric property around local minima

of more complicated models. The key is to investigate the 1-D function at the cross-section of the leading eigenvector

and the loss landscape.

◆ Theoretical: we prove the 1-D condition holds at any minima for non-trivial matrix factorization, shown as

Theorem 6 in Appendix A.2.

✽ Empirical: we show the 1-D condition holds around minima of 3,4,5-layer ReLU MLPs on MNIST, shown in

Figure 9(d), 10(d), 11(d) in Appendix B.3.2.

(b) With the above intrinsic geometric property, the next question is whether the training trajectory utilizes this property.
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◆ Theoretical: in the case of quasi-symmetric matrix factorization, we observe and provide theoretical intuition

that the training trajectory follows the leading eigenvector of the Hessian (i.e. the leading component of X0) in

Observation 2, where the only top components of weights are changing in ω(ϵ).

✽ Empirical: for MLPs on MNIST, we show the almost perfect alignment of the gradient and the top Hessian

eigenvector in Figure 9(c), 10(c), 11(c).

(c) The final implication is the implicit bias of EoS after such oscillation. It turns out GD is driven to flatter minima from

sharper minima. In the 1-D case, obviously there is nothing about implicit bias since the only thing GD is doing is to

approximate the target value. However, an implicit bias from the oscillation appears starting from the 2-D case.

◆ Theoretical 1: in the 2-D case in Theorem 3, we prove the two learnable parameters x, y will converge to the same

values after oscillations of their product xy. Actually in the minimum manifold, smaller |x− y| means a flatter

minimizer.

◆ Theoretical 2: in the single-neuron ReLU network in Theorem 4 and Prop 4, we show the model degenerates to

the 2-D case since wy → 0. The 2-D argument tells that this nonlinear model also walks towards the balanced

situation, verified with experiments in Figure 5.

◆ Theoretical 3: in the quasi-symmetric MF in Obs 2, although the initialization is around a sharp minima, GD is

still driven towards the flattest minima where σmax(Y) = σmax(Z).

✽ Empirical 1: for 2-layer 16-neuron ReLU network in a student-teacher setting, it turns out learning rate decay

after beyond-EoS oscillations drives the model very close to the flattest minima, as shown in Figure 8 and in

Appendix B.3.1.

✽ Empirical 2: for 3,4,5-layer MLPs on MNIST, larger learning rate drives to a flatter minima, as shown in

Figure 9(b).

N. Extensive related works

Implicit regularization. Due to its theoretical closeness to gradient descent with a small learning rate, gradient flow is a

common setting to study the training behavior of neural networks. Barrett & Dherin (2020) suggests that gradient descent is

closer to gradient flow with an additional term regularizing the norm of gradients. Through analysing the numerical error of

Euler’s method, Elkabetz & Cohen (2021) provides theoretical guarantees of a small gap depending on the convexity along

the training trajectory. Neither of them fits in the case of our interest, because it is hard to track the parametric gap when

η > 1/λ. For instance, in a quadratic function, the trajectory jumps between the two sides once η > 1/λ. Damian et al.

(2021) shows that SGD with label noise is implicitly subjected to a regularizer penalizing sharp minimizers but the learning

rate is constraint strictly below the edge of stability threshold.

Balancing effect. Du et al. (2018) proves that gradient flow automatically preserves the norms’ differences between

different layers of a deep homogeneous network. (Ye & Du, 2021) shows that gradient descent on matrix factorization with a

constant small learning rate still enjoys the auto-balancing property. Also in matrix factorization, Wang et al. (2021) proves

that gradient descent with a relatively large learning rate leads to a solution with a more balanced (perhaps not perfectly

balanced) solution while the initialization can be in-balanced. In a similar spirit, we extend their finding to a larger learning

rate, with which the perfect balance may be achieved in our setting. We estimate our learning rate is strictly larger than

theirs (Wang et al., 2021), where they show GD with large learning rates converges to a flat region in the interpolation

manifold while the flat region w.r.t. our larger learing rate does not exists so GD is forced to wander around the flattest

minima. Note that the implication of balancing effect is to get close to a flatter solution in the global minimum manifold,

which may help improve generalization in some common arguments in the community.

Learning a single neuron. Yehudai & Ohad (2020) studies necessary conditions on both the distribution and activation

functions to guarantee a one-layer single student neuron aligning with the teacher neuron under gradient descent, SGD

and gradient flow. Vardi et al. (2021) extends the investigation into a neuron with a bias term. Vardi & Shamir (2021)

empirically studies the training dynamics of a two-layer single neuron, focusing on its implicit bias. In this work, we present

a convergence analysis of a two-layer single-neuron ReLU network trained with population loss in a large learning rate

beyond the edge of stability.
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