
 

 
 

_  

 

WHICH HIP MODEL BEST PREDICTS BIOLOGICAL TORQUES ACROSS LOCOMOTION MODES? A 

SIMULATION STUDY 

 
Po Chuan Chen, Benjamin A. Shafer1*, Wei-Lin Du, Aaron J. Young, Gregory S. Sawicki 

1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, USA 

*Corresponding author’s email: ben.shafer@gatech.edu 

Introduction: Wearable assistive devices can augment people’s mobility but lack a robust control strategy that can adapt to the various 
locomotion modes (speeds, slopes, and gaits) of everyday life. Human-in-the-loop optimization methods can find effective assistance at 
each mode, but these methods are time-consuming and exhausting for both the user and experimenter. Knowing that biological torque 
changes for each mode, we believe an analytical controller that could predict biological torque (BioTorque) across modes without user 
adjustment would address this issue. We simulated how well three optimized hip exoskeleton control models (impedance control (IMP), 
proportional myoelectric control (PMC), and muscle activity driven neuromuscular model-based control (NMM)) could mimic BioTorque 
across 26 different locomotion modes using only joint kinematics (angle and its derivative) and/or muscle activity (gluteus maximus and 
rectus femoris) as inputs (Fig. 1A). We hypothesized that the NMM would better predict BioTorque than IMP or PMC, as it leverages 
both kinematics and muscle activity. 

Methods: We drove each model and comparison using previously recorded 
locomotion data from 5 participants including 4 speeds (1.25 m/s, 2 m/s walking, 
2 m/s running, and 3.25 m/s running) across 7 slopes (±15° (except at 3.25 m/s 
running), ±10°, ±5°, and 0°). Each model was driven by the appropriate signals for 
that mode and the model torque output was compared against the measured, 
ground-truth BioTorque (Fig. 1C) using mean absolute error (MAE). The model 
parameters were tuned to minimize the MAE. To ensure we found the best tuning 
for each model, we compared three optimization algorithms (Surrogate, Bayesian, 
and CMAES) with enough iterations for each to converge within 5% MAE. We 
chose Surrogate, as it yielded the lowest error and the fastest convergence rate. 
IMP model took joint angle as input and then implemented a virtual spring and 
damper to generate an output torque (Fig. 1B). On the other hand, PMC model 
took measures EMG as input, amplified it (GEMG) and concatenated it with a delay 
unit (Fig. 1B). Lastly, EMG-driven NMM-based controller [1] took in both joint 
angle and EMG as inputs, and implemented a Hill-type muscle-tendon model for 
each muscle, including a linear tendon spring in series with a contractile element 
representing muscle force and a non-linear spring in parallel (Fig. 1B). To calculate 
how well each model could mimic BioTorque at each trained mode, we split the 
data by gait cycles in a 3:1 training-to-validation ratio and measured the MAE only 
on the validation data. These results were averaged across participants and then the 
26 modes for each model (Fig. 1D left). To determine how each model could 
predict BioTorque without retraining, we trained the model on one mode, 
measured MAE on the other 25 modes, and calculated the average per mode. We 
repeated this for all 26 modes and then averaged MAE across modes for each 
model (Fig. 1D right). 

Results & Discussion: The IMP model best mimicked measured BioTorque, 
showing the lowest optimization (training) MAE at 0.17 Nm (Fig. 1D left) on 
average across participants and modes. PMC showed worst performance, with the 
highest MAE. Furthermore, IMP model, with only 6 tunable parameters, also 
outperformed the more complex NMM and PMC models in terms of adaptability, 
with an MAE of 0.25 Nm (Fig. 1D right). It seems incorporating measured gluteus 
maximus and rectus femoris muscle activity actually hinders BioTorque estimates, 
possibly due to their high variability and differences in peak timing compared to 
BioTorque. On the contrary, joint kinematics provide a less variable and more 
effective signal to drive analytical models. 

Significance: IMP model, a simpler architecture with fewer parameters, can 

better predict BioTorque than more physiologically complex models. Leveraging 

this understanding will help design exoskeletons controllers focused on motion 

sensors, with controller based on joint kinematics to provide continuous 

assistance across modes. 

Figure 1: (A) Experimental angle and EMG data 

for model inputs. (B) Diagram of each model. 

The number of model parameters are 6 for IMP, 

32 for NMM, and 4 for PMC. (C) Comparison 

between BioTorque and output torques of 

models. (D) MAE of optimization and 

adaptation. 
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