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AbstractÐThis paper presents an evaluation of the perfor-
mance of Angle of Arrival (AoA) estimation algorithms in Un-
manned Aerial Vehicles (UAV) communication networks utilizing
massive Multiple-Input Multiple-Output (MIMO) base stations.
Five different AoA estimation algorithms were evaluated and
their performance was assessed. The results show the impact of
under-sampling on AoA estimation, specifically in the detection of
multi-path with higher normalized power. The effects of azimuth
AoA estimation via horizontal subarrays and the impact on
multi-path AoA estimates for hovering drones were examined.
The performance of the 2-D Bartlett spatial spectrum estimator
was evaluated, demonstrating higher accuracy for both azimuth
and elevation channels. This work provides important insights
for system designers when designing massive MIMO to drone
networks based on AoA estimation specifications.

Index TermsÐDrone, Unmanned Aerial Vehicles, Angle of
Arrival, Localization, Massive MIMO.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have various applica-

tions, including telecommunications and medical supply deliv-

ery [1]. Main aspects of deploying UAVs in telecommunication

networks include three-dimensional deployment, performance

analysis, channel modeling, and energy efficiency [2]. Using

UAVs as relays can help overcome Non-Line-of-Sight (NLOS)

propagation path challenges and enhance the likelihood of

establishing Line-of-Sight (LOS) communication links, im-

proving ground users’ networks and providing cost-effective

and easily deployable wireless transmission schemes [3].

The wireless environment poses challenges that can impact

the accuracy of UAVs’ Global Positioning System (GPS), cel-

lular, and Wi-Fi localization, given its three dimensional mo-

bility [4]. Massive Multiple-Input Multiple-Output (MIMO),

with its ability to provide a large number of antennas for

spatial processing, is an emerging technology that can sig-

nificantly enhance network capacity and coverage for 5G and

beyond 5G networks [5], [6]. It offers itself as a promising

solution for UAV tracking. This paper analyzes the impact of

flight and hovering mobility on the estimation of drone’s Angle

of Arrival (AoA) and how massive MIMO can improve the

accuracy of such estimations, providing the first experimental

evaluation of the interaction between UAVs and massive

MIMO systems. By having the AoA for UAV applications
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allows for more adaptive communication strategies and en-

hanced remote sensing capabilities.

In prior work [7], five classical AoA estimation algorithms

were compared using MATLAB simulations on an eight-

antenna uniform linear array (ULA). Our study experimentally

evaluated these algorithms using an eight-antenna ULA and

UAVs in real-world scenarios, providing insights into their

practical limitations and advantages. Our findings showed

Root-Multiple Signal Classification (R-MUSIC) performed

best among the five algorithms for a hovering drone at various

locations, while Bartlett provided additional environmental

insights for angle estimation despite lower performance.

Fast-moving drones present challenges for accurate AoA

estimation due to factors such as UAV mobility, wind, and fast

time-varying multi-path. Our analysis of a hovering drone in a

time-invariant channel revealed that accurate AoA estimation

could be achieved with as few as 320 samples. This finding

sheds light on the interplay between sampling rate, drone

mobility, and the characteristics of the channel environment.

We studied the impact of antenna number and configurations

on AoA estimation in massive MIMO systems. Furthermore,

we analyzed the effect of using multiple rows and found

that mobility and dynamic environments significantly impact

AoA estimation accuracy. Additionally, we evaluated 2-D AoA

estimation and found it to outperform multi-row/column meth-

ods, making it a practical application for joint azimuth and

elevation estimation techniques in massive MIMO systems.

The remainder of this paper is organized as follows. Section

II explains the theoretical methods employed in the study,

while Section III provides details about the experimental

platform. Section IV includes the experimental details, results

and analysis. The paper is concluded in Section V.

II. SYSTEM MODEL AND METHODS

Multiple antennas are commonly used in AoA estimation

to overcome challenges and improve accuracy. Factors such

as antenna spacing, frequency, and the environment play

crucial roles in determining the effectiveness of using mul-

tiple antennas. By carefully analyzing these factors, we can

gain insights into optimizing AoA estimation techniques for

improved performance.

We consider the system model from [7]. Assume a ULA

with M antennas and equal antenna spacing of d. Let xm(n)
denote the signal received by the m

th antenna at the n
th
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• Analysis of the significance of sample count with fixed

antenna configuration on AoA estimation.

• Investigation of the impact of different antenna config-

urations on AoA estimation accuracy for fixed sample

count.

• Exploration of multi-row estimation with simultaneous

averaging of multiple rows.

• Comparison of the performance of 2-D AoA estimation

with multi-row and column estimation.

IV. EXPERIMENTAL DATA AND RESULTS

A. AoA Estimation Algorithms

We analyze the accuracy of five classical AoA estimation

algorithms for incoming signals from hovering drones. The

algorithms include Bartlett, Minimum Variance Distortionless

Response (MVDR), Multiple Signal Classification (MUSIC),

R-MUSIC and Estimation of Signal Parameter via Rotational

Invariance (ESPRIT) and their performance was assessed in

terms of AoA estimation accuracy and robustness to environ-

mental changes. This study provides valuable insights for se-

lecting the most appropriate algorithm for drone applications.

Setup: We conducted an outdoor drone experiment at Rice

Stadium, utilizing a transmitter client connected to a drone.

This drone facilitated up-link traffic communication with a

32-antenna massive MIMO base station, where 16 or more

antennas represent the massive aspect. The angles were defined

as zero degrees when measured at the front of the base station.

The drone’s locations were mapped using GPS positioning and

flown at a 20 m hovering altitude. To compare estimation

algorithm performance, we collected data as described in

Section III using only eight planar array elements with 3.94

cm spacing between them to gather a baseline for further

experiments. All 2,240,000 samples collected were used to

estimate the AoA at each location.

Results and Findings: Fig. 3 presents a comprehensive com-

parative analysis of five algorithms. This is depicted through

the use of box plots which for each set of AoA methods

displays the median, minimum score, lower quartile of 25%,

upper quartile of 75%, maximum score, and outliers.

Fig. 3a shows that the Bartlett algorithm produces a median

error of −4.69° inaccuracy, with estimation errors ranging

from −0.29° to −30.73°. ESPRIT has a range of error from

−8.56° to 16.77°, with a median error of −2.93°. MUSIC

ranging from 3.19° to −7.51°. R-MUSIC performed the best,

with the degree of inaccuracy ranging from 3.54° to −5.88°,

with a median of −1.63° offering the best performance. Fi-

nally, MVDR estimation errors ranged from 4.19° to −16.34°.

Further evaluation of the estimator’s angular spectrum was

conducted to elucidate the impact of the environment on each

estimator, as shown in Fig. 3b. For the azimuth angle of

−9.45°, Fig. 3b shows a comparison of the performance of the

five AoA estimation algorithms. The spectral plots for Bartlett,

MVDR, and MUSIC are represented by line curves, while the

dots represent the estimates for ESPRIT and R-MUSIC. This

plot gives an overview of how well each algorithm is able to

estimate the AoA values for the incoming signals.

After evaluating multiple AoA estimation algorithms, we

chose the Bartlett algorithm for further experimentation. The

Bartlett algorithm effectively incorporates a spectrum graph

and exhibits higher sensitivity to environmental factors and

combines spatial responses to estimate signal angles, providing

valuable insights. The spatial response determines signal di-

rection. This information helps detect multi-path or false peaks

that can affect angle estimation accuracy.

B. Sample Time

To accurately estimate AoA for mobile drones, we must

consider the drone’s mobility and physical factors, requiring

a significant number of samples to capture channel coherence

time. In this study, we determine the necessary number of

snapshots for estimating AoA in a time-varying channel by

examining the impact of channel coherence time and sampling

rate on accuracy. Our findings improve the localization sys-

tem’s overall performance and ensure reliable drone tracking.

Setup: We varied sample sizes from 5 to 5,120 to test the

impact on AoA estimation accuracy, using one row of eight

antennas in the massive MIMO base station.

Results and Findings: The experiment involved analyzing

the data from five different locations, with the estimation

results being represented by the error of each location relative

to its ground truth. The results of the AoA estimation are

plotted against the number of samples in Fig. 4a. The x-axis

scale varies exponentially. The results reveal that a higher

number of samples result in a smaller deviation of error around

the zero mean. In particular, we observed that the line of sight

path had the highest estimated peak, which resulted in a more

significant number of samples providing the best performance.

The shortest time while having the highest accuracy of the

estimate was every 64 milliseconds or 320 samples. Thus, a

sampling rate of 320 samples or 64 milliseconds will serve as

the baseline for monitoring a drone traveling at a maximum

speed of 20 m/s.

We observed a degradation in accuracy of ±17° after 320

samples, as demonstrated in Fig. 4a. We conducted further

investigations into the range of errors, as depicted in Fig.

4b and 4c, for the location of 32.47 degrees when using

the Bartlett algorithm. A comparison between Fig. 4b and 4c

reveals that the line of sight signal peaked with the greatest re-

sponse in both cases, while the multi-path signal grew stronger

as the number of samples decreased, leading to a conflict

in the signals. Additionally, the beamwidth increased and

more multi-path was observed in Fig. 4c due to the reduced

number of samples. Notably, Fig. 4d illustrates a significant

variation from the multi-path at higher sample rates, wherein

we observed the multi-path expanding and overlapping to

become the primary beam. We further verified the results over

multiple instances, which displayed comparable findings.

Our analysis showed that the 320-sample threshold rep-

resents the minimum data requirement before observing an

increase in estimation max/min range. Such a threshold can

vary depending on the channel coherence time and the number

of paths. Thus, undersampling results in the detection of the
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of antennas. Among the different antenna configurations, the

eight antennas produced the best result, with an error of

only 0.74° from the ground truth. On the other hand, the

configuration with only two antennas showed a significant

deviation of 11.76° from the ground truth.

Fig. 6: Bartlett performance for varying number of antennas.

We also found that the effects of multipath on AoA esti-

mates for hovering drones become more pronounced as the

number of antennas decreases. Fig. 6 shows the impact of

decreasing the number of antennas on the effects of multipath,

specifically how the stadium environment affects the AoA

estimation. The lower part of the Rice football stadium has

cement bleachers on the left side and reflective metallic

bleachers on the right side. These reflections appear in the

signal when the drone is lifted to an altitude and transmits

an omnidirectional signal, resulting in a multi-path influenced

by the stadium objects. As shown in Fig 6, the graphs

demonstrate the effect of decreasing the number of antennas

and the influence of reflective objects on the accuracy of AoA

estimation. The results reveal that reducing the number of

antennas amplifies the impact of multipath, leading to less

accurate AoA estimation.

D. Multi 1-D Azimuth Estimation

AoA estimation relies on the computation of phase shifts

of the received antennas, which differ for different rows in

a massive MIMO system. This phase estimate improves as

the number of antennas increases in a ULA design. While a

ULA can be effective for certain applications, the increasing

use of multi-ULA and MIMO systems has led to Uniform

Rectangular Array (URA) systems outperforming ULAs [10].

The received signal phases differ across the five rows of

the URA array, with a vertical spacing 66.68 mm (1.25

wavelengths) between the rows. In addition to antenna spacing,

the mobility of the drones and variable channel conditions

affect the AoA calculation. In this section, we present the

results of evaluating each antenna row set for AoA estimation

and averaging the outcomes.

Setup: We used the full 5 × 8 massive MIMO URA with

varying inter-row phase differences.

Results and Findings: Fig. 7 shows the performance of

averaging the results from each row estimation. The x-axis

shows the number of rows used for estimation while the y-

axis shows the estimation error. To combine the results from

different row estimations, we use averaging. Each row is

individually used for AoA estimation using its corresponding

antennas, and the estimated angles from each row are then

averaged to obtain a final estimation.

The range of the estimator decreases as the number of rows

increases, with the minimum number of rows, (one row of

eight-antennas) having a range of −6° to 2°. The median

estimation error improves by 0.58° from one to five rows.

The maximum number of rows used is five, providing a 3°

range compared to an 8° range with one row due to variable

combinations in the AoA calculation. The design allows for

independent observations due to the significant separation of

6.66 cm between each row, which results in varying spatial

sums with multi-paths.

Fig. 7: AoA result for azimuth multi row estimation.

Thus, we observed that each row of the massive MIMO

test bed has rich multipath components that result in varying

spatial sums, which can lead to high deviation in the AoA

estimation. However, despite these fluctuations, we observed

a boost in the accuracy of AoA estimation when utilizing

massive MIMO estimates obtained from each row by aver-

aging the spectra to obtain a more robust estimate of the

AoA. By using multiple rows for their spatial components,

we can decrease the range of the estimations and achieve

better accuracy overall. Combining the spatial components

from multiple rows provides a more complete picture of the

signal, allowing for a more accurate estimation of the AoA.

E. Multi 1-D vs 2-D AoA methodology

With the expanding use of massive MIMO, joint azimuth

and elevation estimation methods are becoming more impor-

tant. As a result, attention has increased on the application

of 2-D AoA estimation, which involves a search for a two-

dimensional spectrum of the angles of arrival of incoming

signals [12]. In our experiment, we evaluate the performance

of 2-D estimation in comparison to multi-row and column es-

timation as discussed in Section IV-D for elevation estimation.

Setup: We used a similar algorithm as in Section IV-D to

estimate elevation angles from the same set of antennas. The

aim was to compare 2-D estimation to multi-row and multi-

column estimation and explore the best way to utilize 2-D

AoA from the five locations [13].

Results and Findings: Fig. 8a depicts the AoA estimation

accuracy for two different approaches: the 2-D Bartlett spatial
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(a) (b) (c) (d)

Fig. 8: (a) Comparison between 2-D AoA estimation and multi 1-D AoA estimation. (b) Full 2-D estimation spectrum plot.

(c) Azimuth 1-D spectrum plot. (d) Elevation 1-D spectrum plot.

spectrum estimate and the multi-row/azimuth 1-D spectrum

and multi-column/elevation 1-D spectrum estimation. The 2-

D Bartlett spatial spectrum estimate improves accuracy by

aggregating all antennas in the array to locate the spectrum

peak. In contrast, the 1-D method finds a peak from each row

or column individually, relying on a limited subset of array

elements for estimation. By aggregating all antennas, the 2-D

Bartlett approach captures subtle differences in angles more

effectively, leading to improved accuracy.

The spectrum graphs in Fig. 8b, 8c, and 8d provide a visual

comparison of the estimators’ peaks between the 2-D and

multi-row and column approaches. The 2-D Bartlett estimator

exhibits a narrower bandwidth on average, resulting in higher

precision and accuracy for azimuth and elevation angles.

Based on our study, the 2-D Bartlett spatial spectrum estima-

tor shows promise for joint azimuth and elevation estimation

in massive MIMO systems. It aggregates all antennas to

locate the spectrum peak, capturing subtle angle differences

missed by the 1-D method. This improves elevation estimation

accuracy significantly. The narrower bandwidth of the 2-

D estimator also enhances precision and accuracy for both

azimuth and elevation angles. These findings are important

for designing and optimizing high-precision spatial angle

estimation in massive MIMO systems.

V. CONCLUSION

We analyzed five AoA estimation methods for massive

MIMO in drone networks and found that R-MUSIC had the

best accuracy. However, we used the Bartlett algorithm for

further experiments due to its sensitivity to the environment.

We discovered that undersampling reduces accuracy, and more

than 320 samples reduce multi-path effects and lower esti-

mation errors. Increasing the number of azimuth antennas

enhances estimation results, with six to eight antennas offering

acceptable consistency. We also observed an improvement in

AoA estimation by utilizing massive MIMO and averaging row

estimation results. Additionally, 2-D Bartlett spatial spectrum

estimation shows potential for joint azimuth and elevation es-

timation. Our study highlights the importance of accurate AoA

estimation in optimizing performance and provides insights for

developing more efficient massive MIMO systems for drone

networks.
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