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Abstract10

The successful integration of engineered gene circuits into host cells remains a significant11

challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where12

the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures13

and identifying topologies resilient to growth feedback are crucial for both fundamental and14

applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we15

systematically study 435 distinct topological structures and uncover six categories of failures.16

Three dynamical mechanisms of circuit failures are identified: continuous deformation of the17

response curve, strengthened or induced oscillations, and sudden switching to coexisting18

attractors. Our extensive computations also uncover a scaling law between a circuit robustness19

measure and the strength of growth feedback. Despite the negative effects of growth feedback20

on the majority of circuit topologies, we identify a few circuits that maintain optimal performance21

as designed, a feature important for applications.22

23

Introduction24

In biomedical science and engineering, artificially designed gene circuits are anticipated to play an25

ever-increasing role in disease diagnosis and therapy (Riglar and Silver, 2018; Sedighi et al., 2019;26

Xia et al., 2019). Gene circuits also show great potential in various applications such asmicrobiome27

modulation (Foo et al., 2017; Lee et al., 2018) and biological containment (Gomaa et al., 2014;28

Caliando and Voigt, 2015). Whilemost gene circuits are designed to function after they are inserted29

or embedded into host cells, the interactions between the circuit and the host environment are30

generally extremely complex and can lead to undesired effects that were not present in the original,31

isolated circuit (Tan et al., 2009; Ceroni et al., 2015; Borkowski et al., 2016; Ceroni et al., 2018;32

Darlington et al., 2018a,b; Gouda et al., 2019; Zhang et al., 2021, 2020; Melendez-Alvarez et al.,33

2021). Understanding the interactions and identifying the circuit topological structures that can34

withstand the interactions and thrive in the host are thus of fundamental importance, requiring35

interdisciplinary efforts among systems and synthetic biology, metabolic engineering, nonlinear36

dynamics and complex systems.37

Typical circuit-host interactions include metabolic burden, cell growth, and resource relocation38

or competition, among which growth feedback is themost common type of circuit-host interaction39

between the circuit gene expressions and cell growth. More specifically, a synthetic gene circuit em-40

bedded in a host cell possesses an intrinsic couplingmechanism: the circuit affects cell growth and41

the growth in turn modifies the gene expressions in the circuit (Klumpp et al., 2009; Klumpp and42
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Hwa, 2014; Boo et al., 2019; Scott et al., 2010) - the so-called growth feedback. Studies have shown43

that the growth-mediated feedback can endow a synthetic gene circuit with various emergent prop-44

erties, such as innate growth bistability (Deris et al., 2013). For example, a non-cooperative positive45

autoregulation system, when coupled with growth feedback, gains increased effective cooperativ-46

ity, thereby resulting in bistability (Tan et al., 2009; Nevozhay et al., 2012). In another example,47

toxin cooperativity can be induced in multiple toxin-antitoxin systems by growth-mediated feed-48

back (Feng et al., 2014). The number of steady states in one gene circuit also depends on growth49

feedback and resource availability (McBride and Del Vecchio, 2020; Melendez-Alvarez and Tian,50

2022). In general, growth feedback acts to hamper the forward engineering of the circuit functions51

by introducing modes of nonmodularity and reducing the predictability of the circuit components52

in an in-vivo context. While various phenomena caused by growth feedback were studied with de-53

sirable or undesirable effects on the functions of the gene circuits, a systemic picture is lacking on54

what effects growth feedback can have on the gene circuits, including failures.55

A recent study has revealed that growth feedback can have drastically different effects on con-56

gruent circuits with distinct topologies (Zhang et al., 2020). In particular, the dynamical behaviors57

of two bistable synthetic memory circuits were studied: a self-activation switch incorporating pos-58

itive autoregulation and a toggle switch incorporating double-negative regulatory motifs. It was59

found that growth feedback impacts both circuits but with quite different manifestations. For the60

toggle switch, memory can be retained and the circuit tends to be refractory towards growth feed-61

back. However, for the self-activation switch, growth feedback leads to memory loss. While these62

results indicate that the circuit topology can play a significant role in the circuit functions when63

growth feedback is present, they were obtained through two specific circuit topologies. Since a64

particular function of the gene circuit can often be achieved by a finite set of core topologies, it65

is of fundamental interest to identify the most robust topologies in response to growth feedback.66

The so-identified optimal topologies can then be used to construct synthetic gene circuits capable67

of maintaining the essential functions to meet the design goals under the fluctuating growth con-68

ditions of the host cell. A systematic study of the interplay between the gene circuit topology and69

growth feedback is needed.70

Adaptation is an important and widely studied functionality of gene circuits, which is defined as71

the ability of the system to respond to environmental changes and to return to the basal or near-72

basal state after some time (Knox et al., 1986; Tyson et al., 2003; Friedlander and Brenner, 2009;73

Ferrell Jr, 2016). Previously, it was found that certain circuits possess biochemical adaptation (Ma74

et al., 2009) if they contain at least one of the two architectural classes: an incoherent feed-forward75

loop with a proportion node and a negative feedback loop with a buffering node. A number of76

synthetic gene circuits were proposed or constructed to achieve adaptation (Kim et al., 2014; Briat77

et al., 2016; Aoki et al., 2019). Quite recently, a design principle for circuits with four genes was78

uncovered for simultaneously achieving noise attenuation and adaptation: the circuit must have a79

sequential assembly structure (Qiao et al., 2019). However, these existing adaptation studies did80

not include any growth feedback mechanism.81

In this paper, we conduct a comprehensive computational study to uncover and understand the82

effects of growth feedback on the gene circuits. Specifically, we focus on a type of transcriptional83

regulation circuit designed for adaptation. There are 425 possible circuit structures (identified by84

previous research (Shi et al., 2017)), andwe study all of them to simulate and test their response un-85

der different levels of growth feedback. Altogether, 2× 105 sets of circuit parameters are randomly86

sampled for each structure. Our results reveal a vast number of cases where growth feedback has87

a detrimental effect on circuit function (1.3 × 105 cases in total) with varying response curves and88

dynamical behaviors. To gain a more intuitive overall picture, we classify these cases into several89

distinct categories based on the circuits’ dynamic behavior. We then systemically summarize the90

dynamical mechanism behind these growth-induced circuit malfunctions. To quantify circuit adap-91

tation in the presence of growth feedback, we propose a robustness measure that enables us to92

identify an optimal group of circuits that exhibit a high level of robustness against growth feed-93
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back, making them particularly promising for real-world implementation. The motifs associated94

with this optimal group are found through machine learning. We also obtain a scaling law govern-95

ing the dependence of this measure on the level of growth feedback and provide a mathematical96

analysis to gain insights into the underpinnings of the scaling law. The take-home message is that,97

in spite of the negative effects of growth feedback in themajority of the circuits, there exists a small98

set of circuits that are still able to deliver optimal performance as designed, which is promising for99

real-world implementation.100

Results101

A systemic search of functional failures due to growth feedback102

A

B
C

Cell
Growth

(a)

(b)

Input

Output

Input

Output

𝐼1 𝐼2

𝑂1

𝑂2

𝑂peak

time

Figure 1. Schematic illustration of a synthetic
gene circuit embedded in a host cell. (a) A
representative three-gene circuit (inside the
dashed red box) and its dynamical interplay with
host-cell growth. Arrows with triangular ends and
round ends denote activating and inhibiting
regulations, respectively. Altogether, there are
16,038 possible three-node topologies, with 425
topologies capable of adaptation.(b) An example
of the circuit input and output signals. The input is
an idealized step function of currents 𝐼1 and 𝐼2
before and after the jump, respectively. The
output signal is a response of the circuit to the
step function. The features of the output signal, as
characterized by three key quantities
characterizing the signal: 𝑂1, 𝑂2, and 𝑂𝑝𝑒𝑎𝑘, can be
used to determine if the circuit has succeeded or
failed in its intended function.

Adaptation is referred to as the ability of a103

gene circuit to respond to changes in input104

and then to return to the pre-stimulus output105

level, even when the input change persists (Ma106

et al., 2009). More precisely, with an input sig-107

nal switched from a lower value 𝐼1 to a higher108

value 𝐼2, as demonstrated in Fig. 1(b), a circuit109

with functional adaptation should have the fol-110

lowing response-curve criteria: (i) precision - the111

final state 𝑂2 should be close to the initial state112

𝑂1, (ii) sensitivity - there should be a relatively113

high |𝑂𝑝𝑒𝑎𝑘| in response to the change in the in-114

put, and (iii) the system should reach equilibrium115

within a reasonable relaxation time. A three-116

node gene circuit can achieve adaptation (Ma117

et al., 2009), with one node receiving the input118

(node A), another node realizing various regula-119

tory roles (node B), and a third node outputting120

the response (node C). A representative circuit121

topology is shown inside the red dashed box in122

Fig. 1(a). We restrict our study of the class of tran-123

scriptional regulatory networks (TRNs) with the124

AND logic.125

In our work, we use a parameter 𝑘𝑔 to con-126

trol the strength of growth feedback, which is a127

parameter determining themaximal growth rate128

of the host cells, as mathematically explained in129

Model description. With all the other parameters130

fixed, a larger 𝑘𝑔 implies a faster cell growth rate131

and a stronger impact of growth feedback. Previ-132

ous research identified 425 different three-node133

TRN network topologies that can achieve adapta-134

tion in the absence of growth feedback (Shi et al.,135

2017), providing the base of our computational136

study. These topologies can be classified into137

two families based on the mechanism they rely138

on to achieve adaptation: networks with a nega-139

tive feedback loop (NFBL) and networks with an140

incoherent feed-forward loop (IFFL) (Shi et al., 2017). To investigate the effect of growth feedback141

on these circuits, we systematically simulate the response of the 425 network topologies under a142
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switch in the input signal. A three-node gene circuit subject to growth feedback has a large num-143

ber of parameters, which determine the properties of the regulation links within the circuit and the144

circuit dynamics. For each topology, we randomly sample 2 × 105 trials of circuit parameters. Alto-145

gether, our study involves analyzing approximately 8.5 × 107 different circuits. We find that among146

these trials, only about 1.5 × 105 meet the adaptation criterion in the absence of growth feedback.147

For these functional trials, we vary the growth feedback parameter 𝑘𝑔 with a series of values, and148

find that the majority of trials (1.3 × 105 trials, about 87%) lose their adaptation in the interval of149

𝑘𝑔 ∈ (0, 1), while only 13% of trials remain functional at 𝑘𝑔 = 1.0.150

A systemic classification of functional failures due to growth feedback151

An essential step towards understanding the detrimental or even destructive effects of growth152

feedback on circuit functioning is to identify the distinct failure scenarios. Our extensive simula-153

tions have yielded a comprehensive picture of these scenarios, as shown in Fig. 2. Overall, we154

have identified six failure scenarios that encompass more than 99.6% of the 1.3 × 105 failing cases155

we collect. The first level of classification distinguishes between failures that occur continuously156

or abruptly as the growth-feedback strength 𝑘𝑔 increases. In a continuous failure, the response157

curve deforms continuously as 𝑘𝑔 increases, as exemplified in Figs. 2(a-c). In an abrupt failure, the158

response curve exhibits a sudden change as 𝑘𝑔 increases through a critical value, as illustrated in159

Figs. 2(d-f). At the next classification level, we further divide the failures into three types of contin-160

uous failures and three types of abrupt failures.161

The three types of continuous failures, denoted as types I-III as illustrated in Figs. 2(a-c), are162

determined according to the specific quantitative criteria in the response curve that the circuits163

violate. Type-I continuous failures, as shown in Fig.2(a), are associated with the violation of the164

precision criterion. A circuit is deemed as precise if a change in the input signal (e.g., from 𝐼1 to 𝐼2)165

generates two opposite dynamical effects in the circuit that cancel each other out after a transient166

and return the final output to the original state, i.e. 𝑂2 ≈ 𝑂1. For example, in some networks [e.g.,167

the network in Fig. 1(a)], an increase in the input signal 𝐼 will result in an increase in the concentra-168

tion of gene 𝐴 and a reduction in the concentration of gene 𝐵. As both genes regulate the output169

gene 𝐶 with the respective activation links, for proper system parameter values, the two effects will170

cancel each other out, resulting in 𝑂2 ≈ 𝑂1. Type-I continuous failures constitute the largest failure171

category among all possible circuit topologies, suggesting that the exact cancellation is fragile and172

the loss of precision is the most common dynamical mechanism behind growth-feedback-induced173

failures.174

Our simulations reveal that an exact cancellation between the two opposite sources at 𝑘𝑔 = 0175

prevents an exact cancellation at any other values of 𝑘𝑔 . That is, the set of circuit parameter values176

leading to perfect precision, in general, depends on the value of 𝑘𝑔 (see Appendix 1 formore details).177

The implication is that, for fixed circuit parameter values, achieving high precision under growth178

feedback (𝑘𝑔 > 0) is difficult if the circuit is precise in the absence of growth feedback (𝑘𝑔 = 0).179

Type-II continuous failures are characterized by a continuous change in the peak of the re-180

sponse curve, denoted as 𝑂peak, as 𝑘𝑔 increases, eventually falling below a threshold, as shown181

in Fig. 2(b). This type of failure can make it challenging for downstream circuits to detect the peak182

signal, hindering information transmission in the larger system. Type-II failures are the second183

most common type of failure observed in our simulations. The occurrence of a high peak in the184

response curve requires a significant transient deviation from the final equilibrium point. In the185

presence of growth feedback, the transient behavior changes, which can further alter the peak186

height 𝑂peak.187

Type-III and type-IV failures arise due to growth-feedback-induced oscillations, while type-V and188

type-VI failures are caused by bistability or bifurcations, with fold bifurcations being the most com-189

mon type. To provide a more detailed understanding of these different failure scenarios, we dis-190

cuss the two mechanisms, respectively, in the sections of Growth-feedback induced oscillations191

and Bistability and bifurcations below.192
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Figure 2. Systemic classification of circuit failure scenarios due to growth feedback. This study identifies six computationally detectable
categories of failures based on the criterion of functional adaptation that the circuit violates as the effect of growth feedback becomes stronger.
(a) Type-I and (b) type-II failures correspond to the cases where the precision criterion or sensitivity criterion is violated in a continuous fashion
as the growth-feedback strength 𝑘𝑔 increases, respectively. (c) Type-III and (d) type-V failures occur when the circuits lose adaptation due to
growth-feedback-induced oscillation, either continuously or abruptly, as 𝑘𝑔 increases, respectively. The abrupt changes in type-V are caused by
bifurcations, mostly a saddle-node bifurcation of cycles or an infinite-period bifurcation. For instance, the case shown in (d) undergoes an
infinite-period bifurcation. (e) Type-V and (f) type-VI failures are when the circuits lose adaptation due to an abrupt change in 𝑂1 or 𝑂2 as 𝑘𝑔
increases, respectively, which are caused by bistability or bifurcations in the systems. Trials that are not categorized under these six
classifications or fall into multiple categories constitute less than 0.4% of all cases (see text for more details and discussions about each failure
class). The insets around the pie chart provide exemplary response curves of the circuits in each failure scenario. Each inset shows the
concentration of the output node 𝐶 versus time with two values of the growth-feedback strength 𝑘𝑔 , one below and another above the failure
threshold, for the specific failure scenario. In each case, the input is switched from state 𝐼1 to state 𝐼2 at the time indicated by the red vertical
dashed line.
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Box 1. Three classes of growth-induced failures193194

All the failures we observed can be categorized into the following three general classes, appli-
cable to both the three-gene and four-gene circuits we tested:

195

196

Continuous Deformation of the Response Curve Typically, we require a specific range of
response curve shapes for a gene circuit, such as a peak in the output with a minimum
height or duration. In a failure caused by continuous deformation, the growth feedback
prompts a gradual change that crosses the boundary of these criteria for response curve
shapes.

197

198

199

200

201

Growth-Induced or Growth-Strengthened Oscillations Growth feedback can induce oscil-
lations in a circuit through various types of bifurcations or amplify existing oscillatory be-
havior with longer relaxation times or larger amplitudes. A circuit experiencing growth-
induced or growth-strengthened oscillations cannot reach a relatively steady state (an
equilibrium or relatively small oscillations) within a finite time or reasonable relaxation
period.

202

203

204

205

206

207

Growth-Induced Switching Among Coexisting Attractors When coexisting attractors are
present in the circuit dynamics, such as bistability or multistability, the circuit typically
only functions with one of the attractors. In other words, the circuit is functional locally
in its phase space rather than globally. Strengthened growth can push the system across
the boundary of different attracting basins in the circuit phase space, causing the circuit
to lose its desired functionality by switching from a functional basin to a malfunctioning
basin.

208

209

210

211

212

213

214

Growth-feedback induced oscillations215

As demonstrated by the light green and yellow slices of the pie chart in Fig. 2, a considerable portion216

(17%) of the circuit failures are caused by growth-feedback-induced oscillations. Growth feedback217

perturbations can easily change the system from the adaptive domain to the oscillation domain in218

these cases. Our program classifies oscillation-mediated failures into two categories: continuous219

(type-III) and discontinuous failures (type-IV). Type-III failures are the results of either (i) a gradual220

increase in the oscillation amplitude, or (ii) a gradual increase in the transient lifetime of damped221

oscillations. In the first case, an isolated circuit has already exhibited oscillations with small ampli-222

tudes in its gene concentrations with relatively weak growth feedback. As the feedback is strength-223

ened with a larger value of 𝑘𝑔 , the oscillations are intensified with a larger amplitude, leading to a224

circuit failure. In the second case, there is damped oscillation for small 𝑘𝑔 with a relatively short225

transient time before approaching an equilibrium. After strengthening the growth feedback, the226

damping weakens and the oscillation’s amplitude cannot be reduced to the threshold within the227

time limit, as exemplified in Fig. 2(c).228

The second category of growth-feedback-inducedoscillation is type-IV, where oscillations emerge229

suddenly as the growth-feedback strength increases through a critical point. The sudden emer-230

gence of oscillations can be caused by a bifurcation or a transition into a basin of a limit-cycle231

attractor. A random sampling of the type-IV failure cases reveals that most of them are caused232

by either a saddle-node bifurcation of cycles (Strogatz, 2018) or an infinite-period bifurcation (Stro-233

gatz, 2018). In the former case, a pair of stable and unstable limit cycles suddenly emerge together.234

In the latter case, when observed from the opposite direction (i.e., with a decreasing 𝑘𝑔 crossing235

the threshold), the oscillation in the system spends a longer and longer time around a node on236

the limit cycle. This node finally becomes a stable fixed point at the bifurcation point, and the os-237

cillation period approaches infinity. One example of type-IV oscillation-mediated failures caused238

by an infinite-period bifurcation is shown in Fig. 2(d). In our simulations, most of the cases where239

there are saddle-node bifurcations of cycles are categorized as type-III failures because, prior to240
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Figure 3. Frequencies of growth-feedback induced oscillation failures for different network topologies. (a) Significant variations in the
proportion of trials resulting in circuit failures due to growth-feedback-induced oscillations (types III and IV failures) across distinct network
topologies. Some topologies exhibit virtually no oscillation-related malfunctions, while others experience about 80% of failures caused by
growth-induced oscillations. Network topologies containing any oscillation-supporting motifs (discussed in the main text) are represented by
red triangles, while the rest are shown as blue circles. The majority of red data points have higher fractions of oscillation-related failures
compared to the blue ones, mainly due to the presence of oscillation-supporting motifs. To reduce fluctuations in the results, only circuit
topologies with over 200 failed trials are included. (b1, b2) A pair of network topologies that differ by only one link (from node C to node B). (c1,
c2) The distinct topologies in (b1, b2) leading to different distributions of failure mechanisms. The topology in (b1) primarily experiences
growth-induced oscillation as the major failure mechanism, while the one in (b2) has barely any trials with growth-feedback induced oscillations.

the bifurcation point, the system can be oscillating near the ghost (Strogatz, 2018) cycle for a long241

time exceeding the criterion for relaxation time, though that ghost cycle is not an attractor but only242

a transient in the system.243

Our results indicate that for various circuit topologies, the dynamic mechanisms leading to244

failures can differ, resulting in significantly different distributions of failure types among different245

networks. For instance, the fractions of failures caused by growth-induced oscillations can vary dra-246

matically among all the topologies, as demonstrated in Fig. 3(a), where each data point represents a247

specific network topology. The fraction of failures caused by growth-induced oscillations can range248

from approximately zero to about 80%! A particular example of two different networks is presented249

in Figs. 3(b1) and 3(b2), both ofwhich share the sameminimal topology required for adaptation (Shi250

et al., 2017) - the circuit’s core function. Despite differing by only one link, the proportions of fail-251

ures with unique mechanisms are quite distinct, as illustrated in Figs. 3(c1) and 3(c2). Notably,252

for the network in Fig. 3(b1), almost half of the failures result from oscillations, while hardly any253

oscillation-mediated failures occur for the network in Fig. 3(b2). The explanation is that, although254

the difference lies in only a single link, this link determines whether an oscillation-correlated motif255

exists within the network. Previously, three classes of motifs capable of supporting persistent os-256

cillations were discussed (Novák and Tyson, 2008), including the “delayed negative-feedback loop”257

featured in Fig. 3(b1).258

Generally, the circuit dynamics depend sensitively on the structure, but oscillations specifically259

require a negative feedback loop with time delay (Novák and Tyson, 2008). Since there are no260

explicit time-delayed terms in the dynamical equations in ourmodel, one of the two types ofmotifs261

- an intermediate node in the path of the negative feedback loop or an additional positive feedback262

loop - is necessary to induce time delay (Novák and Tyson, 2008). For network topologies with263

a high ratio of functional failures caused by oscillations, both motifs are observed, especially the264

former type. For the network in Fig. 3(b1), the three links: A → C, C ⊣ B, and B → A, together265
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Figure 4. Two possible mechanisms behind both the type-V and type-VI failures. (a,b) Basin structure of the circuit shown in Fig. 2(e) (with type-V
failure) for input 𝐼1 with different levels of growth feedback, for growth feedback strength 𝑘𝑔 = 0.05 (weak) and 𝑘𝑔 = 0.97 (relatively strong). The
coordinates 𝐴0 and 𝐵0 are the initial values of nodes A and B, respectively, corresponding to a two-dimensional slice of the entire
four-dimensional phase space by fixing 𝐶 = 0.1 and 𝑁 = 10−3. The color bar indicates the equilibrium value of node C before the input switch,
which is 𝑂1(𝐶). There is bistability in both cases, as there are two basins of attraction. The yellow region is the functional basin that has
adaptation, while the blue region is a non-functional basin without adaptation. The relative size of the blue non-functional region with larger 𝑘𝑔
in this case is significantly larger and includes the initial state of the system (𝐴0 = 𝐵0 = 0.1), causing a type-V circuit failure. (c) Bifurcation
diagram of the circuit in Fig. 2(f) with a type-VI failure. Prior to a critical value of 𝑘𝑔 ≈ 0.0122, only one stable value of 𝑂2(𝐶) exists. There is a fold
bifurcation at the critical value, giving birth to a new state around zero, which is non-functional. For an abrupt failure, whether it belongs to
type-V or type-VI does not determine whether it is caused by bistability or bifurcations. Both mechanisms are possible for both types of failures.

constitute a negative feedback loop, making the circuit more susceptible to oscillatory behaviors.266

For the circuit in Fig. 3(b2), no such negative feedback loop exists. Figure 3(a) summarizes the total267

number of failed trials and the ratio of oscillation-induced failures for each network topology. The268

network topologies that contain one of the motifs for oscillation as discussed in Novák and Tyson269

(2008) are marked in red, while the networks that do not consist of any of them are marked in270

blue. Note that all the networks with relatively high ratios of oscillation-induced failures (e.g., ratio271

> 0.2) consist of oscillation-correlated motifs. Details about these oscillation-correlated motifs are272

discussed in Appendix 2.273

We conclude that, for a network with an oscillation-correlated motif, even if it is functional at274

some parameter values, the potential of oscillatory behaviors can be triggered by growth feed-275

back. As a result, networks without these motifs can be safer choices to avoid too many failures276

cases due to oscillations. Note that this relationship is not deterministic. As shown in Fig. 3, even277

the networks represented by blue dots that have no oscillation-correlated motifs can still have278

oscillation-induced failures (with small ratios). The complexity of the scenario makes it challenging279

to find general and relatively simple rules that connect circuit topology to the circuit’s robustness.280

Bistability and bifurcations281

In this section, we describe the dynamical mechanisms behind type-V and type-VI failures, which282

in total take up about 14% of all the circuit failures. These failures are abrupt, meaning that the re-283

sponse curve undergoes an abrupt change at a certain critical value of 𝑘𝑔 from a desirable curve of284

adaptation. Type-V and type-VI failures correspond to an abrupt change in 𝑂1 and 𝑂2, respectively.285

Both types of failures are closely related to bistability and bifurcations.286

Bistability andmultistability are common phenomena in nonlinear systems. Bistability refers to287

the situations where two stable attractors coexist in the phase space simultaneously. Multistability288

describes a similar coexisting phenomenon of attractors, but with more than two attractors. With289

bistability or multistability in the target dynamical system, the system trajectory may end up in any290

one of these stable attractors, depending on the initial state of the system evolution. The entire291

phase space can thus be separated into two or more basins of attraction. Each basin of attraction292

corresponds to an attractor and consists of all the initial states that eventually lead the system to293

the attractor. The boundary boundaries separate two different basins of attraction. A close pair of294

initial states but at different sides of a basin boundary lead the system to different attractors.295
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Figure 5. A family of circuit topologies with optimal performance. The circuits both have a large volume of the functional region in the
parameter space in the absence of growth feedback as characterized by a large value of 𝑄(𝑘𝑔 = 0) and are robust against growth feedback with a
high value of 𝑅(𝑘𝑔). (a) Values of 𝑄(𝑘𝑔 = 0) and 𝑅(𝑘𝑔 = 0.6) from all the 425 network topologies, where each data point corresponds to a topology.
The family of optimal topologies is represented by the orange data points, including eight network topologies. (b) The set of links (motif) shared
by this family of circuits. The combination of these links is also one of the minimal topologies with perfect adaptation in three regulatory
logic (Shi et al., 2017).

In our simulations, we observe bistability in many circuits. While multistability has also been296

observed, it is relatively rare. We thus focus on bistability. It is highly unusual for both attracting297

basins to exhibit the desired functional behavior simultaneously. This is because they are located298

in different regions of the system phase space, and accommodating both would impose overly299

stringent constraints on the circuit. Having one basin functional is already difficult enough with a300

random sampling of circuit parameters. As a result, functional adaptation is typically found in only301

one of the basins, with adaptation being lost in the other, and the circuit is functional only locally in302

its phase space, rather than on a global scale. A drifting system parameter, such as 𝑘𝑔 , can alter the303

dynamics of the gene circuit. In a situation with bistability, such a change in the system dynamics304

can modify the shape and position of the basin of attraction and the basin boundary. Consider305

an initial state close to a basin boundary. With the deformation caused by a drifting parameter,306

the boundary may shift across the initial state, leading to a sudden switching of the system’s final307

attractor. If the basin before the parameter change is functional and the basin after is not, this308

leads to a growth-feedback-induced failure. The crossing of the basin boundary dictates that the309

system’s final state will abruptly change from one attractor to another. This type of failure can be310

classified as a switching type of failure.311

An example of bistability-related failures is shown in Fig. 2(e), where in the upper panel, the312

circuit enters into the functional region after an initial transient. In the lower panel, the circuit313

enters into another region that does not have adaptability, and the circuit does not respond to314

the switching of the input signal. Figures 4(a) and 4(b) illustrate how the basin structure of the315

circuit changes significantly with different values of 𝑘𝑔 . The functional basin is in yellow and it316

shrinks greatly with an increasing 𝑘𝑔 . Note that the phase space is four-dimensional, so only a317

two-dimensional slice is shown. For a bistability/multistability-induced type-V failure where 𝑂1 is318

switched, the boundary of the functional basin crosses the initial state. For a type-VI failure, the319

simultaneous movement of both 𝑂1 and the basin boundary under input 𝐼2 results in 𝑂1 crossing320

the boundary.321

Bifurcations also play an important role in many type-V and type-VI failures. An example of a322

failure caused by a fold bifurcation is shown in Fig. 2(f) and the corresponding bifurcation diagram323

is shown in Fig. 4(c), where a non-functional fixed point appears through a fold bifurcation as 𝑘𝑔324

crosses a critical value. Bifurcation-induced abrupt failures differ from those caused by bistabil-325

ity/multistability, but they can be related since significant changes in the basin structures often326

occur near a bifurcation point.327
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Circuit robustness and optimal topology328

To quantify a circuit’s robustness against growth feedback, we introduce two metrics: 𝑄-value and329

𝑅-value. We track the number of remaining functional trials for each network for various 𝑘𝑔 values330

(starting from 𝑘𝑔 = 0), denoted as 𝑄(𝑘𝑔). This measure extends the concept of 𝑄-values inMa et al.331

(2009) by accommodating non-zero values of 𝑘𝑔 . To characterize the circuit robustness, we define332

the survival ratio 𝑅(𝑘𝑔) as 𝑅(𝑘𝑔 = 𝑘) = 𝑄(𝑘𝑔 = 𝑘)∕𝑄(𝑘𝑔 = 0). This ratio represents the fraction of333

random circuit realizations that maintain functionality under growth feedback with a strength of334

𝑘𝑔 .335

Note that each 𝑄(𝑘𝑔) or 𝑅(𝑘𝑔) is defined for a specific network topology in a suitable parameter336

space. A high value of 𝑅(𝑘𝑔) indicates that a large fraction of the randomly sampled circuit pa-337

rameters is functional despite cell growth with any strength no larger than 𝑘𝑔 , indicating that the338

topology is more robust against growth feedback. Because of the detrimental effects of growth339

feedback, 𝑅(𝑘𝑔) decreases monotonically with respect to 𝑘𝑔 .340

To justify the utility of 𝑅(𝑘𝑔), we test the circuit topologies employed in a previous work (Zhang341

et al., 2020), where two relatively simple network topologies were used for a comparison study342

in terms of their ability to resist growth feedback and remain functional. Our evaluation of 𝑅(𝑘𝑔)343

for the two topologies has yielded results that are consistent with those in Zhang et al. (2020), as344

discussed in Appendix 3. To illustrate our results in a concrete way, we set 𝑘𝑔 = 0.6 and calculate345

the ratio 𝑅(𝑘𝑔 = 0.6) for different network topologies.346

Our computations have revealed a set of eight circuit topologies with optimal performance as347

characterized by high values of both 𝑄(𝑘𝑔 = 0) and 𝑅(𝑘𝑔), as indicated by the set of orange points348

in Fig. 5(a). The optimal circuits form a family as their topologies exhibit a high level of similarity349

with one other. In particular, all eight circuits in this family share a common set of links (motif), as350

shown in Fig. 5(b). The combination of these common links is one of the minimal topologies with351

perfect adaptation in a three regulatory logic (Shi et al., 2017) and is critical for the circuit to be352

functionally adaptable. The only difference among the circuits in this family is the links from node353

C. While an inhibition link from node C can be important to achieving a value of 𝑅(𝑘𝑔), as discussed354

below, the eight optimal circuit topologies do not contain any such inhibition link from node C. (The355

role of this particular link will be further studied in our analysis of the results in Fig. 6.) This also356

explains why the family has eight members, as follows. Each link from C has two options: either357

the link does not appear, or it appears as an activation link. As there are three possible links from358

C (C to A, C to B, and C to C), there are altogether eight (23) topologies within this optimal family,359

according to the simulation results in Fig. 5.360

How can we quickly determine if a three-gene regulatory network with a given topology can be361

robust against growth feedback? Is there any structural feature of the circuit that can be used to362

estimate if a high value of 𝑅(𝑘𝑔) can be achieved? To gain insights, we observe that the histogram363

in Fig. 6(b) has three peaks about low, moderate, and relatively high values of𝑅, respectively. Com-364

putations reveal certain “shared topological similarity” (or motif) within each peak. Thus, each peak365

corresponds to a group of similar network topologies that simultaneously have a similar level of366

𝑅. This observation suggests a correlation between the network topology and robustness against367

growth feedback. For convenience, we refer to these three groups of networks by the colors pre-368

sented in Fig. 6. For instance, the group with the highest 𝑅 (the green triangles in Fig. 6(a)(d)) is369

called the green group, and the group with the lowest 𝑅 (the red diamonds in Fig. 6(a)(d)) is the red370

group.371

To better distinguish the three groups, we introduce two binary variables, 𝐵1 and 𝐵2. For each372

network, 𝐵1 = 1 if the network contains the motif in Fig. 6(c), and 𝐵1 = 0 otherwise. Then, for373

each network, an additional binary variable is set to be 𝐵2 = 1 if there is an inhibition link from the374

output node C, and 𝐵2 = 0 otherwise. We find that a linear combination of the two binary variables,375

𝐵𝑆 = 𝐵1 − 𝐵2, can characterize the circuit topology and robustness against growth feedback. In376

particular, the three possible cases 𝐵𝑆 = 0, 1, or -1 correspond to the three peaks in Fig. 6(b). This377
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Figure 6. Strong correlation between circuit robustness against growth feedback and circuit topology. There are three groups of circuits, each
displaying strong topological similarities within, exhibit distinct levels of robustness against growth feedback as measured by the characterizing
quantity 𝑅. (a) Robustness measure 𝑅(𝑘𝑔 = 0.6) versus 𝑄(𝑘𝑔 = 0) for all 425 network topologies. Circuits are color/shape-coded into three groups
(green triangles, blue circles, and red diamonds) based on the rules defined in the text. The three groups of topologies display distinct levels of
𝑅(𝑘𝑔 = 0.6) values, signifying a strong correlation between circuit robustness and topology. Only circuits with 𝑄(𝑘𝑔 = 0) > 300 are shown to
reduce fluctuations arising from random parameter sampling. What is demonstrated is the case of an intermediate level of growth feedback
with 𝑘𝑔 = 0.6 (a different value of 𝑘𝑔 has no significant effect on the results - see Fig. 7). The topologies associated with the green triangles have a
high level of robustness, which can be regarded as an optimal group and is more prevalent than the optimal group identified in Fig. 5. (b)
Histogram of 𝑅(𝑘𝑔 = 0.6) the same color legends as in (a). Three distinct peaks emerge, each associated with a group of circuit topologies. (c) The
shared network motif among all networks in the green group, which is highly correlated with the optimal minimal network shown in Fig. 5(b),
but without the link B→ B, which is necessary for the NFBL family of networks to have adaptation (Shi et al., 2017). (d) Effects of burden 𝑏 for the
three groups of networks, where the abscissa is the effective term of burden in the formula of growth rate Eq. (12). The circuits in the red group
have larger values of 1∕(1 + ⟨𝑏⟩), suggesting that a heavier burden yields a stronger effect of the growth feedback for the red group. (e) A
multilayer perceptron (MLP) for identifying the crucial connections that determine the robustness of the circuits. The circuit topology serves as
the input, where 1, 0, and -1 represent activation, null, and inhibition links, respectively. The output is a predicted robustness measure, denoted
as 𝑅̂. To encourage the neural network to select as few links as possible for predicting 𝑅̂, a 𝑙-1 regularization term, 𝛽||𝑊in||, is incorporated into
the loss function alongside the fidelity error ||𝑅̂−𝑅||. As a result, the feed-forward process eliminates information about the links that have little
impact on circuit robustness since the corresponding𝑊in entries automatically optimize to values close to zero. (f) Results from an ensemble of
50 MLPs, each trained with distinct initial values. Shown is the average importance of each of the nine links, which is determined by the weights
in𝑊in - see Appendix 4. The top four links with the highest importance correspond to the four links used to classify the three peaks in panel (b).
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Figure 7. Robustness of the circuit division into three groups subject to different levels of growth feedback. From the top to the bottom, the four
rows are for 𝑘𝑔 = 0.2, 𝑘𝑔 = 0.4, 𝑘𝑔 = 0.6, and 𝑘𝑔 = 0.8, respectively. The legends are the same as in Figs. 6(a) and 6(b). For different levels of growth
feedback, the distribution of the robustness measure exhibits three distinct peaks that occur at approximately the same locations on the 𝑅 axis.
The implication is that the division of the circuit topologies into three groups in terms of the robustness measure can be revealed by examining
the circuit functions at a single value of the growth feedback strength.

result suggests that the motif shown in Fig. 6(c) is beneficial for robustness, while an inhibition link378

from the output node C is detrimental. It is the balancing act of these two factors that determines379

the overall circuit robustness.380

The discovery of this three-peak structure and the corresponding topological similarity within381

each peak is facilitated with the use of machine learning. In particular, we consider a simple type382

of artificial neural network called multilayer perceptron (MLP), where we train it to predict the 𝑅383

value from the input of the network topology through a small hidden layer with only two nodes, as384

demonstrated in Fig. 6(e). This bottleneck structure in the hidden layer plus the 𝑙-1 regularization385

imposed on the inputmatrix𝑊in forces theMLP to extract low-dimensional features from the input386

topology to estimate 𝑅. In our tests, the MLP designed this way automatically assigns different387

levels of weights to the input information of different links. Over an ensemble of 50 MLPs trained388

with different random initial values, the ranking of average importance is shown in Fig. 6 (f). The389

top four links are the four links used to categorize the three peaks.390

The results in Fig. 6 is for 𝑘𝑔 = 0.6. However, we find that different values of 𝑘𝑔 lead to essentially391

the same ranking of 𝑅(𝑘𝑔) among the circuit topologies, as illustrated in Fig. 7.392

Three remarks on our categorizing rules based on the two extracted featured motifs are in393

order.394

First, the shared motif for the green group is strikingly similar to the optimal minimal network395

in Fig.5(b) (the orange group). The sole distinction lies in the self-activation link of node B. This396

specific link plays a crucial role. Every network in the NFBL family depends on this link to achieve397

adaptation (Shi et al., 2017). However, for circuits within the IFFL family, this link is not a neces-398

sity for adaptivity. Missing this link makes the motif in Fig. 6(c) no longer a minimal network for399

adaptation, and a circuit containing this motif may either belong to the NFBL or the IFFL family. We400

have thus identified two optimal groups: the green group with optimal robustness 𝑅 and the or-401

ange group with both the optimal robustness 𝑅 and the largest functional volume 𝑄(𝑘𝑔 = 0) in the402

absence of growth feedback. The orange group is a subset of the green group, with an additional403
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requirement for 𝑄(𝑘𝑔 = 0).404

Second, the shared motif for the red group is also exactly the group of all circuits containing an405

inhibition link from node C to node B, denoted as C ⊣ B. These two different definitions are in fact406

equivalent: all networks with 𝑄(𝑘𝑔 = 0) > 300 that contain C ⊣ A or C ⊣ C also contain the motif in407

Fig. 6(c), yielding 𝐵𝑆 = 0, and belong to the blue group.408

Third, the three circuit groups in Fig. 6 are not correlated with the categories used in previous409

research on circuit functionalities without growth feedback (Ma et al., 2009; Shi et al., 2017). These410

studies classified adaptive networks into NFBL and IFFL families. Each family contains a few min-411

imal topologies with or without some additional other motifs, and the two families have distinct412

minimal functional topologies. The minimal topology acts as the backbone for supporting circuit413

functionality. We find that, when growth feedback is present, the prior classification scheme and414

the underlying minimal topologies become less relevant. Circuits belonging to the NFBL family are415

spread across all three levels of 𝑅(𝑘𝑔) in Fig. 6(b), as are the circuits from the IFFL family. A robust416

circuit can be part of either family, just as a fragile circuit can belong to both. We give that: (i) the417

topological motifs determining circuit functionality robustness and (ii) the motifs deciding whether418

a circuit belongs to the NFBL or IFFL family are independent. To quantify this irrelevance, we calcu-419

late the point biserial correlation between 𝑅(𝑘𝑔 = 0.6) and a binary variable determining the family420

to which the circuit belongs. The resulting correlation is merely 0.1, suggesting hardly any correla-421

tions. A further illustration and quantification of this irrelevance can be found in Appendix 5.422

What are the reason and mechanism behind the phenomenological set of circuit categories?423

Especially, it is desired to understand why the shared motif for the green group is beneficial for424

circuit robustness, and why the shared motif for the red group is harmful for robustness. It is chal-425

lenging to find straightforward explanations given the complexity of the problem (see Discussion426

section). Certain insights are as follows. We find that the average node concentrations at the equi-427

librium for the network topologies in the red group are consistently smaller than those in the blue428

group. This difference is reflected in the value of burdens 𝑏. In particular, according to Eq. (12),429

the cell growth rate is proportional to the term 1∕(1 + 𝑏) under the same level of growth feedback.430

Figure 6(d) shows the average burden ⟨𝑏⟩ for each network topology, demonstrating that the val-431

ues of the term 1∕(1 + ⟨𝑏⟩) for the circuits in the red group are larger than the values in the blue432

group. As a result, for the same value of 𝑘𝑔 , the growth feedback effectively received by the circuits433

in the red group is stronger than that of the blue group circuits. Further support is provided by the434

results from the limit 𝐽 → ∞ (Appendix 6). In this limit, the burden 𝑏 does not affect the strength435

of the growth feedback. As a result, the 𝑅 values of the red group significantly overlap with those436

of the blue group, suggesting that the distinctively low values of 𝑅 for the red group be a result of437

the burden with finite 𝐽 . We also find that the existence of the shared motif for the red group has438

a stronger correlation to the motif necessary for growth-feedback induced oscillations. All circuits439

with oscillation type of failures taking up more than 20% of failures belong to the red group. This440

correlation can result in further fragility of the red group circuits.441

Scaling law quantifying the effect of growth feedback on gene circuits442

A comprehensive way to understand the effects of growth feedback on gene circuits is through443

scaling laws, an approach commonly employed in statistical and nonlinear physics. Does a scal-444

ing law exist that characterizes quantitatively how growth feedback affects the circuit functioning?445

Through a systematic computational analysis of the circuit robustness, wehave uncovered a scaling446

law that governs how the robustness measure 𝑅(𝑘𝑔) deteriorates as growth feedback is strength-447

ened, as shown in Fig. 8, where the blue curve is the result averaging over all the 425 network448

topologies. The three other curves represent circuits that have a relatively high, moderate, and449

low value 𝑅 among the 425 topologies tested. As growth feedback is strengthened, the number of450

circuit topologies that can maintain functioning decreases (or, equivalently, the number of failed451

circuits increases). The decreasing behavior of 𝑅(𝑘𝑔) with 𝑘𝑔 tends to be slower than exponential452

[e.g., exp(−𝛽𝑘𝑔) with 𝛽 > 0 being a constant].453
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tested.

A general theoretical argument for the scal-
ing law is unavailable. However, if we simplify the
system by setting the parameter 𝐽 in Eq. (12) to
be large so the burden 𝑏(𝑡) is much smaller than
one, we are able to argue that the scaling law is
approximately given by

𝑅(𝑘𝑔) ∼ exp(−𝛽𝑘𝜆
𝑔), (1)

where 𝛽 > 0 and 0 < 𝜆 < 1 are two specific con-454

stants that depend on the network topology, and455

the typical value of 𝜆 is about 0.6. The exponen-456

tial scaling is assumed, given itsmemorylessness.457

That is, there is no special zero point of 𝑘𝑔 , for the458

reason that a certain level of 𝑘𝑔 is mathematically459

equivalent to a larger 𝑑𝑥, as discussed below.460

The quantity 𝑅(𝑘𝑔) is a simple and straight-
forward measure characterizing the detrimen-
tal effect of growth feedback on gene circuits.
We carry out a semi-quantitative analysis of this
quantity and the effect of 𝑘𝑔 on it. The circuit dy-
namical equations Eqs. (9-12) can be simplified
by substituting Eq. (14) into them to cancel the
𝑑𝑁∕𝑑𝑡 terms, leading to

𝑑𝐴
𝑑𝑡

= 𝑣𝐴
𝐼𝑛𝐼𝐴

𝐼𝑛𝐼𝐴 +𝐾𝑛𝐼𝐴
𝐼𝐴

− (𝑑𝐴 + 𝑘𝑔
1

1 + 𝑏
)𝐴, (2)

𝑑𝐵
𝑑𝑡

= 𝑣𝐵
𝐴𝑛𝐴𝐵

𝐴𝑛𝐴𝐵 +𝐾𝑛𝐴𝐵
𝐴𝐵

− (𝑑𝐵 + 𝑘𝑔
1

1 + 𝑏
)𝐵, (3)

𝑑𝐶
𝑑𝑡

= 𝑣𝐶
𝐴𝑛𝐴𝐶

𝐴𝑛𝐴𝐶 +𝐾𝑛𝐴𝐶
𝐴𝐶

𝐾𝑛𝐵𝐶
𝐵𝐶

𝐵𝑛𝐵𝐶 +𝐾𝑛𝐵𝐶
𝐵𝐶

− (𝑑𝐶 + 𝑘𝑔
1

1 + 𝑏
)𝐶. (4)

Compared with the equations without growth
feedback Eqs. (6-8), we see that introducing growth feedback is equivalent to adding a variable
𝑘𝑔∕(1 + 𝑏) to the degradation terms for each node. Intuitively, the value 𝑄 of a network topology
measures the volume of the functional region in the parameter space, which is also a function of
𝑘𝑔 . We thus have that 𝑅(𝑘𝑔 = 𝑘) is the volume of the intersection between(𝑘𝑔 = 𝑘) and(𝑘𝑔 = 0)
divided by the volume of(𝑘𝑔 = 0):

𝑅(𝑘𝑔 = 𝑘)

= 𝑉 ((𝑘𝑔 = 𝑘) ∩(𝑘𝑔 = 0))∕𝑉 ((𝑘𝑔 = 0)), (5)

where 𝑉 () is the volume of.461

The picture can be further simplified if we assume the burden 𝑏 is approximately a constant462

within a range of 𝑘𝑔 . Since growth feedback contributes to an additional term in degradation463

𝑑𝑥, strengthening the feedback is equivalent to increasing all three quantities 𝑑𝑥 together. Con-464

sequently, as 𝑘𝑔 increases, the high dimensional region𝑀 does not deform, but simply translates465

in the negative direction in all dimensions of degradation 𝑑𝑥 in the parameter space. That is, as466

growth feedback becomes stronger, it becomes more difficult for the circuit to maintain it func-467

tioning.468
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Discussion469

When a synthetic gene circuit is introduced into a host cell, an inherent coupling arises wherein the470

gene circuit affects cell growth and cell growth in turn alters the circuit gene expression (Klumpp471

et al., 2009; Klumpp and Hwa, 2014). Due to the fundamental nonlinearity in the gene network and472

in the cell growth dynamics, the interaction is generally quite complicated. To understand this in-473

teraction so as to identify the circuit topologies that can withstand the interaction andmaintaining474

the intended circuit functions is one of the most challenging problems in synthetic biology.475

Previous studies showed that growth-mediated feedback can endow synthetic gene circuits476

with various emergent properties. In general, growth feedback tends to negatively impact the477

intended function the circuit is designed for. There was preliminary evidence that the effects of478

growth feedback depend strongly on the circuit topology (Zhang et al., 2020). For a particular circuit479

function, while the vast majority of the topologies would fall under growth feedback, a handful still480

exists that is adaptable tomaintain its designed functions. Identifying the “optimal” topologies that481

are most robust against growth feedback is fundamental to constructing synthetic gene circuits482

that can survive, adapt, and function as designed in the fluctuating growth environment of the483

host cells.484

The main contribution of this paper is a systematic computational study of three-gene circuits485

with adaptation to uncover and understand the detrimental effects of growth feedback on gene486

circuits and to identify optimal groups of topologies. Without growth feedback, there are 425 pos-487

sible topologies with functional adaptation. A vast majority of these circuit topologies fail in their488

functions under growth feedback, and our computations have revealed, for the first time, six dis-489

tinct main failure categories covering more than 99% of the cases. From a dynamical point of view,490

there are threemechanisms by which growth feedback can deprive the circuit of its ability to adapt:491

(i) continuous deformation of the response curve, (ii) strengthened or induced oscillations, and (iii)492

sudden switching to coexisting attractors (also summarized in Box 1). By introducing a robustness493

measure to quantify circuit adaptation in the presence of growth feedback, we uncover a general494

scaling law characterizing the detrimental effect of growth feedback on the circuit functioning in a495

quantitative manner. We identify an optimal group of circuits with high robustness and key sub-496

sets of links associated with this group that play a critical role in sustaining circuit function in host497

cells. Taken together, to design a functional gene circuit, growth feedback must be taken into ac-498

count, as the same circuit designed with perfect functions without the feedback can behave quite499

differently when the feedback is present. Our study has provided unprecedentedly quantitative500

insights into the interplay between gene circuit topology and growth feedback, unlocking the dy-501

namical mechanism of growth-induced failures and providing guidance to better design practically502

applicable synthetic gene circuits.503

A unique finding is that growth feedback can induce or strengthen oscillations in gene cir-504

cuits designed for adaptation. Such oscillations can often destroy the circuit functionality. In a505

recent experimental study, a similar phenomenon was observed in gene circuits designed for self-506

activation (Melendez-Alvarez et al., 2021). These results suggest that growth-feedback induced507

oscillation may be a general dynamical mechanism that can negatively affect the robustness of508

gene circuits. In addition, our study has shown that growth feedback has a highly sensitive depen-509

dence on the circuit topology: even a small structural differences between two circuits designed510

for the same function can result in drastically different outcomes under growth feedback. For ex-511

ample, Fig. 3 demonstrates that a link critical for an oscillation-supporting motif can significantly512

affect the robustness of the circuit against growth feedback. It can thus be quite useful to identify513

failure-related motifs so that they can be avoided when designing a gene circuit.514

From a broad point of view, our study has yielded basic insights into the fundamental topology-515

function relationships in gene circuits. Examples include how circuit topology affects circuit robust-516

ness against growth feedback and whether a circuit topology contains motifs supporting a specific517

type of growth-induced failure, such as oscillation-related malfunctions. However, searching for518

15 of 35



and understanding the interplay between circuit topology and dynamical behaviors remain to be519

a challenge, for the following five reasons.520

First, the two relevant questions arewhether a circuit topology supports adaptation andwhether521

the circuit is robust against growth feedback or is susceptible to a specific type of growth-induced522

failures. While our study focused on the latter, the former is important. Addressing both ques-523

tions to identify and analyze all possible scenarios is infeasible at the present, due to the complex524

parameter space of the circuits. To make our study feasible, we focused on the cases where the525

circuit satisfies all the requirements for adaptation in the absence of growth feedback. These cases526

may occupy a small region in the entire parameter space of the circuit. For each circuit topology,527

the uncovered function failures due to growth feedback are thus limited to relatively small param-528

eter regions. Second, most network topologies studied have dense connections among the three529

nodes (only about 20% of the networks have fewer than six connections). As a result, different530

motifs can overlap with each other, blocking or enhancing the function of each other. The dense531

connections thus pose a difficulty in identifying themotifs accurately. Third, for a particular class of532

failures, competition among different failure typesmay arise. For instance, a circuit with oscillation-533

supporting motifs may not have a high fraction of oscillation-induced failures because it also con-534

tains the motif for bistability, leading to a large fraction of failures due to the bistability-induced535

malfunctions. Fourth, due to the necessity to set a threshold in the relaxation time, transient be-536

haviors can arise. Inmany failure cases caused by oscillations, the oscillatory behavior is not stable537

and the circuit will eventually approach a fixed point. However, time scales should be taken into538

account. The transient behaviors can make the network topologies without the necessary motif539

for sustained oscillations exhibit oscillation-induced failures. Fifth, growth feedback acts as addi-540

tional feedback loops within the circuit, potentially complicating the circuit dynamics and adding541

more links to the circuit topology. These extra links in the integrated topology might give rise to an542

oscillation-related motif. However, our simulations have shown that the impact of this additional543

oscillation motif, introduced by growth feedback, tends to be weak (Appendix 6).544

In Appendix 7, we extend our analysis to four-gene circuits with over two thousand functional545

failure trials. A remarkable finding is that the failure scenarios for these four-gene circuits are the546

same as the categories for three-gene circuits (summarized in Box 1), indicating that the growth-547

feedback induced failure mechanisms identified in our work are general.548

The primary goal of this paper is to explore the ways in which growth feedback can undermine549

a gene circuit’s functionality, and we have uncovered three main dynamical failure mechanisms.550

The reason that we focus on small gene circuits (i.e., those with three or four genes) is that, in551

current synthetic biology, only small gene circuits are of interest. Themain reason is that, even for a552

modest number of genes, when the circuit is introduced to a host, the competition and interactions553

in the form of growth feedback are likely to lead to unintended and uncontrollable consequences.554

Another reason is resource competition: the genes in the circuit could compete for the limited555

resources in the host cell, negatively impacting the circuit dynamics. Because of the two reasons, at556

present large gene circuits are not favored in synthetic biology. In fact, the state-of-the-art synthetic557

gene circuitry usually involves three or four genes, where the consequences of growth feedback558

had been poorly understood. Our work fills in this knowledge gap.559

It is possible that, in the future, synthetic biology may use larger and more complex circuits.560

To uncover and understand the failure mechanisms as well as to identify circuits that are resilient561

to growth feedback, machine learning can be used. For example, recurrent neural networks have562

recently been used to identify circuit topologies appropriate for a specified desired function (Shen563

et al., 2021), and reinforcement learning tackle the combinatorial optimization problem (Bello564

et al., 2016; Mazyavkina et al., 2021) of pinpointing the optimal circuit topologies. Furthermore,565

automated differentiation (Hiscock, 2019; Kong, 2022) can be exploited to locate optimal network566

parameters, which can be efficient for larger circuits with a high-dimensional parameter space. In567

spite of these works, to study the effects of growth feedback and resource competition among568

numerous genes in larger circuits remains to be a formidable challenge. Our work providing a569
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comprehensive picture of the failure mechanisms induced by growth feedback represents a step570

forward in this field.571

Models and Methods572

Model description573

We restrict our study of the class of transcriptional regulatory networks (TRNs) with the AND logic.
For an isolated circuit (in the absence of any growth feedback) with the topology specified inside
the red dashed box in Fig. 1(a), the dynamical equations are

𝑑𝐴
𝑑𝑡

= 𝑣𝐴
𝐼𝑛𝐼𝐴

𝐼𝑛𝐼𝐴 +𝐾𝑛𝐼𝐴
𝐼𝐴

𝐾𝑛𝐵𝐴
𝐵𝐴

𝐵𝑛𝐵𝐴 +𝐾𝑛𝐵𝐴
𝐵𝐴

− 𝑑𝐴𝐴, (6)

𝑑𝐵
𝑑𝑡

= 𝑣𝐵
𝐴𝑛𝐴𝐵

𝐴𝑛𝐴𝐵 +𝐾𝑛𝐴𝐵
𝐴𝐵

− 𝑑𝐵𝐵, (7)

𝑑𝐶
𝑑𝑡

= 𝑣𝐶
𝐴𝑛𝐴𝐶

𝐴𝑛𝐴𝐶 +𝐾𝑛𝐴𝐶
𝐴𝐶

𝐵𝑛𝐵𝐶

𝐵𝑛𝐵𝐶 +𝐾𝑛𝐵𝐶
𝐵𝐶

− 𝑑𝐶𝐶, (8)

where the dynamical variables 𝐴, 𝐵, and 𝐶 are the concentrations of each protein (node). The nota-574

tions are as follows. Let 𝑥 and 𝑦 be two arbitrary nodes. The quantity 𝑣𝑥 is the maximal production575

rate of gene 𝑥, 𝑑𝑥 is the degradation rate of gene 𝑥, 𝑑𝑥∕𝑑𝑡 is its time derivative of the concentration,576

𝑛𝑥𝑦 and 𝐾𝑥𝑦 are the coefficients in the Hill function for a transcriptional regulation from gene 𝑥 to577

gene 𝑦.578

When growth-mediated feedback is present, the dynamical equations of the three-node circuits
are modified to

𝑑𝐴
𝑑𝑡

=𝑣𝐴
𝐼𝑛𝐼𝐴

𝐼𝑛𝐼𝐴 +𝐾𝑛𝐼𝐴
𝐼𝐴

𝐾𝑛𝐵𝐴
𝐵𝐴

𝐵𝑛𝐵𝐴 +𝐾𝑛𝐵𝐴
𝐵𝐴

− 𝑑𝐴𝐴,

− 𝑑𝑁
𝑑𝑡

1
𝑁

𝐴 (9)

𝑑𝐵
𝑑𝑡

=𝑣𝐵
𝐴𝑛𝐴𝐵

𝐴𝑛𝐴𝐵 +𝐾𝑛𝐴𝐵
𝐴𝐵

− 𝑑𝐵𝐵 − 𝑑𝑁
𝑑𝑡

1
𝑁

𝐵, (10)

𝑑𝐶
𝑑𝑡

=𝑣𝐶
𝐴𝑛𝐴𝐶

𝐴𝑛𝐴𝐶 +𝐾𝑛𝐴𝐶
𝐴𝐶

𝐵𝑛𝐵𝐶

𝐵𝑛𝐵𝐶 +𝐾𝑛𝐵𝐶
𝐵𝐶

− 𝑑𝐶𝐶

− 𝑑𝑁
𝑑𝑡

1
𝑁

𝐶, (11)

𝑑𝑁
𝑑𝑡

=𝑘𝑔
1

1 + 𝑏(𝑡)
(1 − 𝑁

𝑁0
)𝑁, (12)

𝑏(𝑡) =𝐴 + 𝐵 + 𝐶
𝐽

, (13)

where the additional dynamical variable𝑁 denotes the density of the host cells, 𝑘𝑔 is a parameter579

controlling the maximal growth rate of the host cells, 𝐽 is a parameter reflecting how this three-580

node gene circuit contributes to the burden.581

The growth of 𝑁 is under the regulatory action of two sources: by itself following the logistic
equation with the environmental capacity𝑁0 and by the burden 𝑏 that represents the competence
from themetabolism of the gene circuit. Tomake the computations feasible, we focus our analysis
on the exponential growth phase so that 𝑁0 ≫ 𝑁 . The equation governing the growth of the cell
numbers, Eq. (12), can then be rewritten as

𝑑𝑁
𝑑𝑡

= 𝑘𝑔
1

1 + 𝑏(𝑡)
𝑁, (14)

where the dilution rate 𝑑𝑁∕𝑑𝑡 is regulated only by the burden 𝑏(𝑡) of the gene circuit. While cell582

growth is inhibited by themetabolism of the gene circuit, the circuit is also regulated by the growth583

of 𝑁 that dilutes the concentration of circuit nodes with increasing cell volume. This dilution is584

reflected by the additional terms −(𝑥∕𝑁)(𝑑𝑁∕𝑑𝑡) in Eqs. (9-11).585
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It is useful to clarify themeaning of the degradation parameter 𝑑𝑥 and its relationship to growth586

feedback. While degradation and growth feedback terms have the same sign in the regulatory587

equations, 𝑑𝑥 may include a constant dilution. We assume that 𝑑𝑥 represents the sum of all the588

degradation effects in cells that are distinct from growth feedback. For instance, degradation tags,589

especially in the ssrA tagging systems (Gottesman et al., 1998), are often used in synthetic gene cir-590

cuits to increase the degradation rate and thus increase the time scale of thewhole system (Elowitz591

and Leibler, 2000; Fung et al., 2005; Stricker et al., 2008; O’Brien et al., 2012).592

Numerical criteria for functional adaptation593

We introduce four criteria to determine if a circuit has functional adaptation.594

Precision:595

The basic requirement of adaptation is that the output remains the same when is input is switched596

fromone state to another, i.e.,𝑂2 should be close to𝑂1 in Fig. 19b). Specifically, we set the precision597

criterion to be |(𝑂2 − 𝑂1)∕𝑂1| < 0.1.598

Sensitivity:599

The circuit is also required to respond to the switch of the input signal with a high peak. This ability600

of the circuit is named sensitivity. We introduce two types of sensitivity: relative and absolute, with601

the respective criteria 𝑂peak∕𝑂1 > 0.5 and 𝑂peak > 0.1. Only the circuits meeting both criteria are602

regarded as having achieved the required sensitivity.603

The need to use the two different criteria simultaneously can be justified, as follows. Given the604

variety of network topologies and a large number of system parameters, there is a vast diversity in605

the circuit dynamics and the values of 𝑂1. When 𝑂1 is small, it is difficult to observe a peak that has606

even satisfied the relative sensitivity criterion. If the absolute criterion is used alone for a circuit607

with a large 𝑂1 value, the peak may be negligible in comparison with 𝑂1, making its observation608

practically difficult. It is thus necessary to combine the two criteria so that the cases of small and609

large values of 𝑂1 can be dealt with on the same footing.610

Oscillations:611

To achieve the desired adaptation, the circuit’s output should reach a steady state before and612

after the input signal is switched. The values of 𝑂1 and 𝑂2 can be determined as the output signal613

associated with the steady states. However, realistically, it is not necessary to require that the614

circuit reach an exact equilibrium. Relatively small oscillations in the circuit are acceptable. We615

define a “relative steady state” where, within a time block of 𝑡block = 200, the standard deviation616

of the time series of each node 𝑥(𝑡) satisfies: std(𝑥) < 1 × 10−4 and std(𝑥)∕mean(𝑥) < 0.05. To617

further guarantee that the circuit is actually in the “relatively steady state,” two successive time618

blocks satisfying the standard deviation requirements are needed. The quantities 𝑂1 or 𝑂2 are619

then defined as the respective mean values of the output signal in that last time block 𝑡block.620

Relaxation time:621

An ideal gene circuit should be able to respond and adapt within a reasonable time scale. We set622

an upper bound of evolution time 𝑡max = 4, 000. If the system cannot reach the “relative steady623

state” within this time, it is regarded as non-functional.624

Details of parameter space sampling and response simulation625

A three-node gene circuit subject to growth feedback has a large number of parameters. Let 𝐿626

be the number of links among the three nodes (excluding the input link). The total number of627

parameters is 2 ⋅3+2(𝐿+1) = (2𝐿+8). The values of these parameters determine the properties of628

the regulation links within the circuit and, as a result, the circuit dynamics. The circuit parameters629

are randomly generated by the Latin hypercube sampling method (Iman et al., 1980) using the630

function “lhsdesign” in Matlab. The parameters are sampled uniformly either on a logarithmic or631
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a linear scale. The sampling ranges of the parameters are: 𝑣𝑥 ∈ [10−1, 101] (sampled in logarithmic632

scale), 𝑑𝑥 ∈ [10−2, 1] (sampled in logarithmic scale), 𝑛𝑥𝑦 ∈ [1, 4] (sampled in linear scale), and 𝐾𝑥𝑦 ∈633

[10−3, 1] (sampled in logarithmic scale).634

Thedynamical equations of the circuits are numerically integratedby the 4th order Runge–Kutta635

method with a time step Δ𝑡 = 0.05. All the initial states of 𝐴, 𝐵, and 𝐶 are taken to be 0.1. The input636

signal is initially 𝐼0 = 0.06 and then switched to 𝐼1 = 0.6.637

We also observe that, when an isolated circuit fails, a certain amount of growth feedback can638

restore the circuit’s functions. This phenomenon was previously discovered experimentally (Tan639

et al., 2009). However, such cases are rare. We thus focus on circuits that are functional in isolation640

and examine how growth feedback affects their adaptation.641
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Appendix 1759

AnAnalysis on theMathematical Criterion forRobustnessAgainstGrowth
Feedback

760

761

The quantitative measure 𝑅(𝑘𝑔) we have introduced to characterize the effects of growth
feedback on gene circuit functioning is generally not amenable to analytic treatment. How-
ever, for weak feedback, certain analytic insights can still be gained. Here we consider a
three-node gene circuit designed to have adaptation and analyze how growth feedback de-
stroys adaptation. We focus on type-I failure, where the growth feedback makes 𝑂2(𝐶) de-
viate from 𝑂1(𝐶), because (1) this type of failures is arguably the most important type as
it alone takes nearly half of all the failures, and (2) it can be analyzed. Here we provide a
semi-quantitative analysis to elucidate how a small 𝑘𝑔 > 0 can make 𝑂2(𝐶) deviate from
𝑂1(𝐶).
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Circuit robustness in the absence of growth feedback.771

The dynamical equations of the circuit in the absence of growth feedback are:

𝑑𝐴
𝑑𝑡

= 𝑓𝐴 = 𝐺𝐴 − 𝑑𝐴𝐴, (15)

𝑑𝐵
𝑑𝑡

= 𝑓𝐵 = 𝐺𝐵 − 𝑑𝐵𝐵, (16)

𝑑𝐶
𝑑𝑡

= 𝑓𝐶 = 𝐺𝐶 − 𝑑𝐶𝐶, (17)

where

𝐺𝐴 = 𝐻Input,𝐴(Input) ⋅𝐻𝐴,𝐴(𝐴) ⋅𝐻𝐵,𝐴(𝐵) ⋅𝐻𝐶,𝐴(𝐶), (18)

and each 𝐻 term represents the regulation of a single link in the circuit. The steady-state
solutions (𝐴0, 𝐵0, 𝐶0) are given by

𝐴0 = 𝐺𝐴∕𝑑𝐴 (19)
𝐵0 = 𝐺𝐵∕𝑑𝐵 (20)
𝐶0 = 𝐺𝐶∕𝑑𝐶 . (21)

For notation convenience, we use 𝑥 to denote an arbitrary node (A, B, or C). The steady-state
solutions can thus be written as

𝑥0 = 𝐺𝑥∕𝑑𝑥. (22)

With a small input signal change Δ𝐼 applied to the circuit, the steady states becomes (𝐴0 +
Δ𝐴0, 𝐵0 + Δ𝐵0, 𝐶0 + Δ𝐶0). Under Δ𝐼 , the dynamical equations at the steady point can be
written as

0 = 𝑓𝑥(𝑦0 + Δ𝑦0, input = Δ𝐼). (23)

For Δ𝐼 = 0, the equation becomes

0 = 𝑓𝑥(𝑦0, input = 0). (24)

Subtracting Eq. (24) from Eq. (23), we get

⎡

⎢

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎥

⎦

= 𝑓

⎡

⎢

⎢

⎢

⎣

Δ𝐴0

Δ𝐵0

Δ𝐶0

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

Δ𝐼, (25)
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where

𝑓 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐴

𝜕𝑓𝐴
𝜕𝐵

𝜕𝑓𝐴
𝜕𝐶

𝜕𝑓𝐵
𝜕𝐴

𝜕𝑓𝐵
𝜕𝐵

𝜕𝑓𝐵
𝜕𝐶

𝜕𝑓𝐶
𝜕𝐴

𝜕𝑓𝐶
𝜕𝐵

𝜕𝑓𝐶
𝜕𝐶

⎤

⎥

⎥

⎥

⎦

(26)

is the Jacobian matrix of the original dynamical equations evaluated at (𝐴0, 𝐵0, 𝐶0).
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Solving Eq. (25), we have

⎡

⎢

⎢

⎢

⎣

Δ𝐴0

Δ𝐵0

Δ𝐶0

⎤

⎥

⎥

⎥

⎦

= − −1
𝑓

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

Δ𝐼 (27)

For the steady state to remain stable under Δ𝐼 , the requirement is that ratio Δ𝐶0∕Δ𝐼 be
small. Assuming that the Jacobian matrix satisfies the conditions to make points (𝐴0, 𝐵0, 𝐶0)
and (𝐴0+Δ𝐴0, 𝐵0+Δ𝐵0, 𝐶0+Δ𝐶0) stable in their corresponding dynamical systems, we have

Δ𝐶0

Δ𝐼
=

⎛

⎜

⎜

⎜

⎝

− −1
𝑓

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠3

, (28)

where (⋅)3 denotes the third component of the vector inside. The limiting case of a perfectly
precise circuit is defined to be Δ𝐶0∕Δ𝐼 = 0, yielding a precision criterion of by ( −1

𝑓 )31 ≈ 0 or
(

𝜕𝑓𝐵

𝜕𝐴
𝜕𝑓𝐶

𝜕𝐵
−

𝜕𝑓𝐵

𝜕𝐵
𝜕𝑓𝐶

𝜕𝐴

)

∕Det(𝑓 ) ≈ 0. (29)

leading to

𝜕𝑓𝐵

𝜕𝐴
𝜕𝑓𝐶

𝜕𝐵
−

𝜕𝑓𝐵

𝜕𝐵
𝜕𝑓𝐶

𝜕𝐴
= 0. (30)

which is the central criterion analyzed in Shi et al. (2017). The two families, NFBL and IFFL,
satisfy this same criterion through different mechanisms.
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826

827

828

829

Precision criteria in the presence of weak growth feedback and 𝐽 → ∞830

We now incorporate growth feedback into the analysis in the limit 𝐽 → ∞. In this case,
the burden 𝑏 is small so that the dilution strength can be approximated as 𝑑𝑁∕𝑑𝑡∕𝑁 ≈ 𝑘𝑔 .
Suppose weak growth feedback is present before and after the small input signal Δ𝐼 is
applied. Let the steady state under growth feedback before application of Δ𝐼 be denoted
as (𝐴′

0, 𝐵
′
0, 𝐶

′
0). The steady state with input Δ𝐼 can be written as (𝐴

′
0+Δ𝐴′

0, 𝐵
′
0+Δ𝐵′

0, 𝐶
′
0+Δ𝐶 ′

0).
The basic equations before and after application of Δ𝐼 are

𝑑𝑥′

𝑑𝑡
= 𝑓𝑥(𝑦′, input = 0) − 𝑘𝑔𝑥

′, (31)

𝑑(𝑥′ + Δ𝑥′)
𝑑𝑡

= 𝑓𝑥(𝑦′ + Δ𝑦′, input = Δ𝐼) − 𝑘𝑔(𝑥′ + Δ𝑥′). (32)

Subtracting Eq. (31) from Eq. (32), we get

⎡

⎢

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎥

⎦

= ( ′
𝑓 − 𝑘𝑔)

⎡

⎢

⎢

⎢

⎣

Δ𝐴′

Δ𝐵′

Δ𝐶 ′

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

Δ𝐼, (33)
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where  is the identity matrix. The solution is

⎡

⎢

⎢

⎢

⎣

Δ𝐴′

Δ𝐵′

Δ𝐶 ′

⎤

⎥

⎥

⎥

⎦

= −( ′
𝑓 − 𝑘𝑔)−1

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

Δ𝐼. (34)

Compared with Eq. (27), the differences are that the matrix ≤ is replaced by ( ′
𝑓 −𝑘𝑔), and

𝑥,Δ𝑥 are replaced by 𝑥′,Δ𝑥′, respectively.
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844

845
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848

849

The precision criterion again requires Δ𝐶 ′
0∕Δ𝐼 to be small. we have

Δ𝐶 ′
0

Δ𝐼
=

⎛

⎜

⎜

⎜

⎝

−( ′
𝑓 − 𝑘𝑔)−1

⎡

⎢

⎢

⎢

⎣

𝜕𝑓𝐴
𝜕𝐼
0
0

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠3

, (35)

which is equivalent to

(( ′
𝑓 − 𝑔𝐸)−1)31 =

[

𝜕𝑓𝐵

𝜕𝐴
𝜕𝑓𝐶

𝜕𝐵
− (

𝜕𝑓𝐵

𝜕𝐵
− 𝑘𝑔)

𝜕𝑓𝐶

𝜕𝐴

]

𝐴′ ,𝐵′ ,𝐶′
∕Det( ′

𝑓 − 𝑔) ≈ 0, (36)

leading to
[

𝜕𝑓𝐵

𝜕𝐴
𝜕𝑓𝐶

𝜕𝐵
− (

𝜕𝑓𝐵

𝜕𝐵
− 𝑘𝑔)

𝜕𝑓𝐶

𝜕𝐴

]

𝐴′ ,𝐵′ ,𝐶′
≈ 0. (37)

Comparing this equation for precision criterion Eq. (37) with the criterion Eq. (30) in the
absence of growth feedback, we find an extra term of 𝑘𝑔 . This explicit term of 𝑘𝑔 makes
the criterion more difficult to satisfy with a range of different 𝑘𝑔 values. It requires either
𝜕𝑓𝐶∕𝜕𝐴 is zero or the four partial derivative terms change accordingly with a varying 𝑘𝑔 to
have exact cancellations.
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For neither the NFBL nor the IFFL family, 𝜕𝑓𝐶∕𝜕𝐴 = 0 can be satisfied. In none of the
425 network topologies, the link from node A to node C is absent (𝜕𝑓𝐶∕𝜕𝐴 = 0). Thus with
a random sampling of the parameters for the circuits that have adaptation at 𝑘𝑔 = 0, the
probability that 𝜕𝑓𝐶∕𝜕𝐴 = 0 can occur is negligibly small.

867

868

869

870

Precision criterion with exact cancellations for the optimal family871

As the criterion 𝜕𝑓𝐶∕𝜕𝐴 = 0 cannot be satisfied in three-node gene circuits, we discuss the
possibility of exact cancellationswith varying 𝑘𝑔 . For the optimal circuit family demonstrated
in Fig. 5(b), we have 𝜕𝑓𝐶∕𝜕𝐵 = 0 as there is no direct link fromnodeB to nodeC. The precision
criterion becomes

[

(
𝜕𝑓𝐵

𝜕𝐵
− 𝑘𝑔)

𝜕𝑓𝐶

𝜕𝐴

]

𝐴′
0 ,𝐵

′
0 ,𝐶

′
0

≈ 0. (38)

Since 𝜕𝑓𝐶∕𝜕𝐴 ≠ 0, this can be rewritten as

𝜕𝑓𝐵

𝜕𝐵
|𝐴′

0 ,𝐵
′
0 ,𝐶

′
0
− 𝑘𝑔 ≈ 0. (39)

For this family, the precision criterion in the absence of growth feedback is

𝜕𝑓𝐵

𝜕𝐵
|𝐴0 ,𝐵0 ,𝐶0

≈ 0. (40)

Combining Eqs. (39-40), we get

𝜕2𝑓𝐵

𝜕𝐴𝜕𝐵
|𝐴0 ,𝐵0 ,𝐶0

(𝐴′
0 − 𝐴0) +

𝜕2𝑓𝐵

𝜕𝐶𝜕𝐵
|𝐴0 ,𝐵0 ,𝐶0

(𝐶 ′
0 − 𝐶0)

≈ 𝑘𝑔 . (41)
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Using the approximation employed in Shi et al. (2017) for the NFB family that 𝑓𝐵 is a linear
function of 𝐵, we have

𝜕𝑓𝐵(𝐴,𝐵, 𝐶)
𝜕𝐵

≈
𝑓𝐵(𝐴,𝐵, 𝐶)

𝐵

=
𝑣𝐵
𝐾𝐵𝐵

𝐻𝐴,𝐵(𝐴)𝐻𝐶,𝐵(𝐶) − 𝑑𝐵 . (42)

We thus have
𝑑𝐻𝐴,𝐵(𝐴)

𝑑𝐴
|𝐴0

𝐻𝐶,𝐵(𝐶0)(𝐴′
0 − 𝐴0) +𝐻𝐴,𝐵(𝐴0)

𝑑𝐻𝐶,𝐵(𝐶)
𝑑𝐶

|𝐶0
(𝐶 ′

0 − 𝐶0) ≈
𝐾𝐵𝐵

𝑣𝐵
𝑘𝑔 . (43)

This equation can be solved analytically only in the regime of 𝑘𝑔 ∼ 0 where (𝐴′
0 − 𝐴0) and

(𝐶 ′
0 − 𝐶0) are approximately linear functions of 𝑘𝑔 . But it should be difficult for the circuit to

meet this criterion with a random sampling of the circuits that have adaptation at 𝑘𝑔 = 0.
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Appendix 2903

Network motifs supporting oscillations904

As summarized in Novák and Tyson (2008), three classes of motifs can support oscillations
in a three-node circuit.

905

906

Class 1 (the dominant class) Delayed negative-feedback loop with an intermediate node
in thepath of the negative feedback loop. Amajority of the networkswith anoscillation-
supporting motif belong to this class (237 out of 245 networks). All the circuits that
have more than 20% failures as oscillation-induced failures belong to this class.

907

908

909

910

Class 2 Amplifiednegative-feedback loop, with a node regulatedbyboth anegative-feedback
loop through another node andapositive-feedback loop through the third node. There
are only 8 network topologies that fall into this class. They result in 3% to 20%oscillation-
induced failures.

911

912

913

914

Class 3 Incoherently amplified negative-feedback loops, as demonstrated in Fig. 5(c) of
Novák and Tyson (2008). Among all the 425 networks capable of adaptation studied
in our work, no network belongs to this class.

915

916

917
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Appendix 3918

Self-activation and toggle switch circuits919
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920

Appendix 3—figure 1. Scaling law of robustness measure for the single-gene self-activation circuit
and the two-gene toggle switch circuit. (a1,b1) The topology of the self-activation circuit and the decay
of the robustness measure with the growth feedback strength. (a2,b2) Same legends as (a1,b1),
respectively, for the toggle switch circuit. Note the drastic difference in the range of 𝑘𝑔 values in (b1)
and (b2) where 𝑅 approaches zero much more quickly in the former than in the latter, indicating the
nearly immediate loss of functions of the single-gene circuit even under weak growth feedback.

921

922

923

924

925

926927

The key quantitative results about the survival ratio 𝑅(𝑘𝑔) presented in the main text are
obtained from various circuit topologies with three genes. To demonstrate the general ap-
plicability of 𝑅(𝑘𝑔), we study two simpler gene circuits: a self-activation circuit with a single
gene and a toggle switch circuit with two genes. A comparative study of these two classes
of circuits has been carried out recently (Zhang et al., 2020), whose topological structures
are shown in Figs. 1(a1) and 1(a2), respectively. In the absence of growth feedback, both
networks exhibit bistability and a hysteresis loop. Under dilution, the self-activation circuit
quickly loses the memory while the toggle switch circuit can remain functional, as was ob-
served numerically and experimentally (Zhang et al., 2020).

928

929

930

931

932

933

934

935

936

Our simulation settings are mostly identical to that of 3-node circuits in the main text,
including the sampling regions of the random circuit parameters, the specifics of the ODE
solver, and the criterion for locating equilibrium. We set 𝐽 = 1. Other than the network
topology, the only difference is the functionality criteria. Here, the desired function is a
hysteresis. We test the response of the circuit output when (i) the input is a switch from
an off-state (with input signal 𝐼off = 10−8) to an on-state (with input signal 𝐼on = 2) and (ii)
the input is switched from an on-state to an off-state. In the former trial, the steady-state
output is switched from 𝑂1,off to 𝑂1,on, while in the latter it is switched from 𝑂2,on to 𝑂2,off.
The criteria are: (i) the two steady states are distinguishable: Δ𝑂 = 𝑂2,on − 𝑂1,off > 0.1; and
(ii) the system exhibits a hysteresis: (𝑂1,on − 𝑂1,off)∕Δ𝑂 > 0.5 > (𝑂2,on − 𝑂2,off)∕Δ𝑂.
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943

944

945

946

Figures 1(b1) and 1(b2) show the scaling law of 𝑅(𝑘𝑔) with 𝑘𝑔 for the self-activation and
toggle switch circuits, respectively. It can be seen that, for the self-activation circuit, as the

27 of 35



growth feedback strength increases, 𝑅(𝑘𝑔) approaches zero quickly, indicating that the cir-
cuit function cannot sustain even weak feedback with near zero strength. For the toggle
switch, 𝑅(𝑘𝑔) approaches zero eventually but at a much slower rate, a result that is con-
sistent with the finding in Zhang et al. (2020). Remarkably, the scaling of 𝑅(𝑘𝑔) with 𝑘𝑔 ex-
hibits qualitatively similar behavior as the scaling laws reported in the main text for various
three-gene circuits, lending further credence for the general applicability of the quantitative
measure 𝑅(𝑘𝑔) to characterize the effects of growth feedback on gene networks.
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Appendix 4956

Regularized feed-forward neural networks for identifying critical links957

We employed ensembles of regularized feed-forward neural networks to detect, in an au-
tomated fashion, the links that are crucial in determining the level of robustness 𝑅. The
neural-network structure is illustrated in Fig. 6(e), which has three layers: an input layer, a
hidden layer, and an output layer. The input layer receives a nine-dimensional circuit topol-
ogy vector where each entry represents a potential link in the three-node circuit, such as
𝐴 → 𝐴 and 𝐵 → 𝐶 . For an activation (inhibition) link, the entry value is set to +1 (-1). In the
absence of such a link, the value is zero. In the hidden layer, there are only two neurons that
use a hyperbolic tangent activation function, creating a bottleneck that limits the complexity
of the extracted features. The output layer has one neuron that uses a hyperbolic tangent
activation function trained to output the estimated robustness 𝑅̂. The input and hidden
layers are connected by the matrix𝑊in, and the hidden and output layers are connected by
the matrix𝑊out. Given the input vector 𝑢, the estimated 𝑅̂ can be expressed as

𝑅̂ = tanh[𝑊out tanh(𝑊in𝑢)]. (44)

We use all the 303 circuit topologies that have 𝑄(𝑘𝑔 = 0) > 100 for training to minimize the
relative random fluctuations in the training data. The loss function for optimization is

Loss = |𝑅̂ − 𝑅| + 𝛽
𝑤ℎ
∑

𝑖=1

𝐿𝑛
∑

𝑗=1
|𝑊in,𝑖𝑗|, (45)

where 𝛽 = 0.05 is the 𝑙-1 regularization coefficient, 𝐿𝑛 = 9 is the number of possible links
within a three-gene circuit, and 𝑤ℎ = 2 is the width of the hidden layer. We train the net-
work using a stochastic gradient descent algorithm and repeat it 50 times with different
initial weights in the neural net matrices. The “importance” of a link is determined by the
logarithm of the absolute value of the weights in𝑊in corresponding to the gain of that link.
This importance measure is then averaged over all 50 neural networks.
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Appendix 5984

Lackof correlationbetween the circuit robustness and topological fam-
ilies
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Appendix 5—figure 1. Demonstration of circuit robustness against growth feedback being unrelated
to NFBL or IFFL family membership. The green and blue colors represent the NFBL and IFFL families,
respectively. (a) Robustness measure 𝑅(𝑘𝑔 = 0.6) versus 𝑄(𝑘𝑔 = 0), where each node represents a
network topology. Circuits from both families are widely distributed across different levels of 𝑅 and
intermingled. (b) Distributions of 𝑅(𝑘𝑔 = 0.6) for the two families, which are quite similar.
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As shown in Fig. 1, the network topologies belonging to the twodifferent families (marked
in different colors) are mingled together and spread all over the range of 𝑅(𝑘𝑔), suggesting
no significant correlation between the circuit robustness and circuits family. To quantify this
irrelevance, we calculate the point biserial correlation between (a) the 𝑅(𝑘𝑔) values of all the
network topologies with 𝑄(𝑘𝑔 = 0) ≤ 200 (to lower the fluctuations) and (b) a binary variable
𝑏𝑓 which is 𝑏𝑓 = 0 for the NFBL family and 𝑏𝑓 = 0 for the IFFL family. The calculation involves
108 NFBL network topologies and 93 IFFL topologies. The resulting point biserial correlation
is as small as 0.1. The 95% confidence interval for the true difference with respect to the two
families of 𝑅(𝑘𝑔) is (-0.01,0.06), which is narrow around zero.
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Appendix 61003

Results from low burden level1004

For the simulation results reported in the main text, the burden parameter is fixed at 𝐽 = 1.
What are the possible behaviors of the gene circuit for different values of 𝐽? Suppose 𝐽
is much larger than one. In this case, the burden term 𝑏 that has 𝐽 in the denominator is
negligible, thereby reducing the complexity of the systemandproviding a parameter regime
in which the contributing factors to the survival ratio 𝑅(𝑘𝑔) other than the burden can be
identified.
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In the regime of large 𝐽 , the burden in Eq. (8) in the main text is much smaller than one,
so Eq. (7) in the main text about growth rate can be simplified as

𝑑𝑁
𝑑𝑡

= 𝑘𝑔
1

1 + 𝑏
𝑁 = 𝑘𝑔

1
1 + (𝐴 + 𝐵 + 𝐶)∕𝐽

𝑁 ≈ 𝑘𝑔𝑁, (46)

indicating that cell growth is determined entirely by the growth-feedback strength 𝑘𝑔 . It can
be seen from Eqs. (4-6) in the main text that, in this case, the effect of growth feedback
is equivalent to a linear change of the amount 𝑘𝑔 in the degradation terms 𝑑𝑥. Further,
the interaction between cell growth and the gene circuit is no longer of the type of mutual
inhibition: the regulation is a one-way interaction from cell growth to the gene circuit. A
semi-quantitative analysis of this scenario can be found in Appendix 1.
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We carry out the simulations as in the main text in the regime of large 𝐽 and perform a
comparative analysis of the results.
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Appendix 6—figure 1. Circuit performance for zero burden. Shown is a comparison of the
distributions of circuit failure scenarios under growth feedback for (a) 𝐽 = 1 as in the main text and (b)
𝐽 → ∞ (zero burden). In both cases, there are six categories in spite of some quantitative differences
in their probabilities, implying that, as the burden is reduced to zero from a finite value continuously,
the failure scenarios are qualitatively the same. Notable is the fraction of circuits suffering type-I
failures (violation of the precision criterion), which has a relatively large reduction for 𝐽 → ∞, a result
that is consistent with the semi-quantitative analysis in Appendix 1.
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The first issue concerns the relative fractions of different failure scenarios. Figure 1 com-
pares the distributions of distinct types of circuit failures for 𝐽 = 1 and 𝐽 → ∞. The possible
failure scenarios are identical in both cases, in spite of the quantitative differences in the
relative fractions of the failure mechanisms. Some of the differences are sizable, but none
is significant in the sense that none is beyond an order of magnitude. For example, for

31 of 35



𝐽 = 1, type-I failures are the most common (49%) where the precision criterion is broken in
a continuous fashion. For 𝐽 → ∞, the fraction is about 31%, but the reduction is still within
a factor of two. The plausible reason for the reduction is that the additional regulation of
the burden 𝑏 for 𝐽 = 1 is more difficult to be maintained (Appendix 1).

1033

1034

1035

1036

1037

1038

1039

1040

1041

0 0.5 1
0

0.2

0.4

0.6

0.8

1
all
circuit No.98
circuit No.3
circuit No.28

-2 -1 0
-2

-1.5

-1

-0.5

0

0.5

all
circuit No.98
circuit No.3
circuit No.28

0 0.5 1
0

0.2

0.4

0.6

0.8

1
all
circuit No.98
circuit No.3
circuit No.28

-2 -1 0
-2

-1.5

-1

-0.5

0

0.5

all
circuit No.98
circuit No.3
circuit No.28

(a1) (a2)

(b1) (b2)

1042

Appendix 6—figure 2. Scaling law of circuit robustness measure for zero burdens. (a1,b1)
Representative scaling relations between 𝑅(𝑘𝑔) and 𝑘𝑔 for 𝐽 = 1 as in the main text, plotted on two
different scales. (a2,b2) Representative scaling relations for 𝐽 → ∞. The curves in (b2) are
approximately linear, suggesting the scaling law (1) in the main text. In (b1), the curves are less linear
where the added burden leads to more reduction in 𝑅(𝑘𝑔) in the regime of weak growth feedback.
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The second issue is the scaling law between the survival ratio 𝑅(𝑘𝑔) and the growth-
feedback strength 𝑘𝑔 . Figure 2 compares the scaling laws of𝑅(𝑘𝑔) for three circuit topologies
for 𝐽 = 1 and 𝐽 → ∞, where the results in Figs. 2(a1) and 2(a2) are represented on a linear
scale, while those in Figs. 2(b1) and 2(b2) are on a double-logarithmic versus logarithmic
scale. The approximately linear relation in Fig. 2(b2) suggests that, for 𝐽 → ∞, the scaling
laws is given by (1) in the main text.
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For 𝐽 = 1, the scaling law (1) is less accurate, as shown in Fig. 2(b1), which can be heuristi-
cally explained, as follows. Suppose we use Eq. (46) and reduce 𝐽 from a large value to one,
which is equivalent to adding back the negative feedback from the burden 𝑏 = 𝐴 + 𝐵 + 𝐶
to cell growth. Since cell growth effectively inhibits the gene regulation in the circuit, the
burden will be larger for smaller values of 𝑘𝑔 , suppressing the cell growth. Thus, for weak
growth feedback (corresponding to small values of 𝑘𝑔), for small 𝐽 , 𝑅(𝑘𝑔) decreases more
slowly than for larger values of 𝐽 . The difference becomes smaller for larger values of 𝑘𝑔 ,
causing the curves on the left side in Fig. 2(b1) to be lower than those in Fig. 2(b2), but the
curves on the right side are similar in both cases.
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Appendix 6—figure 3. Dependence of the distribution of the robustness measure 𝑅(𝑘𝑔 = 0.6) on
circuit topology. (a1) For 𝐽 = 1 (as in the main text), 𝑅(𝑘𝑔 = 0.6) versus 𝑄(𝑘𝑔 = 0) (a quantity that
measures the likelihood of a functional circuit) for all 425 network topologies. (b1) Histogram of
𝑅(𝑘𝑔 = 0.6) for 𝐽 = 1 constructed from all network topologies. (c1) 𝑅(𝑘𝑔 = 0.6) versus the burden
parameter. In (a1-c1), each data point represents a specific network topology. (a2-c2) The same
legends as in (a1-c1), respectively, for 𝐽 → ∞. For diminishing burden, the circuit topologies
associated with the red group remain to be more unstable comparing with those in the green group.
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The third issue is the effect of the network topology on the survival ratio 𝑅(𝑘𝑔). Figure 3
presents a comparison of the dependency of 𝑅 on the circuit topology for 𝐽 = 1 and 𝐽 → ∞.
As discussed above, the difference in the burden 𝑏 can be amajor reason for the data points
in the red group to have lower 𝑅 values compared with those in the blue and green groups.
When the term 𝑏 is effectively removed by setting 𝐽 → ∞, the difference diminishes. It
can be seen from Figs. 3(a2), 3(b2) and 3(c2) that, in this case, the range of 𝑅 for the red
group, in spite of the low 𝑅 values, overlaps with that of the blue group. However, the 𝑅
values associated with the red group are still distinctly smaller than those with the green
group, suggesting some characteristic differences in the network motifs that define these
two groups.
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Figures 3(b1) and 3(b2) indicate a persistent feature of the distribution of the survival ra-
tio 𝑅(𝑘𝑔 = 0.6) for the ensemble of networks: there are three peaks regardless of whether 𝐽
has a small or a large value. Further, the three peaks are approximately located at the same
positions for 𝐽 = 1 and 𝐽 → ∞. This feature provides a criterion to determine the likelihood
of a given network topology being stable or unstable under growth feedback without the
need to calculate the 𝑅(𝑘𝑔) value for many values of the feedback strength. In particular, if
the network is such that its 𝑅(𝑘𝑔 = 0.6) value is associated with the red peak, then it is highly
likely to be unstable and fail to function under growth feedback. On the contrary, if a net-
work “belongs” to the green peak, then the chance for it to sustain its function in a growth
environment will be improved significantly.
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There can be two different mechanisms for growth-induced oscillations: (i) by altering
the system parameter, and (ii) by altering the circuit topology with the additional dynamical
variable 𝑁 and regulations attached to it. Our results suggest the first mechanism is the
major one, while the second one does not appear to play a significant role. The second
mechanism only exists with a finite 𝐽 . Thus, we compare the cases of 𝐽 = 1 and the limit of
a large 𝐽 . As shown in Fig. 3, the ratio of functional failures caused by growth-induced oscil-
lations does not change much between the two cases. However, the oscillatory behavior is
sensitive to the value of the dilution parameter. In order to have oscillations, it is necessary
that the parameter be in some specific interval (Novák and Tyson, 2008).
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Appendix 71102

Four-gene circuits1103
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Appendix 7—figure 1. (a) Ten representative four-gene circuits. The eight circuits in the first four
columns are from Qiao et al. (2019), and the two circuits in the fifth column are selected due to the
oscillation-related motifs in their topologies and the relatively high 𝑄(𝑘𝑔 = 0) values when reduced to
three-gene circuits. (b-d) Examples of the three major categories of growth-feedback induced
functional failures in the four-gene circuits, where the upper panels display the circuit outputs with
smaller 𝑘𝑔 values for which the circuits remain functional and the lower panels showcase the circuit
outputs with larger 𝑘𝑔 values for which the circuits lose their functionality. The vertical red dashed line
marks the time when the input is switched to another state. The three failure categories are identical
to these in the three-gene circuits in the main text: (b1, b2) continuous trajectory deformation causing
the system to cross thresholds associated with the sensitivity criterion, (c1, c2) growth-strengthened
oscillations, and (d1, d2) growth-induced switching in bistability. The change in 𝑘𝑔 between panels (d1)
and (d2) is small so as to show the abrupt change in the response at a critical point.
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To demonstrate the general applicability of our nonlinear dynamical analysis of the fail-
ure mechanism, we study four-gene circuits. Figure 1(a) shows ten representative circuits,
where eight are from Qiao et al. (2019) and two being the four-node modifications of three-
gene circuits with oscillation-related motifs. For each circuit, we test 105 random sets of pa-
rameters. To generate acceptable statistics, we ease the precision and sensitivity criteria to:
(i) |(𝑂2 −𝑂1)∕𝑂1| < 0.4, (ii) 𝑂peak > 0.1, and (iii) 𝑂peak∕𝑂1 > 0.5 or 𝑂peak∕𝑂1 − |(𝑂2 −𝑂1)∕𝑂1| > 0.1.
All other simulation settings are the same as those in the three-gene circuit simulations as
detailed in the main text. We collect a total of 3,275 trials exhibiting functional adaptation
in the absence of growth feedback (𝑘𝑔 = 0). As the growth feedback is turned on so that
𝑘𝑔 = 0 increases 𝑘𝑔 = 0.5, 2,373 trials encountered functional failures across all ten circuits.
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We then investigate the causes of the functional failures. We find that all 2,373 trials
fall into the same three categories identified for three-gene circuits: growth-induced oscil-
lations, growth-induced switching in bistability, and continuous deformation of the system
trajectory leading the system to cross the criteria thresholds, as shown in Figs. 1(b-d), respec-
tively. For the cases studied, continuous deformation is the dominant failure mechanism,
accounting for about 88% of the failures. The fractions of oscillation-related and bistability-
related failures are approximately 10% and 3%, respectively. These results indicate that four-
gene and three-gene circuits share the common mechanisms of growth-feedback induced
failures, implying the generality of these failure mechanisms.
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