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Abstract

Efficient deep neural network (DNN) models
equipped with compact operators (e.g., depthwise
convolutions) have shown great potential in reduc-
ing DNNs’ theoretical complexity (e.g., the total
number of weights/operations) while maintaining
a decent model accuracy. However, existing
efficient DNNGs are still limited in fulfilling their
promise in boosting real-hardware efficiency, due
to their commonly adopted compact operators’
low hardware utilization. In this work, we open
up a new compression paradigm for developing
real-hardware efficient DNNGs, leading to boosted
hardware efficiency while maintaining model
accuracy. Interestingly, we observe that while
some DNN layers’ activation functions help
DNNs’ training optimization and achievable
accuracy, they can be properly removed after
training without compromising the model accu-
racy. Inspired by this observation, we propose
a framework dubbed DepthShrinker, which
develops hardware-friendly compact networks
via shrinking the basic building blocks of existing
efficient DNNs that feature irregular computation
patterns into dense ones with much improved
hardware utilization and thus real-hardware
efficiency. Excitingly, our DepthShrinker
framework delivers hardware-friendly compact
networks that outperform both state-of-the-art
efficient DNNs and compression techniques, e.g.,
a 3.06% higher accuracy and 1.53x throughput
on Tesla V100 over SOTA channel-wise pruning
method MetaPruning. Our codes are available at:
https://github.com/facebookresearch/DepthShrinker.
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1. Introduction

Recent breakthroughs in deep neural networks (DNNs) have
fueled a growing demand for deploying DNNss in real-world
devices. However, the prohibitive complexity of DNNs
stands at odds with the often constrained on-device re-
sources. As such, many techniques aiming to boost DNNs’
hardware efficiency have been developed, including prun-
ing (Han et al., 2015a), quantization (Zhu et al., 2016; Zhou
et al., 2016), and efficient DNN models (Howard et al.,
2017; Google., 2020) leveraging compact operators (e.g.,
depthwise convolutions). Yet, the resulting DNN models
from the above techniques mostly require dedicated DNN
accelerators to achieve the desired hardware efficiency.

In parallel, there exists a dilemma between the trends of
efficient DNN design and modern computing platform ad-
vances: while modern computing platforms (e.g., GPUs and
TPUs) have consistently advanced to favor a higher degree
of parallel computing, existing efficient DNN models often
adopt light-weight operations that suffer from low hardware
utilization and thus inferior achievable hardware efficiency.
For instance, depthwise convolutions (Howard et al., 2017),
commonly adopted in compact DNNs such as MobileNetV2
and EfficientNet, feature much more irregular computation
patterns as compared to standard convolution layers, making
it difficult to make good use of on-device resources due to
their reduced data reuse opportunities and limiting existing
efficient DNNs to unleash their theoretical potential (Chen
etal., 2019). Therefore, there has been an increasing interest
in developing more hardware friendly DNNs with improved
hardware utilization to better leverage the power of paral-
lelism in modern computing platforms (Chen & Zhao, 2018;
Elkerdawy et al., 2020; Zhou et al., 2021).

To tackle the aforementioned gap between (1) the low hard-
ware utilization of existing efficient DNNs and (2) the con-
tinuously increasing degree of computing parallelism of
modern computing platforms, we ask an intriguing ques-
tion: “How do we design efficient DNNs that can simultane-
ously enjoy both the powerful expressiveness of state-of-the-
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art (SOTA) efficient DNN structures and boosted parallel-
computing capability of modern computing platforms?” In-
spired by RepVGG (Ding et al., 2021), which merges par-
allel branches to build decent single-branch networks, one
natural thought is to merge consecutive layers into one sin-
gle layer with dense computation patterns and improved
hardware utilization. Nevertheless, it is non-trivial to merge
layers along the depth dimension due to the associated ac-
tivation functions, which are desired for introducing more
non-linearity to empower the model capacity.

Interestingly, we observe that while some DNN layers’ ac-
tivation functions help DNNs’ training optimization and
thus achievable accuracy, they can be properly removed af-
ter training without compromising the model accuracy. An
exciting outcome is that the remaining consecutive linear op-
erations between which the activation functions are removed
can be merged into one single linear operation. Notably,
if the two activation functions in an inverted residual
block (Sandler et al., 2018), the basic building block of
SOTA efficient DNNs (Sandler et al., 2018; Tan & Le,
2019; Wu et al., 2019; Howard et al., 2019), are removed,
its two pointwise convolution layers and one depthwise
convolution layer as well as the associated residual con-
nection can be merged to one dense convolution with
(1) a kernel of the same size as the original depthwise
convolution and (2) the same number of input/output
channels as the original inverted residual block. Excit-
ingly, the resulting dense convolution enjoys a much im-
proved hardware utilization as compared to that of both the
pointwise convolutions of kernel size 1 x 1 and depthwise
convolution in the original inverted residual block, enabling
the derived DNN to win boosted hardware efficiency while
maintaining the original accuracy.

Driven by the above exciting discovery, we propose a new
compression paradigm towards real-hardware efficient com-
pact networks and make the following contributions:

* We conduct experiments to show that the commonly
adopted building blocks in existing efficient DNNs are
inferior in hardware efficiency as compared to dense
operations with the same theoretical complexity.

* Motivated by the above, we propose DepthShrinker
that advocates merging consecutive layers, between
which the activation functions are learned to be unim-
portant for inference, into one single dense layer.
DepthShrinker’s derived DNNs can largely leverage
the high degree of parallelism in modern computing
platforms and thus boost hardware efficiency while
maintaining the original models’ accuracy.

* DepthShrinker opens up a new perspective towards
powerful and hardware-efficient DNNs, and can be
viewed as some sort of soft layer pruning, in contrast

to layer-wise pruning, i.e., merging vs. hard prun-
ing. Notably, DepthShrinker delivers DNNs that out-
perform both SOTA channel- and layer-wise pruning
techniques, e.g., a 3.06% higher accuracy and 1.53 x
throughput on Tesla V100 over SOTA channel-wise
pruning method MetaPruning (Liu et al., 2019).

» Extensive experiments and ablation studies validate
that DepthShrinker can (1) largely push forward the
frontier of DNNs’ achievable accuracy-efficiency trade-
off, and (2) serve as an augmentation technique for
boosting tiny DNNs’ accuracy.

2. Related Works

Efficient DNNs. Various efficient DNNs have been de-
veloped. Early efficient DNNs mainly rely on human ex-
perts’ manual design, e.g., MobileNets (Howard et al., 2017;
Sandler et al., 2018) boost model efficiency and accuracy
trade-offs via depthwise convolution, which has become a
standard operator for efficient DNNs. In parallel, hardware
efficient operators have been proposed (Wu et al., 2017;
Chen et al., 2020) as alternatives for convolution. Thanks to
the great success of neural architecture search (NAS) (Zoph
& Le, 2016; Zoph et al., 2018), automated efficient DNN
design via reinforcement learning (Tan et al., 2019; Howard
et al., 2019; Tan & Le, 2019) and differentiable search (Liu
et al., 2018; Wu et al., 2019; Cai et al., 2018) have been
proposed. However, existing efficient DNNs are still lim-
ited in their hardware efficiency due to the low hardware
utilization of their basic building blocks, e.g., depthwise
convolutions (Howard et al., 2017).

DNN compression techniques. Existing DNN compres-
sion techniques reduce the model complexity by prun-
ing (Han et al., 2015b;a; Wen et al., 2016; He et al., 2018;
Liu et al., 2019; He et al., 2017; 2020; 2019; Dong et al.,
2017), quantization (Courbariaux et al., 2015; 2016; Raste-
gari et al., 2016; Fu et al., 2020; 2021a), low-rank decom-
position (Yin et al., 2021; Sainath et al., 2013; Nakkiran
et al., 2015), or dynamic inference (Teerapittayanon et al.,
2016; Wang et al., 2018; Shen et al., 2020), while striving to
maintain a decent accuracy. Nevertheless, it is well known
that general computing platforms (e.g., GPUs and CPUs)
cannot fully benefit from DNN compression via low-bit
quantization, low-rank decomposition, or dynamic infer-
ence in terms of hardware efficiency, and are still limited in
fulfilling the efficiency improvement from pruning.

Layer-wise pruning. @ The most relevant work to
DepthShrinker is layer-wise pruning (Chen & Zhao, 2018;
Elkerdawy et al., 2020; Zhou et al., 2021; Xu et al., 2020),
which prunes an entire layer/block motivated by the fact that
pruning a layer is more effective in reducing hardware la-
tency (Xu et al., 2020) compared with channel-wise pruning.
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Table 1. Measured throughput of both the MobileNetV2 (including EfficientNet-Lite0) and ResNet families, as well as their corresponding
dense counterparts on three commercial devices. All the reported numbers are real-device Frame-Per-Second (FPS).

Tesla V100 GPU RTX 2080Ti GPU TX2 Edge GPU
Model GFLOPs Original Dense Original Dense Original Dense

MobileNetV2 0.33 3088 12090 (13.91x) 2364 9351 (13.96 x) 115 397 (13.45x)

MobileNetV2-1.4 0.63 2127 8846 (14.16x) 1617 6869 (14.25x) 73 267 (13.66x)

Efficientnet-LiteO 0.41 2731 11174 (14.09x) 2185 9577 (14.38x) 98 360 (13.67x)

ResNet-50 4.14 1079 2182 (12.02x) 874 1862 (12.13x) 45 53 (11.18x)

ResNet-101 7.88 642 1509 (12.35x%) 538 1279 (12.38%) 28 44 (11.57x)

ResNet-152 11.62 449 1082 (12.41x) 378 917 (12.43%) 19 30 (11.58x)

us to innovate shallow networks with boosted accuracy.
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Figure 1. Visualizing the block-wise latency of the inverted resid-
ual blocks (a total of 17) in MobileNetV2/MobileNetV2-1.4 (solid

lines) and their corresponding dense convolutions (dashed lines)
on an RTX 2080Ti GPU. “MBV2” denotes MobileNetV2.

Specifically, (Chen & Zhao, 2018; Elkerdawy et al., 2020)
prune layers based on their proposed criteria; while (Zhou
et al., 2021) and (Xu et al., 2020) determine which lay-
ers/blocks to be pruned via evolutionary search and differ-
entiable optimization, respectively. However, aggressive
layer pruning inevitably suffers from non-trivial accuracy
drops under large compression ratios due to the difficulty
in restoring the pruned models’ accuracy. Instead of hard
pruning, our DepthShrinker merges consecutive linear oper-
ations into one dense operation after training, and can win
both accuracy and hardware efficiency thanks to (1) its better
maintained model expressiveness and (2) the high utilization
and thus lower latency of the merged dense operation.

3. Motivating Inspiration and Observations
3.1. Inspiration Drawn from Previous Works

Shallow networks with a higher utilization favor real-
hardware efficiency. Recent works (Elkerdawy et al., 2020;
Xu et al., 2020) show that shallow networks favor a higher
degree of parallel processing and thus higher hardware uti-
lization, leading to better real-hardware efficiency on mod-
ern computing devices, e.g., GPUs, over their deeper coun-
terparts with a comparable computational cost; this is also
further validated by our profiling experiments in Sec. 3.2.
Nevertheless, existing shallow networks are still not able to
approach the accuracy of their deep counterparts, motivating

model depth. However, layers cannot be directly merged
along the depth dimension due to the non-linear activation
functions. This motivates us to question “whether some
activation functions can be properly removed for inference”.

The role of activation functions. We hypothesize that the
answer to the above question is positive based on existing
DNN compression (Han et al., 2016; Jacob et al., 2018)
and training (Zhou et al., 2020; Cai et al., 2021) works,
which show that DNNs’ higher complexity benefits training
but can be trimmed down during inference without hurt-
ing the accuracy. Specifically, iterative pruning (Han et al.,
2016) and quantization-aware training (Jacob et al., 2018)
train DNNs with their original complexity and then spar-
sify/quantize the model for inference without hurting the
accuracy; Meanwhile, (Zhou et al., 2020; Cai et al., 2021)
augment DNNs via expanding their widths during training
for improved accuracy, while the models during inference
remain the same. One inspiration from these prior arts
is that activation functions can be viewed as one specific
model dimension in enhancing DNNs’ complexity and ex-
pressiveness, and thus some might be properly removed
after training without hurting the accuracy.

3.2. Motivating Observations from Real-device
Profiling

Since our work is hardware-driven and aims to improve real-

device efficiency instead of theoretical ones, we conduct

extensive real-device profiling experiments to validate our

hypothesis and to gain better understandings of the design

space, and they are summarized in this subsection.

Key hypothesis/motivation. While the commonly used
bottleneck blocks (He et al., 2016) and more efficient in-
verted residual blocks (Sandler et al., 2018) have shown



DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks

impressive theoretical efficiency and accuracy trade-offs,
their real-device efficiency is inferior as compared to their
dense counterparts under the same computational complex-
ity, due to their more irregular computation patterns that
cause reduced data reuse and lower hardware utilization.

Experiment setup. In our profiling, we replace each build-
ing block in both the MobileNetV2 (Sandler et al., 2018) (in-
cluding EfficientNet-LiteO (Google., 2020)) and ResNet (He
et al., 2016) families with one dense convolution layer (1)
of the same kernel size as the second convolution layer of
each block, which is the only convolution with a kernel size
larger than 1 x 1 within a bottleneck/inverted residual block
and (2) with a scaled number of channels to maintain the
same floating-point operations (FLOPs) as the original
block. We summarize the real-device throughput of both
these two network families featuring two different types
of basic building blocks and their dense counterparts on
ImageNet with a resolution of 224 x 224 in Tab. 1.

Considered devices and measurement settings. We con-
sider three commercial devices, including (1) NVIDIA
Tesla V100 GPU (NVIDIA., c¢), (2) NVIDIA RTX
2080Ti GPU (NVIDIA., b), and (3) Jetson TX2 Edge
GPU (NVIDIA., a), to cover both Desktop and edge GPUs.
We adopt a batch size of 128 for the first two devices, fol-
lowing (Ding et al., 2021), and 64 for the last device, and
Frame-Per-Second (FPS) as the efficiency metric.

Results and analysis. As shown in Tab. 1, we can ob-
serve that (1) the dense counterparts consistently achieve
a higher throughput against the original networks with the
same FLOPs, regardless of the model families and profiling
devices. Specifically, the dense convolution counterparts
on top of the MobileNetV2 family boost the throughput on
a Tesla V100/RTX 2080Ti GPU and TX2 Edge GPU by
3.91x ~4.38x and 3.45x ~3.67x, respectively; and sim-
ilarly, they increase the throughput on a Tesla V100/RTX
2080Ti GPU and TX2 Edge GPU by 2.02x ~2.43x and
1.18x ~1.58x, respectively, on top of the ResNet fam-
ily. To further understand this, we also visualize the block-
wise latency of MobileNetV2/MobileNetV2-1.4 on a RTX
2080Ti GPU in Fig. 1, including the latency of both the
original block and the corresponding dense convolution. It
shows that the dense counterpart for each block can consis-
tently reduce the latency by up to 88.2%.

This set of profiling experiments indicates that (1) replacing
the commonly adopted building blocks with dense oper-
ations of the same FLOPs can notably boost real-device
efficiency, thanks to the improved utilization of hardware
resources; (2) The throughput improvement is more notable
on top of the MobileNetV2 family than the ResNet family,
because depthwise convolutions in the former and widely
adopted in existing efficient DNNs introduce more irregular
computation patterns and thus we see a more pronounced

improvement after replacing them with dense ones; and (3)
throughput improvement is consistently observed across dif-
ferent devices, and is larger on the Tesla V100/2080Ti GPU
than the TX2 Edge GPU since the former has a higher degree
of parallel-processing that favors the achievable through-
put of the dense counterparts, indicating an even larger effi-
ciency improvement of our DepthShrinker, in line with more
parallelism trend of modern Al-driven computing platforms.

Remark. The hardware utilization and thus real-device
efficiency improvements are mainly attributed to two per-
spectives: (1) from the operation perspective, irregular op-
erations have less data reuse opportunities and thus re-
quire more data movement costs (Chen et al., 2019), e.g.,
in our profile experiment, both the standard convolutions
with a kernel size of 1 x 1 and the depthwise convolu-
tions are replaced with dense convolutions with a larger
kernel size of 3 x 3, leading to more data reuse oppor-
tunities and less data movements under the same FLOPs;
and (2) from the depth/width trade-off perspective, replac-
ing a building block with one dense convolution of the same
FLOPs would both shallow and widen the original network,
and thus favor a higher utilization when running on modern
computing platforms featuring an increasingly high degree
of parallelism. We further study the independent impact of
the above perspective (2) in the Appendix. C.

4. The Proposed DepthShrinker Framework
4.1. Overview

Key idea. DepthShrinker aims to develop real-hardware
efficient DNNs favoring high hardware utilization by re-
moving redundant activation functions and then merging
the resulting consecutive linear operations. The key idea
is that by removing the two activation functions within an
inverted residual block (Sandler et al., 2018), i.e., the basic
building block in most efficient DNNS, the entire block can
then be merged into one dense convolution layer with the
same kernel size as the original block’s depthwise convolu-
tion and the same number of input/output channels as the
original block. The exciting outcome is much improved
real-hardware efficiency as profiled in Sec. 3.2.

Framework overview. To achieve the above aim, two non-
trivial challenges exist: which activation functions to be
removed and how to restore the accuracy with fewer remain-
ing activation functions after the removal. To tackle these,
DepthShrinker built on top of SOTA efficient DNNs inte-
grates a three-stage effort as shown in Fig. 2: (1) identify
redundant activation functions, (2) remove the identified
activation functions and fine-tune the resulting DNNs from
stage (1), and (3) merge consecutive layers between which
the activation functions are removed to deliver the final net-
works. Note that we apply our DepthShrinker on top of
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Figure 2. Overview of our DepthShrinker framework and its three-stage design. “PW” and “DW” denote pointwise/depthwise convolutions,
respectively. During merging, we merge the two pointwise convolutions and one depthwise convolution in blocks whose activation

functions are removed, into one dense convolution.

publicly available pretrained models, following common
practice in model compression (He et al., 2018; Wen et al.,
2016; Han et al., 2015a; Jacob et al., 2018).

4.2. Stage 1: Identify Redundant Activation Functions

To identify unimportant activation functions, predefined cri-
teria like those for layer-wise pruning (Li et al., 2016; Wen
et al., 2016) may not be appropriate as activation functions
of different layers are coupled, e.g., removing preceding
activation functions might change the feature distributions
of the following layers. Therefore, we propose a differen-
tiable search method to learn the importance of all activation
functions considering their joint influence, as inspired by
recent pruning works (Kang & Han, 2020; Ramanujan et al.,
2020; Fu et al., 2021b).

Search method overview. Our search method assigns a
learnable mask m € RY (N is the total number of activa-
tion functions) to all activation functions, serving as a proxy
of the activation functions’ importance score. When updat-
ing m during search, the coupling effect among different
activation functions should be considered, while ensuring
that the sparsity of m is sufficiently high, e.g., higher than
(1 — k/N) where k is the number of remained activation
functions, to satisfy the target efficiency after the merging
stage (see sec. 4.4). In DepthShrinker, the search method
jointly learns the mask m together with model weights 6.

Search method formulation. Deriving the optimal 6 and
m is essentially a bi-level optimization problem (Liu et al.,
2018). In DepthShrinker, we approximate it as a one-level
optimization formulation (Xie et al., 2018; Hu et al., 2020;
Bi et al., 2020) to jointly update 6 and m:
arg min > o) yi) st mlo <k (D)
e i

where /¢ is the loss function, x; and y; are the i-th input
and label pair, and g, (z;) is the predicted label under the
parameters 6 and activation mask m. To achieve the target
sparsity in m, we impose an L constraint on m via activat-
ing only its top k elements during forward. Specifically, we
adopt a binary mask 7 € {0, 1}" to approximate the top
k elements of m using 1 and O otherwise during forward,
while all the elements in m are updated via straight-through
estimation (Bengio et al., 2013) during backward. In partic-
ular, the forward function can be formulated as:

D)= (o + (L—1iy) 1) o T 0 () @

6,1
where fé% is the network function for the first [ layers, o
is the operator of function composition, o and 1 denote
an activation function and identity mapping, respectively,
and 7y, is a transformation (e.g., convolution or other linear
operations) parameterized by ;. The binary mask 772; in
Eq. (2) guarantees that an activation function in the [-th
layer is either fully enabled or disabled. During backward,
we directly pass the gradients of the binary mask 7 to

m, 1.e., % R %. Since only the activation functions
corresponding to the top k values of mask m participate
in the forward process, activation functions with larger m
values are more likely to be kept, thus larger m values after

training indicate higher importance.

Search method implementation. Our search method
makes two settings: (1) block-wise shrink and (2) latency-
aware decay on m. For the former, since we aim to merge
the whole inverted residual blocks into one dense convo-
lution, we share the mask values of m corresponding to
the two activation functions in one block, i.e., both of the
two activation functions are either removed or kept. For the
latter, we additionally add an L; decay on each element of
m weighted by the corresponding block’s latency during
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search to penalize the importance of the costly blocks. Note
that in this work we directly adopt the pre-measured latency
on RTX 2080Ti GPU during search, and recognize that
it is straightforward to make it platform-aware for further
boosting the efficiency at the cost of a longer search time.

4.3. Stage 2: How to Fine-tune

After the above search process, the least important activation
functions with the smallest m are removed, and fine-tuning
is performed to restore the accuracy. The following solutions
have been proposed and validated:

Adding additional activation functions for free. There
is no nonlinear function following the dense convolutions
after the merge stage, since an inverted residual block (San-
dler et al., 2018) contains only two activation functions. To
boost the achieved accuracy, we additionally add an activa-
tion function (i.e., ReLU®6 in this work) after each merge
convolution, which incurs a negligible hardware cost.

Self-distillation. In DepthShrinker, we can optionally en-
able a self-distillation mechanism during fine-tuning, i.e.,
conducting knowledge distillation (Hinton et al., 2015) un-
der the guidance of the original network with all activation
functions on to further boost the derived network’s accu-
racy. Note that we only assort to the original network as the
teacher without introducing extra models.

4.4. Stage 3: How to Merge

After fine-tuning the resulting network with unimportant
activation functions removed, the final step is to merge adja-
cent linear operations (e.g., convolutional/fully-connected,
average pooling, or batch normalization layers).

Merging two adjacent layers. Without loss of generality,
here we consider two adjacent convolution layers with an
input feature X € R71xWixe1 intermediate feature Z €
RHE2xW2xez gutput feature Y € R73*Wsxes and kernel
Weights K(l) c Rdl XdyXcyXcea and K(Q) c Rdg Xda X caXcg
for the first and second layers, between which the activation
is removed, and assume:
di—ldi—1ei—1
NS KiK. B
i=0 j=0 r=0
do—1dy—1ca—1

}/m,n,t = Z Z Z Zm—i,n—j,sKi(i‘)}S’t (4)

i=0 j=0 s=0

The above two layers can be merged into one single layer.
Assuming the stride of both layers s; and s5 is 1, we have:
d—1d—1c1—1
ZZZXW i,n—3,7 ,],rt (5)
i=0 j=0 r=0
where d = d; + ds — 1 and

mns*

mnt

D q co2—1
K=Y S K, K ©

p=p q=q s=0
where K; ; .+ is the merged kernel of size d x d, and p =
max(0,i — dy + 1), p = min(dy — 1,4), ¢ = max(0,j —
dy + 1), and § = min(ds — 1, j). Note that when the stride
of layers s1 and s» is larger than 1, the kernels can still be
merged into one with a stride of s; X so and kernel size of

((d2 — ].) X 81 +d1) X ((dz — 1) X 81 +d1)

Merging inverted residual blocks. An important insight
from the above analysis is that when consecutive convolu-
tion layers are merged into one convolution layer, the num-
ber of both the input and output channels for the resulting
convolution layer is only determined by the number of the
input channels in the first convolution layer and the number
of output channels in the last convolution layer, respectively,
regardless of the intermediate layer structures. As a
result, the design rule of inverted residual blocks (San-
dler et al., 2018), i.e., three convolution layers with their
number of channels first expanded and then decreased,
is naturally favorable to our DepthShrinker’s derived
networks consisting of merged convolutions with only
the decreased number of input and output channels. We
believe this also sheds light on future hardware-efficient
DNN designs.

4.5. DepthShrinker™: Expand-then-Shrink

The vanilla design of our DepthShrinker described above
leverages the insight that unimportant activation functions
can be properly removed after training without hurting the
inference accuracy. Excitingly, this insight can also be lever-
aged to improve DNN training. Specifically, we propose to
train a given DNN via an Expand-then-Shrink strategy, and
term it as DepthShrinker™. In a DepthShrinker™ training,
we first (1) expand one or some of the convolution layers to
become inverted residual blocks, which benefits the training
optimization thanks to the increased overparameterization
in the expanded model, (2) train the expanded DNN, and
then (3) apply DepthShrinker to merge the aforementioned
newly introduced blocks to recover the original network
structure. As such, this training scheme can be viewed as
augmenting the original DNN with enhanced complexity
during training to favor its training optimization and thus
achievable accuracy, while the inference efficiency remains
to be the same.

5. Experiment Results
5.1. Experiment Setup

Networks and datasets. We apply DepthShrinker to both
the MobileNetV2 (Howard et al., 2017) and EfficientNet-
Lite (Google., 2020) (i.e., a hardware-efficient variant of
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Table 2. Benchmark DepthShrinker with SOTA channel-wise pruning method MetaPruning (Liu et al., 2019) and uniform pruning on
MobileNetV2-1.4@ImageNet in terms of FPS measured on three devices. All baseline accuracies are their reported ones (Liu et al., 2019).

Model Ace (%) MFLOPs  Tesla V100 RTX 2080Ti TX2
MBV2-1.4 75.30 630 2127 (11.00x) 1617 (11.00x) 73 (+1.00x)
MetaPruning-1.0x 73.20 332 3159 (11.49x) 2527 (11.56x) 115 (11.58x)
MBV2-1.4-DS-A  74.65/75.29/75.65 519 3827 (11.80x) 2881 (11.78x) 134 (11.84x)
MBV2-14-DS-B  73.67/74.8/75.13 502 4778 (12.25%) 3356 (12.08x) 163 (12.23x)
MBV2-14-DS-C  73.38/74.55/74.91 492 4597 (12.16x) 3537 (12.19%) 159 (12.18x)
Uniform-0.65 x 67.20 182 4004 (11.88x) 3147 (11.95x) 161 (12.21x)
MetaPruning-0.65 x 71.70 160 4336 (12.04x) 3691 (12.28%) 179 (12.45x)
MBV2-14-DS-D  72.51/73.93/74.50 484 5560 (12.61x) 3926 (12.43x) 184 (12.52x)
MBV2-14-DS-E  72.20/73.85/74.43 474 5317 (12.50%) 4175 (12.58x) 179 (12.45%)
Uniform-0.35 x 54.60 68 6266 (12.95x) 5607 (13.47x) 263 (13.60x)
MetaPruning-0.35 x 64.50 52 7044 (13.31x) 6938 (14.29x) 377 (15.16)
MBV2-14-DS-F  67.56/69.04/70.13 415 10804 (15.08x) 7687 (14.75x) 344 (14.71x)

Table 3. Benchmark DepthShrinker with SOTA channel-wise

pruning method AMC (He et al., 2018) on top of Mo-

bileNetV2@ImageNet in terms of FPS measured on three devices.
FLOPS Tesla RTX

Model ™) Acc (%) V100 2080Ti TX2
MBV2 330 72.30 3088 2364 115
AMC 220 70.80 3943 3159 152
MBV2-DS-A 287 72.43/72.48/72.50 5012 3505 177
MBV2-DS-B 272 71.54/72.06/72.09 5448 4074 199
MBV2-DS-C 261 70.90/71.21/71.56 6189 4691 226
MBV2-DS-D 253 69.40/70.15/70.58 6776 5257 258

EfficientNet (Tan & Le, 2019)) families, on top of the Ima-
geNet dataset (Russakovsky et al., 2015).

Search settings. We adopt the same training hyper-
parameters as the fine-tuning stage (see below), and find that
the important activation functions can be quickly identified
and the search becomes stable within 20 epochs.

Fine-tuning settings. By default, we fine-tune for 180
epochs with an SGD optimizer and a cosine learning rate,
equipping with label smoothing (Miiller et al., 2019) and
RandAugment (Cubuk et al., 2020) following (Wang et al.,
2021). Unless explicitly specified, we do not enable self-
distillation in experiments of the reported results.

Devices and measurement settings. We consider
three commonly used computing platforms, including
NVIDIA Tesla V100 GPUs (NVIDIA., c), RTX 2080Ti
GPUs (NVIDIA., b), and Jetson TX2 Edge GPUs (NVIDIA.,
a), and adopt the same measurement setting as in Sec. 3.2.

5.2. Benchmark with SOTA Pruning Methods

We first benchmark DepthShrinker with SOTA pruning tech-
niques, including both channel- and layer-wise ones.

Benchmark with channel-wise pruning. We benchmark
with two channel-wise pruning methods, AMC (He et al.,

2018) and MetaPruning (Liu et al., 2019), achieving SOTA
performance in compressing efficient DNNs, as well as a
uniform channel-wise pruning baseline in (Liu et al., 2019),
on ImageNet. As shown in Tabs. 2 and 3, we annotate
our DepthShrinker’s delivered model families with “DS-X"
(detailed structures are in the Appendix. E), and report their
accuracy under three training settings: standard training for
180 epochs, training with self-distillation in Sec. 4.3 for 180
and 360 epochs, respectively.

Results and analysis. We can observe that (1) under the stan-
dard training setting, DepthShrinker consistently achieves
better accuracy-efficiency trade-offs over all the three base-
lines on all three devices. In particular, DepthShrinker
achieves 1.40x throughput with a 0.18% higher accuracy
OR a 1.45% higher accuracy with 1.14x throughput over
MetaPruning-1.0x, and 1.48x throughput with a 0.1%
higher accuracy over AMC on MobileNetV2 measured on a
RTX 2080Ti GPU; (2) Equipping with self-distillation and
more training epochs, DepthShrinker’s achievable accuracy
is notably boosted by up to 2.57%, further enlarging the
accuracy gap with the channel-wise pruning baselines; (3)
DepthShrinker shows decent scalability to different com-
pression ratios and outperforms SOTA channel-wise prun-
ing especially under extremely efficient cases, e.g., a 3.06%
higher accuracy with 1.53x throughput over MetaPruning-
0.35x on Tesla V100; and (4) DepthShrinker favors bet-
ter data reuses and higher utilization, since the FLOPs of
its delivered models are larger while their real-hardware
efficiency is better compared with those of channel-wise
pruning methods.

Benchmark with layer-wise pruning. To benchmark with
layer-wise pruning methods (which prune a whole block in
our case), we directly remove the entire blocks identified by
our DepthShrinker’s differentiable search scheme for a fair
comparison, based on the hypothesis that the blocks with re-
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Figure 3. Benchmark DepthShrinker (solid line) with layer-wise
pruning (dashed line) on top of three models in terms of FPS
measured on an RTX 2080Ti GPU. “MBV2” and “Efflite0” denote
MobileNetV2 and EfficientNet-Lite0, respectively.

dundant activation functions are also redundant themselves
since their complexity contributes less to the final accuracy.
As shown in Fig. 3, we can see that [€Y)] DepthShrinker still
consistently achieves better accuracy-efficiency trade-offs
across all three models; (2) DepthShrinker notably outper-
forms layer-wise pruning_under high compression ratios
with more blocks pruned, since the latter suffers from a
larger accuracy drop, e.g., DepthShrinker achieves a 2.80%
higher accuracy with 1.50x throughput on MobileNetV2-
1.4 over the smallest model from layer pruning. This indi-
cates merging is better than hard pruning in scalability.

* % * * * X * *x k *

A A A A A

* MBV2-1.4-DS-A
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Figure 4. Visualizing the block-wise latency of the blocks in
MobileNetV2-1.4 (solid lines) and their merged counterparts
(dashed lines) on an RTX 2080Ti GPU. We also annotate blocks
where the activation functions are remained, using different sym-
bols for the three model variants delivered by DepthShrinker.

Visualization. We visualize the remained activation func-
tions of DepthShrinker’s delivered model variants, as well
as the block-wise latency breakdown before and after merg-
ing each block on top of MobileNetV2-1.4 in Fig. 4. We
can see that (1) shrinking the building blocks to dense con-
volutions can notably reduce the latency by up to 96.1%,
and (2) DepthShrinker can successfully identify bottleneck
layers_in terms of latency, thanks to the latency-aware decay
(see Sec. 4.2). Note that a merged dense convolution has the
same number of input/output channels as the original block,
which is different from the setting in Sec. 3.2 where the

input/output channels are scaled to keep the same FLOPs.

We also visualize the block-wise memory footprint, includ-
ing both that of weights and peak activation maps, i.e., the
maximal sum of the input/output/residual activation maps
when executing each convolution in a block, before and
after applying DepthShrinker in Fig. 5 (assuming 16-bit
precision). We can see that DepthShrinker effectively re-
duces the peak activation usage which mostly dominates the
memory footprint, as it removes both the channel expansion
and residual connections, leading to reduced data movement
cost and thus boosted real-hardware efficiency.
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Figure 5. Visualizing the memory footprint, including both that of
weights and peak activation maps, of MobileNetV2-1.4 before and
after applying DepthShrinker.

Remark. Our DepthShrinker opens up a new compression
paradigm which provides a cost-effective perspective for
compressing efficient DNN structures, wining the advan-
tages of both channel- and layer-/block-wise pruning, i.e.,
achieving the high accuracy of the former together with the
decent hardware efficiency of the latter.

5.3. Benchmark with SOTA Efficient DNNs

We apply our DepthShrinker to MobileNetV2 with a channel
scale of 1.4, and EfficientNet-LiteO with self-distillation
enabled to acquire a set of new model families made up of
inverted residual blocks and dense convolution layers, which
are compared with SOTA efficient DNN families (Howard
et al., 2019; Lin et al., 2020; Wu et al., 2019; Lin et al.,
2020; Tan et al., 2019).

Results and analysis. We show the accuracy and FPS
trade-off of different models in Fig. 6. We can observe
that (1) DepthShrinker’s generated models push forward
the frontier of the accuracy-efficiency trade-off over SOTA
efficient DNNs, including the NAS-based ones, e.g., a
1.59% higher accuracy with 1.17x throughput over Mo-
bileNetV3 (Howard et al., 2019); (2) DepthShrinker scales
better to high compression ratio scenarios, e.g., a 2.87%
higher accuracy under comparable throughput (0.96x) com-
pared with the smallest model in the MobileNetV3 family.
This set of experiments indicates that shrinking manually de-
signed models via DepthShrinker can match or even outper-
form advanced NAS-based models in terms of real-hardware
efficiency. Note that the key idea of DepthShrinker can be
combined with NAS methods to deliver more real-hardware
efficient model families, which we leave as a future work.
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Figure 6. Benchmark DepthShrinker’s delivered models with
SOTA efficient DNNs in terms of FPS measured on an RTX 2080Ti
GPU. “DS*?” denotes that self-distillation is enabled. The zoom-
in figure shows the comparison with MCUNet (Lin et al., 2020).
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Table 4. Evaluating the effectiveness of starting from pretrained
models and adding free activation functions.

Model From Scratch + Pretrain + Free Act Func
MBV2-1.4-DS-A 73.82 74.40 (+0.58) 74.65 (+0.83)
MBV2-1.4-DS-C 72.45 72.87 (+0.42) 73.67 (+1.22)
MBV2-1.4-DS-E 70.12 71.39 (+1.27) 72.20 (+2.08)

MBV2-DS-A 71.51 72.39 (+0.88) 72.43 (+0.92)
MBV2-DS-B 70.50 71.29 (+0.79) 71.54 (+1.04)
MBV2-DS-C 69.92 70.51 (+0.59) 70.90 (+0.98)

5.4. Ablation study of DepthShrinker

Contributions of pretraining and adding free activation
functions. As shown in Tab. 4, given the identified redun-
dant activation functions, the target network is (1) trained
from scratch, (2) fine-tuned from pretrained models, or (3)
fine-tuned with one free activation function being added af-
ter each merged convolution (see Sec. 4.3). We observe that
(1) pretraining improves the accuracy by 0.42%~1.27%,
which echoes the role of activation functions in DNN train-
ing in Sec. 3.1; and (2) Adding the free activation functions
can further boost the accuracy by up to 0.81%.

Comparison with random search. We benchmark the pro-
posed differentiable search method with a random search
baseline which randomly keeps the same amount of ac-
tivation functions as our searched ones. Compared with
the random search counterparts (averaged over five runs),
MBV2-1.4-DS-E and MBV2-DS-D in Tabs. 2 and 3 achieve
a 4.30%/5.46% higher accuracy with 1.24x/1.19x through-
put on the RTX 2080Ti GPU, respectively. This implies
random search can hardly hit decent strategies and leads to
both inferior accuracy and throughput. More ablation stud-
ies with the EfficientNet-Lite family are in the Appendix. A.

Measurement on CPU devices. In addition to GPUs and
Edge GPUs considered by aforementioned experiments, we
also measure the latency of DepthShrinker’s delivered mod-
els on two CPU devices, including the Google Pixel 3 mo-
bile phone and Raspberry Pi 4 (Raspi 4) with a batch size

of 1, where all Pytorch models are converted to ONNX and
then compiled to the TFLite format, following (Li et al.,
2021). As shown in Tab. 5, we can see DepthShrinker
still notably reduces the latency under comparable accu-
racy (according to Tab. 2 and 3), thanks to the reduced data
movements with more data reuses of dense convolutions,
indicating the general applicability of DepthShrinker across
various commercial devices.

Table 5. Measure the latency of DepthShrinker’s delivered models
on two CPU devices, i.e., Google Pixel 3 and Raspi 4.

Model Pixel 3 (s) Raspi 4 (s) | Model Pixel 3 (s) Raspi 4 (s)
MBV2 0.073 0.200 | MBV2-1.4 0.127 0.299

MBV2-DS-A  0.065 (/10.9%) 0.147 (]26.5%) | MbV2-1.4-DS-A  0.089 (29.9%) 0.204 (|31.8%)
MBV2-DS-B  0.049 (|32.9%) 0.133(]33.5%) | MbV2-1.4-DS-B  0.105 (}17.3%) 0.196 (]34.4%)
MBV2-DS-C  0.047 (435.6%) 0.124 (138.0%) | MbV2-1.4-DS-C  0.083 (/34.6%) 0.185 (]38.1%)
MBV2-DS-D  0.045({38.4%) 0.116 (]42.0%) | MbV2-1.4-DS-E  0.079 (37.8%) 0.170 (]43.1%)

5.5. Evaluate DepthShrinker™

We evaluate the proposed DepthShrinker™, i.e., the
Expand-Then-Shrink training strategy in Sec. 4.5,
on top of VGG11/VGGI13 (Simonyan & Zisserman,
2014)/MCUNet (Lin et al., 2020)/MobileNetV2 (Sandler
et al., 2018) on ImageNet via replacing their intermediate
blocks with inverted residual blocks, which are then merged
using our DepthShrinker principle. More details about how
to expand each network are in the Appendix. D.

Table 6. Evaluating DepthShrinker™ on five models on ImageNet.
“rXX” denotes the input resolution, following (Cai et al., 2021).

MCUNet MBV2-0.5 MBV2

Model VGG11 VGGI13 (r176) (r160) (r160)
Baseline (%) 71.51 71.64 61.50 61.40 69.60
DepthShrinker™ (%) 7295 73.26 62.77 62.72 70.86

Results. As shown in Tab. 6, DepthShrinker™ consistently
boosts the accuracy by 1.26%~1.62% over standard training
across all the five models. This indicates the potential of
DepthShrinker™ in aiding tiny network training.

6. Conclusion

To tackle the limitations of existing efficient DNNS in fulfill-
ing their promise in boosting real-hardware efficiency due to
their low hardware utilization, we open up a new compres-
sion paradigm and propose DepthShrinker to develop hard-
ware efficient compact DNNs via merging irregular blocks
into dense operations with much improved real-hardware ef-
ficiency. Extensive experiments validate our DepthShrinker
wins both the high accuracy of channel-wise pruning and
the decent efficiency of layer-wise pruning, opening up a
cost-effective dimension for DNN compression.
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A. Evaluate DepthShrinker on
EfficientNet-Lite Families

Setup. We apply DepthShrinker on top of EfficientNet-
Lite3 (Google., 2020) on ImageNet, equipped with the self-
distillation mechanism mentioned in Sec. 4.3, to generate a
new model family annotated as “EffLite3-DS-X" in Tab. 7.
For a fair comparison, we adopt the same training sched-
ule as introduced in Sec. 5.1 to train the EfficientNet-Lite
baselines from scratch.

Results and analysis. From Tab. 7, we can observe
that DepthShrinker’s delivered models again push forward
the achievable accuracy-efficiency trade-off. In particu-
lar, EffLite3-DS-B achieves a 1.32% higher accuracy with
1.21x throughput on Tesla V100 over EfficientNet-Lite2
and EffLite3-DS-A achieves a 1.38% higher accuracy with
comparable throughput (e.g., 0.95x on Tesla V100). As
mentioned in the main text, our DepthShrinker can be com-
bined with NAS methods to deliver new model families
featuring much improved real-hardware efficiency and we
leave this as our future work.

Table 7. Evaluating DepthShrinker on top of EfficientNet-Lite3 on
ImageNet. “Efflite” denotes EfficientNet-Lite.

Throughput

Model Acc (%) MFLOPS 0 v100 RTX 2080Ti TX2

EffLitel 75.41 651 1773 1403 64

EffLite2 76.14 924 1301 1081 44
EffLite3-DS-A  76.79 991 1676 1337 53
EffLite3-DS-B  77.46 952 1573 1264 50
EffLite3-DS-C  77.63 918 1431 1152 46
EffLite3-DS-D  77.84 905 1250 1030 41

B. More Benchmark with Layer-wise Pruning

We also benchmark with LayerPrune (Elkerdawy et al.,
2020) for compressing three efficient models based on their
provided implementation, as a complement of Sec.5.2 in
the main text. As shown in Fig. 7, DepthShrinker still con-
sistently outperforms LayerPrune, especially under large
compression ratios.

C. More Real-device Profiling Results

We benchmark the efficiency of SOTA DNN families under
different depth/width trade-offs under the same FLOPs for
better understanding the causes of the improved hardware
utilization in Sec. 3.2.

Setup. To construct models featuring different depth/width
trade-offs with the same FLOPs, we uniformly scale the
channel number of the networks within the same model
family and benchmark their throughput on different devices.

Results and analysis. As shown in Tab. 8, we can ob-
serve that (1) shallower networks consistently win better
throughput compared with the deeper counterparts under
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Figure 7. Benchmark DepthShrinker (solid line) with Layer-
Prune (Elkerdawy et al., 2020) (dashed line) on top of three models
in terms of FPS measured on an RTX 2080Ti GPU.

the same FLOPs across different model families and de-
vices, e.g., channel-scaled ResNet-50 achieves 1.30x over
channel-scaled ResNet-152. This indicates the preference
for shallow-wide networks of the mapping strategies of ex-
isting commercial devices; (2) shallower networks reduce
the latency by up to 58.9% on TX2 Edge GPU (i.e., the
inverse of the throughput measured with a batch size of
one), which is another perspective for measuring the real-
time processing capability on edge devices; (3) Based on
the comparison between Tab. 8 and Tab. 1, dengoperations
win real-hardware efficiency thanks to both of the two afore-
mentioned aspects and reducing operation-wise irregularity
may contribute more, especially on more powerful devices
with a higher degree of parallelism.

D. Design Details of DepthShrinker™

In Sec. 5.5, we evaluate the proposed DepthShrinker™,
on top of VGGI11/VGG13 (Simonyan & Zisserman,
2014)/MCUNet (Lin et al., 2020)/MobileNetV2 (Sandler
et al., 2018) on ImageNet. In particular, for the last two
models, we follow the definition in (Cai et al., 2021). With-
out bells and whistles, we design empirical rules to deter-
mine which layer to be expanded for all the networks to
demonstrate the general effectiveness of our DepthShrinker
technique as a training technique for boosting accuracy.

Expand VGG. For all VGG networks, we expand all the
3x3 convolution layers to a standard inverted residual
block (Sandler et al., 2018) with an expansion ratio of 6, ex-
cept the first two convolution layers and the last convolution
layer.

Expand MCUNet/MobileNetV2. For all networks made
up of inverted residual blocks, we apply DepthShrinker™
to expand one block in every two consecutive blocks. In
addition, to expand one specific inverted residual block, we
only expand the first pointwise convolution to a new inverted
residual block (Sandler et al., 2018) with an expansion ratio
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Table 8. Measured throughput of the ResNet family and the MobileNetV2 family with scaled channel numbers to maintain the same
FLOPs. All the reported numbers are FPS. The number of blocks in each stage of MobileNetV2 is annotated in the Depth column.

. Throughput (FPS)

Model Depth  Width Scale | pry 5080Ti  TX2 (bs=32) TX2 (bs=1)
ResNet-18 18 1535 1476 85 28
ResNet-34 34 1.07 1388 61 27
ResNet-50 50 1.00 874 46 20
ResNet-101 101 0.73 792 36 5
ResNet-152 152 0.60 674 31 1

(L111111] 145 2499 12 56
[1222.1.1.1] 125 2167 08 52
MobileNetV2 | [1.2.33.2.2.1] 111 2114 103 39
[1234331] 1.00 2149 103 33
[134.655.1] 0.85 1916 96 23

element in the list indicates whether the activation functions
of the corresponding block are kept, i.e., “1” denotes the
activation functions in the block are remained.

of 6 and a depthwise kernel size of 1 to ensure the original
model structure can be recovered.

Integrating with more advanced expansion strategies, our
DepthShrinker can potentially achieve more notable im-
provements, which will be our future work.

Table 9. Visualizing the remained activation functions in
DepthShrinker’s generated model families.

Model Remained Activation Functions
MBV2-1.4-DS-A [10011010101101111)
MBV2-1.4-DS-B [00011000001101111]

MBV2-1.4-DS-C
MBV2-1.4-DS-D
MBV2-1.4-DS-E
MBV2-1.4-DS-F

[10010000001101111]
[00011000000001111]
[10010000000001111]
[00000000000000000]

MBV2-DS-A [00101110011111111]
MBV2-DS-B [10001110011111111]
MBV2-DS-C [10011010001001111]
MBV2-DS-D [10010000001101011]
Eff-Lite0-A [0011010010011111]
Eff-Lite0-B [0001100010011111]
Eff-Lite0-C [0001000000011111]
Eff-Lite0-D [0000000000000000]
EffLite3-DS-A [000110000000000100111111]
EftLite3-DS-B [000110000000110001111111]
EffLite3-DS-C [000110000010111001111111]

EffLite3-DS-D

[100110110000100111111111]

E. Details about DepthShrinker’s Delivered
Model Families

We apply DepthShrinker on top of the given efficient DNN's
to generate new model families via varying the number of re-
mained activation functions k in Eq. 1 and the decay strength
on m discussed in Sec. 4.2, which constrains the overall effi-
ciency of the delivered network. For all the reported models
in the main text, we provide their remained activation func-
tions identified by our DepthShrinker in Tab. 9, where each



