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Deep Learning-Based THz Wireless Channel
Property Prediction in Motherboard
Desktop Environment

Jinbang Fu™, Erik J. Jorgensen™, Graduate Student Member, IEEE, Prateek Juyal -,
and Alenka Zaji¢"™, Senior Member, IEEE

Abstract— This article proposes a residual network (ResNet)-
based feature concatenated neural network model to predict the
type of scenario the channel is under and the attribute of the
predicted scenario with power delay profile (PDP) as the inputs.
The generalized model structure consists of three blocks for
feature extraction, scenario prediction, and attribute prediction,
respectively. The PDP data is collected from a motherboard
desktop environment under five different physical arrangement
scenarios. Within each scenario, data is collected several times
while varying a different physical attributes for each scenario.
Two steps of data augmentation are applied to expand the size
and to improve the resolution (difference between the neighboring
attributes) of the measured dataset for the robust training and
thorough evaluation of the proposed model. The proposed model
is evaluated and compared with a multilayer perceptron (MLP)-
based model on an expanded measured and averaged interpolated
dataset. It is shown that both models perform very well on
the expanded measured dataset with nearly 100% prediction
accuracy on both scenarios and attributes. The MLP-based model
suffers performance degradation on the averaged interpolated
dataset with up to a 9% drop of classification accuracy on
attribute prediction tasks, while our ResNet-based feature con-
catenated model performs equally in both scenarios. Feature
activation map (FAM) and grad-class activation mapping (Grad-
CAM) approaches are applied to provide visual explanations
highlighting characteristics of the input PDP used for model
decisions. FAM shows that the MLP-based model focuses on the
multipath generated peaks of the PDP where some interpolated
neighboring data points cannot be distinguished. The Grad-CAM
shows that the proposed ResNet-based feature concatenated
model performs better because it has strong attention not only
on the multipath peaks but also on the valleys between those
peaks which hold distinguishing information.

Index Terms— Channel characterization, channel prediction,
channel sounding, chip-to-chip wireless channels, THz commu-
nications.

I. INTRODUCTION

HE THz wireless link is considered as a replacement
for wired connections in inter-chip communication for
future computing systems [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. A wireless link system alleviates the needs for
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cable management and reduces the complexity of the com-
puting system design [1], [2]. Operating at THz frequencies
with its larger available bandwidth allows higher speed and
lower latency communications. With smaller antenna sizes and
reduced spacing at THz frequencies, spatial multiplexing can
be applied to improve data rates to Terabit-per-second which
is close to the data rate of current wired systems [2], [11].
To realize THz wireless inter-chip communication, compre-
hensive understanding, and identification of the corresponding
wireless channels is required. Wireless channels are usually
determined by the signal propagation environment and inter-
actions with the objects in the environment, also known as the
channel properties [12]. These channel properties define the
characteristics of the wireless channel and affect the quality
of possible wireless links. The prediction of channel properties
is important for establishing inter-chip communication and
allows for further adjustments to improve the communication
link. With a precise prediction of channel properties, the
appropriate transmission mode can be selected to adapt to
the environment, which can help to provide more reliable
communication with better performance [12].

To realize THz wireless inter-chip communication, channel
modeling tools are needed and several THz wireless chan-
nel models have been proposed [8], [9], [13], [14], [15].
Based on the geometrical distribution of the environment,
statistical channel models have been proposed for short-
range device-to-device channels and THz wireless inter-chip
communication channels [3], [4]. Constant rate models have
been applied on THz wireless channels in a datacenter and
in the motherboard desktop environment by modifying the
classic Saleh—Valenzuela (S-V) model [6], [16]. These classic
analytical techniques can provide good estimations of the
wireless channel with simple math equations. However, these
techniques are generally not suitable for the prediction and
identification of channel properties because the simplifications
introduced in the models may not capture more complex
multipath environment properties [17]. Moreover, the large
number of potential links, obstructions, scattering, and so
on for the inter-chip communication in motherboard desktop
environment requires a large amount of data for a thorough
channel characterization. These classical techniques are less
suitable for the analysis of large datasets as they might miss
important relations within the data [18].

0018-926X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

al

72

73

74

81

82

83

84


LH23
Comment on Text
FAM stands for feature activation mapping. So, here should be Feature activation mapping (FAM)

LH23
Comment on Text
This work was supported by the NSF CAREER ECCS Grant under Grant 1651273. The views and findings in this article are those of the authors and do not necessarily reflect the views of NSF. (Corresponding author: Jinbang Fu.)


LH23
Comment on Text
The authors are with the School of Electrical and Computer Engineering, Georgia Institute of Technology College of Engineering, Atlanta, GA 30332 USA ((e-mail: jfu72@gatech.edu).


LH23
Sticky Note
Unmarked set by LH23


86

87

88

89

90

91

92

93

94

95

96

97

98

29

101

102

104

105

106

107

109

110

11

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

In contrast, machine learning (ML) is a branch of arti-
ficial intelligence that learns a model from data to make
decisions and has achieved breakthroughs in application areas
such as image processing, natural language processing, and
data mining [18]. Due to their rise in popularity, ML tech-
niques have been gradually applied to study the wireless
propagation channel, such as channel characterization and
channel modeling [10], [12]. Researchers have applied ML
techniques on the estimation of propagation loss [17], [19],
tracking multipath components [20], and derivation of channel
statistical parameters [21]. Also, ML techniques are applied
on channel property prediction as they have been shown to
provide good performance in identifying small differences
between measurements to characterize different properties.
Several deep learning-based methods have been proposed for
a nonline of sight (NLoS) recognition [22], indoor environ-
ments classification [23], and vehicle communication scenarios
identification [24]. Considering the complicated propagation
channel on the densely populated motherboard in a metal
casing, where some hidden patterns due to scattering, reflec-
tions, and resonant cavity effects are difficult to identify by
traditional techniques, ML methods are more likely to succeed
for channel prediction in such an environment.

To establish a stable wireless link for THz wireless
inter-chip communication in computing systems, it iS neces-
sary to understand the channel properties in advance. These
properties include potential physical scenarios of the channel
such as the link between CPU and PCI, the link between
CPU and dual in-line memory module (DIMM), and so on,
and certain attributes under those scenarios such as the height
differences between the chips or the distances between the
CPU and the PCI components. These channel properties could
be predetermined by an ML model with the information given
by the pilot signal.

The main contributions of this article are summarized as
follows.

1) We apply deep learning methods to predict channel
properties for THz chip-to-chip wireless communication
in motherboard desktop environment. With PDP as the
input, we propose a residual network (ResNet)-based
feature concatenated model to predict the channel’s
physical scenario and an additional attribute of that
predicted scenario.

2) The proposed model is evaluated and compared with
a multilayer perceptron (MLP)-based model on the
expanded measured dataset and the averaged interpo-
lated dataset. Results show that our model performs
very well on the expanded measured dataset with nearly
perfect prediction of both scenarios and attributes. These
results exemplify the validity of our proposed model
and the feasibility of applying deep learning model for
THz channel prediction on a densely-populated moth-
erboard in a practical computing system. We show that
our ResNet-based feature concatenated model performs
more robustly than the MLP model as it has higher
classification accuracy when predicting a specific sce-
nario’s attribute. Our ResNet-based feature concatenated
model also has constant performance on both measured
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and augmented dataset while the MLP model shows
performance degradation on the averaged interpolated
dataset.

3) feature activation mapping (FAM) and Gradient-
weighted class activation mapping (Grad-CAM) are
applied on the MLP and our ResNet-based feature
concatenated models, respectively, to explain their per-
formance differences by determining the contributing
regions of the raw data that the models use to make
their predictions [25], [26]. The results provide us a
deeper understanding of the THz wireless channel in
the motherboard desktop environment. We find that the
MLP model only focuses on the peaks of the input PDP
with the delay of 0, 1.835, 3.837 ns corresponding to
multipath propagations, while the ResNet-based feature
concatenated model has strong attention not only to
those peaks but also on the valleys between those peaks.
This implies that the valleys between the peaks gen-
erated by the multipath signals also contain important
information related to the wireless channel that help
distinguish different channel properties.

The rest of the article is organized as follows. Section II
presents the channel measurements and the augmentation of
the collected data. Section III illustrates the design of the
ResNet-based feature concatenated neural network model.
Section IV presents the analysis and model verification.
Finally, Section V makes concluding remarks.

II. DATA MEASUREMENTS AND AUGMENTATIONS

In this section, we provide a brief discussion about THz
wireless channel measurements in the motherboard desktop
environment under five different potential scenarios: LoS,
reflected non-LoS (RNLoS), obstructed-LoS (OLoS), non-LoS
(NLoS), and a practical CPU-PCI link. Under each of these
scenarios, measurements are performed several times while
varying a different attribute for each scenario. Due to time
and physical setup limitations, we also apply multiple data
augmentation techniques on the measured data for training,
validation, and analysis of our proposed models.

A. THz Channel Measurements

The measurement setup includes a Keysight N5224A PNA
vector network analyzer (VNA), a Virginia diodes, Inc.
(VDI) transmitter (Tx210), and a VDI receiver (Rx148)
[27]. The VNA generates the input signal in the range of
10 MHz-12 GHz with the power level (P;,) of 0 dBm and
feeds it into the VDI Tx210. In the VDI Tx210 transmit-
ter, a 25 GHz signal is generated by a Herley-CTI phase-
locked dielectric resonator oscillator (DPRO with 100 MHz
reference crystal oscillator) [28]. It is amplified and frequency
doubled by Norden NO8-1975 [29] and then tripled by VDI
WR6.5X3 [30]. This signal is then fed into a sub-harmonic
mixer (WR2.8SHM) [31] which doubles the carrier frequency
and mixes it with the VNA-generated baseband signal. This
THz-range signal is then transmitted by a horn antenna in
the range of 288-312 GHz. The same components are used
to down-convert the signal, the difference is that the DPRO is
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()

Fig. 1.

N5224A PNA
vector network
analyzer
[10 MHz - 12 GHz]

Channel
288 -312 GHz

': 3

i By

Dielectric resonator oscillator [25 GHz]

Fig. 2. Block diagram of the measurement system.

tuned to 24.2 GHz. The received signal is then down-converted
to an intermediate frequency (IF) of 9.6 GHz. The VNA
then samples the upper sideband of the down-converted signal
in the range of 9.61-21.6 GHz with 801 points. The block
diagram of the measurement system is shown in Fig. 2
[1], [32] and all measurement parameters are summarized in
Table I. Pyramid horn antennas with a gain that varies in
the range of 22-23 dBi over the observed frequency band
from 300 to 312 GHz were used in the measurements. The
theoretical half-power beamwidth (HPBW) of the horn is about
12° in azimuth and elevation. The physical dimension of the
horn aperture is 8.91 mm, which limits the far-field boundary
to 15.88 cm at 300 GHz according to the Fraunhofer distance.

To measure the THz wireless channel in a motherboard
desktop environment, we fabricated an aluminum metal cavity
with the size of 27.5 x 27.5 x 10 cm, which approximates
the size of a desktop, with two square aluminum plates
as the top and bottom walls [5]. The other four sides are

()

Setups for the measurements of THz wireless channel in motherboard desktop environment. (a) Fabricated metal casing that houses each of (b) LoS,
(c) RNLoS, (d) OLoS, (e) NLoS, and (f) CPU-PCI link measurement scenarios.

TABLE I
MEASUREMENT PARAMETERS

Parameter Symbol Value
Measurement points N 801
Intermediate frequency bandwidth | A fip 20 kHz
Average noise floor Py -90 dBm
Input signal power P, 0 dBm
Start frequency Sstart 10 MHz
Stop frequency fstop 12 GHz
Bandwidth B 11.99 GHz
Time domain resolution At 0.083 ns
Maximum excess delay Tm 33.4 ns

wrapped by aluminum foil and labeled as A-D, as shown in
Fig. 1(a). As shown in Fig. 1(b), a motherboard was supported
4.2 cm over the bottom wall by brass hex standoffs inside
the fabricated cases. For all channel environment scenarios,
measurements are performed on the motherboard inside the
metal cavity.

For the measurements of LoS links, as shown in Fig. 1(b),
antennas of the transmitter (Tx) and receiver (Rx) were aligned
with each other and inserted into the cavity through small
holes drilled on the transceiver sidewalls (A and C) of the
cavity. Measurements were performed on the backside of the
motherboard to separate the influence of the other components.
As the heights of components on the motherboard may differ
and to investigate the ground effect of the motherboard, both
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transceivers were elevated simultaneously in height during the
measurements. To do this, the height of transceivers & was
varied from O to 4.5 cm above the motherboard in increments
of 0.3 cm while the distance between the transceivers was
fixed at 19.3 cm.

As shown in Fig. 1(c), a DIMM was placed standing up
on the center of the motherboard and diagonally aligned with
transceivers which were positioned orthogonal to each other
for the RNLoS measurements. The distance from the DIMM
to each of the transceiver is 9.55 cm and the heights for
both transceivers were fixed at 1.8 cm above the motherboard.
Both flat and component sides of the DIMM were investigated
during the measurements as both sides could possibly be
used to establish the wireless link on the motherboard. For
the OLoS link, measurements were performed to investigate
the effects of parallel-plate structures on the motherboard.
As shown in Fig. 1(d), two DIMMSs were put in parallel on
the center of the motherboard. when the distance between
parallel plates, w, is small, e.g., ® = 2 or 3 cm, some parts
of the parallel plates may be in the second or third region
of the Fresnel ellipsoid space whose radius is 1.17 or 1.44 cm.
The interceptions may lead to destructive or constructive
effects due to the phase shift of the signal reflecting on the
parallel plates [2]. Measurements were performed by varying
the distances between the DIMMs from 2 to 6 cm with the step
increment of 1 cm to simulate the variable distances between
parallel structures on the motherboard. The heights of both
transceivers were kept at 1.8 cm during the measurements.

The NLoS link was measured with a heatsink of size
3.5 x 3.1 x 1.3 cm as an obstacle, as shown in Fig. 1(e).
Between measurements, the heatsink was horizontally shifted
away from the transceiver toward side D of the cavity, with a
step increment of 0.25 cm to understand how the wireless link
is affected by the gaps between the fins of the heatsink. The
distance from the heatsink to each of the transceiver is 8.1 cm
and the heights of both transceivers were kept at 1.8 cm.

Besides the investigations of these primary controlled sce-
narios, a practical CPU-PCI link was also measured on the
densely populated motherboard. As shown in Fig. 1(f), Tx was
mounted on top of the CPU and Rx was hung over the PCI slot
with a 3 cm T-R vertical misalignment, which approximates
the height difference between the CPU and the chip on the
peripheral components. During the measurements, the hori-
zontal T-R separations were gradually increased from 19.3 to
23.3 cm with the step increment of 1 cm as there are several
PCT slots on the motherboard with different distances to the
CPU. All the scenarios and corresponding variable attributes
are summarized in Table II.

B. Data Augmentations

To robustly train our deep neural network model to precisely
predict channel properties, we require a large dataset to feed
into the model. However, measurements inside the metal
cavity are very time-consuming as we need to rebuild the
cavity every time we shift the transceivers or components
for the measured attribute of each scenario. Additionally,
due to physical constraints, we choose a relatively large step
increment (low resolution) for the measurements under each

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

TABLE II
MEASURED POTENTIAL SCENARIOS AND CORRESPONDING ATTRIBUTES
LoS The heights of transceivers
RNLoS Flat/component side of the DIMM
OLoS The distance between parallel DIMMs
NLoS The movement of the heatsink
CPU-PCI link | The distance between the transceivers

scenario to ensure we can physically capture the data precisely.
For instance, the heights of transceivers were varied during the
LoS measurements by stacking plastic plates with a thickness
of 0.3 cm under the transceivers. This means that information
between the measured points is unknown to us. To validate
the generalization ability of our proposed model, we also
test them on a dataset with higher resolution. To that end,
we apply data augmentation to expand the size of our dataset
and increase its resolution by creating synthetic interpolated
data from measured results. The tweaks of training examples
in data augmentation make the model less likely to overfit on
certain patterns, which improves the generalization ability of
the model.

The power delay profile (PDP), which provides the inten-
sity of a signal received through a multipath channel with
respect to time delay, is fed into our deep neural network
model for training and prediction. Measured PDP can be
derived by squaring the inverse discrete Fourier transform
(IDFT) of the measured frequency response, which itself is
calculated by subtracting the S21 from the sum of antenna
gains and the thru loss. Before any S21 measurements, the
thru loss was first measured on the transceiver devices ten
times. Then, as mentioned in II-A, we measured the S21
ten times at different attributes under each potential scenario.
By combining all pairs of the ten thru loss and ten S21
measurements, we generate 100 samples for each attribute,
as shown in Fig. 3(a). The expanded measured dataset was then
separated into three groups by randomly separating 50%, 20%,
and 30% of the data at each scenario and attribute to training,
validation, and testing sets, respectively. Then the training and
validation datasets were interpolated to a higher resolution for
the scenarios which are measured in increments (all except the
RNLoS scenario). For this augmentation, we applied linear,
slinear (spline of order 1), quadratic, cubic, PCHIP (piece-
wise cubic Hermite interpolating polynomial), and Akima
interpolations to increase resolution down to steps of 0.1 cm
(1 A) for LoS, OLoS, and CPU-PCI link measurements and to
0.05 cm (half A) for the NLoS measurement. Interpolations
were not applied on the data of RNLoS link because it
is a binary dataset showing the difference between the flat
or component side of the DIMM as the reflecting surface.
Finally, we generated the average augmentation dataset by
averaging the six interpolations for each attribute since we
do not necessarily know which interpolation technique would
be represent the unmeasured data. For example, data was
measured at 7 = 0,0.3,0.6, ...,4.5 cm for the LoS propaga-
tion. Measurements were performed ten times at each height.
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Fig. 3.

With the data expansion, we generated 100 PDP samples at
each height. As shown in Fig. 3(b), six different interpolation
techniques were then applied to the training and validation
datasets to improve the resolution from 0.3 to 0.1 cm. We then
averaged those interpolations at each height. Doing so resulted
in 50 and 30 PDP at each height # = 0,0.1, ...,4.5 cm for
the respective training and validation datasets, and 20 PDP
at each of the same heights for the testing dataset. This
averaged augmentation provides a single dataset (only one
average PDP instead of six at each interpolated attribute) with
higher resolution.

III. DEEP LEARNING MODEL

In this section, we introduce a ResNet-based feature con-
catenated neural network which is designed to predict proper-
ties of the THz wireless channel in the motherboard desktop
environment. The general structure of the model is shown in
Fig. 4. As shown in the figure, the proposed neural network
model consists of three main blocks. The first is the “feature
extraction” block which extracts the generalized features nec-
essary to distinguish between scenarios and specific attributes
of each scenario from the input PDP data. Those extracted
features are then sent to the “scenarios prediction” block to
predict the type of scenario the channel is under (LoS, RNLoS,
OLoS, NLoS, and CPU-PCI link). The overall network design
is called “feature concatenated” because the model’s scenario
prediction output is then concatenated with the extracted
features and fed to the “attributes prediction” block to estimate
the attribute of that predicted scenario.

Our novel ResNet-based feature concatenated neural net-
work model for the prediction of THz channel property is
shown in Fig. 5. As shown in the figure, the feature extraction
block of the proposed ResNet-based feature concatenated
network model contains five sub-blocks, which are bl, b2,
b3, b4, and a global average pooling (GAP) sub-block [33].
b1 consists of a 64-channel 1 x 7 convolutional layer with
the padding of 3 and a stride of 2, a batch normalization
(BN) layer, rectified linear unit (ReLU) activation layer, and
a 1 x 3 maximum pooling layer with a stride of 2. During

/,, Interpolations —__

v v
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(b)

Illustration of data augmentation: (a) data expansion and (b) averaged interpolation for data of LoS propagation.

Scenarios Prediction
(LoS, OLoS, etc.)

P Feature
D — Extraction
P (MLP/ResNet)

Attributes
Prediction

Fig. 4. Generalized model structure consisting of three main blocks.

training, the weights of intermediate convolution filters (e.g.,
the convolutional layers) may have strong variation between
different layers, nodes in the same layer, and over time due
to the updating model parameters. BN [34] is implemented
to maintain stable optimization and reduce these strong vari-
ations that may hinder the convergence of the network The
ReLU [35] activation function is applied to increase the
nonlinear expressiveness of the network, which simply outputs
its input for positive values and 0 for negative values. A max-
pooling layer is used to mitigate sensitivity of the network to
noisy inputs and to spatially downsample representations [36].
b1 increases the number of channels of the inputs from 1 to
64 while reducing the size of the data from 400 to 99. b2-b4
are three ResNet building blocks shared with the same struc-
tures. Each of them consists of a residual block with an
additional 1 x 1 convolutional layer to transform the inputs
to the desired shape for the addition operation, and a residual
block without the 1 x 1 convolutional layer. A residual block
is the core element of a ResNet model, which guarantees the
strictly increasing expressiveness of the network. The structure
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Fig. 6. Residual block.

of a typical residual block is shown in Fig. 6. As shown in
the figure, the input is denoted by x, the mapping of the
stacked nonlinear layers in the dotted-line box which consists
of a weight layer (convolutional layer), a ReLU activation
layer, and another weight layer at the end is denoted as f(x),
and a shortcut connection performs the identity mapping to
generate the desired output mapping f(x) + x. If the input x
is already optimal, the weights and biases of the layers f(x)
may be optimized to generate a zero output. With the shortcut
connection, the network is easier to optimize as it guarantees
that the deeper model would not generate higher training error

Residual block without

concatenate

Linear (256+5)
BN + RelLU
Linear (128)

BN + RelLU

~

1 x 1 conv

uoldIpald saInquny

Linear (32)

attribute (1)

Structure of the proposed ResNet-based feature concatenated network model.

than its shallower counterpart [37]. b2 doubles the number of
input channels and halves the size of input data. b3 and b4
keep doubling the number of input channels while maintaining
the size of the input data. The GAP sub-block is composed of a
GAP layer, which computes the average value across the entire
matrix for each input channel, and a linear layer is connected
behind, which halves the size of the input data. Also, BN and
ReLU activation functions are applied to the outputs of the
linear layer. GAP blocks are very robust to spatial translations
of the inputs as they sum out the spatial information [33].
They also prune the shape of the inputs so that the outputs
can be directly fed into the prediction blocks.

The features learned from the feature extraction block are
then fed into the scenarios prediction block for the prediction
of the five potential scenarios. The input sizes for the three
fully connected layers of the block are 256, 128, and 32.
Similar to the feature extraction block, both BN and the ReLU
activation function are applied for improved convergence of
the network. The predicted channel scenario is identified by
choosing the output neuron with the largest value.

Given the predicted scenario, the network model then pre-
dicts the value of the specific attribute relevant to that scenario,
e.g., the distance between DIMMs, transceiver height, and
so on. The predicted scenario is one-hot encoded with five
bits and then concatenated with the extracted features as the
inputs of the attributes prediction block to predict the attribute
of that scenario. One-hot encoding translates the integer rep-
resented predicted scenario into a group of bits with each
bit representing a potential scenario and the predicted class
high (1) and others low (0). Since those potential scenarios
are independent of each other, one-hot encoding ensures that
there is not any presumed hierarchy or partial correspondence
between the potential scenario inputs that may be an issue if
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multiple scenarios were nonzero. Similar to the structure of
the scenario prediction block, the attribute prediction block
also consists of three fully connected layers whose input sizes
are 256, 128, and 32. In contrast with the scenario prediction
block, the attribute of the scenario is predicted directly by the
block.

Since the proposed network model predicts both the mea-
surement scenario and an attribute of that scenario, training
requires both a scenario classification loss and an attribute
regression loss. Hence, the overall training loss function of
the proposed model is derived as the sum of the cross-entropy
loss for the scenarios classification and the mean squared error
(MSE) loss for the attribute regression. The cross-entropy loss
calculates the expected loss value for the predicted scenario
class, while MSE quantifies the distance between the real
and predicted value of the attribute. To train the network,
we use the robust “Adam” variant of the stochastic gradient
descent optimization algorithm which estimates the first- and
second-order moments of the gradient via an exponential
moving average to update network parameters [38].

IV. ANALYSIS AND MODEL VERIFICATION

In this section, we first trained the proposed ResNet-based
feature concatenated network model described in Section III
on the augmented training PDP. We then tested and compared
the performance of the proposed model with an MLP-based
network model on both the expanded measured dataset (with-
out interpolations) and the averaged interpolated dataset (with
interpolations) described in Section II-B. Finally, the ResNet-
and MLP-based feature concatenated network models are ana-
lyzed with Grad-CAM and FAM, respectively, which provide
the visual explanations for model decisions.

A. Model Training and Performance Evaluation

Before training, we first standardize the dataset by subtract-
ing the mean and dividing by the standard deviation across
the feature dimension. We also normalize the attributes for
each scenario. These normalizations allow the network to learn
weights on a similar scale for each scenario and attribute. The
ResNet-based feature concatenated network model was trained
for 1500 epochs. During each epoch, the network iterates over
random batches of 256 samples and updates the variables in
convolutional and linear layers with each batch. The loss of the
model on training, validation, and testing dataset during the
training process are compared in Fig. 7. It can be seen from
the plot that the Loss of the model on the training dataset is
always lower than the loss on the validation and testing dataset.
The losses dropped quickly in the first 400 epochs of training
as the model parameters are initialized randomly. The losses
on the training, validation, and testing datasets converged to
5 x 107, 6.5 x 1074, and 5.8 x 10~ after 1200 epochs of
training.

To evaluate the performance of the proposed ResNet-based
feature concatenated network model, we first tested it on the
expanded measured dataset. The results show that the model
can perfectly classify the scenarios under which the input PDP
was measured. As described in Section III, our proposed model

100

— train
--- valid
— test

1014

1024}

Loss

1034

1044

105

200 400 600 800 1000 1200 1400

Epochs

Fig. 7. Losses of ResNet-based feature concatenated network model on
training, validation, and testing dataset over 1500 epochs of training.

predicts the attribute under the predicted scenario directly.
As with any regression problem, there is always a deviation
between the predicted and the correct value. For a robust
model, that deviation is small so that the predicted value can
be classified as the correct value by choosing an appropriate
threshold. To evaluate the robustness of our proposed model,
we calculated and compared the classification accuracy of the
predicted attribute for each potential scenario with respect to a
threshold in the range of zero to half of the step increment size
set for the measurements. The maximum distance threshold is
0.15, 0.5, 0.5, 0.125, and 0.5 cm for LoS, RNLoS, OLoS,
NLoS, and CPU-PCI link, respectively, as shown in Fig. 8(a).
It can be seen from the plot that the ResNet-based fea-
ture concatenated model performs perfectly on the expanded
measured dataset with achieved nearly 100% classification
accuracy under all potential scenarios with the largest possible
threshold. Also, it can be observed that the model differentiates
between classes most easily in the RNLoS scenario as there are
only two classes (either flat or component side of the DIMM
as the reflection surface). Since there are only 5 different
attributes for the NLoS and CPU-PCI link scenarios, the
model differentiates between classes even with relatively small
thresholds. Also, comparing these two scenarios, the model
converges slower under the CPU-PCI link as the environment
of this scenario is much more complicated than that of the
NLoS. The small distances between the 16 different attributes
for LoS result in slightly less robust performance across a
range of thresholds. The model converges the slowest under
the OLoS scenario as the measured PDP are very similar
to each other with only small variations on the intensity of
multipath signals.

The performance of our proposed ResNet-based feature
concatenated network model has been compared with an MLP-
based method, which is a widely used channel prediction
scheme [12], [17], [21], [39], [40], [41], [42], [43], [44],
[45], [46], [47]. The structure of the MLP-based network

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

100 100 A
95 95
90 90 1
85 85 1
80 80
75 1 75
70 1 70 T
__ 65 T . 65 T
X 60 1 & 60 1
> 55 | > 55 |
g 50 " 8 50 |
3 45 i 2 45 ]
< 40 ] g 40 .
35 i 35 1
30 i 30 ]
25 y — Los 25 i LoS
20 1 RNLoS 20 1 RNLoS
15 15 —
10 ! OLoS 10 ! OLos
5 1 —— NLoS 5 1 — NLoS
0 ! —— CPU-PCI Link 0 ! —— CPU-PCI Link
1 1
000 005 010 015 020 025 030 035 040 045 0.50 000 005 010 015 020 025 030 035 040 045 0.50
Threshold (cm) Threshold (cm)
(a) (b)
\
1001 e EEmm— oo 100+ ===
951 ST e T 95 JPE e B ettt
L Y Rl A R = S B 1 20 L
85 85y o7 e e
801 S e e sof | A T e i
L R R B I A o s B e I A A e T e S
oSS S i 00 {1 T e
5 & e T e
g 60 | 60 1
> 55 —— LoS Augmented 1 > 55 —— LoS Augmented 1
g ig ---- LoS Expandedd 1 & 50 ---- LoS Expandedd 1
S RNLoS Augmented | § 23 RNLoS Augmented !
<3 RNLoS Expanded | | < 30 RNLoS Expanded !
30 —— OLoS Augmented : 30 —— OLoS Augmented :
25 --=-- OLoS Expanded A 25 -=--- OLoS Expanded 1
ig —— NLoS Augmented | 20 —— NLoS Augmented I
1 ---- NLoS Expanded | }(5) ---- NLoS Expanded 1
5 —— CPU-PCI Link Augmented 5 —— CPU-PCI Link Augmentéd
0 ---- CPU-PCI Link Expanded 0 ---- CPU-PCI Link Expanded
1 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.000 0.005 0.010 0015 0020 0025 0030 0035 0040 0.045 0.060
Threshold (cm) Threshold (cm)
(© (@
Fig. 8. Classification accuracy of (a) ResNet-based feature concatenated model tested on the expanded measured dataset, (b) MLP-based model tested on

the expanded measured dataset, (c) ResNet-based feature concatenated model tested on the averaged interpolated dataset, and (d) MLP-based model tested on
the averaged interpolated dataset for the attribute prediction under each potential scenario with respect to the selected threshold.

model used in comparison consists of a five-layer feature
extraction block, a three-layer scenario prediction block, and
another three-layer attribute prediction block, as shown in
Fig. 9. Like our ResNet-based feature concatenated model,
the MLP-based model also performs perfectly on the scenario
classification task. Fig. 8(b) shows the classification accu-
racy of the ResNet-based feature concatenated model on the
attribute prediction for each potential scenario with respect
to the classification threshold on the expanded measured
dataset. It can be seen from the plot that the MLP-based
model also performs perfectly for the attribute prediction
with nearly 100% achieved classification accuracy under all
potential scenarios. However, by comparing Fig. 8(a) with (b),
it can be observed that our ResNet-based feature concatenated
model converges with tighter thresholds than the MLP-based
model. Additionally, the classification accuracy achieved by
the ResNet-based feature-concatenated model is higher than
that of the MLP-based model on LoS, OLoS, and CPU-PCI
link with a selected threshold of 0.05 cm, which indicates that
the ResNet-based feature-concatenated model is more robust
and performs better than the MLP-based model.

In addition to the evaluation on the expanded mea-
sured dataset, we also tested and compared our proposed
ResNet-based feature concatenated model with the MLP-based
model on the averaged interpolated dataset with higher res-
olution. Again, both models achieve 100% accuracy for
scenario classification. However, while the ResNet-based
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Structure of the MLP-based network model.

feature concatenated model keeps constant performance for the
prediction of the attribute under each scenario, the MLP-based
model suffers a performance degradation on the averaged
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interpolated dataset. Fig. 8(c) and (d) show the classifica-
tion accuracy of our ResNet- and the MLP-based feature
concatenated network models, respectively, for the attribute
prediction under each potential scenarios with respect to the
growing threshold on the averaged interpolated dataset and
compare with the performances of the models on the measured
expanded dataset. The selected threshold is in the range of
zero to half of the higher-resolution step increment, which is
0.025 cm for NLoS and 0.05 cm for other scenarios. As shown
in Fig. 8(c), it can be seen that the convergence rates of
our proposed ResNet-based feature concatenated model on
the expanded measured dataset (lower resolution) are very
close to those on the averaged interpolated dataset (higher
resolution), except for the CPU-PCI link which may because
this scenario is much more complicated than others. With the
selected threshold of 0.05 cm, as circled in red in these two
plots, the classification accuracy of the ResNet base feature
concatenated model tested on the averaged interpolated dataset
is the same as that of the model tested on the expanded
measured dataset. In contrast, it can be noticed from Fig. 8(d)
that the convergence rates of the MLP-based model drop a lot
on the augmented dataset for nearly all the scenarios, espe-
cially for the OLoS and CPU-PCI link. In addition, with the
threshold of 0.05 cm, a 9% and a 5% drop of the classification
accuracy for OLoS and CPU-PCI link, respectively, can be
observed from the plots as circled in red. The performance
degradation of the MLP-based model suggests that the range
of the deviation between the MLP predicted and the correct
value is larger than 0.05 for most attributes under the OLoS
and CPU-PCI link, and the MLP-based model performs worse
on the averaged interpolated data as the distance between
interpolated neighbors are relatively short (half A for NLoS
and X for others) and these neighbors are very similar to each
other. The performance difference of our proposed ResNet-
and MLP-based feature concatenated network models indicates
that our proposed ResNet-based feature concatenated model is
more robust and reliable on the dataset with higher resolution.

B. Model Analysis

To explain the performance difference of these two models
and have a better understanding of the wireless channel and
the deep learning models, FAM and Grad-CAM are applied
on the MLP- and our proposed ResNet-based feature concate-
nated network models, respectively. To understand how the
MLP-based network model makes predictions, we visualize
a feature activation map by taking the absolute value of the
average over the 256 neurons in the first linear layer as follows:

1 256

i=I

(D

Wiave| =

where W € R¥4%0 represents the weights of the first linear
layer [25]. FAM provides an illustration of which parts of the
input are emphasized by an average neuron in the first layer to
make decisions. As shown in Fig. 10, we highlighted a PDP
measured under the OLoS scenario with the calculated Wiaye|.
It can be seen from the plot that the model focuses on the
peaks with the excess delay of 0, 1.835, and 3.837 ns to make

PDP (dB)

0O

-110

°
_120] @ &

-130

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Delay (ns)

Fig. 10. Contributing regions of the PDP measured under the OLoS scenarios
for the MLP-based network model where the attention of the neurons as
measured by the FAM is denoted by the color of each point.

decisions, which are circled in red. Instead of the first peak
(generated from the signal traveling directly from Tx to Rx)
with the most power intensity, the model focuses more on the
second and the third peaks (generated from the signal bouncing
back and forth between the transceiver sidewalls [16]), which
indicates that the model weights more on the multipath signals.
This follows intuition since varying the distance between the
parallel DIMMs under the OLoS scenario leaves the intensity
of the direct traveling signal unchanged while the multipath
signal intensity would fluctuate due to interactions of the
DIMMs with the Fresnel zones [16]. In spite of this, the
intensity of the first peak still influences the model decisions
as it has strong differences when we are between different
scenarios. Since the intensities of these peaks where the MLP
model focuses are very different for the PDP under each
scenario [16], the MLP-based model works perfectly on both
the expanded measured and averaged interpolated datasets for
the scenarios classification task.

The feature map also explains the performance degradation
of the MLP-based model on the averaged interpolated dataset.
Fig. 11(a) compares the PDP under OLoS scenario with the
attributes from 5.2 to 5.6 cm and the part of the confusion
matrix of the MLP-based model at these locations. It can be
seen from the confusion matrix that the MLP-based model
fails in these locations as the classification accuracy is less than
20%. Also, it can be seen that the PDP are very similar and the
intensities of the peaks on which the model focuses, as circled
in red in the figure, are very close to each other; which explains
the failure of the model. As a counterexample, we also plot and
compare the PDP with the attributes from 2.0 to 2.3 cm and
the part of the confusion matrix at these locations as shown
in Fig. 11(b). This figure shows that the MLP-based model
performs much better at these locations as the classification
accuracy is greater than 80%. It can be observed that the
PDP is more easily differentiable between those differences at
the peak locations where the model focuses. The contributing
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Fig. 11. PDP and confusion matrix of the MLP model under OLoS scenario with (a) attributes from 5.2 to 5.5 cm and (b) attribute from 2 to 2.3 cm.
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randomly-selected PDP for the LoS channel. (c) Contributing regions of the randomly-selected PDP for the CPU-PCI link.

regions shown in Fig. 10 also apply to other potential scenarios
as the weights of the neurons are fixed for the well trained
MLP-based model.

Similarly, we also want to understand how the ResNet-based
feature concatenated model makes predictions. However, the
FAM is not suitable here as the ResNet-based feature concate-
nated model has a very different structure than the MLP-based
model where convolutional layers instead of fully connected

layers are used to extract the features from the input data. Class
activation mapping (CAM) was first proposed to produce a
localization map for a classification CNN with a specific archi-
tecture, where global average pooled convolutional feature
maps are fed directly to the output layer, by projecting back
the weights of the output layer on to the convolutional feature
maps [48]. A CAM can localize the class-distinguishing region
of an input without positional supervision nor the requirement
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of a backward pass. However, the constraint on the model
architecture is restrictive so that it may not be useful for
our case as the GAP layer is connected by another two
fully connected networks (scenarios and attributes prediction
block) in which the spatial information retained by previous
convolutional layers is lost. The Grad-CAM was proposed
to address the disadvantage of CAM as it uses the gradient
information from the last convolutional layer of the CNN to
assign importance values to each neuron for a particular class
of interest [26]. The Grad-CAM is used here to provide visual
explanations for the decisions made by our ResNet-based
feature concatenated model. To derive the class-discriminative
localization map Lg;, ,,_ 4, for any class c, the gradient of the
score for class ¢, y¢, with respect to feature map activations Ak
of the last convolutional layer are first calculated, (3y¢/dA¥).
These gradients are then global average pooled over the last
dimensions (indexed by i) to generate the neuron importance
weights «f as follows [26]:

. 1 ay*
%= Z 9AF 2
where Z is the number of entries in the feature map (Z =
. 1). The weight «f captures the importance of feature map
k for a target class c¢. The localization map L, ,_cay 1S
derived by combining weighted forward activation maps and
taking the absolute value of it as follows:

K
L aa—cam = |2 0iA* 3)
k

where K is the number of feature maps of the last
convolutional layer. This result provides a coarse heatmap
of the same size as the convolutional feature maps in the
last convolutional layer. To highlight the regions where the
model has more attention to make decisions, we first enlarged
the localization map Lg,,,_cay to the size of input PDP
and highlighted the PDP with the enlarged L, ,,_c4) for
each scenario. Instead of using ReLU for the Grad-CAM
localizations as described in [26], we take the absolute value
as we are interested in the features that have any influence
(not just positive influence) on the class of interest. It has been
proven that Grad-CAM generalizes CAM for CNN-based
architectures as the class features weights w} used in CAM
are proportional to the neuron importance weights o used by
Grad-CAM [26]. This generalization allows us to provide a
visual explanation for our ResNet-based feature concatenated
model which has complicated structures connected behind the
GAP layer. Fig. 12(a) shows the heatmap of the calculated
LG, 0a—cay With randomly selected PDP as the input for
each potential scenario. Fig. 12(b) and (c) highlight the
contributing regions of the randomly selected PDP for LoS,
and CPU-PCI link, respectively, based on the corresponding
LG, aa—cay- It can be observed from the plots that, similar to
the MLP-based model, the ResNet-based feature concatenated
model also focuses on the first few peaks of the PDP with
specific emphasis depending on the scenario. Interestingly,
both models pay more attention to the multipath signals
than the direct traveling signal. However, besides the peaks,
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Fig. 13. (a) PDP and confusion matrix of the ResNet-based feature
concatenated model under OLoS scenario with attributes from 5.2 to 5.5 cm.
(b) Highlighted contributing regions of the PDP with the attribute of 5.3 cm
under OLoS scenario.

the ResNet-based feature concatenated model also focuses
on the valleys between those peaks even with stronger
attention. This indicates that these valleys can also provide
important information on the wireless channel and could also
explain why the ResNet-based feature concatenated model
performs more robustly than the MLP model. Fig. 13(a)
shows the PDP and the confusion matrix of the ResNet-based
feature concatenated model, again, under the OLoS scenario
with the attribute ranging from 5.2 to 5.5 cm. Compared
with the confusion matrix of the MLP model shown in
Fig. 11(a), it can be concluded that the ResNet-based feature
concatenated model performs much better than the MLP
model at these locations as the classification accuracy of
the ResNet-based feature concatenated model is greater than
64% while that of the MLP model is even less than 20%.
Fig. 13(b) shows the contributing regions of the PDP with
the attribute of 5.3 cm under the OLoS scenario. As shown in
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Fig. 14. Testing losses of our proposed ResNet-based feature concatenated
model, GoogLeNet, VGG, and ViT on the same testing dataset throughout
the training process.

this plot, besides the peaks due to the multipath signals, the
model has even more attention on the valleys between those
peaks where the PDP with the attributes from 5.2 to 5.5 cm
can be clearly distinguished with each other as circled in
red in Fig. 13(a), which explains why the ResNet-based
feature concatenated model performs better at these
locations.

Our proposed model performs better than other models as
it has strong attention on the valleys between the multipath
peaks. To show this, we compared the performance of our
proposed ResNet-based feature concatenated model with some
other mainstream deep learning models which include the
GoogLeNet, visual geometry group (VGG), and vision trans-
former (ViT). Fig. 14 shows the testing losses of our proposed
model, GooglLeNet, VGG, and ViT when evaluated on the
same testing dataset throughout the training process. As shown
in the dataset, our ResNet-based feature concatenated model
outperforms other models, which illustrates the superiority of
our proposed model.

V. CONCLUSION

This article presents the application of deep learning method
on property prediction of the THz wireless channel in a moth-
erboard desktop environment. Measurements were performed
on a motherboard in a desktop size metal cavity. The PDP
data which contains the channel information fed into the
deep learning models was collected under five environment
scenarios. For each scenario, measurements were taken several
times with different attributes. To train the proposed deep
learning model robustly and evaluate their performance com-
prehensively, data augmentation is applied on the measured
PDP to expand the data size and to improve the resolution.
A ResNet-based feature concatenated neural network model
was proposed to perform the channel prediction. The gen-
eralized model structure consists of three blocks which are
feature extraction, scenarios prediction, and attributes predic-
tion block. The proposed model is evaluated and compared
with an MLP-based model on both expanded measured and
averaged interpolated datasets. Both models perform well on
the expanded measured dataset with nearly perfect prediction
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on both scenarios and attributes. Our proposed model out-
performs the MLP-based model on the averaged interpolated
dataset as the MLP model has a drop of classification accuracy
on the attribute prediction task for each scenario with a
fixed threshold and converges slower with respect to the
larger thresholds, while our ResNet-based feature concatenated
model keeps constant performance. The analyses are made
with FAM and Grad-CAM applied on the MLP- and our
ResNet-based feature concatenated models, respectively. It is
shown from the FAM that the MLP model has a strong focus
on the peaks of the PDP corresponding to multipath signals.
However, some of the adjacent interpolated data are very
close to each other in the regions on which the MLP focuses,
which leads to performance degradation (or failure) on these
areas. Also, as seen from the Grad-CAM, the ResNet-based
feature concatenated model also has strong attention on the
valleys between peaks where the neighboring interpolated data
can be distinguished better, which accounts for its superior
performance. Better performance in comparison with other
mainstream deep learning models also proves the superi-
ority of our proposed ResNet-based feature concatenated
model.
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Abstract— This article proposes a residual network (ResNet)-
based feature concatenated neural network model to predict the
type of scenario the channel is under and the attribute of the
predicted scenario with power delay profile (PDP) as the inputs.
The generalized model structure consists of three blocks for
feature extraction, scenario prediction, and attribute prediction,
respectively. The PDP data is collected from a motherboard
desktop environment under five different physical arrangement
scenarios. Within each scenario, data is collected several times
while varying a different physical attributes for each scenario.
Two steps of data augmentation are applied to expand the size
and to improve the resolution (difference between the neighboring
attributes) of the measured dataset for the robust training and
thorough evaluation of the proposed model. The proposed model
is evaluated and compared with a multilayer perceptron (MLP)-
based model on an expanded measured and averaged interpolated
dataset. It is shown that both models perform very well on
the expanded measured dataset with nearly 100% prediction
accuracy on both scenarios and attributes. The MLP-based model
suffers performance degradation on the averaged interpolated
dataset with up to a 9% drop of classification accuracy on
attribute prediction tasks, while our ResNet-based feature con-
catenated model performs equally in both scenarios. Feature
activation map (FAM) and grad-class activation mapping (Grad-
CAM) approaches are applied to provide visual explanations
highlighting characteristics of the input PDP used for model
decisions. FAM shows that the MLP-based model focuses on the
multipath generated peaks of the PDP where some interpolated
neighboring data points cannot be distinguished. The Grad-CAM
shows that the proposed ResNet-based feature concatenated
model performs better because it has strong attention not only
on the multipath peaks but also on the valleys between those
peaks which hold distinguishing information.

Index Terms— Channel characterization, channel prediction,
channel sounding, chip-to-chip wireless channels, THz commu-
nications.

I. INTRODUCTION

HE THz wireless link is considered as a replacement
for wired connections in inter-chip communication for
future computing systems [1], [2], [3], [4], [5]. [6], [7], [8],
[9], [10]. A wireless link system alleviates the needs for
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accepted 14 May 2023. This work was supported in part by the NSF
under Grant 1651273. (Corresponding author: Jinbang Fu.)
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cable management and reduces the complexity of the com-
puting system design [1], [2]. Operating at THz frequencies
with its larger available bandwidth allows higher speed and
lower latency communications. With smaller antenna sizes and
reduced spacing at THz frequencies, spatial multiplexing can
be applied to improve data rates to Terabit-per-second which
is close to the data rate of current wired systems [2], [11].
To realize THz wireless inter-chip communication, compre-
hensive understanding, and identification of the corresponding
wireless channels is required. Wireless channels are usually
determined by the signal propagation environment and inter-
actions with the objects in the environment, also known as the
channel properties [12]. These channel properties define the
characteristics of the wireless channel and affect the quality
of possible wireless links. The prediction of channel properties
is important for establishing inter-chip communication and
allows for further adjustments to improve the communication
link. With a precise prediction of channel properties, the
appropriate transmission mode can be selected to adapt to
the environment, which can help to provide more reliable
communication with better performance [12].

To realize THz wireless inter-chip communication, channel
modeling tools are needed and several THz wireless chan-
nel models have been proposed [8], [9], [13], [14], [15].
Based on the geometrical distribution of the environment,
statistical channel models have been proposed for short-
range device-to-device channels and THz wireless inter-chip
communication channels [3], [4]. Constant rate models have
been applied on THz wireless channels in a datacenter and
in the motherboard desktop environment by modifying the
classic Saleh—Valenzuela (S-V) model [6], [16]. These classic
analytical techniques can provide good estimations of the
wireless channel with simple math equations. However, these
techniques are generally not suitable for the prediction and
identification of channel properties because the simplifications
introduced in the models may not capture more complex
multipath environment properties [17]. Moreover, the large
number of potential links, obstructions, scattering, and so
on for the inter-chip communication in motherboard desktop
environment requires a large amount of data for a thorough
channel characterization. These classical techniques are less
suitable for the analysis of large datasets as they might miss
important relations within the data [18].

0018-926X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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In contrast, machine learning (ML) is a branch of arti-
ficial intelligence that learns a model from data to make
decisions and has achieved breakthroughs in application areas
such as image processing, natural language processing, and
data mining [18]. Due to their rise in popularity, ML tech-
niques have been gradually applied to study the wireless
propagation channel, such as channel characterization and
channel modeling [10], [12]. Researchers have applied ML
techniques on the estimation of propagation loss [17], [19],
tracking multipath components [20], and derivation of channel
statistical parameters [21]. Also, ML techniques are applied
on channel property prediction as they have been shown to
provide good performance in identifying small differences
between measurements to characterize different properties.
Several deep learning-based methods have been proposed for
a nonline of sight (NLoS) recognition [22], indoor environ-
ments classification [23], and vehicle communication scenarios
identification [24]. Considering the complicated propagation
channel on the densely populated motherboard in a metal
casing, where some hidden patterns due to scattering, reflec-
tions, and resonant cavity effects are difficult to identify by
traditional techniques, ML methods are more likely to succeed
for channel prediction in such an environment.

To establish a stable wireless link for THz wireless
inter-chip communication in computing systems, it is neces-
sary to understand the channel properties in advance. These
properties include potential physical scenarios of the channel
such as the link between CPU and PCI, the link between
CPU and dual in-line memory module (DIMM), and so on,
and certain attributes under those scenarios such as the height
differences between the chips or the distances between the
CPU and the PCI components. These channel properties could
be predetermined by an ML model with the information given
by the pilot signal.

The main contributions of this article are summarized as
follows.

1) We apply deep learning methods to predict channel
properties for THz chip-to-chip wireless communication
in motherboard desktop environment. With PDP as the
input, we propose a residual network (ResNet)-based
feature concatenated model to predict the channel’s
physical scenario and an additional attribute of that
predicted scenario.

2) The proposed model is evaluated and compared with
a multilayer perceptron (MLP)-based model on the
expanded measured dataset and the averaged interpo-
lated dataset. Results show that our model performs
very well on the expanded measured dataset with nearly
perfect prediction of both scenarios and attributes. These
results exemplify the validity of our proposed model
and the feasibility of applying deep learning model for
THz channel prediction on a densely-populated moth-
erboard in a practical computing system. We show that
our ResNet-based feature concatenated model performs
more robustly than the MLP model as it has higher
classification accuracy when predicting a specific sce-
nario’s attribute. Our ResNet-based feature concatenated
model also has constant performance on both measured
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and augmented dataset while the MLP model shows
performance degradation on the averaged interpolated
dataset.

3) feature activation mapping (FAM) and Gradient-
weighted class activation mapping (Grad-CAM) are
applied on the MLP and our ResNet-based feature
concatenated models, respectively, to explain their per-
formance differences by determining the contributing
regions of the raw data that the models use to make
their predictions [25], [26]. The results provide us a
deeper understanding of the THz wireless channel in
the motherboard desktop environment. We find that the
MLP model only focuses on the peaks of the input PDP
with the delay of 0, 1.835, 3.837 ns corresponding to
multipath propagations, while the ResNet-based feature
concatenated model has strong attention not only to
those peaks but also on the valleys between those peaks.
This implies that the valleys between the peaks gen-
erated by the multipath signals also contain important
information related to the wireless channel that help
distinguish different channel properties.

The rest of the article is organized as follows. Section II
presents the channel measurements and the augmentation of
the collected data. Section III illustrates the design of the
ResNet-based feature concatenated neural network model.
Section IV presents the analysis and model verification.
Finally, Section V makes concluding remarks.

II. DATA MEASUREMENTS AND AUGMENTATIONS

In this section, we provide a brief discussion about THz
wireless channel measurements in the motherboard desktop
environment under five different potential scenarios: LoS,
reflected non-LoS (RNLoS), obstructed-LoS (OLoS), non-LoS
(NLoS), and a practical CPU-PCI link. Under each of these
scenarios, measurements are performed several times while
varying a different attribute for each scenario. Due to time
and physical setup limitations, we also apply multiple data
augmentation techniques on the measured data for training,
validation, and analysis of our proposed models.

A. THz Channel Measurements

The measurement setup includes a Keysight N5224A PNA
vector network analyzer (VNA), a Virginia diodes, Inc.
(VDI) transmitter (Tx210), and a VDI receiver (Rx148)
[27]. The VNA generates the input signal in the range of
10 MHz-12 GHz with the power level (P;,) of 0 dBm and
feeds it into the VDI Tx210. In the VDI Tx210 transmit-
ter, a 25 GHz signal is generated by a Herley-CTI phase-
locked dielectric resonator oscillator (DPRO with 100 MHz
reference crystal oscillator) [28]. It is amplified and frequency
doubled by Norden NO8-1975 [29] and then tripled by VDI
WR6.5X3 [30]. This signal is then fed into a sub-harmonic
mixer (WR2.8SHM) [31] which doubles the carrier frequency
and mixes it with the VNA-generated baseband signal. This
THz-range signal is then transmitted by a horn antenna in
the range of 288-312 GHz. The same components are used
to down-convert the signal, the difference is that the DPRO is
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(d

Fig. 1.

N5224A PNA
vector network
analyzer
[10 MHz - 12 GHz]

Channel
288 -312 GHz

': 3

i By

Dielectric resonator oscillator [25 GHz]

Fig. 2. Block diagram of the measurement system.

tuned to 24.2 GHz. The received signal is then down-converted
to an intermediate frequency (IF) of 9.6 GHz. The VNA
then samples the upper sideband of the down-converted signal
in the range of 9.61-21.6 GHz with 801 points. The block
diagram of the measurement system is shown in Fig. 2
[1], [32] and all measurement parameters are summarized in
Table I. Pyramid horn antennas with a gain that varies in
the range of 22-23 dBi over the observed frequency band
from 300 to 312 GHz were used in the measurements. The
theoretical half-power beamwidth (HPBW) of the horn is about
12° in azimuth and elevation. The physical dimension of the
horn aperture is 8.91 mm, which limits the far-field boundary
to 15.88 cm at 300 GHz according to the Fraunhofer distance.

To measure the THz wireless channel in a motherboard
desktop environment, we fabricated an aluminum metal cavity
with the size of 27.5 x 27.5 x 10 cm, which approximates
the size of a desktop, with two square aluminum plates
as the top and bottom walls [5]. The other four sides are

(e)

Setups for the measurements of THz wireless channel in motherboard desktop environment. (a) Fabricated metal casing that houses each of (b) LoS,
(c) RNLoS, (d) OLoS, (e) NLoS, and (f) CPU-PCI link measurement scenarios.

TABLE I
MEASUREMENT PARAMETERS

Parameter Symbol Value
Measurement points N 801
Intermediate frequency bandwidth | A fip 20 kHz
Average noise floor Px -90 dBm
Input signal power P, 0 dBm
Start frequency Sstart 10 MHz
Stop frequency fstop 12 GHz
Bandwidth B 11.99 GHz
Time domain resolution At 0.083 ns
Maximum excess delay Tm 33.4 ns

wrapped by aluminum foil and labeled as A-D, as shown in
Fig. 1(a). As shown in Fig. 1(b), a motherboard was supported
4.2 cm over the bottom wall by brass hex standoffs inside
the fabricated cases. For all channel environment scenarios,
measurements are performed on the motherboard inside the
metal cavity.

For the measurements of LoS links, as shown in Fig. 1(b),
antennas of the transmitter (Tx) and receiver (Rx) were aligned
with each other and inserted into the cavity through small
holes drilled on the transceiver sidewalls (A and C) of the
cavity. Measurements were performed on the backside of the
motherboard to separate the influence of the other components.
As the heights of components on the motherboard may differ
and to investigate the ground effect of the motherboard, both
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transceivers were elevated simultaneously in height during the
measurements. To do this, the height of transceivers & was
varied from O to 4.5 cm above the motherboard in increments
of 0.3 cm while the distance between the transceivers was
fixed at 19.3 cm.

As shown in Fig. 1(c), a DIMM was placed standing up
on the center of the motherboard and diagonally aligned with
transceivers which were positioned orthogonal to each other
for the RNLoS measurements. The distance from the DIMM
to each of the transceiver is 9.55 cm and the heights for
both transceivers were fixed at 1.8 cm above the motherboard.
Both flat and component sides of the DIMM were investigated
during the measurements as both sides could possibly be
used to establish the wireless link on the motherboard. For
the OLoS link, measurements were performed to investigate
the effects of parallel-plate structures on the motherboard.
As shown in Fig. 1(d), two DIMMSs were put in parallel on
the center of the motherboard. when the distance between
parallel plates, w, is small, e.g., ® = 2 or 3 cm, some parts
of the parallel plates may be in the second or third region
of the Fresnel ellipsoid space whose radius is 1.17 or 1.44 cm.
The interceptions may lead to destructive or constructive
effects due to the phase shift of the signal reflecting on the
parallel plates [2]. Measurements were performed by varying
the distances between the DIMMs from 2 to 6 cm with the step
increment of 1 cm to simulate the variable distances between
parallel structures on the motherboard. The heights of both
transceivers were kept at 1.8 cm during the measurements.

The NLoS link was measured with a heatsink of size
3.5 x 3.1 x 1.3 cm as an obstacle, as shown in Fig. 1(e).
Between measurements, the heatsink was horizontally shifted
away from the transceiver toward side D of the cavity, with a
step increment of 0.25 cm to understand how the wireless link
is affected by the gaps between the fins of the heatsink. The
distance from the heatsink to each of the transceiver is 8.1 cm
and the heights of both transceivers were kept at 1.8 cm.

Besides the investigations of these primary controlled sce-
narios, a practical CPU-PCI link was also measured on the
densely populated motherboard. As shown in Fig. 1(f), Tx was
mounted on top of the CPU and Rx was hung over the PCI slot
with a 3 cm T-R vertical misalignment, which approximates
the height difference between the CPU and the chip on the
peripheral components. During the measurements, the hori-
zontal T-R separations were gradually increased from 19.3 to
23.3 cm with the step increment of 1 cm as there are several
PCT slots on the motherboard with different distances to the
CPU. All the scenarios and corresponding variable attributes
are summarized in Table II.

B. Data Augmentations

To robustly train our deep neural network model to precisely
predict channel properties, we require a large dataset to feed
into the model. However, measurements inside the metal
cavity are very time-consuming as we need to rebuild the
cavity every time we shift the transceivers or components
for the measured attribute of each scenario. Additionally,
due to physical constraints, we choose a relatively large step
increment (low resolution) for the measurements under each
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TABLE II
MEASURED POTENTIAL SCENARIOS AND CORRESPONDING ATTRIBUTES
LoS The heights of transceivers
RNLoS Flat/component side of the DIMM
OLoS The distance between parallel DIMMs
NLoS The movement of the heatsink
CPU-PCI link | The distance between the transceivers

scenario to ensure we can physically capture the data precisely.
For instance, the heights of transceivers were varied during the
LoS measurements by stacking plastic plates with a thickness
of 0.3 cm under the transceivers. This means that information
between the measured points is unknown to us. To validate
the generalization ability of our proposed model, we also
test them on a dataset with higher resolution. To that end,
we apply data augmentation to expand the size of our dataset
and increase its resolution by creating synthetic interpolated
data from measured results. The tweaks of training examples
in data augmentation make the model less likely to overfit on
certain patterns, which improves the generalization ability of
the model.

The power delay profile (PDP), which provides the inten-
sity of a signal received through a multipath channel with
respect to time delay, is fed into our deep neural network
model for training and prediction. Measured PDP can be
derived by squaring the inverse discrete Fourier transform
(IDFT) of the measured frequency response, which itself is
calculated by subtracting the S21 from the sum of antenna
gains and the thru loss. Before any S21 measurements, the
thru loss was first measured on the transceiver devices ten
times. Then, as mentioned in II-A, we measured the S21
ten times at different attributes under each potential scenario.
By combining all pairs of the ten thru loss and ten S21
measurements, we generate 100 samples for each attribute,
as shown in Fig. 3(a). The expanded measured dataset was then
separated into three groups by randomly separating 50%, 20%,
and 30% of the data at each scenario and attribute to training,
validation, and testing sets, respectively. Then the training and
validation datasets were interpolated to a higher resolution for
the scenarios which are measured in increments (all except the
RNLoS scenario). For this augmentation, we applied linear,
slinear (spline of order 1), quadratic, cubic, PCHIP (piece-
wise cubic Hermite interpolating polynomial), and Akima
interpolations to increase resolution down to steps of 0.1 cm
(1 &) for LoS, OLoS, and CPU-PCI link measurements and to
0.05 cm (half A) for the NLoS measurement. Interpolations
were not applied on the data of RNLoS link because it
is a binary dataset showing the difference between the flat
or component side of the DIMM as the reflecting surface.
Finally, we generated the average augmentation dataset by
averaging the six interpolations for each attribute since we
do not necessarily know which interpolation technique would
be represent the unmeasured data. For example, data was
measured at 7 = 0,0.3,0.6, ...,4.5 cm for the LoS propaga-
tion. Measurements were performed ten times at each height.
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attribute A

Measured thru losses

Expanded Frequency response at attribute A
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Fig. 3.

With the data expansion, we generated 100 PDP samples at
each height. As shown in Fig. 3(b), six different interpolation
techniques were then applied to the training and validation
datasets to improve the resolution from 0.3 to 0.1 cm. We then
averaged those interpolations at each height. Doing so resulted
in 50 and 30 PDP at each height # = 0,0.1, ...,4.5 cm for
the respective training and validation datasets, and 20 PDP
at each of the same heights for the testing dataset. This
averaged augmentation provides a single dataset (only one
average PDP instead of six at each interpolated attribute) with
higher resolution.

III. DEEP LEARNING MODEL

In this section, we introduce a ResNet-based feature con-
catenated neural network which is designed to predict proper-
ties of the THz wireless channel in the motherboard desktop
environment. The general structure of the model is shown in
Fig. 4. As shown in the figure, the proposed neural network
model consists of three main blocks. The first is the “feature
extraction” block which extracts the generalized features nec-
essary to distinguish between scenarios and specific attributes
of each scenario from the input PDP data. Those extracted
features are then sent to the “scenarios prediction” block to
predict the type of scenario the channel is under (LoS, RNLoS,
OLoS, NLoS, and CPU-PCI link). The overall network design
is called “feature concatenated” because the model’s scenario
prediction output is then concatenated with the extracted
features and fed to the “attributes prediction” block to estimate
the attribute of that predicted scenario.

Our novel ResNet-based feature concatenated neural net-
work model for the prediction of THz channel property is
shown in Fig. 5. As shown in the figure, the feature extraction
block of the proposed ResNet-based feature concatenated
network model contains five sub-blocks, which are bl, b2,
b3, b4, and a global average pooling (GAP) sub-block [33].
b1 consists of a 64-channel 1 x 7 convolutional layer with
the padding of 3 and a stride of 2, a batch normalization
(BN) layer, rectified linear unit (ReLU) activation layer, and
a 1 x 3 maximum pooling layer with a stride of 2. During

— Interpolations —_

p

v v
PCHIP PCHIP
Cubic Cubic
Quadrati Quadrati
Averaged Interpolated Averaged Interpolated
h=0.4cm h=05cm
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- Expanded Measured Samples — -

(b)

Illustration of data augmentation: (a) data expansion and (b) averaged interpolation for data of LoS propagation.

Scenarios Prediction
(LoS, OLoS, etc.)

P Feature
Extraction
P (MLP/ResNet)

D —

Attributes
Prediction

Fig. 4. Generalized model structure consisting of three main blocks.

training, the weights of intermediate convolution filters (e.g.,
the convolutional layers) may have strong variation between
different layers, nodes in the same layer, and over time due
to the updating model parameters. BN [34] is implemented
to maintain stable optimization and reduce these strong vari-
ations that may hinder the convergence of the network The
ReLU [35] activation function is applied to increase the
nonlinear expressiveness of the network, which simply outputs
its input for positive values and 0 for negative values. A max-
pooling layer is used to mitigate sensitivity of the network to
noisy inputs and to spatially downsample representations [36].
b1 increases the number of channels of the inputs from 1 to
64 while reducing the size of the data from 400 to 99. b2-b4
are three ResNet building blocks shared with the same struc-
tures. Each of them consists of a residual block with an
additional 1 x 1 convolutional layer to transform the inputs
to the desired shape for the addition operation, and a residual
block without the 1 x 1 convolutional layer. A residual block
is the core element of a ResNet model, which guarantees the
strictly increasing expressiveness of the network. The structure
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Fig. 6. Residual block.

of a typical residual block is shown in Fig. 6. As shown in
the figure, the input is denoted by x, the mapping of the
stacked nonlinear layers in the dotted-line box which consists
of a weight layer (convolutional layer), a ReLU activation
layer, and another weight layer at the end is denoted as f(x),
and a shortcut connection performs the identity mapping to
generate the desired output mapping f(x) + x. If the input x
is already optimal, the weights and biases of the layers f(x)
may be optimized to generate a zero output. With the shortcut
connection, the network is easier to optimize as it guarantees
that the deeper model would not generate higher training error

concatenate

Linear (256+5)
BN + RelU
Linear (128)

BN + RelU

~

Residual block without

1 X 1 conv

uoIpald saINqUNY

Linear (32)

attribute (1)

Structure of the proposed ResNet-based feature concatenated network model.

than its shallower counterpart [37]. b2 doubles the number of
input channels and halves the size of input data. b3 and b4
keep doubling the number of input channels while maintaining
the size of the input data. The GAP sub-block is composed of a
GAP layer, which computes the average value across the entire
matrix for each input channel, and a linear layer is connected
behind, which halves the size of the input data. Also, BN and
ReLU activation functions are applied to the outputs of the
linear layer. GAP blocks are very robust to spatial translations
of the inputs as they sum out the spatial information [33].
They also prune the shape of the inputs so that the outputs
can be directly fed into the prediction blocks.

The features learned from the feature extraction block are
then fed into the scenarios prediction block for the prediction
of the five potential scenarios. The input sizes for the three
fully connected layers of the block are 256, 128, and 32.
Similar to the feature extraction block, both BN and the ReLU
activation function are applied for improved convergence of
the network. The predicted channel scenario is identified by
choosing the output neuron with the largest value.

Given the predicted scenario, the network model then pre-
dicts the value of the specific attribute relevant to that scenario,
e.g., the distance between DIMMs, transceiver height, and
so on. The predicted scenario is one-hot encoded with five
bits and then concatenated with the extracted features as the
inputs of the attributes prediction block to predict the attribute
of that scenario. One-hot encoding translates the integer rep-
resented predicted scenario into a group of bits with each
bit representing a potential scenario and the predicted class
high (1) and others low (0). Since those potential scenarios
are independent of each other, one-hot encoding ensures that
there is not any presumed hierarchy or partial correspondence
between the potential scenario inputs that may be an issue if
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multiple scenarios were nonzero. Similar to the structure of
the scenario prediction block, the attribute prediction block
also consists of three fully connected layers whose input sizes
are 256, 128, and 32. In contrast with the scenario prediction
block, the attribute of the scenario is predicted directly by the
block.

Since the proposed network model predicts both the mea-
surement scenario and an attribute of that scenario, training
requires both a scenario classification loss and an attribute
regression loss. Hence, the overall training loss function of
the proposed model is derived as the sum of the cross-entropy
loss for the scenarios classification and the mean squared error
(MSE) loss for the attribute regression. The cross-entropy loss
calculates the expected loss value for the predicted scenario
class, while MSE quantifies the distance between the real
and predicted value of the attribute. To train the network,
we use the robust “Adam” variant of the stochastic gradient
descent optimization algorithm which estimates the first- and
second-order moments of the gradient via an exponential
moving average to update network parameters [38].

IV. ANALYSIS AND MODEL VERIFICATION

In this section, we first trained the proposed ResNet-based
feature concatenated network model described in Section III
on the augmented training PDP. We then tested and compared
the performance of the proposed model with an MLP-based
network model on both the expanded measured dataset (with-
out interpolations) and the averaged interpolated dataset (with
interpolations) described in Section II-B. Finally, the ResNet-
and MLP-based feature concatenated network models are ana-
lyzed with Grad-CAM and FAM, respectively, which provide
the visual explanations for model decisions.

A. Model Training and Performance Evaluation

Before training, we first standardize the dataset by subtract-
ing the mean and dividing by the standard deviation across
the feature dimension. We also normalize the attributes for
each scenario. These normalizations allow the network to learn
weights on a similar scale for each scenario and attribute. The
ResNet-based feature concatenated network model was trained
for 1500 epochs. During each epoch, the network iterates over
random batches of 256 samples and updates the variables in
convolutional and linear layers with each batch. The loss of the
model on training, validation, and testing dataset during the
training process are compared in Fig. 7. It can be seen from
the plot that the Loss of the model on the training dataset is
always lower than the loss on the validation and testing dataset.
The losses dropped quickly in the first 400 epochs of training
as the model parameters are initialized randomly. The losses
on the training, validation, and testing datasets converged to
5 x 107, 6.5 x 1074, and 5.8 x 10~ after 1200 epochs of
training.

To evaluate the performance of the proposed ResNet-based
feature concatenated network model, we first tested it on the
expanded measured dataset. The results show that the model
can perfectly classify the scenarios under which the input PDP
was measured. As described in Section III, our proposed model

100

— train
--- valid
— test

Loss

103

104

200 400 600 800
Epochs

1000 1200 1400

Fig. 7. Losses of ResNet-based feature concatenated network model on
training, validation, and testing dataset over 1500 epochs of training.

predicts the attribute under the predicted scenario directly.
As with any regression problem, there is always a deviation
between the predicted and the correct value. For a robust
model, that deviation is small so that the predicted value can
be classified as the correct value by choosing an appropriate
threshold. To evaluate the robustness of our proposed model,
we calculated and compared the classification accuracy of the
predicted attribute for each potential scenario with respect to a
threshold in the range of zero to half of the step increment size
set for the measurements. The maximum distance threshold is
0.15, 0.5, 0.5, 0.125, and 0.5 cm for LoS, RNLoS, OLoS,
NLoS, and CPU-PCI link, respectively, as shown in Fig. 8(a).
It can be seen from the plot that the ResNet-based fea-
ture concatenated model performs perfectly on the expanded
measured dataset with achieved nearly 100% classification
accuracy under all potential scenarios with the largest possible
threshold. Also, it can be observed that the model differentiates
between classes most easily in the RNLoS scenario as there are
only two classes (either flat or component side of the DIMM
as the reflection surface). Since there are only 5 different
attributes for the NLoS and CPU-PCI link scenarios, the
model differentiates between classes even with relatively small
thresholds. Also, comparing these two scenarios, the model
converges slower under the CPU-PCI link as the environment
of this scenario is much more complicated than that of the
NLoS. The small distances between the 16 different attributes
for LoS result in slightly less robust performance across a
range of thresholds. The model converges the slowest under
the OLoS scenario as the measured PDP are very similar
to each other with only small variations on the intensity of
multipath signals.

The performance of our proposed ResNet-based feature
concatenated network model has been compared with an MLP-
based method, which is a widely used channel prediction
scheme [12], [17], [21], [39], [40], [41], [42], [43], [44],
[45], [46], [47]. The structure of the MLP-based network
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Fig. 8. Classification accuracy of (a) ResNet-based feature concatenated model tested on the expanded measured dataset, (b) MLP-based model tested on

the expanded measured dataset, (c) ResNet-based feature concatenated model tested on the averaged interpolated dataset, and (d) MLP-based model tested on
the averaged interpolated dataset for the attribute prediction under each potential scenario with respect to the selected threshold.

model used in comparison consists of a five-layer feature
extraction block, a three-layer scenario prediction block, and
another three-layer attribute prediction block, as shown in
Fig. 9. Like our ResNet-based feature concatenated model,
the MLP-based model also performs perfectly on the scenario
classification task. Fig. 8(b) shows the classification accu-
racy of the ResNet-based feature concatenated model on the
attribute prediction for each potential scenario with respect
to the classification threshold on the expanded measured
dataset. It can be seen from the plot that the MLP-based
model also performs perfectly for the attribute prediction
with nearly 100% achieved classification accuracy under all
potential scenarios. However, by comparing Fig. 8(a) with (b),
it can be observed that our ResNet-based feature concatenated
model converges with tighter thresholds than the MLP-based
model. Additionally, the classification accuracy achieved by
the ResNet-based feature-concatenated model is higher than
that of the MLP-based model on LoS, OLoS, and CPU-PCI
link with a selected threshold of 0.05 cm, which indicates that
the ResNet-based feature-concatenated model is more robust
and performs better than the MLP-based model.

In addition to the evaluation on the expanded mea-
sured dataset, we also tested and compared our proposed
ResNet-based feature concatenated model with the MLP-based
model on the averaged interpolated dataset with higher res-
olution. Again, both models achieve 100% accuracy for
scenario classification. However, while the ResNet-based
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Fig. 9. Structure of the MLP-based network model.

feature concatenated model keeps constant performance for the
prediction of the attribute under each scenario, the MLP-based
model suffers a performance degradation on the averaged
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interpolated dataset. Fig. 8(c) and (d) show the classifica-
tion accuracy of our ResNet- and the MLP-based feature
concatenated network models, respectively, for the attribute
prediction under each potential scenarios with respect to the
growing threshold on the averaged interpolated dataset and
compare with the performances of the models on the measured
expanded dataset. The selected threshold is in the range of
zero to half of the higher-resolution step increment, which is
0.025 cm for NLoS and 0.05 cm for other scenarios. As shown
in Fig. 8(c), it can be seen that the convergence rates of
our proposed ResNet-based feature concatenated model on
the expanded measured dataset (lower resolution) are very
close to those on the averaged interpolated dataset (higher
resolution), except for the CPU-PCI link which may because
this scenario is much more complicated than others. With the
selected threshold of 0.05 cm, as circled in red in these two
plots, the classification accuracy of the ResNet base feature
concatenated model tested on the averaged interpolated dataset
is the same as that of the model tested on the expanded
measured dataset. In contrast, it can be noticed from Fig. 8(d)
that the convergence rates of the MLP-based model drop a lot
on the augmented dataset for nearly all the scenarios, espe-
cially for the OLoS and CPU-PCI link. In addition, with the
threshold of 0.05 cm, a 9% and a 5% drop of the classification
accuracy for OLoS and CPU-PCI link, respectively, can be
observed from the plots as circled in red. The performance
degradation of the MLP-based model suggests that the range
of the deviation between the MLP predicted and the correct
value is larger than 0.05 for most attributes under the OLoS
and CPU-PCI link, and the MLP-based model performs worse
on the averaged interpolated data as the distance between
interpolated neighbors are relatively short (half A for NLoS
and X for others) and these neighbors are very similar to each
other. The performance difference of our proposed ResNet-
and MLP-based feature concatenated network models indicates
that our proposed ResNet-based feature concatenated model is
more robust and reliable on the dataset with higher resolution.

B. Model Analysis

To explain the performance difference of these two models
and have a better understanding of the wireless channel and
the deep learning models, FAM and Grad-CAM are applied
on the MLP- and our proposed ResNet-based feature concate-
nated network models, respectively. To understand how the
MLP-based network model makes predictions, we visualize
a feature activation map by taking the absolute value of the
average over the 256 neurons in the first linear layer as follows:

1 256

i=I

(D

Wiave| =

where W € R¥4%0 represents the weights of the first linear
layer [25]. FAM provides an illustration of which parts of the
input are emphasized by an average neuron in the first layer to
make decisions. As shown in Fig. 10, we highlighted a PDP
measured under the OLoS scenario with the calculated Wiaye|.
It can be seen from the plot that the model focuses on the
peaks with the excess delay of 0, 1.835, and 3.837 ns to make

PDP (dB)

o

-110

[ ]
-1201 @ @

-130

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Delay (ns)

Fig. 10. Contributing regions of the PDP measured under the OLoS scenarios
for the MLP-based network model where the attention of the neurons as
measured by the FAM is denoted by the color of each point.

decisions, which are circled in red. Instead of the first peak
(generated from the signal traveling directly from Tx to Rx)
with the most power intensity, the model focuses more on the
second and the third peaks (generated from the signal bouncing
back and forth between the transceiver sidewalls [16]), which
indicates that the model weights more on the multipath signals.
This follows intuition since varying the distance between the
parallel DIMMs under the OLoS scenario leaves the intensity
of the direct traveling signal unchanged while the multipath
signal intensity would fluctuate due to interactions of the
DIMMs with the Fresnel zones [16]. In spite of this, the
intensity of the first peak still influences the model decisions
as it has strong differences when we are between different
scenarios. Since the intensities of these peaks where the MLP
model focuses are very different for the PDP under each
scenario [16], the MLP-based model works perfectly on both
the expanded measured and averaged interpolated datasets for
the scenarios classification task.

The feature map also explains the performance degradation
of the MLP-based model on the averaged interpolated dataset.
Fig. 11(a) compares the PDP under OLoS scenario with the
attributes from 5.2 to 5.6 cm and the part of the confusion
matrix of the MLP-based model at these locations. It can be
seen from the confusion matrix that the MLP-based model
fails in these locations as the classification accuracy is less than
20%. Also, it can be seen that the PDP are very similar and the
intensities of the peaks on which the model focuses, as circled
in red in the figure, are very close to each other; which explains
the failure of the model. As a counterexample, we also plot and
compare the PDP with the attributes from 2.0 to 2.3 cm and
the part of the confusion matrix at these locations as shown
in Fig. 11(b). This figure shows that the MLP-based model
performs much better at these locations as the classification
accuracy is greater than 80%. It can be observed that the
PDP is more easily differentiable between those differences at
the peak locations where the model focuses. The contributing
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regions shown in Fig. 10 also apply to other potential scenarios
as the weights of the neurons are fixed for the well trained
MLP-based model.

Similarly, we also want to understand how the ResNet-based
feature concatenated model makes predictions. However, the
FAM is not suitable here as the ResNet-based feature concate-
nated model has a very different structure than the MLP-based
model where convolutional layers instead of fully connected

layers are used to extract the features from the input data. Class
activation mapping (CAM) was first proposed to produce a
localization map for a classification CNN with a specific archi-
tecture, where global average pooled convolutional feature
maps are fed directly to the output layer, by projecting back
the weights of the output layer on to the convolutional feature
maps [48]. A CAM can localize the class-distinguishing region
of an input without positional supervision nor the requirement

655

656

657

658

659

660

661

662



663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

701

702

703

704

706

707

708

709

710

71

712

718

714

715

FU et al.: DEEP LEARNING-BASED THz WIRELESS CHANNEL PROPERTY PREDICTION 11

of a backward pass. However, the constraint on the model
architecture is restrictive so that it may not be useful for
our case as the GAP layer is connected by another two
fully connected networks (scenarios and attributes prediction
block) in which the spatial information retained by previous
convolutional layers is lost. The Grad-CAM was proposed
to address the disadvantage of CAM as it uses the gradient
information from the last convolutional layer of the CNN to
assign importance values to each neuron for a particular class
of interest [26]. The Grad-CAM is used here to provide visual
explanations for the decisions made by our ResNet-based
feature concatenated model. To derive the class-discriminative
localization map Lg;, ,,_ 4, for any class c, the gradient of the
score for class ¢, y¢, with respect to feature map activations Ak
of the last convolutional layer are first calculated, (3y°/dA¥).
These gradients are then global average pooled over the last
dimensions (indexed by i) to generate the neuron importance
weights «f as follows [26]:

. 1 ay°©
%= Z 9AF 2
where Z is the number of entries in the feature map (Z =
. 1). The weight «f captures the importance of feature map
k for a target class c¢. The localization map L¢, ,;_cap 15
derived by combining weighted forward activation maps and
taking the absolute value of it as follows:

K
L aa—cam = |2 0iA* 3)
k

where K is the number of feature maps of the last
convolutional layer. This result provides a coarse heatmap
of the same size as the convolutional feature maps in the
last convolutional layer. To highlight the regions where the
model has more attention to make decisions, we first enlarged
the localization map Lg,,,_cay to the size of input PDP
and highlighted the PDP with the enlarged L, ,,_c4) for
each scenario. Instead of using ReLU for the Grad-CAM
localizations as described in [26], we take the absolute value
as we are interested in the features that have any influence
(not just positive influence) on the class of interest. It has been
proven that Grad-CAM generalizes CAM for CNN-based
architectures as the class features weights w} used in CAM
are proportional to the neuron importance weights o used by
Grad-CAM [26]. This generalization allows us to provide a
visual explanation for our ResNet-based feature concatenated
model which has complicated structures connected behind the
GAP layer. Fig. 12(a) shows the heatmap of the calculated
LG, ud—cay With randomly selected PDP as the input for
each potential scenario. Fig. 12(b) and (c) highlight the
contributing regions of the randomly selected PDP for LoS,
and CPU-PCI link, respectively, based on the corresponding
LG, aa—cay- It can be observed from the plots that, similar to
the MLP-based model, the ResNet-based feature concatenated
model also focuses on the first few peaks of the PDP with
specific emphasis depending on the scenario. Interestingly,
both models pay more attention to the multipath signals
than the direct traveling signal. However, besides the peaks,
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Fig. 13. (a) PDP and confusion matrix of the ResNet-based feature
concatenated model under OLoS scenario with attributes from 5.2 to 5.5 cm.
(b) Highlighted contributing regions of the PDP with the attribute of 5.3 cm
under OLoS scenario.

the ResNet-based feature concatenated model also focuses
on the valleys between those peaks even with stronger
attention. This indicates that these valleys can also provide
important information on the wireless channel and could also
explain why the ResNet-based feature concatenated model
performs more robustly than the MLP model. Fig. 13(a)
shows the PDP and the confusion matrix of the ResNet-based
feature concatenated model, again, under the OLoS scenario
with the attribute ranging from 5.2 to 5.5 cm. Compared
with the confusion matrix of the MLP model shown in
Fig. 11(a), it can be concluded that the ResNet-based feature
concatenated model performs much better than the MLP
model at these locations as the classification accuracy of
the ResNet-based feature concatenated model is greater than
64% while that of the MLP model is even less than 20%.
Fig. 13(b) shows the contributing regions of the PDP with
the attribute of 5.3 cm under the OLoS scenario. As shown in
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Fig. 14. Testing losses of our proposed ResNet-based feature concatenated
model, GoogLeNet, VGG, and ViT on the same testing dataset throughout
the training process.

this plot, besides the peaks due to the multipath signals, the
model has even more attention on the valleys between those
peaks where the PDP with the attributes from 5.2 to 5.5 cm
can be clearly distinguished with each other as circled in
red in Fig. 13(a), which explains why the ResNet-based
feature concatenated model performs better at these
locations.

Our proposed model performs better than other models as
it has strong attention on the valleys between the multipath
peaks. To show this, we compared the performance of our
proposed ResNet-based feature concatenated model with some
other mainstream deep learning models which include the
GoogLeNet, visual geometry group (VGG), and vision trans-
former (ViT). Fig. 14 shows the testing losses of our proposed
model, GoogleNet, VGG, and ViT when evaluated on the
same testing dataset throughout the training process. As shown
in the dataset, our ResNet-based feature concatenated model
outperforms other models, which illustrates the superiority of
our proposed model.

V. CONCLUSION

This article presents the application of deep learning method
on property prediction of the THz wireless channel in a moth-
erboard desktop environment. Measurements were performed
on a motherboard in a desktop size metal cavity. The PDP
data which contains the channel information fed into the
deep learning models was collected under five environment
scenarios. For each scenario, measurements were taken several
times with different attributes. To train the proposed deep
learning model robustly and evaluate their performance com-
prehensively, data augmentation is applied on the measured
PDP to expand the data size and to improve the resolution.
A ResNet-based feature concatenated neural network model
was proposed to perform the channel prediction. The gen-
eralized model structure consists of three blocks which are
feature extraction, scenarios prediction, and attributes predic-
tion block. The proposed model is evaluated and compared
with an MLP-based model on both expanded measured and
averaged interpolated datasets. Both models perform well on
the expanded measured dataset with nearly perfect prediction

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

on both scenarios and attributes. Our proposed model out-
performs the MLP-based model on the averaged interpolated
dataset as the MLP model has a drop of classification accuracy
on the attribute prediction task for each scenario with a
fixed threshold and converges slower with respect to the
larger thresholds, while our ResNet-based feature concatenated
model keeps constant performance. The analyses are made
with FAM and Grad-CAM applied on the MLP- and our
ResNet-based feature concatenated models, respectively. It is
shown from the FAM that the MLP model has a strong focus
on the peaks of the PDP corresponding to multipath signals.
However, some of the adjacent interpolated data are very
close to each other in the regions on which the MLP focuses,
which leads to performance degradation (or failure) on these
areas. Also, as seen from the Grad-CAM, the ResNet-based
feature concatenated model also has strong attention on the
valleys between peaks where the neighboring interpolated data
can be distinguished better, which accounts for its superior
performance. Better performance in comparison with other
mainstream deep learning models also proves the superi-
ority of our proposed ResNet-based feature concatenated
model.
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