
DepthShrinker: A New Compression Paradigm Towards Boosting

Real-Hardware Efficiency of Compact Neural Networks

Yonggan Fu† 1 Haichuan Yang 2 Jiayi Yuan 1 Meng Li 2 Cheng Wan 1 Raghuraman Krishnamoorthi 2

Vikas Chandra 2 Yingyan Lin 1

Abstract

Efficient deep neural network (DNN) models

equipped with compact operators (e.g., depthwise

convolutions) have shown great potential in reduc-

ing DNNs’ theoretical complexity (e.g., the total

number of weights/operations) while maintaining

a decent model accuracy. However, existing

efficient DNNs are still limited in fulfilling their

promise in boosting real-hardware efficiency, due

to their commonly adopted compact operators’

low hardware utilization. In this work, we open

up a new compression paradigm for developing

real-hardware efficient DNNs, leading to boosted

hardware efficiency while maintaining model

accuracy. Interestingly, we observe that while

some DNN layers’ activation functions help

DNNs’ training optimization and achievable

accuracy, they can be properly removed after

training without compromising the model accu-

racy. Inspired by this observation, we propose

a framework dubbed DepthShrinker, which

develops hardware-friendly compact networks

via shrinking the basic building blocks of existing

efficient DNNs that feature irregular computation

patterns into dense ones with much improved

hardware utilization and thus real-hardware

efficiency. Excitingly, our DepthShrinker

framework delivers hardware-friendly compact

networks that outperform both state-of-the-art

efficient DNNs and compression techniques, e.g.,

a 3.06% higher accuracy and 1.53× throughput

on Tesla V100 over SOTA channel-wise pruning

method MetaPruning. Our codes are available at:

https://github.com/facebookresearch/DepthShrinker.

1Department of Electrical and Computer Engineering, Rice
University 2Meta Inc. Correspondence to: Yingyan Lin
<yingyan.lin@rice.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction

Recent breakthroughs in deep neural networks (DNNs) have

fueled a growing demand for deploying DNNs in real-world

devices. However, the prohibitive complexity of DNNs

stands at odds with the often constrained on-device re-

sources. As such, many techniques aiming to boost DNNs’

hardware efficiency have been developed, including prun-

ing (Han et al., 2015a), quantization (Zhu et al., 2016; Zhou

et al., 2016), and efficient DNN models (Howard et al.,

2017; Google., 2020) leveraging compact operators (e.g.,

depthwise convolutions). Yet, the resulting DNN models

from the above techniques mostly require dedicated DNN

accelerators to achieve the desired hardware efficiency.

In parallel, there exists a dilemma between the trends of

efficient DNN design and modern computing platform ad-

vances: while modern computing platforms (e.g., GPUs and

TPUs) have consistently advanced to favor a higher degree

of parallel computing, existing efficient DNN models often

adopt light-weight operations that suffer from low hardware

utilization and thus inferior achievable hardware efficiency.

For instance, depthwise convolutions (Howard et al., 2017),

commonly adopted in compact DNNs such as MobileNetV2

and EfficientNet, feature much more irregular computation

patterns as compared to standard convolution layers, making

it difficult to make good use of on-device resources due to

their reduced data reuse opportunities and limiting existing

efficient DNNs to unleash their theoretical potential (Chen

et al., 2019). Therefore, there has been an increasing interest

in developing more hardware friendly DNNs with improved

hardware utilization to better leverage the power of paral-

lelism in modern computing platforms (Chen & Zhao, 2018;

Elkerdawy et al., 2020; Zhou et al., 2021).

To tackle the aforementioned gap between (1) the low hard-

ware utilization of existing efficient DNNs and (2) the con-

tinuously increasing degree of computing parallelism of

modern computing platforms, we ask an intriguing ques-

tion: “How do we design efficient DNNs that can simultane-

ously enjoy both the powerful expressiveness of state-of-the-

†Work done in collaboration between Meta Reality Labs and
Rice EIC lab during internship



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

art (SOTA) efficient DNN structures and boosted parallel-

computing capability of modern computing platforms?” In-

spired by RepVGG (Ding et al., 2021), which merges par-

allel branches to build decent single-branch networks, one

natural thought is to merge consecutive layers into one sin-

gle layer with dense computation patterns and improved

hardware utilization. Nevertheless, it is non-trivial to merge

layers along the depth dimension due to the associated ac-

tivation functions, which are desired for introducing more

non-linearity to empower the model capacity.

Interestingly, we observe that while some DNN layers’ ac-

tivation functions help DNNs’ training optimization and

thus achievable accuracy, they can be properly removed af-

ter training without compromising the model accuracy. An

exciting outcome is that the remaining consecutive linear op-

erations between which the activation functions are removed

can be merged into one single linear operation. Notably,

if the two activation functions in an inverted residual

block (Sandler et al., 2018), the basic building block of

SOTA efficient DNNs (Sandler et al., 2018; Tan & Le,

2019; Wu et al., 2019; Howard et al., 2019), are removed,

its two pointwise convolution layers and one depthwise

convolution layer as well as the associated residual con-

nection can be merged to one dense convolution with

(1) a kernel of the same size as the original depthwise

convolution and (2) the same number of input/output

channels as the original inverted residual block. Excit-

ingly, the resulting dense convolution enjoys a much im-

proved hardware utilization as compared to that of both the

pointwise convolutions of kernel size 1× 1 and depthwise

convolution in the original inverted residual block, enabling

the derived DNN to win boosted hardware efficiency while

maintaining the original accuracy.

Driven by the above exciting discovery, we propose a new

compression paradigm towards real-hardware efficient com-

pact networks and make the following contributions:

• We conduct experiments to show that the commonly

adopted building blocks in existing efficient DNNs are

inferior in hardware efficiency as compared to dense

operations with the same theoretical complexity.

• Motivated by the above, we propose DepthShrinker

that advocates merging consecutive layers, between

which the activation functions are learned to be unim-

portant for inference, into one single dense layer.

DepthShrinker’s derived DNNs can largely leverage

the high degree of parallelism in modern computing

platforms and thus boost hardware efficiency while

maintaining the original models’ accuracy.

• DepthShrinker opens up a new perspective towards

powerful and hardware-efficient DNNs, and can be

viewed as some sort of soft layer pruning, in contrast

to layer-wise pruning, i.e., merging vs. hard prun-

ing. Notably, DepthShrinker delivers DNNs that out-

perform both SOTA channel- and layer-wise pruning

techniques, e.g., a 3.06% higher accuracy and 1.53×

throughput on Tesla V100 over SOTA channel-wise

pruning method MetaPruning (Liu et al., 2019).

• Extensive experiments and ablation studies validate

that DepthShrinker can (1) largely push forward the

frontier of DNNs’ achievable accuracy-efficiency trade-

off, and (2) serve as an augmentation technique for

boosting tiny DNNs’ accuracy.

2. Related Works

Efficient DNNs. Various efficient DNNs have been de-

veloped. Early efficient DNNs mainly rely on human ex-

perts’ manual design, e.g., MobileNets (Howard et al., 2017;

Sandler et al., 2018) boost model efficiency and accuracy

trade-offs via depthwise convolution, which has become a

standard operator for efficient DNNs. In parallel, hardware

efficient operators have been proposed (Wu et al., 2017;

Chen et al., 2020) as alternatives for convolution. Thanks to

the great success of neural architecture search (NAS) (Zoph

& Le, 2016; Zoph et al., 2018), automated efficient DNN

design via reinforcement learning (Tan et al., 2019; Howard

et al., 2019; Tan & Le, 2019) and differentiable search (Liu

et al., 2018; Wu et al., 2019; Cai et al., 2018) have been

proposed. However, existing efficient DNNs are still lim-

ited in their hardware efficiency due to the low hardware

utilization of their basic building blocks, e.g., depthwise

convolutions (Howard et al., 2017).

DNN compression techniques. Existing DNN compres-

sion techniques reduce the model complexity by prun-

ing (Han et al., 2015b;a; Wen et al., 2016; He et al., 2018;

Liu et al., 2019; He et al., 2017; 2020; 2019; Dong et al.,

2017), quantization (Courbariaux et al., 2015; 2016; Raste-

gari et al., 2016; Fu et al., 2020; 2021a), low-rank decom-

position (Yin et al., 2021; Sainath et al., 2013; Nakkiran

et al., 2015), or dynamic inference (Teerapittayanon et al.,

2016; Wang et al., 2018; Shen et al., 2020), while striving to

maintain a decent accuracy. Nevertheless, it is well known

that general computing platforms (e.g., GPUs and CPUs)

cannot fully benefit from DNN compression via low-bit

quantization, low-rank decomposition, or dynamic infer-

ence in terms of hardware efficiency, and are still limited in

fulfilling the efficiency improvement from pruning.

Layer-wise pruning. The most relevant work to

DepthShrinker is layer-wise pruning (Chen & Zhao, 2018;

Elkerdawy et al., 2020; Zhou et al., 2021; Xu et al., 2020),

which prunes an entire layer/block motivated by the fact that

pruning a layer is more effective in reducing hardware la-

tency (Xu et al., 2020) compared with channel-wise pruning.





DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

impressive theoretical efficiency and accuracy trade-offs,

their real-device efficiency is inferior as compared to their

dense counterparts under the same computational complex-

ity, due to their more irregular computation patterns that

cause reduced data reuse and lower hardware utilization.

Experiment setup. In our profiling, we replace each build-

ing block in both the MobileNetV2 (Sandler et al., 2018) (in-

cluding EfficientNet-Lite0 (Google., 2020)) and ResNet (He

et al., 2016) families with one dense convolution layer (1)

of the same kernel size as the second convolution layer of

each block, which is the only convolution with a kernel size

larger than 1× 1 within a bottleneck/inverted residual block

and (2) with a scaled number of channels to maintain the

same floating-point operations (FLOPs) as the original

block. We summarize the real-device throughput of both

these two network families featuring two different types

of basic building blocks and their dense counterparts on

ImageNet with a resolution of 224 × 224 in Tab. 1.

Considered devices and measurement settings. We con-

sider three commercial devices, including (1) NVIDIA

Tesla V100 GPU (NVIDIA., c), (2) NVIDIA RTX

2080Ti GPU (NVIDIA., b), and (3) Jetson TX2 Edge

GPU (NVIDIA., a), to cover both Desktop and edge GPUs.

We adopt a batch size of 128 for the first two devices, fol-

lowing (Ding et al., 2021), and 64 for the last device, and

Frame-Per-Second (FPS) as the efficiency metric.

Results and analysis. As shown in Tab. 1, we can ob-

serve that (1) the dense counterparts consistently achieve

a higher throughput against the original networks with the

same FLOPs, regardless of the model families and profiling

devices. Specifically, the dense convolution counterparts

on top of the MobileNetV2 family boost the throughput on

a Tesla V100/RTX 2080Ti GPU and TX2 Edge GPU by

3.91× ∼4.38× and 3.45× ∼3.67×, respectively; and sim-

ilarly, they increase the throughput on a Tesla V100/RTX

2080Ti GPU and TX2 Edge GPU by 2.02× ∼2.43× and

1.18× ∼1.58×, respectively, on top of the ResNet fam-

ily. To further understand this, we also visualize the block-

wise latency of MobileNetV2/MobileNetV2-1.4 on a RTX

2080Ti GPU in Fig. 1, including the latency of both the

original block and the corresponding dense convolution. It

shows that the dense counterpart for each block can consis-

tently reduce the latency by up to 88.2%.

This set of profiling experiments indicates that (1) replacing

the commonly adopted building blocks with dense oper-

ations of the same FLOPs can notably boost real-device

efficiency, thanks to the improved utilization of hardware

resources; (2) The throughput improvement is more notable

on top of the MobileNetV2 family than the ResNet family,

because depthwise convolutions in the former and widely

adopted in existing efficient DNNs introduce more irregular

computation patterns and thus we see a more pronounced

improvement after replacing them with dense ones; and (3)

throughput improvement is consistently observed across dif-

ferent devices, and is larger on the Tesla V100/2080Ti GPU

than the TX2 Edge GPU since the former has a higher degree

of parallel-processing that favors the achievable through-

put of the dense counterparts, indicating an even larger effi-

ciency improvement of our DepthShrinker, in line with more

parallelism trend of modern AI-driven computing platforms.

Remark. The hardware utilization and thus real-device

efficiency improvements are mainly attributed to two per-

spectives: (1) from the operation perspective, irregular op-

erations have less data reuse opportunities and thus re-

quire more data movement costs (Chen et al., 2019), e.g.,

in our profile experiment, both the standard convolutions

with a kernel size of 1 × 1 and the depthwise convolu-

tions are replaced with dense convolutions with a larger

kernel size of 3 × 3, leading to more data reuse oppor-

tunities and less data movements under the same FLOPs;

and (2) from the depth/width trade-off perspective, replac-

ing a building block with one dense convolution of the same

FLOPs would both shallow and widen the original network,

and thus favor a higher utilization when running on modern

computing platforms featuring an increasingly high degree

of parallelism. We further study the independent impact of

the above perspective (2) in the Appendix. C.

4. The Proposed DepthShrinker Framework

4.1. Overview

Key idea. DepthShrinker aims to develop real-hardware

efficient DNNs favoring high hardware utilization by re-

moving redundant activation functions and then merging

the resulting consecutive linear operations. The key idea

is that by removing the two activation functions within an

inverted residual block (Sandler et al., 2018), i.e., the basic

building block in most efficient DNNs, the entire block can

then be merged into one dense convolution layer with the

same kernel size as the original block’s depthwise convolu-

tion and the same number of input/output channels as the

original block. The exciting outcome is much improved

real-hardware efficiency as profiled in Sec. 3.2.

Framework overview. To achieve the above aim, two non-

trivial challenges exist: which activation functions to be

removed and how to restore the accuracy with fewer remain-

ing activation functions after the removal. To tackle these,

DepthShrinker built on top of SOTA efficient DNNs inte-

grates a three-stage effort as shown in Fig. 2: (1) identify

redundant activation functions, (2) remove the identified

activation functions and fine-tune the resulting DNNs from

stage (1), and (3) merge consecutive layers between which

the activation functions are removed to deliver the final net-

works. Note that we apply our DepthShrinker on top of





DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

search to penalize the importance of the costly blocks. Note

that in this work we directly adopt the pre-measured latency

on RTX 2080Ti GPU during search, and recognize that

it is straightforward to make it platform-aware for further

boosting the efficiency at the cost of a longer search time.

4.3. Stage 2: How to Fine-tune

After the above search process, the least important activation

functions with the smallest m are removed, and fine-tuning

is performed to restore the accuracy. The following solutions

have been proposed and validated:

Adding additional activation functions for free. There

is no nonlinear function following the dense convolutions

after the merge stage, since an inverted residual block (San-

dler et al., 2018) contains only two activation functions. To

boost the achieved accuracy, we additionally add an activa-

tion function (i.e., ReLU6 in this work) after each merge

convolution, which incurs a negligible hardware cost.

Self-distillation. In DepthShrinker, we can optionally en-

able a self-distillation mechanism during fine-tuning, i.e.,

conducting knowledge distillation (Hinton et al., 2015) un-

der the guidance of the original network with all activation

functions on to further boost the derived network’s accu-

racy. Note that we only assort to the original network as the

teacher without introducing extra models.

4.4. Stage 3: How to Merge

After fine-tuning the resulting network with unimportant

activation functions removed, the final step is to merge adja-

cent linear operations (e.g., convolutional/fully-connected,

average pooling, or batch normalization layers).

Merging two adjacent layers. Without loss of generality,

here we consider two adjacent convolution layers with an

input feature X ∈ R
H1×W1×c1 , intermediate feature Z ∈

R
H2×W2×c2 , output feature Y ∈ R

H3×W3×c3 , and kernel

weights K(1) ∈ R
d1×d1×c1×c2 and K(2) ∈ R

d2×d2×c2×c3

for the first and second layers, between which the activation

is removed, and assume:

Zm,n,s =

d1−1∑

i=0

d1−1∑

j=0

c1−1∑

r=0

Xm−i,n−j,rK
(1)
i,j,r,s (3)

Ym,n,t =

d2−1∑

i=0

d2−1∑

j=0

c2−1∑

s=0

Zm−i,n−j,sK
(2)
i,j,s,t (4)

The above two layers can be merged into one single layer.

Assuming the stride of both layers s1 and s2 is 1, we have:

Ym,n,t =

d−1∑

i=0

d−1∑

j=0

c1−1∑

r=0

Xm−i,n−j,rKi,j,r,t (5)

where d = d1 + d2 − 1 and

Ki,j,r,t =

p∑

p=p

q∑

q=q

c2−1∑

s=0

K
(1)
i−p,j−q,r,sK

(2)
p,q,s,t (6)

where Ki,j,r,t is the merged kernel of size d× d, and p =
max(0, i − d1 + 1), p = min(d2 − 1, i), q = max(0, j −
d1 + 1), and q = min(d2 − 1, j). Note that when the stride

of layers s1 and s2 is larger than 1, the kernels can still be

merged into one with a stride of s1 × s2 and kernel size of

((d2 − 1)× s1 + d1)× ((d2 − 1)× s1 + d1).

Merging inverted residual blocks. An important insight

from the above analysis is that when consecutive convolu-

tion layers are merged into one convolution layer, the num-

ber of both the input and output channels for the resulting

convolution layer is only determined by the number of the

input channels in the first convolution layer and the number

of output channels in the last convolution layer, respectively,

regardless of the intermediate layer structures. As a

result, the design rule of inverted residual blocks (San-

dler et al., 2018), i.e., three convolution layers with their

number of channels first expanded and then decreased,

is naturally favorable to our DepthShrinker’s derived

networks consisting of merged convolutions with only

the decreased number of input and output channels. We

believe this also sheds light on future hardware-efficient

DNN designs.

4.5. DepthShrinker+: Expand-then-Shrink

The vanilla design of our DepthShrinker described above

leverages the insight that unimportant activation functions

can be properly removed after training without hurting the

inference accuracy. Excitingly, this insight can also be lever-

aged to improve DNN training. Specifically, we propose to

train a given DNN via an Expand-then-Shrink strategy, and

term it as DepthShrinker+. In a DepthShrinker+ training,

we first (1) expand one or some of the convolution layers to

become inverted residual blocks, which benefits the training

optimization thanks to the increased overparameterization

in the expanded model, (2) train the expanded DNN, and

then (3) apply DepthShrinker to merge the aforementioned

newly introduced blocks to recover the original network

structure. As such, this training scheme can be viewed as

augmenting the original DNN with enhanced complexity

during training to favor its training optimization and thus

achievable accuracy, while the inference efficiency remains

to be the same.

5. Experiment Results

5.1. Experiment Setup

Networks and datasets. We apply DepthShrinker to both

the MobileNetV2 (Howard et al., 2017) and EfficientNet-

Lite (Google., 2020) (i.e., a hardware-efficient variant of



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

Table 2. Benchmark DepthShrinker with SOTA channel-wise pruning method MetaPruning (Liu et al., 2019) and uniform pruning on

MobileNetV2-1.4@ImageNet in terms of FPS measured on three devices. All baseline accuracies are their reported ones (Liu et al., 2019).

Model Acc (%) MFLOPs Tesla V100 RTX 2080Ti TX2

MBV2-1.4 75.30 630 2127 (↑1.00×) 1617 (↑1.00×) 73 (↑1.00×)

MetaPruning-1.0× 73.20 332 3159 (↑1.49×) 2527 (↑1.56×) 115 (↑1.58×)

MBV2-1.4-DS-A 74.65/75.29/75.65 519 3827 (↑1.80×) 2881 (↑1.78×) 134 (↑1.84×)

MBV2-1.4-DS-B 73.67/74.8/75.13 502 4778 (↑2.25×) 3356 (↑2.08×) 163 (↑2.23×)

MBV2-1.4-DS-C 73.38/74.55/74.91 492 4597 (↑2.16×) 3537 (↑2.19×) 159 (↑2.18×)

Uniform-0.65× 67.20 182 4004 (↑1.88×) 3147 (↑1.95×) 161 (↑2.21×)

MetaPruning-0.65× 71.70 160 4336 (↑2.04×) 3691 (↑2.28×) 179 (↑2.45×)

MBV2-1.4-DS-D 72.51/73.93/74.50 484 5560 (↑2.61×) 3926 (↑2.43×) 184 (↑2.52×)

MBV2-1.4-DS-E 72.20/73.85/74.43 474 5317 (↑2.50×) 4175 (↑2.58×) 179 (↑2.45×)

Uniform-0.35× 54.60 68 6266 (↑2.95×) 5607 (↑3.47×) 263 (↑3.60×)

MetaPruning-0.35× 64.50 52 7044 (↑3.31×) 6938 (↑4.29×) 377 (↑5.16×)

MBV2-1.4-DS-F 67.56/69.04/70.13 415 10804 (↑5.08×) 7687 (↑4.75×) 344 (↑4.71×)

Table 3. Benchmark DepthShrinker with SOTA channel-wise

pruning method AMC (He et al., 2018) on top of Mo-

bileNetV2@ImageNet in terms of FPS measured on three devices.

Model
FLOPS

(M)
Acc (%)

Tesla

V100

RTX

2080Ti
TX2

MBV2 330 72.30 3088 2364 115

AMC 220 70.80 3943 3159 152

MBV2-DS-A 287 72.43/72.48/72.50 5012 3505 177

MBV2-DS-B 272 71.54/72.06/72.09 5448 4074 199

MBV2-DS-C 261 70.90/71.21/71.56 6189 4691 226

MBV2-DS-D 253 69.40/70.15/70.58 6776 5257 258

EfficientNet (Tan & Le, 2019)) families, on top of the Ima-

geNet dataset (Russakovsky et al., 2015).

Search settings. We adopt the same training hyper-

parameters as the fine-tuning stage (see below), and find that

the important activation functions can be quickly identified

and the search becomes stable within 20 epochs.

Fine-tuning settings. By default, we fine-tune for 180

epochs with an SGD optimizer and a cosine learning rate,

equipping with label smoothing (Müller et al., 2019) and

RandAugment (Cubuk et al., 2020) following (Wang et al.,

2021). Unless explicitly specified, we do not enable self-

distillation in experiments of the reported results.

Devices and measurement settings. We consider

three commonly used computing platforms, including

NVIDIA Tesla V100 GPUs (NVIDIA., c), RTX 2080Ti

GPUs (NVIDIA., b), and Jetson TX2 Edge GPUs (NVIDIA.,

a), and adopt the same measurement setting as in Sec. 3.2.

5.2. Benchmark with SOTA Pruning Methods

We first benchmark DepthShrinker with SOTA pruning tech-

niques, including both channel- and layer-wise ones.

Benchmark with channel-wise pruning. We benchmark

with two channel-wise pruning methods, AMC (He et al.,

2018) and MetaPruning (Liu et al., 2019), achieving SOTA

performance in compressing efficient DNNs, as well as a

uniform channel-wise pruning baseline in (Liu et al., 2019),

on ImageNet. As shown in Tabs. 2 and 3, we annotate

our DepthShrinker’s delivered model families with “DS-X”

(detailed structures are in the Appendix. E), and report their

accuracy under three training settings: standard training for

180 epochs, training with self-distillation in Sec. 4.3 for 180

and 360 epochs, respectively.

Results and analysis. We can observe that (1) under the stan-

dard training setting, DepthShrinker consistently achieves

better accuracy-efficiency trade-offs over all the three base-

lines on all three devices. In particular, DepthShrinker

achieves 1.40× throughput with a 0.18% higher accuracy

OR a 1.45% higher accuracy with 1.14× throughput over

MetaPruning-1.0×, and 1.48× throughput with a 0.1%

higher accuracy over AMC on MobileNetV2 measured on a

RTX 2080Ti GPU; (2) Equipping with self-distillation and

more training epochs, DepthShrinker’s achievable accuracy

is notably boosted by up to 2.57%, further enlarging the

accuracy gap with the channel-wise pruning baselines; (3)

DepthShrinker shows decent scalability to different com-

pression ratios and outperforms SOTA channel-wise prun-

ing especially under extremely efficient cases, e.g., a 3.06%

higher accuracy with 1.53× throughput over MetaPruning-

0.35× on Tesla V100; and (4) DepthShrinker favors bet-

ter data reuses and higher utilization, since the FLOPs of

its delivered models are larger while their real-hardware

efficiency is better compared with those of channel-wise

pruning methods.

Benchmark with layer-wise pruning. To benchmark with

layer-wise pruning methods (which prune a whole block in

our case), we directly remove the entire blocks identified by

our DepthShrinker’s differentiable search scheme for a fair

comparison, based on the hypothesis that the blocks with re-







DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

References

Bengio, Y., Léonard, N., and Courville, A. Estimating or

propagating gradients through stochastic neurons for con-

ditional computation. arXiv preprint arXiv:1308.3432,

2013.

Bi, K., Xie, L., Chen, X., Wei, L., and Tian, Q. Gold-

nas: Gradual, one-level, differentiable. arXiv preprint

arXiv:2007.03331, 2020.

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural

architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

Cai, H., Gan, C., Lin, J., and Han, S. Network augmentation

for tiny deep learning. arXiv preprint arXiv:2110.08890,

2021.

Chen, H., Wang, Y., Xu, C., Shi, B., Xu, C., Tian, Q., and

Xu, C. Addernet: Do we really need multiplications in

deep learning? In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp.

1468–1477, 2020.

Chen, S. and Zhao, Q. Shallowing deep networks: layer-

wise pruning based on feature representations. IEEE

transactions on pattern analysis and machine intelligence,

41(12):3048–3056, 2018.

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. Eyeriss v2: A

flexible accelerator for emerging deep neural networks on

mobile devices. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 9(2):292–308, 2019.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-

nect: Training deep neural networks with binary weights

during propagations. In Advances in neural information

processing systems, pp. 3123–3131, 2015.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and

Bengio, Y. Binarized neural networks: Training deep

neural networks with weights and activations constrained

to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-

daugment: Practical automated data augmentation with a

reduced search space. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops, pp. 702–703, 2020.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun,

J. Repvgg: Making vgg-style convnets great again. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 13733–13742, 2021.

Dong, X., Chen, S., and Pan, S. Learning to prune deep

neural networks via layer-wise optimal brain surgeon.

Advances in Neural Information Processing Systems, 30,

2017.

Elkerdawy, S., Elhoushi, M., Singh, A., Zhang, H., and Ray,

N. To filter prune, or to layer prune, that is the question.

In Proceedings of the Asian Conference on Computer

Vision, 2020.

Fu, Y., You, H., Zhao, Y., Wang, Y., Li, C., Gopalakrishnan,

K., Wang, Z., and Lin, Y. Fractrain: Fractionally squeez-

ing bit savings both temporally and spatially for efficient

dnn training. Advances in Neural Information Processing

Systems, 33:12127–12139, 2020.

Fu, Y., Guo, H., Li, M., Yang, X., Ding, Y., Chandra, V.,

and Lin, Y. Cpt: Efficient deep neural network training

via cyclic precision. arXiv preprint arXiv:2101.09868,

2021a.

Fu, Y., Yu, Q., Zhang, Y., Wu, S., Ouyang, X., Cox, D., and

Lin, Y. Drawing robust scratch tickets: Subnetworks with

inborn robustness are found within randomly initialized

networks. Advances in Neural Information Processing

Systems, 34, 2021b.

Google. Efficientnet-lite. https://github.com/

tensorflow/tpu/tree/master/models/

official/efficientnet/lite, 2020.

Han, S., Mao, H., and Dally, W. J. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both

weights and connections for efficient neural network.

Advances in neural information processing systems, 28:

1135–1143, 2015b.

Han, S., Mao, H., and Dally, W. J. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for acceler-

ating very deep neural networks. In Proceedings of the

IEEE international conference on computer vision, pp.

1389–1397, 2017.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. Amc:

Automl for model compression and acceleration on mo-

bile devices. In Proceedings of the European Conference

on Computer Vision (ECCV), pp. 784–800, 2018.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter prun-

ing via geometric median for deep convolutional neural

networks acceleration. In Proceedings of the IEEE/CVF



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

Conference on Computer Vision and Pattern Recognition,

pp. 4340–4349, 2019.

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., and Yang, Y.

Learning filter pruning criteria for deep convolutional

neural networks acceleration. In Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition, pp. 2009–2018, 2020.

Hinton, G., Vinyals, O., and Dean, J. Distilling

the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,

Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,

et al. Searching for mobilenetv3. In Proceedings of the

IEEE International Conference on Computer Vision, pp.

1314–1324, 2019.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications. CoRR, abs/1704.04861, 2017. URL http:

//arxiv.org/abs/1704.04861.

Hu, S., Xie, S., Zheng, H., Liu, C., Shi, J., Liu, X., and

Lin, D. Dsnas: Direct neural architecture search without

parameter retraining. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 12084–12092, 2020.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,

A., Adam, H., and Kalenichenko, D. Quantization

and training of neural networks for efficient integer-

arithmetic-only inference. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 2704–2713, 2018.

Kang, M. and Han, B. Operation-aware soft channel pruning

using differentiable masks. In International Conference

on Machine Learning, pp. 5122–5131. PMLR, 2020.

Li, C., Yu, Z., Fu, Y., Zhang, Y., Zhao, Y., You, H., Yu, Q.,

Wang, Y., and Lin, Y. Hw-nas-bench: Hardware-aware

neural architecture search benchmark. arXiv preprint

arXiv:2103.10584, 2021.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,

H. P. Pruning filters for efficient convnets. arXiv preprint

arXiv:1608.08710, 2016.

Lin, J., Chen, W.-M., Lin, Y., Cohn, J., Gan, C., and Han,

S. Mcunet: Tiny deep learning on iot devices. arXiv

preprint arXiv:2007.10319, 2020.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055,

2018.

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T.,

and Sun, J. Metapruning: Meta learning for automatic

neural network channel pruning. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pp. 3296–3305, 2019.

Müller, R., Kornblith, S., and Hinton, G. When does label

smoothing help? arXiv preprint arXiv:1906.02629, 2019.

Nakkiran, P., Alvarez, R., Prabhavalkar, R., and Parada,

C. Compressing deep neural networks using a rank-

constrained topology. 2015.

NVIDIA. NVIDIA Jetson TX2, a. https://www.

nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-tx2/, accessed

2020-09-01.

NVIDIA. NVIDIA RTX 2080Ti, b. https:

//www.nvidia.com/en-me/geforce/

graphics-cards/rtx-2080-ti/.

NVIDIA. NVIDIA Tesla V100, c. https://www.

nvidia.com/en-us/data-center/v100/.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,

and Rastegari, M. What’s hidden in a randomly weighted

neural network? In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp.

11893–11902, 2020.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.

Xnor-net: Imagenet classification using binary convo-

lutional neural networks. In European conference on

computer vision, pp. 525–542. Springer, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., et al. Imagenet large scale visual recognition chal-

lenge. International journal of computer vision, 115(3):

211–252, 2015.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E.,

and Ramabhadran, B. Low-rank matrix factorization

for deep neural network training with high-dimensional

output targets. In 2013 IEEE international conference on

acoustics, speech and signal processing, pp. 6655–6659.

IEEE, 2013.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and

Chen, L. Mobilenetv2: Inverted residuals and linear

bottlenecks. mobile networks for classification, detection

and segmentation. CoRR, abs/1801.04381, 2018. URL

http://arxiv.org/abs/1801.04381.

Shen, J., Wang, Y., Xu, P., Fu, Y., Wang, Z., and Lin, Y.

Fractional skipping: Towards finer-grained dynamic cnn

inference. In AAAI, pp. 5700–5708, 2020.



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

Simonyan, K. and Zisserman, A. Very deep convolu-

tional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model

scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946, 2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,

Howard, A., and Le, Q. V. Mnasnet: Platform-aware

neural architecture search for mobile. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2820–2828, 2019.

Teerapittayanon, S., McDanel, B., and Kung, H.-T.

Branchynet: Fast inference via early exiting from deep

neural networks. In 2016 23rd International Conference

on Pattern Recognition (ICPR), pp. 2464–2469. IEEE,

2016.

Wang, D., Gong, C., Li, M., Liu, Q., and Chandra, V.

Alphanet: Improved training of supernet with alpha-

divergence. arXiv preprint arXiv:2102.07954, 2021.

Wang, X., Yu, F., Dou, Z.-Y., Darrell, T., and Gonzalez,

J. E. Skipnet: Learning dynamic routing in convolutional

networks. In Proceedings of the European Conference on

Computer Vision (ECCV), pp. 409–424, 2018.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning

structured sparsity in deep neural networks. Advances

in neural information processing systems, 29:2074–2082,

2016.

Wu, B., Wan, A., Yue, X., Jin, P. H., Zhao, S., Golmant,

N., Gholaminejad, A., Gonzalez, J., and Keutzer, K.

Shift: A zero flop, zero parameter alternative to spa-

tial convolutions. CoRR, abs/1711.08141, 2017. URL

http://arxiv.org/abs/1711.08141.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,

Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet: Hardware-

aware efficient convnet design via differentiable neural

architecture search. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp.

10734–10742, 2019.

Xie, S., Zheng, H., Liu, C., and Lin, L. Snas: stochastic neu-

ral architecture search. arXiv preprint arXiv:1812.09926,

2018.

Xu, P., Cao, J., Shang, F., Sun, W., and Li, P. Layer pruning

via fusible residual convolutional block for deep neural

networks. arXiv preprint arXiv:2011.14356, 2020.

Yin, M., Sui, Y., Liao, S., and Yuan, B. Towards efficient ten-

sor decomposition-based dnn model compression with op-

timization framework. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pp. 10674–10683, 2021.

Zhou, D., Ye, M., Chen, C., Meng, T., Tan, M., Song, X.,

Le, Q., Liu, Q., and Schuurmans, D. Go wide, then

narrow: Efficient training of deep thin networks. In In-

ternational Conference on Machine Learning, pp. 11546–

11555. PMLR, 2020.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y.

Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016.

Zhou, Y., Yen, G. G., and Yi, Z. Evolutionary shallowing

deep neural networks at block levels. IEEE Transactions

on Neural Networks and Learning Systems, 2021.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained ternary

quantization. arXiv preprint arXiv:1612.01064, 2016.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning

transferable architectures for scalable image recognition.

In Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pp. 8697–8710, 2018.





DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

Table 8. Measured throughput of the ResNet family and the MobileNetV2 family with scaled channel numbers to maintain the same

FLOPs. All the reported numbers are FPS. The number of blocks in each stage of MobileNetV2 is annotated in the Depth column.

Model Depth Width Scale
Throughput (FPS)

RTX 2080Ti TX2 (bs=32) TX2 (bs=1)

ResNet-18 18 1.535 1476 85 28

ResNet-34 34 1.07 1388 61 27

ResNet-50 50 1.00 874 46 20

ResNet-101 101 0.73 792 36 15

ResNet-152 152 0.60 674 31 11

MobileNetV2

[1,1,1,1,1,1,1] 1.45 2499 112 56

[1,2,2,2,1,1,1] 1.25 2167 98 52

[1,2,3,3,2,2,1] 1.11 2114 103 39

[1,2,3,4,3,3,1] 1.00 2149 103 33

[1,3,4,6,5,5,1] 0.85 1916 96 23

of 6 and a depthwise kernel size of 1 to ensure the original

model structure can be recovered.

Integrating with more advanced expansion strategies, our

DepthShrinker can potentially achieve more notable im-

provements, which will be our future work.

Table 9. Visualizing the remained activation functions in

DepthShrinker’s generated model families.

Model Remained Activation Functions

MBV2-1.4-DS-A [1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1]

MBV2-1.4-DS-B [0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 1]

MBV2-1.4-DS-C [1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1]

MBV2-1.4-DS-D [0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1]

MBV2-1.4-DS-E [1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1]

MBV2-1.4-DS-F [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

MBV2-DS-A [0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1]

MBV2-DS-B [1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1]

MBV2-DS-C [1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1]

MBV2-DS-D [1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1]

Eff-Lite0-A [0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1]

Eff-Lite0-B [0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1]

Eff-Lite0-C [0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1]

Eff-Lite0-D [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

EffLite3-DS-A [0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1]

EffLite3-DS-B [0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1]

EffLite3-DS-C [0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1]

EffLite3-DS-D [1 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1]

E. Details about DepthShrinker’s Delivered

Model Families

We apply DepthShrinker on top of the given efficient DNNs

to generate new model families via varying the number of re-

mained activation functions k in Eq. 1 and the decay strength

on m discussed in Sec. 4.2, which constrains the overall effi-

ciency of the delivered network. For all the reported models

in the main text, we provide their remained activation func-

tions identified by our DepthShrinker in Tab. 9, where each

element in the list indicates whether the activation functions

of the corresponding block are kept, i.e., “1” denotes the

activation functions in the block are remained.


