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AbstractÐ This article proposes a residual network (ResNet)-1

based feature concatenated neural network model to predict the2

type of scenario the channel is under and the attribute of the3

predicted scenario with power delay profile (PDP) as the inputs.4

The generalized model structure consists of three blocks for5

feature extraction, scenario prediction, and attribute prediction,6

respectively. The PDP data is collected from a motherboard7

desktop environment under five different physical arrangement8

scenarios. Within each scenario, data is collected several times9

while varying a different physical attributes for each scenario.10

Two steps of data augmentation are applied to expand the size11

and to improve the resolution (difference between the neighboring12

attributes) of the measured dataset for the robust training and13

thorough evaluation of the proposed model. The proposed model14

is evaluated and compared with a multilayer perceptron (MLP)-15

based model on an expanded measured and averaged interpolated16

dataset. It is shown that both models perform very well on17

the expanded measured dataset with nearly 100% prediction18

accuracy on both scenarios and attributes. The MLP-based model19

suffers performance degradation on the averaged interpolated20

dataset with up to a 9% drop of classification accuracy on21

attribute prediction tasks, while our ResNet-based feature con-22

catenated model performs equally in both scenarios. Feature23

activation map (FAM) and grad-class activation mapping (Grad-AQ:1 24

CAM) approaches are applied to provide visual explanations25

highlighting characteristics of the input PDP used for model26

decisions. FAM shows that the MLP-based model focuses on the27

multipath generated peaks of the PDP where some interpolated28

neighboring data points cannot be distinguished. The Grad-CAM29

shows that the proposed ResNet-based feature concatenated30

model performs better because it has strong attention not only31

on the multipath peaks but also on the valleys between those32

peaks which hold distinguishing information.33

Index TermsÐ Channel characterization, channel prediction,34

channel sounding, chip-to-chip wireless channels, THz commu-35

nications.36

I. INTRODUCTION37

THE THz wireless link is considered as a replacement38

for wired connections in inter-chip communication for39

future computing systems [1], [2], [3], [4], [5], [6], [7], [8],40

[9], [10]. A wireless link system alleviates the needs for41
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under Grant 1651273. (Corresponding author: Jinbang Fu.)
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cable management and reduces the complexity of the com- 42

puting system design [1], [2]. Operating at THz frequencies 43

with its larger available bandwidth allows higher speed and 44

lower latency communications. With smaller antenna sizes and 45

reduced spacing at THz frequencies, spatial multiplexing can 46

be applied to improve data rates to Terabit-per-second which 47

is close to the data rate of current wired systems [2], [11]. 48

To realize THz wireless inter-chip communication, compre- 49

hensive understanding, and identification of the corresponding 50

wireless channels is required. Wireless channels are usually 51

determined by the signal propagation environment and inter- 52

actions with the objects in the environment, also known as the 53

channel properties [12]. These channel properties define the 54

characteristics of the wireless channel and affect the quality 55

of possible wireless links. The prediction of channel properties 56

is important for establishing inter-chip communication and 57

allows for further adjustments to improve the communication 58

link. With a precise prediction of channel properties, the 59

appropriate transmission mode can be selected to adapt to 60

the environment, which can help to provide more reliable 61

communication with better performance [12]. 62

To realize THz wireless inter-chip communication, channel 63

modeling tools are needed and several THz wireless chan- 64

nel models have been proposed [8], [9], [13], [14], [15]. 65

Based on the geometrical distribution of the environment, 66

statistical channel models have been proposed for short- 67

range device-to-device channels and THz wireless inter-chip 68

communication channels [3], [4]. Constant rate models have 69

been applied on THz wireless channels in a datacenter and 70

in the motherboard desktop environment by modifying the 71

classic Saleh±Valenzuela (S-V) model [6], [16]. These classic 72

analytical techniques can provide good estimations of the 73

wireless channel with simple math equations. However, these 74

techniques are generally not suitable for the prediction and 75

identification of channel properties because the simplifications 76

introduced in the models may not capture more complex 77

multipath environment properties [17]. Moreover, the large 78

number of potential links, obstructions, scattering, and so 79

on for the inter-chip communication in motherboard desktop 80

environment requires a large amount of data for a thorough 81

channel characterization. These classical techniques are less 82

suitable for the analysis of large datasets as they might miss 83

important relations within the data [18]. 84
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In contrast, machine learning (ML) is a branch of arti-85

ficial intelligence that learns a model from data to make86

decisions and has achieved breakthroughs in application areas87

such as image processing, natural language processing, and88

data mining [18]. Due to their rise in popularity, ML tech-89

niques have been gradually applied to study the wireless90

propagation channel, such as channel characterization and91

channel modeling [10], [12]. Researchers have applied ML92

techniques on the estimation of propagation loss [17], [19],93

tracking multipath components [20], and derivation of channel94

statistical parameters [21]. Also, ML techniques are applied95

on channel property prediction as they have been shown to96

provide good performance in identifying small differences97

between measurements to characterize different properties.98

Several deep learning-based methods have been proposed for99

a nonline of sight (NLoS) recognition [22], indoor environ-100

ments classification [23], and vehicle communication scenarios101

identification [24]. Considering the complicated propagation102

channel on the densely populated motherboard in a metal103

casing, where some hidden patterns due to scattering, reflec-104

tions, and resonant cavity effects are difficult to identify by105

traditional techniques, ML methods are more likely to succeed106

for channel prediction in such an environment.107

To establish a stable wireless link for THz wireless108

inter-chip communication in computing systems, it is neces-109

sary to understand the channel properties in advance. These110

properties include potential physical scenarios of the channel111

such as the link between CPU and PCI, the link between112

CPU and dual in-line memory module (DIMM), and so on,113

and certain attributes under those scenarios such as the height114

differences between the chips or the distances between the115

CPU and the PCI components. These channel properties could116

be predetermined by an ML model with the information given117

by the pilot signal.118

The main contributions of this article are summarized as119

follows.120

1) We apply deep learning methods to predict channel121

properties for THz chip-to-chip wireless communication122

in motherboard desktop environment. With PDP as the123

input, we propose a residual network (ResNet)-based124

feature concatenated model to predict the channel’s125

physical scenario and an additional attribute of that126

predicted scenario.127

2) The proposed model is evaluated and compared with128

a multilayer perceptron (MLP)-based model on the129

expanded measured dataset and the averaged interpo-130

lated dataset. Results show that our model performs131

very well on the expanded measured dataset with nearly132

perfect prediction of both scenarios and attributes. These133

results exemplify the validity of our proposed model134

and the feasibility of applying deep learning model for135

THz channel prediction on a densely-populated moth-136

erboard in a practical computing system. We show that137

our ResNet-based feature concatenated model performs138

more robustly than the MLP model as it has higher139

classification accuracy when predicting a specific sce-140

nario’s attribute. Our ResNet-based feature concatenated141

model also has constant performance on both measured142

and augmented dataset while the MLP model shows 143

performance degradation on the averaged interpolated 144

dataset. 145

3) feature activation mapping (FAM) and Gradient- 146

weighted class activation mapping (Grad-CAM) are 147

applied on the MLP and our ResNet-based feature 148

concatenated models, respectively, to explain their per- 149

formance differences by determining the contributing 150

regions of the raw data that the models use to make 151

their predictions [25], [26]. The results provide us a 152

deeper understanding of the THz wireless channel in 153

the motherboard desktop environment. We find that the 154

MLP model only focuses on the peaks of the input PDP 155

with the delay of 0, 1.835, 3.837 ns corresponding to 156

multipath propagations, while the ResNet-based feature 157

concatenated model has strong attention not only to 158

those peaks but also on the valleys between those peaks. 159

This implies that the valleys between the peaks gen- 160

erated by the multipath signals also contain important 161

information related to the wireless channel that help 162

distinguish different channel properties. 163

The rest of the article is organized as follows. Section II 164

presents the channel measurements and the augmentation of 165

the collected data. Section III illustrates the design of the 166

ResNet-based feature concatenated neural network model. 167

Section IV presents the analysis and model verification. 168

Finally, Section V makes concluding remarks. 169

II. DATA MEASUREMENTS AND AUGMENTATIONS 170

In this section, we provide a brief discussion about THz 171

wireless channel measurements in the motherboard desktop 172

environment under five different potential scenarios: LoS, 173

reflected non-LoS (RNLoS), obstructed-LoS (OLoS), non-LoS 174

(NLoS), and a practical CPU-PCI link. Under each of these 175

scenarios, measurements are performed several times while 176

varying a different attribute for each scenario. Due to time 177

and physical setup limitations, we also apply multiple data 178

augmentation techniques on the measured data for training, 179

validation, and analysis of our proposed models. 180

A. THz Channel Measurements 181

The measurement setup includes a Keysight N5224A PNA 182

vector network analyzer (VNA), a Virginia diodes, Inc. 183

(VDI) transmitter (Tx210), and a VDI receiver (Rx148) 184

[27]. The VNA generates the input signal in the range of 185

10 MHz±12 GHz with the power level (Pin) of 0 dBm and 186

feeds it into the VDI Tx210. In the VDI Tx210 transmit- 187

ter, a 25 GHz signal is generated by a Herley-CTI phase- 188

locked dielectric resonator oscillator (DPRO with 100 MHz 189

reference crystal oscillator) [28]. It is amplified and frequency 190

doubled by Norden N08-1975 [29] and then tripled by VDI 191

WR6.5X3 [30]. This signal is then fed into a sub-harmonic 192

mixer (WR2.8SHM) [31] which doubles the carrier frequency 193

and mixes it with the VNA-generated baseband signal. This 194

THz-range signal is then transmitted by a horn antenna in 195

the range of 288±312 GHz. The same components are used 196

to down-convert the signal, the difference is that the DPRO is 197
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Fig. 1. Setups for the measurements of THz wireless channel in motherboard desktop environment. (a) Fabricated metal casing that houses each of (b) LoS,
(c) RNLoS, (d) OLoS, (e) NLoS, and (f) CPU-PCI link measurement scenarios.

Fig. 2. Block diagram of the measurement system.

tuned to 24.2 GHz. The received signal is then down-converted198

to an intermediate frequency (IF) of 9.6 GHz. The VNA199

then samples the upper sideband of the down-converted signal200

in the range of 9.61-21.6 GHz with 801 points. The block201

diagram of the measurement system is shown in Fig. 2AQ:4 202

[1], [32] and all measurement parameters are summarized in203

Table I. Pyramid horn antennas with a gain that varies in204

the range of 22±23 dBi over the observed frequency band205

from 300 to 312 GHz were used in the measurements. The206

theoretical half-power beamwidth (HPBW) of the horn is about207

12◦ in azimuth and elevation. The physical dimension of the208

horn aperture is 8.91 mm, which limits the far-field boundary209

to 15.88 cm at 300 GHz according to the Fraunhofer distance.210

To measure the THz wireless channel in a motherboard211

desktop environment, we fabricated an aluminum metal cavity212

with the size of 27.5 × 27.5 × 10 cm, which approximates213

the size of a desktop, with two square aluminum plates214

as the top and bottom walls [5]. The other four sides are215

TABLE I

MEASUREMENT PARAMETERS

wrapped by aluminum foil and labeled as A±D, as shown in 216

Fig. 1(a). As shown in Fig. 1(b), a motherboard was supported 217

4.2 cm over the bottom wall by brass hex standoffs inside 218

the fabricated cases. For all channel environment scenarios, 219

measurements are performed on the motherboard inside the 220

metal cavity. 221

For the measurements of LoS links, as shown in Fig. 1(b), 222

antennas of the transmitter (Tx) and receiver (Rx) were aligned 223

with each other and inserted into the cavity through small 224

holes drilled on the transceiver sidewalls (A and C) of the 225

cavity. Measurements were performed on the backside of the 226

motherboard to separate the influence of the other components. 227

As the heights of components on the motherboard may differ 228

and to investigate the ground effect of the motherboard, both 229
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Comment on Text
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transceivers were elevated simultaneously in height during the230

measurements. To do this, the height of transceivers h was231

varied from 0 to 4.5 cm above the motherboard in increments232

of 0.3 cm while the distance between the transceivers was233

fixed at 19.3 cm.234

As shown in Fig. 1(c), a DIMM was placed standing up235

on the center of the motherboard and diagonally aligned with236

transceivers which were positioned orthogonal to each other237

for the RNLoS measurements. The distance from the DIMM238

to each of the transceiver is 9.55 cm and the heights for239

both transceivers were fixed at 1.8 cm above the motherboard.240

Both flat and component sides of the DIMM were investigated241

during the measurements as both sides could possibly be242

used to establish the wireless link on the motherboard. For243

the OLoS link, measurements were performed to investigate244

the effects of parallel-plate structures on the motherboard.245

As shown in Fig. 1(d), two DIMMs were put in parallel on246

the center of the motherboard. when the distance between247

parallel plates, ω, is small, e.g., ω = 2 or 3 cm, some parts248

of the parallel plates may be in the second or third region249

of the Fresnel ellipsoid space whose radius is 1.17 or 1.44 cm.250

The interceptions may lead to destructive or constructive251

effects due to the phase shift of the signal reflecting on the252

parallel plates [2]. Measurements were performed by varying253

the distances between the DIMMs from 2 to 6 cm with the step254

increment of 1 cm to simulate the variable distances between255

parallel structures on the motherboard. The heights of both256

transceivers were kept at 1.8 cm during the measurements.257

The NLoS link was measured with a heatsink of size258

3.5 × 3.1 × 1.3 cm as an obstacle, as shown in Fig. 1(e).259

Between measurements, the heatsink was horizontally shifted260

away from the transceiver toward side D of the cavity, with a261

step increment of 0.25 cm to understand how the wireless link262

is affected by the gaps between the fins of the heatsink. The263

distance from the heatsink to each of the transceiver is 8.1 cm264

and the heights of both transceivers were kept at 1.8 cm.265

Besides the investigations of these primary controlled sce-266

narios, a practical CPU-PCI link was also measured on the267

densely populated motherboard. As shown in Fig. 1(f), Tx was268

mounted on top of the CPU and Rx was hung over the PCI slot269

with a 3 cm T-R vertical misalignment, which approximates270

the height difference between the CPU and the chip on the271

peripheral components. During the measurements, the hori-272

zontal T-R separations were gradually increased from 19.3 to273

23.3 cm with the step increment of 1 cm as there are several274

PCI slots on the motherboard with different distances to the275

CPU. All the scenarios and corresponding variable attributes276

are summarized in Table II.277

B. Data Augmentations278

To robustly train our deep neural network model to precisely279

predict channel properties, we require a large dataset to feed280

into the model. However, measurements inside the metal281

cavity are very time-consuming as we need to rebuild the282

cavity every time we shift the transceivers or components283

for the measured attribute of each scenario. Additionally,284

due to physical constraints, we choose a relatively large step285

increment (low resolution) for the measurements under each286

TABLE II

MEASURED POTENTIAL SCENARIOS AND CORRESPONDING ATTRIBUTES

scenario to ensure we can physically capture the data precisely. 287

For instance, the heights of transceivers were varied during the 288

LoS measurements by stacking plastic plates with a thickness 289

of 0.3 cm under the transceivers. This means that information 290

between the measured points is unknown to us. To validate 291

the generalization ability of our proposed model, we also 292

test them on a dataset with higher resolution. To that end, 293

we apply data augmentation to expand the size of our dataset 294

and increase its resolution by creating synthetic interpolated 295

data from measured results. The tweaks of training examples 296

in data augmentation make the model less likely to overfit on 297

certain patterns, which improves the generalization ability of 298

the model. 299

The power delay profile (PDP), which provides the inten- 300

sity of a signal received through a multipath channel with 301

respect to time delay, is fed into our deep neural network 302

model for training and prediction. Measured PDP can be 303

derived by squaring the inverse discrete Fourier transform 304

(IDFT) of the measured frequency response, which itself is 305

calculated by subtracting the S21 from the sum of antenna 306

gains and the thru loss. Before any S21 measurements, the 307

thru loss was first measured on the transceiver devices ten 308

times. Then, as mentioned in II-A, we measured the S21 309

ten times at different attributes under each potential scenario. 310

By combining all pairs of the ten thru loss and ten S21 311

measurements, we generate 100 samples for each attribute, 312

as shown in Fig. 3(a). The expanded measured dataset was then 313

separated into three groups by randomly separating 50%, 20%, 314

and 30% of the data at each scenario and attribute to training, 315

validation, and testing sets, respectively. Then the training and 316

validation datasets were interpolated to a higher resolution for 317

the scenarios which are measured in increments (all except the 318

RNLoS scenario). For this augmentation, we applied linear, 319

slinear (spline of order 1), quadratic, cubic, PCHIP (piece- 320

wise cubic Hermite interpolating polynomial), and Akima 321

interpolations to increase resolution down to steps of 0.1 cm 322

(1 λ) for LoS, OLoS, and CPU-PCI link measurements and to 323

0.05 cm (half λ) for the NLoS measurement. Interpolations 324

were not applied on the data of RNLoS link because it 325

is a binary dataset showing the difference between the flat 326

or component side of the DIMM as the reflecting surface. 327

Finally, we generated the average augmentation dataset by 328

averaging the six interpolations for each attribute since we 329

do not necessarily know which interpolation technique would 330

be represent the unmeasured data. For example, data was 331

measured at h = 0, 0.3, 0.6, . . . , 4.5 cm for the LoS propaga- 332

tion. Measurements were performed ten times at each height. 333
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Fig. 3. Illustration of data augmentation: (a) data expansion and (b) averaged interpolation for data of LoS propagation.

With the data expansion, we generated 100 PDP samples at334

each height. As shown in Fig. 3(b), six different interpolation335

techniques were then applied to the training and validation336

datasets to improve the resolution from 0.3 to 0.1 cm. We then337

averaged those interpolations at each height. Doing so resulted338

in 50 and 30 PDP at each height h = 0, 0.1, . . . , 4.5 cm for339

the respective training and validation datasets, and 20 PDP340

at each of the same heights for the testing dataset. This341

averaged augmentation provides a single dataset (only one342

average PDP instead of six at each interpolated attribute) with343

higher resolution.344

III. DEEP LEARNING MODEL345

In this section, we introduce a ResNet-based feature con-346

catenated neural network which is designed to predict proper-347

ties of the THz wireless channel in the motherboard desktop348

environment. The general structure of the model is shown in349

Fig. 4. As shown in the figure, the proposed neural network350

model consists of three main blocks. The first is the ªfeature351

extractionº block which extracts the generalized features nec-352

essary to distinguish between scenarios and specific attributes353

of each scenario from the input PDP data. Those extracted354

features are then sent to the ªscenarios predictionº block to355

predict the type of scenario the channel is under (LoS, RNLoS,356

OLoS, NLoS, and CPU-PCI link). The overall network design357

is called ªfeature concatenatedº because the model’s scenario358

prediction output is then concatenated with the extracted359

features and fed to the ªattributes predictionº block to estimate360

the attribute of that predicted scenario.361

Our novel ResNet-based feature concatenated neural net-362

work model for the prediction of THz channel property is363

shown in Fig. 5. As shown in the figure, the feature extraction364

block of the proposed ResNet-based feature concatenated365

network model contains five sub-blocks, which are b1, b2,366

b3, b4, and a global average pooling (GAP) sub-block [33].367

b1 consists of a 64-channel 1 × 7 convolutional layer with368

the padding of 3 and a stride of 2, a batch normalization369

(BN) layer, rectified linear unit (ReLU) activation layer, and370

a 1 × 3 maximum pooling layer with a stride of 2. During371

Fig. 4. Generalized model structure consisting of three main blocks.

training, the weights of intermediate convolution filters (e.g., 372

the convolutional layers) may have strong variation between 373

different layers, nodes in the same layer, and over time due 374

to the updating model parameters. BN [34] is implemented 375

to maintain stable optimization and reduce these strong vari- 376

ations that may hinder the convergence of the network The 377

ReLU [35] activation function is applied to increase the 378

nonlinear expressiveness of the network, which simply outputs 379

its input for positive values and 0 for negative values. A max- 380

pooling layer is used to mitigate sensitivity of the network to 381

noisy inputs and to spatially downsample representations [36]. 382

b1 increases the number of channels of the inputs from 1 to 383

64 while reducing the size of the data from 400 to 99. b2±b4 384

are three ResNet building blocks shared with the same struc- 385

tures. Each of them consists of a residual block with an 386

additional 1 × 1 convolutional layer to transform the inputs 387

to the desired shape for the addition operation, and a residual 388

block without the 1 × 1 convolutional layer. A residual block 389

is the core element of a ResNet model, which guarantees the 390

strictly increasing expressiveness of the network. The structure 391
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Fig. 5. Structure of the proposed ResNet-based feature concatenated network model.

Fig. 6. Residual block.

of a typical residual block is shown in Fig. 6. As shown in392

the figure, the input is denoted by x , the mapping of the393

stacked nonlinear layers in the dotted-line box which consists394

of a weight layer (convolutional layer), a ReLU activation395

layer, and another weight layer at the end is denoted as f (x),396

and a shortcut connection performs the identity mapping to397

generate the desired output mapping f (x) + x . If the input x398

is already optimal, the weights and biases of the layers f (x)399

may be optimized to generate a zero output. With the shortcut400

connection, the network is easier to optimize as it guarantees401

that the deeper model would not generate higher training error402

than its shallower counterpart [37]. b2 doubles the number of 403

input channels and halves the size of input data. b3 and b4 404

keep doubling the number of input channels while maintaining 405

the size of the input data. The GAP sub-block is composed of a 406

GAP layer, which computes the average value across the entire 407

matrix for each input channel, and a linear layer is connected 408

behind, which halves the size of the input data. Also, BN and 409

ReLU activation functions are applied to the outputs of the 410

linear layer. GAP blocks are very robust to spatial translations 411

of the inputs as they sum out the spatial information [33]. 412

They also prune the shape of the inputs so that the outputs 413

can be directly fed into the prediction blocks. 414

The features learned from the feature extraction block are 415

then fed into the scenarios prediction block for the prediction 416

of the five potential scenarios. The input sizes for the three 417

fully connected layers of the block are 256, 128, and 32. 418

Similar to the feature extraction block, both BN and the ReLU 419

activation function are applied for improved convergence of 420

the network. The predicted channel scenario is identified by 421

choosing the output neuron with the largest value. 422

Given the predicted scenario, the network model then pre- 423

dicts the value of the specific attribute relevant to that scenario, 424

e.g., the distance between DIMMs, transceiver height, and 425

so on. The predicted scenario is one-hot encoded with five 426

bits and then concatenated with the extracted features as the 427

inputs of the attributes prediction block to predict the attribute 428

of that scenario. One-hot encoding translates the integer rep- 429

resented predicted scenario into a group of bits with each 430

bit representing a potential scenario and the predicted class 431

high (1) and others low (0). Since those potential scenarios 432

are independent of each other, one-hot encoding ensures that 433

there is not any presumed hierarchy or partial correspondence 434

between the potential scenario inputs that may be an issue if 435
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multiple scenarios were nonzero. Similar to the structure of436

the scenario prediction block, the attribute prediction block437

also consists of three fully connected layers whose input sizes438

are 256, 128, and 32. In contrast with the scenario prediction439

block, the attribute of the scenario is predicted directly by the440

block.441

Since the proposed network model predicts both the mea-442

surement scenario and an attribute of that scenario, training443

requires both a scenario classification loss and an attribute444

regression loss. Hence, the overall training loss function of445

the proposed model is derived as the sum of the cross-entropy446

loss for the scenarios classification and the mean squared error447

(MSE) loss for the attribute regression. The cross-entropy loss448

calculates the expected loss value for the predicted scenario449

class, while MSE quantifies the distance between the real450

and predicted value of the attribute. To train the network,451

we use the robust ªAdamº variant of the stochastic gradient452

descent optimization algorithm which estimates the first- and453

second-order moments of the gradient via an exponential454

moving average to update network parameters [38].455

IV. ANALYSIS AND MODEL VERIFICATION456

In this section, we first trained the proposed ResNet-based457

feature concatenated network model described in Section III458

on the augmented training PDP. We then tested and compared459

the performance of the proposed model with an MLP-based460

network model on both the expanded measured dataset (with-461

out interpolations) and the averaged interpolated dataset (with462

interpolations) described in Section II-B. Finally, the ResNet-463

and MLP-based feature concatenated network models are ana-464

lyzed with Grad-CAM and FAM, respectively, which provide465

the visual explanations for model decisions.466

A. Model Training and Performance Evaluation467

Before training, we first standardize the dataset by subtract-468

ing the mean and dividing by the standard deviation across469

the feature dimension. We also normalize the attributes for470

each scenario. These normalizations allow the network to learn471

weights on a similar scale for each scenario and attribute. The472

ResNet-based feature concatenated network model was trained473

for 1500 epochs. During each epoch, the network iterates over474

random batches of 256 samples and updates the variables in475

convolutional and linear layers with each batch. The loss of the476

model on training, validation, and testing dataset during the477

training process are compared in Fig. 7. It can be seen from478

the plot that the Loss of the model on the training dataset is479

always lower than the loss on the validation and testing dataset.480

The losses dropped quickly in the first 400 epochs of training481

as the model parameters are initialized randomly. The losses482

on the training, validation, and testing datasets converged to483

5 × 10−5, 6.5 × 10−4, and 5.8 × 10−4 after 1200 epochs of484

training.485

To evaluate the performance of the proposed ResNet-based486

feature concatenated network model, we first tested it on the487

expanded measured dataset. The results show that the model488

can perfectly classify the scenarios under which the input PDP489

was measured. As described in Section III, our proposed model490

Fig. 7. Losses of ResNet-based feature concatenated network model on
training, validation, and testing dataset over 1500 epochs of training.

predicts the attribute under the predicted scenario directly. 491

As with any regression problem, there is always a deviation 492

between the predicted and the correct value. For a robust 493

model, that deviation is small so that the predicted value can 494

be classified as the correct value by choosing an appropriate 495

threshold. To evaluate the robustness of our proposed model, 496

we calculated and compared the classification accuracy of the 497

predicted attribute for each potential scenario with respect to a 498

threshold in the range of zero to half of the step increment size 499

set for the measurements. The maximum distance threshold is 500

0.15, 0.5, 0.5, 0.125, and 0.5 cm for LoS, RNLoS, OLoS, 501

NLoS, and CPU-PCI link, respectively, as shown in Fig. 8(a). 502

It can be seen from the plot that the ResNet-based fea- 503

ture concatenated model performs perfectly on the expanded 504

measured dataset with achieved nearly 100% classification 505

accuracy under all potential scenarios with the largest possible 506

threshold. Also, it can be observed that the model differentiates 507

between classes most easily in the RNLoS scenario as there are 508

only two classes (either flat or component side of the DIMM 509

as the reflection surface). Since there are only 5 different 510

attributes for the NLoS and CPU-PCI link scenarios, the 511

model differentiates between classes even with relatively small 512

thresholds. Also, comparing these two scenarios, the model 513

converges slower under the CPU-PCI link as the environment 514

of this scenario is much more complicated than that of the 515

NLoS. The small distances between the 16 different attributes 516

for LoS result in slightly less robust performance across a 517

range of thresholds. The model converges the slowest under 518

the OLoS scenario as the measured PDP are very similar 519

to each other with only small variations on the intensity of 520

multipath signals. 521

The performance of our proposed ResNet-based feature 522

concatenated network model has been compared with an MLP- 523

based method, which is a widely used channel prediction 524

scheme [12], [17], [21], [39], [40], [41], [42], [43], [44], 525

[45], [46], [47]. The structure of the MLP-based network 526



IE
E
E
 P

ro
o
f

8 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

Fig. 8. Classification accuracy of (a) ResNet-based feature concatenated model tested on the expanded measured dataset, (b) MLP-based model tested on
the expanded measured dataset, (c) ResNet-based feature concatenated model tested on the averaged interpolated dataset, and (d) MLP-based model tested on
the averaged interpolated dataset for the attribute prediction under each potential scenario with respect to the selected threshold.

model used in comparison consists of a five-layer feature527

extraction block, a three-layer scenario prediction block, and528

another three-layer attribute prediction block, as shown in529

Fig. 9. Like our ResNet-based feature concatenated model,530

the MLP-based model also performs perfectly on the scenario531

classification task. Fig. 8(b) shows the classification accu-532

racy of the ResNet-based feature concatenated model on the533

attribute prediction for each potential scenario with respect534

to the classification threshold on the expanded measured535

dataset. It can be seen from the plot that the MLP-based536

model also performs perfectly for the attribute prediction537

with nearly 100% achieved classification accuracy under all538

potential scenarios. However, by comparing Fig. 8(a) with (b),539

it can be observed that our ResNet-based feature concatenated540

model converges with tighter thresholds than the MLP-based541

model. Additionally, the classification accuracy achieved by542

the ResNet-based feature-concatenated model is higher than543

that of the MLP-based model on LoS, OLoS, and CPU-PCI544

link with a selected threshold of 0.05 cm, which indicates that545

the ResNet-based feature-concatenated model is more robust546

and performs better than the MLP-based model.547

In addition to the evaluation on the expanded mea-548

sured dataset, we also tested and compared our proposed549

ResNet-based feature concatenated model with the MLP-based550

model on the averaged interpolated dataset with higher res-551

olution. Again, both models achieve 100% accuracy for552

scenario classification. However, while the ResNet-based553

Fig. 9. Structure of the MLP-based network model.

feature concatenated model keeps constant performance for the 554

prediction of the attribute under each scenario, the MLP-based 555

model suffers a performance degradation on the averaged 556
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interpolated dataset. Fig. 8(c) and (d) show the classifica-557

tion accuracy of our ResNet- and the MLP-based feature558

concatenated network models, respectively, for the attribute559

prediction under each potential scenarios with respect to the560

growing threshold on the averaged interpolated dataset and561

compare with the performances of the models on the measured562

expanded dataset. The selected threshold is in the range of563

zero to half of the higher-resolution step increment, which is564

0.025 cm for NLoS and 0.05 cm for other scenarios. As shown565

in Fig. 8(c), it can be seen that the convergence rates of566

our proposed ResNet-based feature concatenated model on567

the expanded measured dataset (lower resolution) are very568

close to those on the averaged interpolated dataset (higher569

resolution), except for the CPU-PCI link which may because570

this scenario is much more complicated than others. With the571

selected threshold of 0.05 cm, as circled in red in these two572

plots, the classification accuracy of the ResNet base feature573

concatenated model tested on the averaged interpolated dataset574

is the same as that of the model tested on the expanded575

measured dataset. In contrast, it can be noticed from Fig. 8(d)576

that the convergence rates of the MLP-based model drop a lot577

on the augmented dataset for nearly all the scenarios, espe-578

cially for the OLoS and CPU-PCI link. In addition, with the579

threshold of 0.05 cm, a 9% and a 5% drop of the classification580

accuracy for OLoS and CPU-PCI link, respectively, can be581

observed from the plots as circled in red. The performance582

degradation of the MLP-based model suggests that the range583

of the deviation between the MLP predicted and the correct584

value is larger than 0.05 for most attributes under the OLoS585

and CPU-PCI link, and the MLP-based model performs worse586

on the averaged interpolated data as the distance between587

interpolated neighbors are relatively short (half λ for NLoS588

and λ for others) and these neighbors are very similar to each589

other. The performance difference of our proposed ResNet-590

and MLP-based feature concatenated network models indicates591

that our proposed ResNet-based feature concatenated model is592

more robust and reliable on the dataset with higher resolution.593

B. Model Analysis594

To explain the performance difference of these two models595

and have a better understanding of the wireless channel and596

the deep learning models, FAM and Grad-CAM are applied597

on the MLP- and our proposed ResNet-based feature concate-598

nated network models, respectively. To understand how the599

MLP-based network model makes predictions, we visualize600

a feature activation map by taking the absolute value of the601

average over the 256 neurons in the first linear layer as follows:602

w|ave| =

∣

∣

∣

∣

∣

1

256

256
∑

i=1

Wi,∗

∣

∣

∣

∣

∣

(1)603

where W ∈ R256×400 represents the weights of the first linear604

layer [25]. FAM provides an illustration of which parts of the605

input are emphasized by an average neuron in the first layer to606

make decisions. As shown in Fig. 10, we highlighted a PDP607

measured under the OLoS scenario with the calculated w|ave|.608

It can be seen from the plot that the model focuses on the609

peaks with the excess delay of 0, 1.835, and 3.837 ns to make610

Fig. 10. Contributing regions of the PDP measured under the OLoS scenarios
for the MLP-based network model where the attention of the neurons as
measured by the FAM is denoted by the color of each point.

decisions, which are circled in red. Instead of the first peak 611

(generated from the signal traveling directly from Tx to Rx) 612

with the most power intensity, the model focuses more on the 613

second and the third peaks (generated from the signal bouncing 614

back and forth between the transceiver sidewalls [16]), which 615

indicates that the model weights more on the multipath signals. 616

This follows intuition since varying the distance between the 617

parallel DIMMs under the OLoS scenario leaves the intensity 618

of the direct traveling signal unchanged while the multipath 619

signal intensity would fluctuate due to interactions of the 620

DIMMs with the Fresnel zones [16]. In spite of this, the 621

intensity of the first peak still influences the model decisions 622

as it has strong differences when we are between different 623

scenarios. Since the intensities of these peaks where the MLP 624

model focuses are very different for the PDP under each 625

scenario [16], the MLP-based model works perfectly on both 626

the expanded measured and averaged interpolated datasets for 627

the scenarios classification task. 628

The feature map also explains the performance degradation 629

of the MLP-based model on the averaged interpolated dataset. 630

Fig. 11(a) compares the PDP under OLoS scenario with the 631

attributes from 5.2 to 5.6 cm and the part of the confusion 632

matrix of the MLP-based model at these locations. It can be 633

seen from the confusion matrix that the MLP-based model 634

fails in these locations as the classification accuracy is less than 635

20%. Also, it can be seen that the PDP are very similar and the 636

intensities of the peaks on which the model focuses, as circled 637

in red in the figure, are very close to each other; which explains 638

the failure of the model. As a counterexample, we also plot and 639

compare the PDP with the attributes from 2.0 to 2.3 cm and 640

the part of the confusion matrix at these locations as shown 641

in Fig. 11(b). This figure shows that the MLP-based model 642

performs much better at these locations as the classification 643

accuracy is greater than 80%. It can be observed that the 644

PDP is more easily differentiable between those differences at 645

the peak locations where the model focuses. The contributing 646
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Fig. 11. PDP and confusion matrix of the MLP model under OLoS scenario with (a) attributes from 5.2 to 5.5 cm and (b) attribute from 2 to 2.3 cm.

Fig. 12. (a) Heatmap of calculated Lc
Grad−C AM with randomly selected PDP as the input for each scenario. (b) Contributing regions colored onto the

randomly-selected PDP for the LoS channel. (c) Contributing regions of the randomly-selected PDP for the CPU-PCI link.

regions shown in Fig. 10 also apply to other potential scenarios647

as the weights of the neurons are fixed for the well trained648

MLP-based model.649

Similarly, we also want to understand how the ResNet-based650

feature concatenated model makes predictions. However, the651

FAM is not suitable here as the ResNet-based feature concate-652

nated model has a very different structure than the MLP-based653

model where convolutional layers instead of fully connected654

layers are used to extract the features from the input data. Class 655

activation mapping (CAM) was first proposed to produce a 656

localization map for a classification CNN with a specific archi- 657

tecture, where global average pooled convolutional feature 658

maps are fed directly to the output layer, by projecting back 659

the weights of the output layer on to the convolutional feature 660

maps [48]. A CAM can localize the class-distinguishing region 661

of an input without positional supervision nor the requirement 662



IE
E
E
 P

ro
o
f

FU et al.: DEEP LEARNING-BASED THz WIRELESS CHANNEL PROPERTY PREDICTION 11

of a backward pass. However, the constraint on the model663

architecture is restrictive so that it may not be useful for664

our case as the GAP layer is connected by another two665

fully connected networks (scenarios and attributes prediction666

block) in which the spatial information retained by previous667

convolutional layers is lost. The Grad-CAM was proposed668

to address the disadvantage of CAM as it uses the gradient669

information from the last convolutional layer of the CNN to670

assign importance values to each neuron for a particular class671

of interest [26]. The Grad-CAM is used here to provide visual672

explanations for the decisions made by our ResNet-based673

feature concatenated model. To derive the class-discriminative674

localization map Lc
Grad−C AM for any class c, the gradient of the675

score for class c, yc, with respect to feature map activations Ak
676

of the last convolutional layer are first calculated, (∂yc/∂ Ak).677

These gradients are then global average pooled over the last678

dimensions (indexed by i) to generate the neuron importance679

weights αc
k as follows [26]:680

αc
k =

1

Z

∑

i

∂yc

∂ Ak
i

(2)681

where Z is the number of entries in the feature map (Z =682
∑

i 1). The weight αc
k captures the importance of feature map683

k for a target class c. The localization map Lc
Grad−C AM is684

derived by combining weighted forward activation maps and685

taking the absolute value of it as follows:686

Lc
Grad−C AM =

∣

∣

∣

∣

∣

K
∑

k

αc
k Ak

∣

∣

∣

∣

∣

(3)687

where K is the number of feature maps of the last688

convolutional layer. This result provides a coarse heatmap689

of the same size as the convolutional feature maps in the690

last convolutional layer. To highlight the regions where the691

model has more attention to make decisions, we first enlarged692

the localization map Lc
Grad−C AM to the size of input PDP693

and highlighted the PDP with the enlarged Lc
Grad−C AM for694

each scenario. Instead of using ReLU for the Grad-CAM695

localizations as described in [26], we take the absolute value696

as we are interested in the features that have any influence697

(not just positive influence) on the class of interest. It has been698

proven that Grad-CAM generalizes CAM for CNN-based699

architectures as the class features weights ωc
k used in CAM700

are proportional to the neuron importance weights αc
k used by701

Grad-CAM [26]. This generalization allows us to provide a702

visual explanation for our ResNet-based feature concatenated703

model which has complicated structures connected behind the704

GAP layer. Fig. 12(a) shows the heatmap of the calculated705

Lc
Grad−C AM with randomly selected PDP as the input for706

each potential scenario. Fig. 12(b) and (c) highlight the707

contributing regions of the randomly selected PDP for LoS,708

and CPU-PCI link, respectively, based on the corresponding709

Lc
Grad−C AM . It can be observed from the plots that, similar to710

the MLP-based model, the ResNet-based feature concatenated711

model also focuses on the first few peaks of the PDP with712

specific emphasis depending on the scenario. Interestingly,713

both models pay more attention to the multipath signals714

than the direct traveling signal. However, besides the peaks,715

Fig. 13. (a) PDP and confusion matrix of the ResNet-based feature
concatenated model under OLoS scenario with attributes from 5.2 to 5.5 cm.
(b) Highlighted contributing regions of the PDP with the attribute of 5.3 cm
under OLoS scenario.

the ResNet-based feature concatenated model also focuses 716

on the valleys between those peaks even with stronger 717

attention. This indicates that these valleys can also provide 718

important information on the wireless channel and could also 719

explain why the ResNet-based feature concatenated model 720

performs more robustly than the MLP model. Fig. 13(a) 721

shows the PDP and the confusion matrix of the ResNet-based 722

feature concatenated model, again, under the OLoS scenario 723

with the attribute ranging from 5.2 to 5.5 cm. Compared 724

with the confusion matrix of the MLP model shown in 725

Fig. 11(a), it can be concluded that the ResNet-based feature 726

concatenated model performs much better than the MLP 727

model at these locations as the classification accuracy of 728

the ResNet-based feature concatenated model is greater than 729

64% while that of the MLP model is even less than 20%. 730

Fig. 13(b) shows the contributing regions of the PDP with 731

the attribute of 5.3 cm under the OLoS scenario. As shown in 732
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Fig. 14. Testing losses of our proposed ResNet-based feature concatenated
model, GoogLeNet, VGG, and ViT on the same testing dataset throughout
the training process.

this plot, besides the peaks due to the multipath signals, the733

model has even more attention on the valleys between those734

peaks where the PDP with the attributes from 5.2 to 5.5 cm735

can be clearly distinguished with each other as circled in736

red in Fig. 13(a), which explains why the ResNet-based737

feature concatenated model performs better at these738

locations.739

Our proposed model performs better than other models as740

it has strong attention on the valleys between the multipath741

peaks. To show this, we compared the performance of our742

proposed ResNet-based feature concatenated model with some743

other mainstream deep learning models which include the744

GoogLeNet, visual geometry group (VGG), and vision trans-745

former (ViT). Fig. 14 shows the testing losses of our proposed746

model, GoogLeNet, VGG, and ViT when evaluated on the747

same testing dataset throughout the training process. As shown748

in the dataset, our ResNet-based feature concatenated model749

outperforms other models, which illustrates the superiority of750

our proposed model.751

V. CONCLUSION752

This article presents the application of deep learning method753

on property prediction of the THz wireless channel in a moth-754

erboard desktop environment. Measurements were performed755

on a motherboard in a desktop size metal cavity. The PDP756

data which contains the channel information fed into the757

deep learning models was collected under five environment758

scenarios. For each scenario, measurements were taken several759

times with different attributes. To train the proposed deep760

learning model robustly and evaluate their performance com-761

prehensively, data augmentation is applied on the measured762

PDP to expand the data size and to improve the resolution.763

A ResNet-based feature concatenated neural network model764

was proposed to perform the channel prediction. The gen-765

eralized model structure consists of three blocks which are766

feature extraction, scenarios prediction, and attributes predic-767

tion block. The proposed model is evaluated and compared768

with an MLP-based model on both expanded measured and769

averaged interpolated datasets. Both models perform well on770

the expanded measured dataset with nearly perfect prediction771

on both scenarios and attributes. Our proposed model out- 772

performs the MLP-based model on the averaged interpolated 773

dataset as the MLP model has a drop of classification accuracy 774

on the attribute prediction task for each scenario with a 775

fixed threshold and converges slower with respect to the 776

larger thresholds, while our ResNet-based feature concatenated 777

model keeps constant performance. The analyses are made 778

with FAM and Grad-CAM applied on the MLP- and our 779

ResNet-based feature concatenated models, respectively. It is 780

shown from the FAM that the MLP model has a strong focus 781

on the peaks of the PDP corresponding to multipath signals. 782

However, some of the adjacent interpolated data are very 783

close to each other in the regions on which the MLP focuses, 784

which leads to performance degradation (or failure) on these 785

areas. Also, as seen from the Grad-CAM, the ResNet-based 786

feature concatenated model also has strong attention on the 787

valleys between peaks where the neighboring interpolated data 788

can be distinguished better, which accounts for its superior 789

performance. Better performance in comparison with other 790

mainstream deep learning models also proves the superi- 791

ority of our proposed ResNet-based feature concatenated 792

model. 793
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Deep Learning-Based THz Wireless Channel

Property Prediction in Motherboard

Desktop Environment

Jinbang Fu , Erik J. Jorgensen , Graduate Student Member, IEEE, Prateek Juyal ,

and Alenka ZajiÂc , Senior Member, IEEE

AbstractÐ This article proposes a residual network (ResNet)-1

based feature concatenated neural network model to predict the2

type of scenario the channel is under and the attribute of the3

predicted scenario with power delay profile (PDP) as the inputs.4

The generalized model structure consists of three blocks for5

feature extraction, scenario prediction, and attribute prediction,6

respectively. The PDP data is collected from a motherboard7

desktop environment under five different physical arrangement8

scenarios. Within each scenario, data is collected several times9

while varying a different physical attributes for each scenario.10

Two steps of data augmentation are applied to expand the size11

and to improve the resolution (difference between the neighboring12

attributes) of the measured dataset for the robust training and13

thorough evaluation of the proposed model. The proposed model14

is evaluated and compared with a multilayer perceptron (MLP)-15

based model on an expanded measured and averaged interpolated16

dataset. It is shown that both models perform very well on17

the expanded measured dataset with nearly 100% prediction18

accuracy on both scenarios and attributes. The MLP-based model19

suffers performance degradation on the averaged interpolated20

dataset with up to a 9% drop of classification accuracy on21

attribute prediction tasks, while our ResNet-based feature con-22

catenated model performs equally in both scenarios. Feature23

activation map (FAM) and grad-class activation mapping (Grad-AQ:1 24

CAM) approaches are applied to provide visual explanations25

highlighting characteristics of the input PDP used for model26

decisions. FAM shows that the MLP-based model focuses on the27

multipath generated peaks of the PDP where some interpolated28

neighboring data points cannot be distinguished. The Grad-CAM29

shows that the proposed ResNet-based feature concatenated30

model performs better because it has strong attention not only31

on the multipath peaks but also on the valleys between those32

peaks which hold distinguishing information.33

Index TermsÐ Channel characterization, channel prediction,34

channel sounding, chip-to-chip wireless channels, THz commu-35

nications.36

I. INTRODUCTION37

THE THz wireless link is considered as a replacement38

for wired connections in inter-chip communication for39

future computing systems [1], [2], [3], [4], [5], [6], [7], [8],40

[9], [10]. A wireless link system alleviates the needs for41

AQ:2 Manuscript received 16 June 2022; revised 20 March 2023;
accepted 14 May 2023. This work was supported in part by the NSF
under Grant 1651273. (Corresponding author: Jinbang Fu.)

AQ:3 The authors are with ??? (e-mail: jfu72@gatech.edu).
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TAP.2023.3278831.
Digital Object Identifier 10.1109/TAP.2023.3278831

cable management and reduces the complexity of the com- 42

puting system design [1], [2]. Operating at THz frequencies 43

with its larger available bandwidth allows higher speed and 44

lower latency communications. With smaller antenna sizes and 45

reduced spacing at THz frequencies, spatial multiplexing can 46

be applied to improve data rates to Terabit-per-second which 47

is close to the data rate of current wired systems [2], [11]. 48

To realize THz wireless inter-chip communication, compre- 49

hensive understanding, and identification of the corresponding 50

wireless channels is required. Wireless channels are usually 51

determined by the signal propagation environment and inter- 52

actions with the objects in the environment, also known as the 53

channel properties [12]. These channel properties define the 54

characteristics of the wireless channel and affect the quality 55

of possible wireless links. The prediction of channel properties 56

is important for establishing inter-chip communication and 57

allows for further adjustments to improve the communication 58

link. With a precise prediction of channel properties, the 59

appropriate transmission mode can be selected to adapt to 60

the environment, which can help to provide more reliable 61

communication with better performance [12]. 62

To realize THz wireless inter-chip communication, channel 63

modeling tools are needed and several THz wireless chan- 64

nel models have been proposed [8], [9], [13], [14], [15]. 65

Based on the geometrical distribution of the environment, 66

statistical channel models have been proposed for short- 67

range device-to-device channels and THz wireless inter-chip 68

communication channels [3], [4]. Constant rate models have 69

been applied on THz wireless channels in a datacenter and 70

in the motherboard desktop environment by modifying the 71

classic Saleh±Valenzuela (S-V) model [6], [16]. These classic 72

analytical techniques can provide good estimations of the 73

wireless channel with simple math equations. However, these 74

techniques are generally not suitable for the prediction and 75

identification of channel properties because the simplifications 76

introduced in the models may not capture more complex 77

multipath environment properties [17]. Moreover, the large 78

number of potential links, obstructions, scattering, and so 79

on for the inter-chip communication in motherboard desktop 80

environment requires a large amount of data for a thorough 81

channel characterization. These classical techniques are less 82

suitable for the analysis of large datasets as they might miss 83

important relations within the data [18]. 84

0018-926X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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In contrast, machine learning (ML) is a branch of arti-85

ficial intelligence that learns a model from data to make86

decisions and has achieved breakthroughs in application areas87

such as image processing, natural language processing, and88

data mining [18]. Due to their rise in popularity, ML tech-89

niques have been gradually applied to study the wireless90

propagation channel, such as channel characterization and91

channel modeling [10], [12]. Researchers have applied ML92

techniques on the estimation of propagation loss [17], [19],93

tracking multipath components [20], and derivation of channel94

statistical parameters [21]. Also, ML techniques are applied95

on channel property prediction as they have been shown to96

provide good performance in identifying small differences97

between measurements to characterize different properties.98

Several deep learning-based methods have been proposed for99

a nonline of sight (NLoS) recognition [22], indoor environ-100

ments classification [23], and vehicle communication scenarios101

identification [24]. Considering the complicated propagation102

channel on the densely populated motherboard in a metal103

casing, where some hidden patterns due to scattering, reflec-104

tions, and resonant cavity effects are difficult to identify by105

traditional techniques, ML methods are more likely to succeed106

for channel prediction in such an environment.107

To establish a stable wireless link for THz wireless108

inter-chip communication in computing systems, it is neces-109

sary to understand the channel properties in advance. These110

properties include potential physical scenarios of the channel111

such as the link between CPU and PCI, the link between112

CPU and dual in-line memory module (DIMM), and so on,113

and certain attributes under those scenarios such as the height114

differences between the chips or the distances between the115

CPU and the PCI components. These channel properties could116

be predetermined by an ML model with the information given117

by the pilot signal.118

The main contributions of this article are summarized as119

follows.120

1) We apply deep learning methods to predict channel121

properties for THz chip-to-chip wireless communication122

in motherboard desktop environment. With PDP as the123

input, we propose a residual network (ResNet)-based124

feature concatenated model to predict the channel’s125

physical scenario and an additional attribute of that126

predicted scenario.127

2) The proposed model is evaluated and compared with128

a multilayer perceptron (MLP)-based model on the129

expanded measured dataset and the averaged interpo-130

lated dataset. Results show that our model performs131

very well on the expanded measured dataset with nearly132

perfect prediction of both scenarios and attributes. These133

results exemplify the validity of our proposed model134

and the feasibility of applying deep learning model for135

THz channel prediction on a densely-populated moth-136

erboard in a practical computing system. We show that137

our ResNet-based feature concatenated model performs138

more robustly than the MLP model as it has higher139

classification accuracy when predicting a specific sce-140

nario’s attribute. Our ResNet-based feature concatenated141

model also has constant performance on both measured142

and augmented dataset while the MLP model shows 143

performance degradation on the averaged interpolated 144

dataset. 145

3) feature activation mapping (FAM) and Gradient- 146

weighted class activation mapping (Grad-CAM) are 147

applied on the MLP and our ResNet-based feature 148

concatenated models, respectively, to explain their per- 149

formance differences by determining the contributing 150

regions of the raw data that the models use to make 151

their predictions [25], [26]. The results provide us a 152

deeper understanding of the THz wireless channel in 153

the motherboard desktop environment. We find that the 154

MLP model only focuses on the peaks of the input PDP 155

with the delay of 0, 1.835, 3.837 ns corresponding to 156

multipath propagations, while the ResNet-based feature 157

concatenated model has strong attention not only to 158

those peaks but also on the valleys between those peaks. 159

This implies that the valleys between the peaks gen- 160

erated by the multipath signals also contain important 161

information related to the wireless channel that help 162

distinguish different channel properties. 163

The rest of the article is organized as follows. Section II 164

presents the channel measurements and the augmentation of 165

the collected data. Section III illustrates the design of the 166

ResNet-based feature concatenated neural network model. 167

Section IV presents the analysis and model verification. 168

Finally, Section V makes concluding remarks. 169

II. DATA MEASUREMENTS AND AUGMENTATIONS 170

In this section, we provide a brief discussion about THz 171

wireless channel measurements in the motherboard desktop 172

environment under five different potential scenarios: LoS, 173

reflected non-LoS (RNLoS), obstructed-LoS (OLoS), non-LoS 174

(NLoS), and a practical CPU-PCI link. Under each of these 175

scenarios, measurements are performed several times while 176

varying a different attribute for each scenario. Due to time 177

and physical setup limitations, we also apply multiple data 178

augmentation techniques on the measured data for training, 179

validation, and analysis of our proposed models. 180

A. THz Channel Measurements 181

The measurement setup includes a Keysight N5224A PNA 182

vector network analyzer (VNA), a Virginia diodes, Inc. 183

(VDI) transmitter (Tx210), and a VDI receiver (Rx148) 184

[27]. The VNA generates the input signal in the range of 185

10 MHz±12 GHz with the power level (Pin) of 0 dBm and 186

feeds it into the VDI Tx210. In the VDI Tx210 transmit- 187

ter, a 25 GHz signal is generated by a Herley-CTI phase- 188

locked dielectric resonator oscillator (DPRO with 100 MHz 189

reference crystal oscillator) [28]. It is amplified and frequency 190

doubled by Norden N08-1975 [29] and then tripled by VDI 191

WR6.5X3 [30]. This signal is then fed into a sub-harmonic 192

mixer (WR2.8SHM) [31] which doubles the carrier frequency 193

and mixes it with the VNA-generated baseband signal. This 194

THz-range signal is then transmitted by a horn antenna in 195

the range of 288±312 GHz. The same components are used 196

to down-convert the signal, the difference is that the DPRO is 197
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Fig. 1. Setups for the measurements of THz wireless channel in motherboard desktop environment. (a) Fabricated metal casing that houses each of (b) LoS,
(c) RNLoS, (d) OLoS, (e) NLoS, and (f) CPU-PCI link measurement scenarios.

Fig. 2. Block diagram of the measurement system.

tuned to 24.2 GHz. The received signal is then down-converted198

to an intermediate frequency (IF) of 9.6 GHz. The VNA199

then samples the upper sideband of the down-converted signal200

in the range of 9.61-21.6 GHz with 801 points. The block201

diagram of the measurement system is shown in Fig. 2AQ:4 202

[1], [32] and all measurement parameters are summarized in203

Table I. Pyramid horn antennas with a gain that varies in204

the range of 22±23 dBi over the observed frequency band205

from 300 to 312 GHz were used in the measurements. The206

theoretical half-power beamwidth (HPBW) of the horn is about207

12◦ in azimuth and elevation. The physical dimension of the208

horn aperture is 8.91 mm, which limits the far-field boundary209

to 15.88 cm at 300 GHz according to the Fraunhofer distance.210

To measure the THz wireless channel in a motherboard211

desktop environment, we fabricated an aluminum metal cavity212

with the size of 27.5 × 27.5 × 10 cm, which approximates213

the size of a desktop, with two square aluminum plates214

as the top and bottom walls [5]. The other four sides are215

TABLE I

MEASUREMENT PARAMETERS

wrapped by aluminum foil and labeled as A±D, as shown in 216

Fig. 1(a). As shown in Fig. 1(b), a motherboard was supported 217

4.2 cm over the bottom wall by brass hex standoffs inside 218

the fabricated cases. For all channel environment scenarios, 219

measurements are performed on the motherboard inside the 220

metal cavity. 221

For the measurements of LoS links, as shown in Fig. 1(b), 222

antennas of the transmitter (Tx) and receiver (Rx) were aligned 223

with each other and inserted into the cavity through small 224

holes drilled on the transceiver sidewalls (A and C) of the 225

cavity. Measurements were performed on the backside of the 226

motherboard to separate the influence of the other components. 227

As the heights of components on the motherboard may differ 228

and to investigate the ground effect of the motherboard, both 229
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transceivers were elevated simultaneously in height during the230

measurements. To do this, the height of transceivers h was231

varied from 0 to 4.5 cm above the motherboard in increments232

of 0.3 cm while the distance between the transceivers was233

fixed at 19.3 cm.234

As shown in Fig. 1(c), a DIMM was placed standing up235

on the center of the motherboard and diagonally aligned with236

transceivers which were positioned orthogonal to each other237

for the RNLoS measurements. The distance from the DIMM238

to each of the transceiver is 9.55 cm and the heights for239

both transceivers were fixed at 1.8 cm above the motherboard.240

Both flat and component sides of the DIMM were investigated241

during the measurements as both sides could possibly be242

used to establish the wireless link on the motherboard. For243

the OLoS link, measurements were performed to investigate244

the effects of parallel-plate structures on the motherboard.245

As shown in Fig. 1(d), two DIMMs were put in parallel on246

the center of the motherboard. when the distance between247

parallel plates, ω, is small, e.g., ω = 2 or 3 cm, some parts248

of the parallel plates may be in the second or third region249

of the Fresnel ellipsoid space whose radius is 1.17 or 1.44 cm.250

The interceptions may lead to destructive or constructive251

effects due to the phase shift of the signal reflecting on the252

parallel plates [2]. Measurements were performed by varying253

the distances between the DIMMs from 2 to 6 cm with the step254

increment of 1 cm to simulate the variable distances between255

parallel structures on the motherboard. The heights of both256

transceivers were kept at 1.8 cm during the measurements.257

The NLoS link was measured with a heatsink of size258

3.5 × 3.1 × 1.3 cm as an obstacle, as shown in Fig. 1(e).259

Between measurements, the heatsink was horizontally shifted260

away from the transceiver toward side D of the cavity, with a261

step increment of 0.25 cm to understand how the wireless link262

is affected by the gaps between the fins of the heatsink. The263

distance from the heatsink to each of the transceiver is 8.1 cm264

and the heights of both transceivers were kept at 1.8 cm.265

Besides the investigations of these primary controlled sce-266

narios, a practical CPU-PCI link was also measured on the267

densely populated motherboard. As shown in Fig. 1(f), Tx was268

mounted on top of the CPU and Rx was hung over the PCI slot269

with a 3 cm T-R vertical misalignment, which approximates270

the height difference between the CPU and the chip on the271

peripheral components. During the measurements, the hori-272

zontal T-R separations were gradually increased from 19.3 to273

23.3 cm with the step increment of 1 cm as there are several274

PCI slots on the motherboard with different distances to the275

CPU. All the scenarios and corresponding variable attributes276

are summarized in Table II.277

B. Data Augmentations278

To robustly train our deep neural network model to precisely279

predict channel properties, we require a large dataset to feed280

into the model. However, measurements inside the metal281

cavity are very time-consuming as we need to rebuild the282

cavity every time we shift the transceivers or components283

for the measured attribute of each scenario. Additionally,284

due to physical constraints, we choose a relatively large step285

increment (low resolution) for the measurements under each286

TABLE II

MEASURED POTENTIAL SCENARIOS AND CORRESPONDING ATTRIBUTES

scenario to ensure we can physically capture the data precisely. 287

For instance, the heights of transceivers were varied during the 288

LoS measurements by stacking plastic plates with a thickness 289

of 0.3 cm under the transceivers. This means that information 290

between the measured points is unknown to us. To validate 291

the generalization ability of our proposed model, we also 292

test them on a dataset with higher resolution. To that end, 293

we apply data augmentation to expand the size of our dataset 294

and increase its resolution by creating synthetic interpolated 295

data from measured results. The tweaks of training examples 296

in data augmentation make the model less likely to overfit on 297

certain patterns, which improves the generalization ability of 298

the model. 299

The power delay profile (PDP), which provides the inten- 300

sity of a signal received through a multipath channel with 301

respect to time delay, is fed into our deep neural network 302

model for training and prediction. Measured PDP can be 303

derived by squaring the inverse discrete Fourier transform 304

(IDFT) of the measured frequency response, which itself is 305

calculated by subtracting the S21 from the sum of antenna 306

gains and the thru loss. Before any S21 measurements, the 307

thru loss was first measured on the transceiver devices ten 308

times. Then, as mentioned in II-A, we measured the S21 309

ten times at different attributes under each potential scenario. 310

By combining all pairs of the ten thru loss and ten S21 311

measurements, we generate 100 samples for each attribute, 312

as shown in Fig. 3(a). The expanded measured dataset was then 313

separated into three groups by randomly separating 50%, 20%, 314

and 30% of the data at each scenario and attribute to training, 315

validation, and testing sets, respectively. Then the training and 316

validation datasets were interpolated to a higher resolution for 317

the scenarios which are measured in increments (all except the 318

RNLoS scenario). For this augmentation, we applied linear, 319

slinear (spline of order 1), quadratic, cubic, PCHIP (piece- 320

wise cubic Hermite interpolating polynomial), and Akima 321

interpolations to increase resolution down to steps of 0.1 cm 322

(1 λ) for LoS, OLoS, and CPU-PCI link measurements and to 323

0.05 cm (half λ) for the NLoS measurement. Interpolations 324

were not applied on the data of RNLoS link because it 325

is a binary dataset showing the difference between the flat 326

or component side of the DIMM as the reflecting surface. 327

Finally, we generated the average augmentation dataset by 328

averaging the six interpolations for each attribute since we 329

do not necessarily know which interpolation technique would 330

be represent the unmeasured data. For example, data was 331

measured at h = 0, 0.3, 0.6, . . . , 4.5 cm for the LoS propaga- 332

tion. Measurements were performed ten times at each height. 333
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Fig. 3. Illustration of data augmentation: (a) data expansion and (b) averaged interpolation for data of LoS propagation.

With the data expansion, we generated 100 PDP samples at334

each height. As shown in Fig. 3(b), six different interpolation335

techniques were then applied to the training and validation336

datasets to improve the resolution from 0.3 to 0.1 cm. We then337

averaged those interpolations at each height. Doing so resulted338

in 50 and 30 PDP at each height h = 0, 0.1, . . . , 4.5 cm for339

the respective training and validation datasets, and 20 PDP340

at each of the same heights for the testing dataset. This341

averaged augmentation provides a single dataset (only one342

average PDP instead of six at each interpolated attribute) with343

higher resolution.344

III. DEEP LEARNING MODEL345

In this section, we introduce a ResNet-based feature con-346

catenated neural network which is designed to predict proper-347

ties of the THz wireless channel in the motherboard desktop348

environment. The general structure of the model is shown in349

Fig. 4. As shown in the figure, the proposed neural network350

model consists of three main blocks. The first is the ªfeature351

extractionº block which extracts the generalized features nec-352

essary to distinguish between scenarios and specific attributes353

of each scenario from the input PDP data. Those extracted354

features are then sent to the ªscenarios predictionº block to355

predict the type of scenario the channel is under (LoS, RNLoS,356

OLoS, NLoS, and CPU-PCI link). The overall network design357

is called ªfeature concatenatedº because the model’s scenario358

prediction output is then concatenated with the extracted359

features and fed to the ªattributes predictionº block to estimate360

the attribute of that predicted scenario.361

Our novel ResNet-based feature concatenated neural net-362

work model for the prediction of THz channel property is363

shown in Fig. 5. As shown in the figure, the feature extraction364

block of the proposed ResNet-based feature concatenated365

network model contains five sub-blocks, which are b1, b2,366

b3, b4, and a global average pooling (GAP) sub-block [33].367

b1 consists of a 64-channel 1 × 7 convolutional layer with368

the padding of 3 and a stride of 2, a batch normalization369

(BN) layer, rectified linear unit (ReLU) activation layer, and370

a 1 × 3 maximum pooling layer with a stride of 2. During371

Fig. 4. Generalized model structure consisting of three main blocks.

training, the weights of intermediate convolution filters (e.g., 372

the convolutional layers) may have strong variation between 373

different layers, nodes in the same layer, and over time due 374

to the updating model parameters. BN [34] is implemented 375

to maintain stable optimization and reduce these strong vari- 376

ations that may hinder the convergence of the network The 377

ReLU [35] activation function is applied to increase the 378

nonlinear expressiveness of the network, which simply outputs 379

its input for positive values and 0 for negative values. A max- 380

pooling layer is used to mitigate sensitivity of the network to 381

noisy inputs and to spatially downsample representations [36]. 382

b1 increases the number of channels of the inputs from 1 to 383

64 while reducing the size of the data from 400 to 99. b2±b4 384

are three ResNet building blocks shared with the same struc- 385

tures. Each of them consists of a residual block with an 386

additional 1 × 1 convolutional layer to transform the inputs 387

to the desired shape for the addition operation, and a residual 388

block without the 1 × 1 convolutional layer. A residual block 389

is the core element of a ResNet model, which guarantees the 390

strictly increasing expressiveness of the network. The structure 391
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Fig. 5. Structure of the proposed ResNet-based feature concatenated network model.

Fig. 6. Residual block.

of a typical residual block is shown in Fig. 6. As shown in392

the figure, the input is denoted by x , the mapping of the393

stacked nonlinear layers in the dotted-line box which consists394

of a weight layer (convolutional layer), a ReLU activation395

layer, and another weight layer at the end is denoted as f (x),396

and a shortcut connection performs the identity mapping to397

generate the desired output mapping f (x) + x . If the input x398

is already optimal, the weights and biases of the layers f (x)399

may be optimized to generate a zero output. With the shortcut400

connection, the network is easier to optimize as it guarantees401

that the deeper model would not generate higher training error402

than its shallower counterpart [37]. b2 doubles the number of 403

input channels and halves the size of input data. b3 and b4 404

keep doubling the number of input channels while maintaining 405

the size of the input data. The GAP sub-block is composed of a 406

GAP layer, which computes the average value across the entire 407

matrix for each input channel, and a linear layer is connected 408

behind, which halves the size of the input data. Also, BN and 409

ReLU activation functions are applied to the outputs of the 410

linear layer. GAP blocks are very robust to spatial translations 411

of the inputs as they sum out the spatial information [33]. 412

They also prune the shape of the inputs so that the outputs 413

can be directly fed into the prediction blocks. 414

The features learned from the feature extraction block are 415

then fed into the scenarios prediction block for the prediction 416

of the five potential scenarios. The input sizes for the three 417

fully connected layers of the block are 256, 128, and 32. 418

Similar to the feature extraction block, both BN and the ReLU 419

activation function are applied for improved convergence of 420

the network. The predicted channel scenario is identified by 421

choosing the output neuron with the largest value. 422

Given the predicted scenario, the network model then pre- 423

dicts the value of the specific attribute relevant to that scenario, 424

e.g., the distance between DIMMs, transceiver height, and 425

so on. The predicted scenario is one-hot encoded with five 426

bits and then concatenated with the extracted features as the 427

inputs of the attributes prediction block to predict the attribute 428

of that scenario. One-hot encoding translates the integer rep- 429

resented predicted scenario into a group of bits with each 430

bit representing a potential scenario and the predicted class 431

high (1) and others low (0). Since those potential scenarios 432

are independent of each other, one-hot encoding ensures that 433

there is not any presumed hierarchy or partial correspondence 434

between the potential scenario inputs that may be an issue if 435
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multiple scenarios were nonzero. Similar to the structure of436

the scenario prediction block, the attribute prediction block437

also consists of three fully connected layers whose input sizes438

are 256, 128, and 32. In contrast with the scenario prediction439

block, the attribute of the scenario is predicted directly by the440

block.441

Since the proposed network model predicts both the mea-442

surement scenario and an attribute of that scenario, training443

requires both a scenario classification loss and an attribute444

regression loss. Hence, the overall training loss function of445

the proposed model is derived as the sum of the cross-entropy446

loss for the scenarios classification and the mean squared error447

(MSE) loss for the attribute regression. The cross-entropy loss448

calculates the expected loss value for the predicted scenario449

class, while MSE quantifies the distance between the real450

and predicted value of the attribute. To train the network,451

we use the robust ªAdamº variant of the stochastic gradient452

descent optimization algorithm which estimates the first- and453

second-order moments of the gradient via an exponential454

moving average to update network parameters [38].455

IV. ANALYSIS AND MODEL VERIFICATION456

In this section, we first trained the proposed ResNet-based457

feature concatenated network model described in Section III458

on the augmented training PDP. We then tested and compared459

the performance of the proposed model with an MLP-based460

network model on both the expanded measured dataset (with-461

out interpolations) and the averaged interpolated dataset (with462

interpolations) described in Section II-B. Finally, the ResNet-463

and MLP-based feature concatenated network models are ana-464

lyzed with Grad-CAM and FAM, respectively, which provide465

the visual explanations for model decisions.466

A. Model Training and Performance Evaluation467

Before training, we first standardize the dataset by subtract-468

ing the mean and dividing by the standard deviation across469

the feature dimension. We also normalize the attributes for470

each scenario. These normalizations allow the network to learn471

weights on a similar scale for each scenario and attribute. The472

ResNet-based feature concatenated network model was trained473

for 1500 epochs. During each epoch, the network iterates over474

random batches of 256 samples and updates the variables in475

convolutional and linear layers with each batch. The loss of the476

model on training, validation, and testing dataset during the477

training process are compared in Fig. 7. It can be seen from478

the plot that the Loss of the model on the training dataset is479

always lower than the loss on the validation and testing dataset.480

The losses dropped quickly in the first 400 epochs of training481

as the model parameters are initialized randomly. The losses482

on the training, validation, and testing datasets converged to483

5 × 10−5, 6.5 × 10−4, and 5.8 × 10−4 after 1200 epochs of484

training.485

To evaluate the performance of the proposed ResNet-based486

feature concatenated network model, we first tested it on the487

expanded measured dataset. The results show that the model488

can perfectly classify the scenarios under which the input PDP489

was measured. As described in Section III, our proposed model490

Fig. 7. Losses of ResNet-based feature concatenated network model on
training, validation, and testing dataset over 1500 epochs of training.

predicts the attribute under the predicted scenario directly. 491

As with any regression problem, there is always a deviation 492

between the predicted and the correct value. For a robust 493

model, that deviation is small so that the predicted value can 494

be classified as the correct value by choosing an appropriate 495

threshold. To evaluate the robustness of our proposed model, 496

we calculated and compared the classification accuracy of the 497

predicted attribute for each potential scenario with respect to a 498

threshold in the range of zero to half of the step increment size 499

set for the measurements. The maximum distance threshold is 500

0.15, 0.5, 0.5, 0.125, and 0.5 cm for LoS, RNLoS, OLoS, 501

NLoS, and CPU-PCI link, respectively, as shown in Fig. 8(a). 502

It can be seen from the plot that the ResNet-based fea- 503

ture concatenated model performs perfectly on the expanded 504

measured dataset with achieved nearly 100% classification 505

accuracy under all potential scenarios with the largest possible 506

threshold. Also, it can be observed that the model differentiates 507

between classes most easily in the RNLoS scenario as there are 508

only two classes (either flat or component side of the DIMM 509

as the reflection surface). Since there are only 5 different 510

attributes for the NLoS and CPU-PCI link scenarios, the 511

model differentiates between classes even with relatively small 512

thresholds. Also, comparing these two scenarios, the model 513

converges slower under the CPU-PCI link as the environment 514

of this scenario is much more complicated than that of the 515

NLoS. The small distances between the 16 different attributes 516

for LoS result in slightly less robust performance across a 517

range of thresholds. The model converges the slowest under 518

the OLoS scenario as the measured PDP are very similar 519

to each other with only small variations on the intensity of 520

multipath signals. 521

The performance of our proposed ResNet-based feature 522

concatenated network model has been compared with an MLP- 523

based method, which is a widely used channel prediction 524

scheme [12], [17], [21], [39], [40], [41], [42], [43], [44], 525

[45], [46], [47]. The structure of the MLP-based network 526
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Fig. 8. Classification accuracy of (a) ResNet-based feature concatenated model tested on the expanded measured dataset, (b) MLP-based model tested on
the expanded measured dataset, (c) ResNet-based feature concatenated model tested on the averaged interpolated dataset, and (d) MLP-based model tested on
the averaged interpolated dataset for the attribute prediction under each potential scenario with respect to the selected threshold.

model used in comparison consists of a five-layer feature527

extraction block, a three-layer scenario prediction block, and528

another three-layer attribute prediction block, as shown in529

Fig. 9. Like our ResNet-based feature concatenated model,530

the MLP-based model also performs perfectly on the scenario531

classification task. Fig. 8(b) shows the classification accu-532

racy of the ResNet-based feature concatenated model on the533

attribute prediction for each potential scenario with respect534

to the classification threshold on the expanded measured535

dataset. It can be seen from the plot that the MLP-based536

model also performs perfectly for the attribute prediction537

with nearly 100% achieved classification accuracy under all538

potential scenarios. However, by comparing Fig. 8(a) with (b),539

it can be observed that our ResNet-based feature concatenated540

model converges with tighter thresholds than the MLP-based541

model. Additionally, the classification accuracy achieved by542

the ResNet-based feature-concatenated model is higher than543

that of the MLP-based model on LoS, OLoS, and CPU-PCI544

link with a selected threshold of 0.05 cm, which indicates that545

the ResNet-based feature-concatenated model is more robust546

and performs better than the MLP-based model.547

In addition to the evaluation on the expanded mea-548

sured dataset, we also tested and compared our proposed549

ResNet-based feature concatenated model with the MLP-based550

model on the averaged interpolated dataset with higher res-551

olution. Again, both models achieve 100% accuracy for552

scenario classification. However, while the ResNet-based553

Fig. 9. Structure of the MLP-based network model.

feature concatenated model keeps constant performance for the 554

prediction of the attribute under each scenario, the MLP-based 555

model suffers a performance degradation on the averaged 556
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interpolated dataset. Fig. 8(c) and (d) show the classifica-557

tion accuracy of our ResNet- and the MLP-based feature558

concatenated network models, respectively, for the attribute559

prediction under each potential scenarios with respect to the560

growing threshold on the averaged interpolated dataset and561

compare with the performances of the models on the measured562

expanded dataset. The selected threshold is in the range of563

zero to half of the higher-resolution step increment, which is564

0.025 cm for NLoS and 0.05 cm for other scenarios. As shown565

in Fig. 8(c), it can be seen that the convergence rates of566

our proposed ResNet-based feature concatenated model on567

the expanded measured dataset (lower resolution) are very568

close to those on the averaged interpolated dataset (higher569

resolution), except for the CPU-PCI link which may because570

this scenario is much more complicated than others. With the571

selected threshold of 0.05 cm, as circled in red in these two572

plots, the classification accuracy of the ResNet base feature573

concatenated model tested on the averaged interpolated dataset574

is the same as that of the model tested on the expanded575

measured dataset. In contrast, it can be noticed from Fig. 8(d)576

that the convergence rates of the MLP-based model drop a lot577

on the augmented dataset for nearly all the scenarios, espe-578

cially for the OLoS and CPU-PCI link. In addition, with the579

threshold of 0.05 cm, a 9% and a 5% drop of the classification580

accuracy for OLoS and CPU-PCI link, respectively, can be581

observed from the plots as circled in red. The performance582

degradation of the MLP-based model suggests that the range583

of the deviation between the MLP predicted and the correct584

value is larger than 0.05 for most attributes under the OLoS585

and CPU-PCI link, and the MLP-based model performs worse586

on the averaged interpolated data as the distance between587

interpolated neighbors are relatively short (half λ for NLoS588

and λ for others) and these neighbors are very similar to each589

other. The performance difference of our proposed ResNet-590

and MLP-based feature concatenated network models indicates591

that our proposed ResNet-based feature concatenated model is592

more robust and reliable on the dataset with higher resolution.593

B. Model Analysis594

To explain the performance difference of these two models595

and have a better understanding of the wireless channel and596

the deep learning models, FAM and Grad-CAM are applied597

on the MLP- and our proposed ResNet-based feature concate-598

nated network models, respectively. To understand how the599

MLP-based network model makes predictions, we visualize600

a feature activation map by taking the absolute value of the601

average over the 256 neurons in the first linear layer as follows:602

w|ave| =

∣

∣

∣

∣

∣

1

256

256
∑

i=1

Wi,∗

∣

∣

∣

∣

∣

(1)603

where W ∈ R256×400 represents the weights of the first linear604

layer [25]. FAM provides an illustration of which parts of the605

input are emphasized by an average neuron in the first layer to606

make decisions. As shown in Fig. 10, we highlighted a PDP607

measured under the OLoS scenario with the calculated w|ave|.608

It can be seen from the plot that the model focuses on the609

peaks with the excess delay of 0, 1.835, and 3.837 ns to make610

Fig. 10. Contributing regions of the PDP measured under the OLoS scenarios
for the MLP-based network model where the attention of the neurons as
measured by the FAM is denoted by the color of each point.

decisions, which are circled in red. Instead of the first peak 611

(generated from the signal traveling directly from Tx to Rx) 612

with the most power intensity, the model focuses more on the 613

second and the third peaks (generated from the signal bouncing 614

back and forth between the transceiver sidewalls [16]), which 615

indicates that the model weights more on the multipath signals. 616

This follows intuition since varying the distance between the 617

parallel DIMMs under the OLoS scenario leaves the intensity 618

of the direct traveling signal unchanged while the multipath 619

signal intensity would fluctuate due to interactions of the 620

DIMMs with the Fresnel zones [16]. In spite of this, the 621

intensity of the first peak still influences the model decisions 622

as it has strong differences when we are between different 623

scenarios. Since the intensities of these peaks where the MLP 624

model focuses are very different for the PDP under each 625

scenario [16], the MLP-based model works perfectly on both 626

the expanded measured and averaged interpolated datasets for 627

the scenarios classification task. 628

The feature map also explains the performance degradation 629

of the MLP-based model on the averaged interpolated dataset. 630

Fig. 11(a) compares the PDP under OLoS scenario with the 631

attributes from 5.2 to 5.6 cm and the part of the confusion 632

matrix of the MLP-based model at these locations. It can be 633

seen from the confusion matrix that the MLP-based model 634

fails in these locations as the classification accuracy is less than 635

20%. Also, it can be seen that the PDP are very similar and the 636

intensities of the peaks on which the model focuses, as circled 637

in red in the figure, are very close to each other; which explains 638

the failure of the model. As a counterexample, we also plot and 639

compare the PDP with the attributes from 2.0 to 2.3 cm and 640

the part of the confusion matrix at these locations as shown 641

in Fig. 11(b). This figure shows that the MLP-based model 642

performs much better at these locations as the classification 643

accuracy is greater than 80%. It can be observed that the 644

PDP is more easily differentiable between those differences at 645

the peak locations where the model focuses. The contributing 646
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Fig. 11. PDP and confusion matrix of the MLP model under OLoS scenario with (a) attributes from 5.2 to 5.5 cm and (b) attribute from 2 to 2.3 cm.

Fig. 12. (a) Heatmap of calculated Lc
Grad−C AM with randomly selected PDP as the input for each scenario. (b) Contributing regions colored onto the

randomly-selected PDP for the LoS channel. (c) Contributing regions of the randomly-selected PDP for the CPU-PCI link.

regions shown in Fig. 10 also apply to other potential scenarios647

as the weights of the neurons are fixed for the well trained648

MLP-based model.649

Similarly, we also want to understand how the ResNet-based650

feature concatenated model makes predictions. However, the651

FAM is not suitable here as the ResNet-based feature concate-652

nated model has a very different structure than the MLP-based653

model where convolutional layers instead of fully connected654

layers are used to extract the features from the input data. Class 655

activation mapping (CAM) was first proposed to produce a 656

localization map for a classification CNN with a specific archi- 657

tecture, where global average pooled convolutional feature 658

maps are fed directly to the output layer, by projecting back 659

the weights of the output layer on to the convolutional feature 660

maps [48]. A CAM can localize the class-distinguishing region 661

of an input without positional supervision nor the requirement 662
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of a backward pass. However, the constraint on the model663

architecture is restrictive so that it may not be useful for664

our case as the GAP layer is connected by another two665

fully connected networks (scenarios and attributes prediction666

block) in which the spatial information retained by previous667

convolutional layers is lost. The Grad-CAM was proposed668

to address the disadvantage of CAM as it uses the gradient669

information from the last convolutional layer of the CNN to670

assign importance values to each neuron for a particular class671

of interest [26]. The Grad-CAM is used here to provide visual672

explanations for the decisions made by our ResNet-based673

feature concatenated model. To derive the class-discriminative674

localization map Lc
Grad−C AM for any class c, the gradient of the675

score for class c, yc, with respect to feature map activations Ak
676

of the last convolutional layer are first calculated, (∂yc/∂ Ak).677

These gradients are then global average pooled over the last678

dimensions (indexed by i) to generate the neuron importance679

weights αc
k as follows [26]:680

αc
k =

1

Z

∑

i

∂yc

∂ Ak
i

(2)681

where Z is the number of entries in the feature map (Z =682
∑

i 1). The weight αc
k captures the importance of feature map683

k for a target class c. The localization map Lc
Grad−C AM is684

derived by combining weighted forward activation maps and685

taking the absolute value of it as follows:686

Lc
Grad−C AM =

∣

∣

∣

∣

∣

K
∑

k

αc
k Ak

∣

∣

∣

∣

∣

(3)687

where K is the number of feature maps of the last688

convolutional layer. This result provides a coarse heatmap689

of the same size as the convolutional feature maps in the690

last convolutional layer. To highlight the regions where the691

model has more attention to make decisions, we first enlarged692

the localization map Lc
Grad−C AM to the size of input PDP693

and highlighted the PDP with the enlarged Lc
Grad−C AM for694

each scenario. Instead of using ReLU for the Grad-CAM695

localizations as described in [26], we take the absolute value696

as we are interested in the features that have any influence697

(not just positive influence) on the class of interest. It has been698

proven that Grad-CAM generalizes CAM for CNN-based699

architectures as the class features weights ωc
k used in CAM700

are proportional to the neuron importance weights αc
k used by701

Grad-CAM [26]. This generalization allows us to provide a702

visual explanation for our ResNet-based feature concatenated703

model which has complicated structures connected behind the704

GAP layer. Fig. 12(a) shows the heatmap of the calculated705

Lc
Grad−C AM with randomly selected PDP as the input for706

each potential scenario. Fig. 12(b) and (c) highlight the707

contributing regions of the randomly selected PDP for LoS,708

and CPU-PCI link, respectively, based on the corresponding709

Lc
Grad−C AM . It can be observed from the plots that, similar to710

the MLP-based model, the ResNet-based feature concatenated711

model also focuses on the first few peaks of the PDP with712

specific emphasis depending on the scenario. Interestingly,713

both models pay more attention to the multipath signals714

than the direct traveling signal. However, besides the peaks,715

Fig. 13. (a) PDP and confusion matrix of the ResNet-based feature
concatenated model under OLoS scenario with attributes from 5.2 to 5.5 cm.
(b) Highlighted contributing regions of the PDP with the attribute of 5.3 cm
under OLoS scenario.

the ResNet-based feature concatenated model also focuses 716

on the valleys between those peaks even with stronger 717

attention. This indicates that these valleys can also provide 718

important information on the wireless channel and could also 719

explain why the ResNet-based feature concatenated model 720

performs more robustly than the MLP model. Fig. 13(a) 721

shows the PDP and the confusion matrix of the ResNet-based 722

feature concatenated model, again, under the OLoS scenario 723

with the attribute ranging from 5.2 to 5.5 cm. Compared 724

with the confusion matrix of the MLP model shown in 725

Fig. 11(a), it can be concluded that the ResNet-based feature 726

concatenated model performs much better than the MLP 727

model at these locations as the classification accuracy of 728

the ResNet-based feature concatenated model is greater than 729

64% while that of the MLP model is even less than 20%. 730

Fig. 13(b) shows the contributing regions of the PDP with 731

the attribute of 5.3 cm under the OLoS scenario. As shown in 732
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Fig. 14. Testing losses of our proposed ResNet-based feature concatenated
model, GoogLeNet, VGG, and ViT on the same testing dataset throughout
the training process.

this plot, besides the peaks due to the multipath signals, the733

model has even more attention on the valleys between those734

peaks where the PDP with the attributes from 5.2 to 5.5 cm735

can be clearly distinguished with each other as circled in736

red in Fig. 13(a), which explains why the ResNet-based737

feature concatenated model performs better at these738

locations.739

Our proposed model performs better than other models as740

it has strong attention on the valleys between the multipath741

peaks. To show this, we compared the performance of our742

proposed ResNet-based feature concatenated model with some743

other mainstream deep learning models which include the744

GoogLeNet, visual geometry group (VGG), and vision trans-745

former (ViT). Fig. 14 shows the testing losses of our proposed746

model, GoogLeNet, VGG, and ViT when evaluated on the747

same testing dataset throughout the training process. As shown748

in the dataset, our ResNet-based feature concatenated model749

outperforms other models, which illustrates the superiority of750

our proposed model.751

V. CONCLUSION752

This article presents the application of deep learning method753

on property prediction of the THz wireless channel in a moth-754

erboard desktop environment. Measurements were performed755

on a motherboard in a desktop size metal cavity. The PDP756

data which contains the channel information fed into the757

deep learning models was collected under five environment758

scenarios. For each scenario, measurements were taken several759

times with different attributes. To train the proposed deep760

learning model robustly and evaluate their performance com-761

prehensively, data augmentation is applied on the measured762

PDP to expand the data size and to improve the resolution.763

A ResNet-based feature concatenated neural network model764

was proposed to perform the channel prediction. The gen-765

eralized model structure consists of three blocks which are766

feature extraction, scenarios prediction, and attributes predic-767

tion block. The proposed model is evaluated and compared768

with an MLP-based model on both expanded measured and769

averaged interpolated datasets. Both models perform well on770

the expanded measured dataset with nearly perfect prediction771

on both scenarios and attributes. Our proposed model out- 772

performs the MLP-based model on the averaged interpolated 773

dataset as the MLP model has a drop of classification accuracy 774

on the attribute prediction task for each scenario with a 775

fixed threshold and converges slower with respect to the 776

larger thresholds, while our ResNet-based feature concatenated 777

model keeps constant performance. The analyses are made 778

with FAM and Grad-CAM applied on the MLP- and our 779

ResNet-based feature concatenated models, respectively. It is 780

shown from the FAM that the MLP model has a strong focus 781

on the peaks of the PDP corresponding to multipath signals. 782

However, some of the adjacent interpolated data are very 783

close to each other in the regions on which the MLP focuses, 784

which leads to performance degradation (or failure) on these 785

areas. Also, as seen from the Grad-CAM, the ResNet-based 786

feature concatenated model also has strong attention on the 787

valleys between peaks where the neighboring interpolated data 788

can be distinguished better, which accounts for its superior 789

performance. Better performance in comparison with other 790

mainstream deep learning models also proves the superi- 791

ority of our proposed ResNet-based feature concatenated 792

model. 793
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