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Abstract

The successful integration of engineered gene circuits into host cells remains a significant
challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where
the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures
and identifying topologies resilient to growth feedback are crucial for both fundamental and
applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we
systematically study 435 distinct topological structures and uncover six categories of failures.
Three dynamical mechanisms of circuit failures are identified: continuous deformation of the
response curve, strengthened or induced oscillations, and sudden switching to coexisting
attractors. Our extensive computations also uncover a scaling law between a circuit robustness
measure and the strength of growth feedback. Despite the negative effects of growth feedback
on the majority of circuit topologies, we identify a few circuits that maintain optimal performance
as designed, a feature important for applications.

Introduction

In biomedical science and engineering, artificially designed gene circuits are anticipated to play an
ever-increasing role in disease diagnosis and therapy (Riglar and Silver, 2018; Sedighi et al., 2019;
Xia et al., 2019). Gene circuits also show great potential in various applications such as microbiome
modulation (Foo et al., 2017; Lee et al., 2018) and biological containment (Gomaa et al., 2014;
Caliando and Voigt, 2015). While most gene circuits are designed to function after they are inserted
or embedded into host cells, the interactions between the circuit and the host environment are
generally extremely complex and can lead to undesired effects that were not present in the original,
isolated circuit (Tan et al., 2009; Ceroni et al., 2015; Borkowski et al., 2016; Ceroni et al., 2018;
Darlington et al., 2018a,b; Gouda et al., 2019; Zhang et al., 2021, 2020; Melendez-Alvarez et al.,
20217). Understanding the interactions and identifying the circuit topological structures that can
withstand the interactions and thrive in the host are thus of fundamental importance, requiring
interdisciplinary efforts among systems and synthetic biology, metabolic engineering, nonlinear
dynamics and complex systems.

Typical circuit-host interactions include metabolic burden, cell growth, and resource relocation
or competition, among which growth feedback is the most common type of circuit-host interaction
between the circuit gene expressions and cell growth. More specifically, a synthetic gene circuit em-
bedded in a host cell possesses an intrinsic coupling mechanism: the circuit affects cell growth and
the growth in turn modifies the gene expressions in the circuit (Klumpp et al., 2009; Klumpp and
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Hwa, 2014; Boo et al., 2019; Scott et al., 2010) - the so-called growth feedback. Studies have shown
that the growth-mediated feedback can endow a synthetic gene circuit with various emergent prop-
erties, such as innate growth bistability (Deris et al., 2013). For example, a non-cooperative positive
autoregulation system, when coupled with growth feedback, gains increased effective cooperativ-
ity, thereby resulting in bistability (Tan et al., 2009; Nevozhay et al., 2012). In another example,
toxin cooperativity can be induced in multiple toxin-antitoxin systems by growth-mediated feed-
back (Feng et al., 2014). The number of steady states in one gene circuit also depends on growth
feedback and resource availability (McBride and Del Vecchio, 2020; Melendez-Alvarez and Tian,
2022). In general, growth feedback acts to hamper the forward engineering of the circuit functions
by introducing modes of nonmodularity and reducing the predictability of the circuit components
in an in-vivo context. While various phenomena caused by growth feedback were studied with de-
sirable or undesirable effects on the functions of the gene circuits, a systemic picture is lacking on
what effects growth feedback can have on the gene circuits, including failures.

A recent study has revealed that growth feedback can have drastically different effects on con-
gruent circuits with distinct topologies (Zhang et al., 2020). In particular, the dynamical behaviors
of two bistable synthetic memory circuits were studied: a self-activation switch incorporating pos-
itive autoregulation and a toggle switch incorporating double-negative regulatory motifs. It was
found that growth feedback impacts both circuits but with quite different manifestations. For the
toggle switch, memory can be retained and the circuit tends to be refractory towards growth feed-
back. However, for the self-activation switch, growth feedback leads to memory loss. While these
results indicate that the circuit topology can play a significant role in the circuit functions when
growth feedback is present, they were obtained through two specific circuit topologies. Since a
particular function of the gene circuit can often be achieved by a finite set of core topologies, it
is of fundamental interest to identify the most robust topologies in response to growth feedback.
The so-identified optimal topologies can then be used to construct synthetic gene circuits capable
of maintaining the essential functions to meet the design goals under the fluctuating growth con-
ditions of the host cell. A systematic study of the interplay between the gene circuit topology and
growth feedback is needed.

Adaptation is an important and widely studied functionality of gene circuits, which is defined as
the ability of the system to respond to environmental changes and to return to the basal or near-
basal state after some time (Knox et al., 1986; Tyson et al., 2003; Friedlander and Brenner, 2009;
Ferrell Jr, 2016). Previously, it was found that certain circuits possess biochemical adaptation (Ma
et al., 2009) if they contain at least one of the two architectural classes: an incoherent feed-forward
loop with a proportion node and a negative feedback loop with a buffering node. A number of
synthetic gene circuits were proposed or constructed to achieve adaptation (Kim et al., 2014; Briat
et al., 2016; Aoki et al., 2019). Quite recently, a design principle for circuits with four genes was
uncovered for simultaneously achieving noise attenuation and adaptation: the circuit must have a
sequential assembly structure (Qiao et al., 2079). However, these existing adaptation studies did
not include any growth feedback mechanism.

In this paper, we conduct a comprehensive computational study to uncover and understand the
effects of growth feedback on the gene circuits. Specifically, we focus on a type of transcriptional
regulation circuit designed for adaptation. There are 425 possible circuit structures (identified by
previous research (Shi et al., 2017)), and we study all of them to simulate and test their response un-
der different levels of growth feedback. Altogether, 2 x 103 sets of circuit parameters are randomly
sampled for each structure. Our results reveal a vast number of cases where growth feedback has
a detrimental effect on circuit function (1.3 x 10° cases in total) with varying response curves and
dynamical behaviors. To gain a more intuitive overall picture, we classify these cases into several
distinct categories based on the circuitsddynamic behavior. We then systemically summarize the
dynamical mechanism behind these growth-induced circuit malfunctions. To quantify circuit adap-
tation in the presence of growth feedback, we propose a robustness measure that enables us to
identify an optimal group of circuits that exhibit a high level of robustness against growth feed-
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back, making them particularly promising for real-world implementation. The motifs associated
with this optimal group are found through machine learning. We also obtain a scaling law govern-
ing the dependence of this measure on the level of growth feedback and provide a mathematical
analysis to gain insights into the underpinnings of the scaling law. The take-home message is that,
in spite of the negative effects of growth feedback in the majority of the circuits, there exists a small
set of circuits that are still able to deliver optimal performance as designed, which is promising for

real-world implementation.

Results

A systemic search of functional failures due to growth feedback

(a) Input

Cell 0_—.5 0//®

Growth

®

time

Figure 1. Schematic illustration of a synthetic
gene circuit embedded in a host cell. (a) A
representative three-gene circuit (inside the
dashed red box) and its dynamical interplay with
host-cell growth. Arrows with triangular ends and
round ends denote activating and inhibiting
regulations, respectively. Altogether, there are
16,038 possible three-node topologies, with 425
topologies capable of adaptation.(b) An example
of the circuit input and output signals. The input is
an idealized step function of currents I, and I,
before and after the jump, respectively. The
output signal is a response of the circuit to the
step function. The features of the output signal, as
characterized by three key quantities
characterizing the signal: 0y, 0,, and O,,,, can be
used to determine if the circuit has succeeded or
failed in its intended function.

Adaptation is referred to as the ability of a
gene circuit to respond to changes in input
and then to return to the pre-stimulus output
level, even when the input change persists (Ma
et al., 2009). More precisely, with an input sig-
nal switched from a lower value I, to a higher
value I,, as demonstrated in Fig. 1(b), a circuit
with functional adaptation should have the fol-
lowing response-curve criteria: (i) precision - the
final state O, should be close to the initial state
0,, (ii) sensitivity - there should be a relatively
high 10, in response to the change in the in-
put, and (iii) the system should reach equilibrium
within a reasonable relaxation time. A three-
node gene circuit can achieve adaptation (Ma
et al., 2009), with one node receiving the input
(node A), another node realizing various regula-
tory roles (node B), and a third node outputting
the response (node C). A representative circuit
topology is shown inside the red dashed box in
Fig. 1(a). We restrict our study of the class of tran-
scriptional regulatory networks (TRNs) with the
AND logic.

In our work, we use a parameter k, to con-
trol the strength of growth feedback, which is a
parameter determining the maximal growth rate
of the host cells, as mathematically explained in
Model description. With all the other parameters
fixed, a larger k, implies a faster cell growth rate
and a stronger impact of growth feedback. Previ-
ous research identified 425 different three-node
TRN network topologies that can achieve adapta-
tion in the absence of growth feedback (Shi et al.,
2017), providing the base of our computational
study. These topologies can be classified into
two families based on the mechanism they rely
on to achieve adaptation: networks with a nega-
tive feedback loop (NFBL) and networks with an

incoherent feed-forward loop (IFFL) (Shi et al., 2017). To investigate the effect of growth feedback
on these circuits, we systematically simulate the response of the 425 network topologies under a
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switch in the input signal. A three-node gene circuit subject to growth feedback has a large num-
ber of parameters, which determine the properties of the regulation links within the circuit and the
circuit dynamics. For each topology, we randomly sample 2 x 103 trials of circuit parameters. Alto-
gether, our study involves analyzing approximately 8.5 x 107 different circuits. We find that among
these trials, only about 1.5 x 105 meet the adaptation criterion in the absence of growth feedback.
For these functional trials, we vary the growth feedback parameter k, with a series of values, and
find that the majority of trials (1.3 x 10° trials, about 87%) lose their adaptation in the interval of
k, € (0,1), while only 13% of trials remain functional at k, = 1.0.

A systemic classification of functional failures due to growth feedback

An essential step towards understanding the detrimental or even destructive effects of growth
feedback on circuit functioning is to identify the distinct failure scenarios. Our extensive simula-
tions have yielded a comprehensive picture of these scenarios, as shown in Fig. 2. Overall, we
have identified six failure scenarios that encompass more than 99.6% of the 1.3 x 10° failing cases
we collect. The first level of classification distinguishes between failures that occur continuously
or abruptly as the growth-feedback strength k, increases. In a continuous failure, the response
curve deforms continuously as k, increases, as exemplified in Figs. 2(a-c). In an abrupt failure, the
response curve exhibits a sudden change as k, increases through a critical value, as illustrated in
Figs. 2(d-f). At the next classification level, we further divide the failures into three types of contin-
uous failures and three types of abrupt failures.

The three types of continuous failures, denoted as types I-lll as illustrated in Figs. 2(a-c), are
determined according to the specific quantitative criteria in the response curve that the circuits
violate. Type-l continuous failures, as shown in Fig.2(a), are associated with the violation of the
precision criterion. A circuit is deemed as precise if a change in the input signal (e.g., from I, to I,)
generates two opposite dynamical effects in the circuit that cancel each other out after a transient
and return the final output to the original state, i.e. O, ~ O,. For example, in some networks [e.g.,
the network in Fig. 1(a)], an increase in the input signal I will result in an increase in the concentra-
tion of gene A and a reduction in the concentration of gene B. As both genes regulate the output
gene C with the respective activation links, for proper system parameter values, the two effects will
cancel each other out, resulting in O, ~ O,. Type-| continuous failures constitute the largest failure
category among all possible circuit topologies, suggesting that the exact cancellation is fragile and
the loss of precision is the most common dynamical mechanism behind growth-feedback-induced
failures.

Our simulations reveal that an exact cancellation between the two opposite sources at k, = 0
prevents an exact cancellation at any other values of k,. That is, the set of circuit parameter values
leading to perfect precision, in general, depends on the value of k, (see Appendix 1 for more details).
The implication is that, for fixed circuit parameter values, achieving high precision under growth
feedback (k, > 0) is dill cult if the circuit is precise in the absence of growth feedback (k, = 0).

Type-Il continuous failures are characterized by a continuous change in the peak of the re-
sponse curve, denoted as O, as k, increases, eventually falling below a threshold, as shown
in Fig. 2(b). This type of failure can make it challenging for downstream circuits to detect the peak
signal, hindering information transmission in the larger system. Type-II failures are the second
most common type of failure observed in our simulations. The occurrence of a high peak in the
response curve requires a significant transient deviation from the final equilibrium point. In the
presence of growth feedback, the transient behavior changes, which can further alter the peak
height Opea-

Type-lll and type-IV failures arise due to growth-feedback-induced oscillations, while type-V and
type-Vl failures are caused by bistability or bifurcations, with fold bifurcations being the most com-
mon type. To provide a more detailed understanding of these different failure scenarios, we dis-
cuss the two mechanisms, respectively, in the sections of Growth-feedback induced oscillations
and Bistability and bifurcations below.
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Figure 2. Systemic classification of circuit failure scenarios due to growth feedback. This study identifies six computationally detectable
categories of failures based on the criterion of functional adaptation that the circuit violates as the effect of growth feedback becomes stronger.
(a) Type-l and (b) type-ll failures correspond to the cases where the precision criterion or sensitivity criterion is violated in a continuous fashion
as the growth-feedback strength k, increases, respectively. (c) Type-Ill and (d) type-V failures occur when the circuits lose adaptation due to
growth-feedback-induced oscillation, either continuously or abruptly, as k, increases, respectively. The abrupt changes in type-V are caused by
bifurcations, mostly a saddle-node bifurcation of cycles or an infinite-period bifurcation. For instance, the case shown in (d) undergoes an
infinite-period bifurcation. (e) Type-V and (f) type-VI failures are when the circuits lose adaptation due to an abrupt change in O, or 0, as k,
increases, respectively, which are caused by bistability or bifurcations in the systems. Trials that are not categorized under these six
classifications or fall into multiple categories constitute less than 0.4% of all cases (see text for more details and discussions about each failure
class). The insets around the pie chart provide exemplary response curves of the circuits in each failure scenario. Each inset shows the
concentration of the output node C versus time with two values of the growth-feedback strength k,, one below and another above the failure
threshold, for the specific failure scenario. In each case, the input is switched from state I, to state I, at the time indicated by the red vertical
dashed line.
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Box 1. Three classes of growth-induced failures

All the failures we observed can be categorized into the following three general classes, appli-
cable to both the three-gene and four-gene circuits we tested:

Continuous Deformation of the Response Curve Typically, we require a specific range of
response curve shapes for a gene circuit, such as a peak in the output with a minimum
height or duration. In a failure caused by continuous deformation, the growth feedback
prompts a gradual change that crosses the boundary of these criteria for response curve
shapes.

Growth-Induced or Growth-Strengthened Oscillations Growth feedback can induce oscil-
lations in a circuit through various types of bifurcations or amplify existing oscillatory be-
havior with longer relaxation times or larger amplitudes. A circuit experiencing growth-
induced or growth-strengthened oscillations cannot reach a relatively steady state (an
equilibrium or relatively small oscillations) within a finite time or reasonable relaxation
period.

Growth-Induced Switching Among Coexisting Attractors When coexisting attractors are
present in the circuit dynamics, such as bistability or multistability, the circuit typically
only functions with one of the attractors. In other words, the circuit is functional locally
inits phase space rather than globally. Strengthened growth can push the system across
the boundary of different attracting basins in the circuit phase space, causing the circuit
to lose its desired functionality by switching from a functional basin to a malfunctioning
basin.

Growth-feedback induced oscillations

As demonstrated by the light green and yellow slices of the pie chartin Fig. 2, a considerable portion
(17%) of the circuit failures are caused by growth-feedback-induced oscillations. Growth feedback
perturbations can easily change the system from the adaptive domain to the oscillation domain in
these cases. Our program classifies oscillation-mediated failures into two categories: continuous
(type-lll) and discontinuous failures (type-IV). Type-lll failures are the results of either (i) a gradual
increase in the oscillation amplitude, or (ii) a gradual increase in the transient lifetime of damped
oscillations. In the first case, an isolated circuit has already exhibited oscillations with small ampli-
tudes in its gene concentrations with relatively weak growth feedback. As the feedback is strength-
ened with a larger value of k,, the oscillations are intensified with a larger amplitude, leading to a
circuit failure. In the second case, there is damped oscillation for small k, with a relatively short
transient time before approaching an equilibrium. After strengthening the growth feedback, the
damping weakens and the oscillation8 amplitude cannot be reduced to the threshold within the
time limit, as exemplified in Fig. 2(c).

The second category of growth-feedback-induced oscillation is type-IV, where oscillations emerge
suddenly as the growth-feedback strength increases through a critical point. The sudden emer-
gence of oscillations can be caused by a bifurcation or a transition into a basin of a limit-cycle
attractor. A random sampling of the type-IV failure cases reveals that most of them are caused
by either a saddle-node bifurcation of cycles (Strogatz, 2018) or an infinite-period bifurcation (Stro-
gatz, 2018). In the former case, a pair of stable and unstable limit cycles suddenly emerge together.
In the latter case, when observed from the opposite direction (i.e., with a decreasing k, crossing
the threshold), the oscillation in the system spends a longer and longer time around a node on
the limit cycle. This node finally becomes a stable fixed point at the bifurcation point, and the os-
cillation period approaches infinity. One example of type-IV oscillation-mediated failures caused
by an infinite-period bifurcation is shown in Fig. 2(d). In our simulations, most of the cases where
there are saddle-node bifurcations of cycles are categorized as type-Ill failures because, prior to
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proportion of trials resulting in circuit failures due to growth-feedback-induced oscillations (types Ill and IV failures) across distinct network
topologies. Some topologies exhibit virtually no oscillation-related malfunctions, while others experience about 80% of failures caused by
growth-induced oscillations. Network topologies containing any oscillation-supporting motifs (discussed in the main text) are represented by
red triangles, while the rest are shown as blue circles. The majority of red data points have higher fractions of oscillation-related failures
compared to the blue ones, mainly due to the presence of oscillation-supporting motifs. To reduce fluctuations in the results, only circuit
topologies with over 200 failed trials are included. (b1, b2) A pair of network topologies that differ by only one link (from node C to node B). (c1,

c2) The distinct topologies in (b1

, b2) leading to different distributions of failure mechanisms. The topology in (b1) primarily experiences

growth-induced oscillation as the major failure mechanism, while the one in (b2) has barely any trials with growth-feedback induced oscillations.
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the bifurcation point, the system can be oscillating near the ghost (Strogatz, 2018) cycle for a long
time exceeding the criterion for relaxation time, though that ghost cycle is not an attractor but only
a transient in the system.

Our results indicate that for various circuit topologies, the dynamic mechanisms leading to
failures can differ, resulting in significantly different distributions of failure types among different
networks. For instance, the fractions of failures caused by growth-induced oscillations can vary dra-
matically among all the topologies, as demonstrated in Fig. 3(a), where each data point represents a
specific network topology. The fraction of failures caused by growth-induced oscillations can range
from approximately zero to about 80%! A particular example of two different networks is presented
in Figs. 3(b1) and 3(b2), both of which share the same minimal topology required for adaptation (Shi
et al., 2017) - the circuitB core function. Despite differing by only one link, the proportions of fail-
ures with unique mechanisms are quite distinct, as illustrated in Figs. 3(c1) and 3(c2). Notably,
for the network in Fig. 3(b1), almost half of the failures result from oscillations, while hardly any
oscillation-mediated failures occur for the network in Fig. 3(b2). The explanation is that, although
the difference lies in only a single link, this link determines whether an oscillation-correlated motif
exists within the network. Previously, three classes of motifs capable of supporting persistent os-
cillations were discussed (Novdk and Tyson, 2008), including the [elayed negative-feedback loop[
featured in Fig. 3(b1).

Generally, the circuit dynamics depend sensitively on the structure, but oscillations specifically
require a negative feedback loop with time delay (Novdk and Tyson, 2008). Since there are no
explicit time-delayed terms in the dynamical equations in our model, one of the two types of motifs
- an intermediate node in the path of the negative feedback loop or an additional positive feedback
loop - is necessary to induce time delay (Novdk and Tyson, 2008). For network topologies with
a high ratio of functional failures caused by oscillations, both motifs are observed, especially the
former type. For the network in Fig. 3(b1), the three links: A - C, C 4 B, and B — A, together
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failure) for input I, with different levels of growth feedback, for growth feedback strength k, = 0.05 (weak) and k, = 0.97 (relatively strong). The
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four-dimensional phase space by fixing C = 0.1 and N = 1073. The color bar indicates the equilibrium value of node C before the input switch,
which is O,(C). There is bistability in both cases, as there are two basins of attraction. The yellow region is the functional basin that has
adaptation, while the blue region is a non-functional basin without adaptation. The relative size of the blue non-functional region with larger k,
in this case is significantly larger and includes the initial state of the system (4, = B, = 0.1), causing a type-V circuit failure. (c) Bifurcation
diagram of the circuit in Fig. 2(f) with a type-VI failure. Prior to a critical value of k, ~ 0.0122, only one stable value of O,(C) exists. There is a fold
bifurcation at the critical value, giving birth to a new state around zero, which is non-functional. For an abrupt failure, whether it belongs to
type-V or type-VI does not determine whether it is caused by bistability or bifurcations. Both mechanisms are possible for both types of failures.
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constitute a negative feedback loop, making the circuit more susceptible to oscillatory behaviors.
For the circuit in Fig. 3(b2), no such negative feedback loop exists. Figure 3(a) summarizes the total
number of failed trials and the ratio of oscillation-induced failures for each network topology. The
network topologies that contain one of the motifs for oscillation as discussed in Novdk and Tyson
(2008) are marked in red, while the networks that do not consist of any of them are marked in
blue. Note that all the networks with relatively high ratios of oscillation-induced failures (e.g., ratio
> 0.2) consist of oscillation-correlated motifs. Details about these oscillation-correlated motifs are
discussed in Appendix 2.

We conclude that, for a network with an oscillation-correlated motif, even if it is functional at
some parameter values, the potential of oscillatory behaviors can be triggered by growth feed-
back. As a result, networks without these motifs can be safer choices to avoid too many failures
cases due to oscillations. Note that this relationship is not deterministic. As shown in Fig. 3, even
the networks represented by blue dots that have no oscillation-correlated motifs can still have
oscillation-induced failures (with small ratios). The complexity of the scenario makes it challenging
to find general and relatively simple rules that connect circuit topology to the circuitB robustness.

Bistability and bifurcations

In this section, we describe the dynamical mechanisms behind type-V and type-VI failures, which
in total take up about 14% of all the circuit failures. These failures are abrupt, meaning that the re-
sponse curve undergoes an abrupt change at a certain critical value of k, from a desirable curve of
adaptation. Type-V and type-VI failures correspond to an abrupt change in O, and O,, respectively.
Both types of failures are closely related to bistability and bifurcations.

Bistability and multistability are common phenomena in nonlinear systems. Bistability refers to
the situations where two stable attractors coexist in the phase space simultaneously. Multistability
describes a similar coexisting phenomenon of attractors, but with more than two attractors. With
bistability or multistability in the target dynamical system, the system trajectory may end up in any
one of these stable attractors, depending on the initial state of the system evolution. The entire
phase space can thus be separated into two or more basins of attraction. Each basin of attraction
corresponds to an attractor and consists of all the initial states that eventually lead the system to
the attractor. The boundary boundaries separate two different basins of attraction. A close pair of
initial states but at different sides of a basin boundary lead the system to different attractors.
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In our simulations, we observe bistability in many circuits. While multistability has also been
observed, it is relatively rare. We thus focus on bistability. It is highly unusual for both attracting
basins to exhibit the desired functional behavior simultaneously. This is because they are located
in different regions of the system phase space, and accommodating both would impose overly
stringent constraints on the circuit. Having one basin functional is already dill cult enough with a
random sampling of circuit parameters. As a result, functional adaptation is typically found in only
one of the basins, with adaptation being lost in the other, and the circuit is functional only locally in
its phase space, rather than on a global scale. A drifting system parameter, such as k,, can alter the
dynamics of the gene circuit. In a situation with bistability, such a change in the system dynamics
can modify the shape and position of the basin of attraction and the basin boundary. Consider
an initial state close to a basin boundary. With the deformation caused by a drifting parameter,
the boundary may shift across the initial state, leading to a sudden switching of the systemB final
attractor. If the basin before the parameter change is functional and the basin after is not, this
leads to a growth-feedback-induced failure. The crossing of the basin boundary dictates that the
systemB final state will abruptly change from one attractor to another. This type of failure can be
classified as a switching type of failure.

An example of bistability-related failures is shown in Fig. 2(e), where in the upper panel, the
circuit enters into the functional region after an initial transient. In the lower panel, the circuit
enters into another region that does not have adaptability, and the circuit does not respond to
the switching of the input signal. Figures 4(a) and 4(b) illustrate how the basin structure of the
circuit changes significantly with different values of k,. The functional basin is in yellow and it
shrinks greatly with an increasing k,. Note that the phase space is four-dimensional, so only a
two-dimensional slice is shown. For a bistability/multistability-induced type-V failure where O, is
switched, the boundary of the functional basin crosses the initial state. For a type-VI failure, the
simultaneous movement of both O, and the basin boundary under input I, results in O, crossing
the boundary.

Bifurcations also play an important role in many type-V and type-VI failures. An example of a
failure caused by a fold bifurcation is shown in Fig. 2(f) and the corresponding bifurcation diagram
is shown in Fig. 4(c), where a non-functional fixed point appears through a fold bifurcation as &,
crosses a critical value. Bifurcation-induced abrupt failures differ from those caused by bistabil-
ity/multistability, but they can be related since significant changes in the basin structures often
occur near a bifurcation point.
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Circuit robustness and optimal topology
To quantify a circuitB robustness against growth feedback, we introduce two metrics: Q-value and
R-value. We track the number of remaining functional trials for each network for various k, values
(starting from k, = 0), denoted as Q(k,). This measure extends the concept of Q-values in Ma et al.
(2009) by accommodating non-zero values of k,. To characterize the circuit robustness, we define
the survival ratio R(k,) as R(k, = k) = Q(k, = k)/Q(k, = 0). This ratio represents the fraction of
random circuit realizations that maintain functionality under growth feedback with a strength of
k,.
Note that each Q(k,) or R(k,) is defined for a specific network topology in a suitable parameter
space. A high value of R(k,) indicates that a large fraction of the randomly sampled circuit pa-
rameters is functional despite cell growth with any strength no larger than k,, indicating that the
topology is more robust against growth feedback. Because of the detrimental effects of growth
feedback, R(k,) decreases monotonically with respect to k,.

To justify the utility of R(k,), we test the circuit topologies employed in a previous work (Zhang
et al., 2020), where two relatively simple network topologies were used for a comparison study
in terms of their ability to resist growth feedback and remain functional. Our evaluation of R(k,)
for the two topologies has yielded results that are consistent with those in Zhang et al. (2020), as
discussed in Appendix 3. To illustrate our results in a concrete way, we set k, = 0.6 and calculate
the ratio R(k, = 0.6) for different network topologies.

Our computations have revealed a set of eight circuit topologies with optimal performance as
characterized by high values of both Q(k, = 0) and R(k,), as indicated by the set of orange points
in Fig. 5(a). The optimal circuits form a family as their topologies exhibit a high level of similarity
with one other. In particular, all eight circuits in this family share a common set of links (motif), as
shown in Fig. 5(b). The combination of these common links is one of the minimal topologies with
perfect adaptation in a three regulatory logic (Shi et al., 2017) and is critical for the circuit to be
functionally adaptable. The only difference among the circuits in this family is the links from node
C. While an inhibition link from node C can be important to achieving a value of R(k,), as discussed
below, the eight optimal circuit topologies do not contain any such inhibition link from node C. (The
role of this particular link will be further studied in our analysis of the results in Fig. 6.) This also
explains why the family has eight members, as follows. Each link from C has two options: either
the link does not appear, or it appears as an activation link. As there are three possible links from
C(Cto A, Cto B, and C to C), there are altogether eight (2%) topologies within this optimal family,
according to the simulation results in Fig. 5.

How can we quickly determine if a three-gene regulatory network with a given topology can be
robust against growth feedback? Is there any structural feature of the circuit that can be used to
estimate if a high value of R(k,) can be achieved? To gain insights, we observe that the histogram
in Fig. 6(b) has three peaks about low, moderate, and relatively high values of R, respectively. Com-
putations reveal certain khared topological similarityd(or motif) within each peak. Thus, each peak
corresponds to a group of similar network topologies that simultaneously have a similar level of
R. This observation suggests a correlation between the network topology and robustness against
growth feedback. For convenience, we refer to these three groups of networks by the colors pre-
sented in Fig. 6. For instance, the group with the highest R (the green triangles in Fig. 6(a)(d)) is
called the green group, and the group with the lowest R (the red diamonds in Fig. 6(a)(d)) is the red
group.

To better distinguish the three groups, we introduce two binary variables, B, and B,. For each
network, B, = 1 if the network contains the motif in Fig. 6(c), and B, = 0 otherwise. Then, for
each network, an additional binary variable is set to be B, = 1 if there is an inhibition link from the
output node C, and B, = 0 otherwise. We find that a linear combination of the two binary variables,
Bg = B, — B,, can characterize the circuit topology and robustness against growth feedback. In
particular, the three possible cases Bg =0, 1, or -1 correspond to the three peaks in Fig. 6(b). This
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Figure 6. Strong correlation between circuit robustness against growth feedback and circuit topology. There are three groups of circuits, each
displaying strong topological similarities within, exhibit distinct levels of robustness against growth feedback as measured by the characterizing
quantity R. (a) Robustness measure R(k, = 0.6) versus Q(k, = 0) for all 425 network topologies. Circuits are color/shape-coded into three groups
(green triangles, blue circles, and red diamonds) based on the rules defined in the text. The three groups of topologies display distinct levels of
R(k, = 0.6) values, signifying a strong correlation between circuit robustness and topology. Only circuits with Q(k, = 0) > 300 are shown to
reduce fluctuations arising from random parameter sampling. What is demonstrated is the case of an intermediate level of growth feedback
with k, = 0.6 (a different value of k, has no significant effect on the results - see Fig. 7). The topologies associated with the green triangles have a
high level of robustness, which can be regarded as an optimal group and is more prevalent than the optimal group identified in Fig. 5. (b)
Histogram of R(k, = 0.6) the same color legends as in (a). Three distinct peaks emerge, each associated with a group of circuit topologies. (c) The
shared network motif among all networks in the green group, which is highly correlated with the optimal minimal network shown in Fig. 5(b),
but without the link B — B, which is necessary for the NFBL family of networks to have adaptation (Shi et al., 2017). (d) Effects of burden b for the
three groups of networks, where the abscissa is the effective term of burden in the formula of growth rate Eq. (12). The circuits in the red group
have larger values of 1/(1 + (b)), suggesting that a heavier burden yields a stronger effect of the growth feedback for the red group. (e) A
multilayer perceptron (MLP) for identifying the crucial connections that determine the robustness of the circuits. The circuit topology serves as
the input, where 1, 0, and -1 represent activation, null, and inhibition links, respectively. The output is a predicted robustness measure, denoted
as R. To encourage the neural network to select as few links as possible for predicting R, a /-1 regularization term, g||W;,||, is incorporated into
the loss function alongside the fidelity error || R — R||. As a result, the feed-forward process eliminates information about the links that have little
impact on circuit robustness since the corresponding Wi, entries automatically optimize to values close to zero. (f) Results from an ensemble of
50 MLPs, each trained with distinct initial values. Shown is the average importance of each of the nine links, which is determined by the weights
in Wi, - see Appendix 4. The top four links with the highest importance correspond to the four links used to classify the three peaks in panel (b).
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Figure 7. Robustness of the circuit division into three groups subject to different levels of growth feedback. From the top to the bottom, the four
rows are for k, = 0.2, k, = 0.4, k, = 0.6, and k, = 0.8, respectively. The legends are the same as in Figs. 6(a) and 6(b). For different levels of growth
feedback, the distribution of the robustness measure exhibits three distinct peaks that occur at approximately the same locations on the R axis.
The implication is that the division of the circuit topologies into three groups in terms of the robustness measure can be revealed by examining

the circuit functions at a single value of the growth feedback strength.

result suggests that the motif shown in Fig. 6(c) is beneficial for robustness, while an inhibition link
from the output node C is detrimental. It is the balancing act of these two factors that determines
the overall circuit robustness.

The discovery of this three-peak structure and the corresponding topological similarity within
each peak is facilitated with the use of machine learning. In particular, we consider a simple type
of artificial neural network called multilayer perceptron (MLP), where we train it to predict the R
value from the input of the network topology through a small hidden layer with only two nodes, as
demonstrated in Fig. 6(e). This bottleneck structure in the hidden layer plus the /-1 regularization
imposed on the input matrix W, forces the MLP to extract low-dimensional features from the input
topology to estimate R. In our tests, the MLP designed this way automatically assigns different
levels of weights to the input information of different links. Over an ensemble of 50 MLPs trained
with different random initial values, the ranking of average importance is shown in Fig. 6 (f). The
top four links are the four links used to categorize the three peaks.

The results in Fig. 6 is for k, = 0.6. However, we find that different values of k, lead to essentially
the same ranking of R(k,) among the circuit topologies, as illustrated in Fig. 7.

Three remarks on our categorizing rules based on the two extracted featured motifs are in
order.

First, the shared motif for the green group is strikingly similar to the optimal minimal network
in Fig.5(b) (the orange group). The sole distinction lies in the self-activation link of node B. This
specific link plays a crucial role. Every network in the NFBL family depends on this link to achieve
adaptation (Shi et al., 2017). However, for circuits within the IFFL family, this link is not a neces-
sity for adaptivity. Missing this link makes the motif in Fig. 6(c) no longer a minimal network for
adaptation, and a circuit containing this motif may either belong to the NFBL or the IFFL family. We
have thus identified two optimal groups: the green group with optimal robustness R and the or-
ange group with both the optimal robustness R and the largest functional volume Q(k, = 0) in the
absence of growth feedback. The orange group is a subset of the green group, with an additional
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requirement for Q(k, = 0).

Second, the shared motif for the red group is also exactly the group of all circuits containing an
inhibition link from node C to node B, denoted as C - B. These two different definitions are in fact
equivalent: all networks with Q(k, = 0) > 300 that contain C 4 A or C - C also contain the motif in
Fig. 6(c), yielding By = 0, and belong to the blue group.

Third, the three circuit groups in Fig. 6 are not correlated with the categories used in previous
research on circuit functionalities without growth feedback (Ma et al., 2009; Shi et al., 2017). These
studies classified adaptive networks into NFBL and IFFL families. Each family contains a few min-
imal topologies with or without some additional other motifs, and the two families have distinct
minimal functional topologies. The minimal topology acts as the backbone for supporting circuit
functionality. We find that, when growth feedback is present, the prior classification scheme and
the underlying minimal topologies become less relevant. Circuits belonging to the NFBL family are
spread across all three levels of R(k,) in Fig. 6(b), as are the circuits from the IFFL family. A robust
circuit can be part of either family, just as a fragile circuit can belong to both. We give that: (i) the
topological motifs determining circuit functionality robustness and (ii) the motifs deciding whether
a circuit belongs to the NFBL or IFFL family are independent. To quantify this irrelevance, we calcu-
late the point biserial correlation between R(k, = 0.6) and a binary variable determining the family
to which the circuit belongs. The resulting correlation is merely 0.1, suggesting hardly any correla-
tions. A further illustration and quantification of this irrelevance can be found in Appendix 5.

What are the reason and mechanism behind the phenomenological set of circuit categories?
Especially, it is desired to understand why the shared motif for the green group is beneficial for
circuit robustness, and why the shared motif for the red group is harmful for robustness. It is chal-
lenging to find straightforward explanations given the complexity of the problem (see Discussion
section). Certain insights are as follows. We find that the average node concentrations at the equi-
librium for the network topologies in the red group are consistently smaller than those in the blue
group. This difference is reflected in the value of burdens b. In particular, according to Eq. (12),
the cell growth rate is proportional to the term 1/(1 + b) under the same level of growth feedback.
Figure 6(d) shows the average burden (b) for each network topology, demonstrating that the val-
ues of the term 1/(1 + (b)) for the circuits in the red group are larger than the values in the blue
group. As a result, for the same value of k,, the growth feedback effectively received by the circuits
in the red group is stronger than that of the blue group circuits. Further support is provided by the
results from the limit J — oo (Appendix 6). In this limit, the burden » does not affect the strength
of the growth feedback. As a result, the R values of the red group significantly overlap with those
of the blue group, suggesting that the distinctively low values of R for the red group be a result of
the burden with finite J. We also find that the existence of the shared motif for the red group has
a stronger correlation to the motif necessary for growth-feedback induced oscillations. All circuits
with oscillation type of failures taking up more than 20% of failures belong to the red group. This
correlation can result in further fragility of the red group circuits.

Scaling law quantifying the el ect of growth feedback on gene circuits

A comprehensive way to understand the effects of growth feedback on gene circuits is through
scaling laws, an approach commonly employed in statistical and nonlinear physics. Does a scal-
ing law exist that characterizes quantitatively how growth feedback affects the circuit functioning?
Through a systematic computational analysis of the circuit robustness, we have uncovered a scaling
law that governs how the robustness measure R(k,) deteriorates as growth feedback is strength-
ened, as shown in Fig. 8, where the blue curve is the result averaging over all the 425 network
topologies. The three other curves represent circuits that have a relatively high, moderate, and
low value R among the 425 topologies tested. As growth feedback is strengthened, the number of
circuit topologies that can maintain functioning decreases (or, equivalently, the number of failed
circuits increases). The decreasing behavior of R(k,) with k, tends to be slower than exponential
[e.g., exp(—pk,) with § > 0 being a constant].
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1 A general theoretical argument for the scal-
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one, we are able to argue that the scaling law is
approximately given by

R(k,) ~ exp(=pk), (M

where g > 0 and 0 < 4 < 1 are two specific con-
stants that depend on the network topology, and
the typical value of 1 is about 0.6. The exponen-
tial scaling is assumed, given its memorylessness.
That is, there is no special zero point of k, for the
reason that a certain level of k, is mathematically

equivalent to a larger d,, as discussed below.
The quantity R(k,) is a simple and straight-
forward measure characterizing the detrimen-
tal effect of growth feedback on gene circuits.
We carry out a semi-quantitative analysis of this
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Compared with the equations without growth
feedback Egs. (6-8), we see that introducing growth feedback is equivalent to adding a variable
k. /(1 + b) to the degradation terms for each node. Intuitively, the value Q of a network topology
measures the volume of the functional region M in the parameter space, which is also a function of
k,. We thus have that R(k, = k) is the volume of the intersection between M(k, = k) and M(k, = 0)
divided by the volume of M(k, = 0):

Rk, = k)
= V(M(k, = k) 0 Mk, = 0)/V (M(k, = 0)), (5)

where V(M) is the volume of M.

The picture can be further simplified if we assume the burden b is approximately a constant
within a range of k,. Since growth feedback contributes to an additional term in degradation
d,, strengthening the feedback is equivalent to increasing all three quantities d, together. Con-
sequently, as k, increases, the high dimensional region M does not deform, but simply translates
in the negative direction in all dimensions of degradation d, in the parameter space. That is, as
growth feedback becomes stronger, it becomes more dil cult for the circuit to maintain it func-
tioning.
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Discussion

When a synthetic gene circuit is introduced into a host cell, an inherent coupling arises wherein the
gene circuit affects cell growth and cell growth in turn alters the circuit gene expression (Klumpp
et al., 2009; Klumpp and Hwa, 2014). Due to the fundamental nonlinearity in the gene network and
in the cell growth dynamics, the interaction is generally quite complicated. To understand this in-
teraction so as to identify the circuit topologies that can withstand the interaction and maintaining
the intended circuit functions is one of the most challenging problems in synthetic biology.

Previous studies showed that growth-mediated feedback can endow synthetic gene circuits
with various emergent properties. In general, growth feedback tends to negatively impact the
intended function the circuit is designed for. There was preliminary evidence that the effects of
growth feedback depend strongly on the circuit topology (Zhang et al., 2020). For a particular circuit
function, while the vast majority of the topologies would fall under growth feedback, a handful still
exists that is adaptable to maintain its designed functions. Identifying the lbptimalOtopologies that
are most robust against growth feedback is fundamental to constructing synthetic gene circuits
that can survive, adapt, and function as designed in the fluctuating growth environment of the
host cells.

The main contribution of this paper is a systematic computational study of three-gene circuits
with adaptation to uncover and understand the detrimental effects of growth feedback on gene
circuits and to identify optimal groups of topologies. Without growth feedback, there are 425 pos-
sible topologies with functional adaptation. A vast majority of these circuit topologies fail in their
functions under growth feedback, and our computations have revealed, for the first time, six dis-
tinct main failure categories covering more than 99% of the cases. From a dynamical point of view,
there are three mechanisms by which growth feedback can deprive the circuit of its ability to adapt:
(i) continuous deformation of the response curve, (ii) strengthened or induced oscillations, and (iii)
sudden switching to coexisting attractors (also summarized in Box 7). By introducing a robustness
measure to quantify circuit adaptation in the presence of growth feedback, we uncover a general
scaling law characterizing the detrimental effect of growth feedback on the circuit functioning in a
quantitative manner. We identify an optimal group of circuits with high robustness and key sub-
sets of links associated with this group that play a critical role in sustaining circuit function in host
cells. Taken together, to design a functional gene circuit, growth feedback must be taken into ac-
count, as the same circuit designed with perfect functions without the feedback can behave quite
differently when the feedback is present. Our study has provided unprecedentedly quantitative
insights into the interplay between gene circuit topology and growth feedback, unlocking the dy-
namical mechanism of growth-induced failures and providing guidance to better design practically
applicable synthetic gene circuits.

A unique finding is that growth feedback can induce or strengthen oscillations in gene cir-
cuits designed for adaptation. Such oscillations can often destroy the circuit functionality. In a
recent experimental study, a similar phenomenon was observed in gene circuits designed for self-
activation (Melendez-Alvarez et al., 2021). These results suggest that growth-feedback induced
oscillation may be a general dynamical mechanism that can negatively affect the robustness of
gene circuits. In addition, our study has shown that growth feedback has a highly sensitive depen-
dence on the circuit topology: even a small structural differences between two circuits designed
for the same function can result in drastically different outcomes under growth feedback. For ex-
ample, Fig. 3 demonstrates that a link critical for an oscillation-supporting motif can significantly
affect the robustness of the circuit against growth feedback. It can thus be quite useful to identify
failure-related motifs so that they can be avoided when designing a gene circuit.

From a broad point of view, our study has yielded basic insights into the fundamental topology-
function relationships in gene circuits. Examples include how circuit topology affects circuit robust-
ness against growth feedback and whether a circuit topology contains motifs supporting a specific
type of growth-induced failure, such as oscillation-related malfunctions. However, searching for
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and understanding the interplay between circuit topology and dynamical behaviors remain to be
a challenge, for the following five reasons.

First, the two relevant questions are whether a circuit topology supports adaptation and whether
the circuit is robust against growth feedback or is susceptible to a specific type of growth-induced
failures. While our study focused on the latter, the former is important. Addressing both ques-
tions to identify and analyze all possible scenarios is infeasible at the present, due to the complex
parameter space of the circuits. To make our study feasible, we focused on the cases where the
circuit satisfies all the requirements for adaptation in the absence of growth feedback. These cases
may occupy a small region in the entire parameter space of the circuit. For each circuit topology,
the uncovered function failures due to growth feedback are thus limited to relatively small param-
eter regions. Second, most network topologies studied have dense connections among the three
nodes (only about 20% of the networks have fewer than six connections). As a result, different
motifs can overlap with each other, blocking or enhancing the function of each other. The dense
connections thus pose a dill culty in identifying the motifs accurately. Third, for a particular class of
failures, competition among different failure types may arise. For instance, a circuit with oscillation-
supporting motifs may not have a high fraction of oscillation-induced failures because it also con-
tains the motif for bistability, leading to a large fraction of failures due to the bistability-induced
malfunctions. Fourth, due to the necessity to set a threshold in the relaxation time, transient be-
haviors can arise. In many failure cases caused by oscillations, the oscillatory behavior is not stable
and the circuit will eventually approach a fixed point. However, time scales should be taken into
account. The transient behaviors can make the network topologies without the necessary motif
for sustained oscillations exhibit oscillation-induced failures. Fifth, growth feedback acts as addi-
tional feedback loops within the circuit, potentially complicating the circuit dynamics and adding
more links to the circuit topology. These extra links in the integrated topology might give rise to an
oscillation-related motif. However, our simulations have shown that the impact of this additional
oscillation motif, introduced by growth feedback, tends to be weak (Appendix 6).

In Appendix 7, we extend our analysis to four-gene circuits with over two thousand functional
failure trials. A remarkable finding is that the failure scenarios for these four-gene circuits are the
same as the categories for three-gene circuits (summarized in Box 1), indicating that the growth-
feedback induced failure mechanisms identified in our work are general.

The primary goal of this paper is to explore the ways in which growth feedback can undermine
a gene circuitB functionality, and we have uncovered three main dynamical failure mechanisms.
The reason that we focus on small gene circuits (i.e., those with three or four genes) is that, in
current synthetic biology, only small gene circuits are of interest. The main reason is that, evenfor a
modest number of genes, when the circuit is introduced to a host, the competition and interactions
in the form of growth feedback are likely to lead to unintended and uncontrollable consequences.
Another reason is resource competition: the genes in the circuit could compete for the limited
resources in the host cell, negatively impacting the circuit dynamics. Because of the two reasons, at
presentlarge gene circuits are not favored in synthetic biology. In fact, the state-of-the-art synthetic
gene circuitry usually involves three or four genes, where the consequences of growth feedback
had been poorly understood. Our work fills in this knowledge gap.

It is possible that, in the future, synthetic biology may use larger and more complex circuits.
To uncover and understand the failure mechanisms as well as to identify circuits that are resilient
to growth feedback, machine learning can be used. For example, recurrent neural networks have
recently been used to identify circuit topologies appropriate for a specified desired function (Shen
et al., 2021), and reinforcement learning tackle the combinatorial optimization problem (Bello
et al., 2016; Mazyavkina et al., 2021) of pinpointing the optimal circuit topologies. Furthermore,
automated differentiation (Hiscock, 2019; Kong, 2022) can be exploited to locate optimal network
parameters, which can be el cient for larger circuits with a high-dimensional parameter space. In
spite of these works, to study the effects of growth feedback and resource competition among
numerous genes in larger circuits remains to be a formidable challenge. Our work providing a

16 of 35



572

573

575

576

577

584

585

comprehensive picture of the failure mechanisms induced by growth feedback represents a step
forward in this field.

Models and Methods

Model description

We restrict our study of the class of transcriptional regulatory networks (TRNs) with the AND logic.
For an isolated circuit (in the absence of any growth feedback) with the topology specified inside
the red dashed box in Fig. 1(a), the dynamical equations are

n K"EA
a4 _, I BA__ g A 6)
dt Ima 4+ K% Bsa + K5
Q:L)BA—ABn—dBB, (7)
dt AnraB + KA’;B
dC Aac B'sc
= —-d.C, (8)

dr = U Ame + K¢ Brac + KB
AC BC

where the dynamical variables A, B, and C are the concentrations of each protein (node). The nota-
tions are as follows. Let x and y be two arbitrary nodes. The quantity v, is the maximal production
rate of gene x, d, is the degradation rate of gene x, dx/dt is its time derivative of the concentration,
n,, and K, are the coell cients in the Hill function for a transcriptional regulation from gene x to
gene y.

When growth-mediated feedback is present, the dynamical equations of the three-node circuits
are modified to
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by =AEEEE, (13)

where the additional dynamical variable N denotes the density of the host cells, k, is a parameter
controlling the maximal growth rate of the host cells, J is a parameter reflecting how this three-
node gene circuit contributes to the burden.

The growth of N is under the regulatory action of two sources: by itself following the logistic
equation with the environmental capacity N, and by the burden b that represents the competence
from the metabolism of the gene circuit. To make the computations feasible, we focus our analysis
on the exponential growth phase so that N, > N. The equation governing the growth of the cell
numbers, Eq. (12), can then be rewritten as

dN _ 1

dr gl+b(z)N’ (14)

where the dilution rate d N /dt is regulated only by the burden b() of the gene circuit. While cell
growth is inhibited by the metabolism of the gene circuit, the circuit is also regulated by the growth
of N that dilutes the concentration of circuit nodes with increasing cell volume. This dilution is
reflected by the additional terms —(x/N)(d N /dt) in Egs. (9-11).
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Itis useful to clarify the meaning of the degradation parameter d, and its relationship to growth
feedback. While degradation and growth feedback terms have the same sign in the regulatory
equations, d, may include a constant dilution. We assume that d, represents the sum of all the
degradation effects in cells that are distinct from growth feedback. For instance, degradation tags,
especially in the ssrA tagging systems (Gottesman et al., 1998), are often used in synthetic gene cir-
cuits to increase the degradation rate and thus increase the time scale of the whole system (Elowitz
and Leibler, 2000; Fung et al., 2005; Stricker et al., 2008; OBrien et al., 2012).

Numerical criteria for functional adaptation
We introduce four criteria to determine if a circuit has functional adaptation.

Precision:

The basic requirement of adaptation is that the output remains the same when is input is switched
from one state to another, i.e., O, should be close to O, in Fig. 19b). Specifically, we set the precision
criterion to be |(0, — 0,)/0,| < 0.1.

Sensitivity:

The circuit is also required to respond to the switch of the input signal with a high peak. This ability
of the circuit is named sensitivity. We introduce two types of sensitivity: relative and absolute, with
the respective criteria Opea/O; > 0.5 and Oy > 0.1. Only the circuits meeting both criteria are
regarded as having achieved the required sensitivity.

The need to use the two different criteria simultaneously can be justified, as follows. Given the
variety of network topologies and a large number of system parameters, there is a vast diversity in
the circuit dynamics and the values of O,. When O, is small, it is dil cult to observe a peak that has
even satisfied the relative sensitivity criterion. If the absolute criterion is used alone for a circuit
with a large O, value, the peak may be negligible in comparison with O,, making its observation
practically dil cult. It is thus necessary to combine the two criteria so that the cases of small and
large values of O, can be dealt with on the same footing.

Oscillations:

To achieve the desired adaptation, the circuitB output should reach a steady state before and
after the input signal is switched. The values of O, and O, can be determined as the output signal
associated with the steady states. However, realistically, it is not necessary to require that the
circuit reach an exact equilibrium. Relatively small oscillations in the circuit are acceptable. We
define a [relative steady statelwhere, within a time block of 7., = 200, the standard deviation
of the time series of each node x(¢) satisfies: std(x) < 1 x 10~* and std(x)/mean(x) < 0.05. To
further guarantee that the circuit is actually in the [relatively steady state,0two successive time
blocks satisfying the standard deviation requirements are needed. The quantities O, or O, are
then defined as the respective mean values of the output signal in that last time block 7.

Relaxation time:

An ideal gene circuit should be able to respond and adapt within a reasonable time scale. We set
an upper bound of evolution time #,,,, = 4,000. If the system cannot reach the [relative steady
state0within this time, it is regarded as non-functional.

Details of parameter space sampling and response simulation

A three-node gene circuit subject to growth feedback has a large number of parameters. Let L
be the number of links among the three nodes (excluding the input link). The total number of
parametersis2-3+2(L+1) = (2L +38). The values of these parameters determine the properties of
the regulation links within the circuit and, as a result, the circuit dynamics. The circuit parameters
are randomly generated by the Latin hypercube sampling method (Iman et al., 1980) using the
function OhsdesignOin Matlab. The parameters are sampled uniformly either on a logarithmic or
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a linear scale. The sampling ranges of the parameters are: v, € [107!,10'] (sampled in logarithmic
scale), d, € [1072,1] (sampled in logarithmic scale), n,, € [1,4] (sampled in linear scale), and K, €
[1073, 1] (sampled in logarithmic scale).

The dynamical equations of the circuits are numerically integrated by the 4th order RungeOKutta
method with a time step A7 = 0.05. All the initial states of A, B, and C are taken to be 0.1. The input
signal is initially 1, = 0.06 and then switched to I, = 0.6.

We also observe that, when an isolated circuit fails, a certain amount of growth feedback can
restore the circuitB functions. This phenomenon was previously discovered experimentally (Tan
et al., 2009). However, such cases are rare. We thus focus on circuits that are functional in isolation
and examine how growth feedback affects their adaptation.
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Appendix 1

An Analysis on the Mathematical Criterion for Robustness Against Growth

Feedback

The quantitative measure R(k,) we have introduced to characterize the effects of growth
feedback on gene circuit functioning is generally not amenable to analytic treatment. How-
ever, for weak feedback, certain analytic insights can still be gained. Here we consider a
three-node gene circuit designed to have adaptation and analyze how growth feedback de-
stroys adaptation. We focus on type-I failure, where the growth feedback makes 0,(C) de-
viate from O,(C), because (1) this type of failures is arguably the most important type as
it alone takes nearly half of all the failures, and (2) it can be analyzed. Here we provide a
semi-quantitative analysis to elucidate how a small k£, > 0 can make 0,(C) deviate from
0,(C).

Circuit robustness in the absence of growth feedback.
The dynamical equations of the circuit in the absence of growth feedback are:

dA

2 = fa=Ga-d,A, (15)
8 o fy=Gy—dyB, (16)
&L~ fe=6e-dcc, (17)
where
Gy = Hyppy a(Input) - H, 4(A) - Hy o(B) - He 4(C), (18)

and each H term represents the regulation of a single link in the circuit. The steady-state
solutions (4, By, C,) are given by

Ay=G,/d, (19)
By =G,/d, (20)
Cy=G/d,. (21)

For notation convenience, we use x to denote an arbitrary node (A, B, or C). The steady-state
solutions can thus be written as

xo=G, /d,. (22)

With a small input signal change AT applied to the circuit, the steady states becomes (4, +
AA,, By + AB,,C, + AC,). Under AI, the dynamical equations at the steady point can be
written as

0= f,(y + Ayp, input = AD). (23)
For AI =0, the equation becomes
0= f.(y,, input = 0). (24)

Subtracting Eq. (24) from Eq. (23), we get

0 AA,| |2
0|=J,|aB,|+| 0 |AL (25)
0 AC, 0
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where
Ua a4
s I I

Jr=\5t 52 =& (26)

dc  dc dc
0A JB aC

is the Jacobian matrix of the original dynamical equations evaluated at (4, By, Cy).

Solving Eq. (25), we have

AA Ya

@ ol
AB,)|=-J;'| 0 |AI (27)
AC, 0

For the steady state to remain stable under A1, the requirement is that ratio AC,/AI be
small. Assuming that the Jacobian matrix satisfies the conditions to make points (4,, B, C;)
and (A, +AA,, B,+AB,, Cy+ AC,) stable in their corresponding dynamical systems, we have

[
AC, Ao
—0_|_7- 28
2 =|-7; g : (28)

3

where (-); denotes the third component of the vector inside. The limiting case of a perfectly
precise circuit is defined to be AC,/AI =0, yielding a precision criterion of by (Jf*‘)31 ~0or
0fpdfc  0fpdfc

(5255 - 5255 ) rpetap o )

leading to

ofg 0 ofg 0
9/ 0fc _9/p0fc _ (30)
J0A 0B 0B 0A

which is the central criterion analyzed in Shi et al. (2017). The two families, NFBL and IFFL,
satisfy this same criterion through different mechanisms.

Precision criteria in the presence of weak growth feedback and J — «

We now incorporate growth feedback into the analysis in the limit J/ — oco. In this case,
the burden b is small so that the dilution strength can be approximated as d N /dt/N = k,.
Suppose weak growth feedback is present before and after the small input signal AT is
applied. Let the steady state under growth feedback before application of AT be denoted
as (A}, B), C}). The steady state with input AT can be written as (Aj + AAj, B, +AB;, C, + ACy).

The basic equations before and after application of AT are
4x' _ ¢ /. input = 0) — k' (31)
ar /=L Input= e

d(x' + Ax")

y” = [,/ + Ay, input = AT) — k(X" + Ax"). (32)

Subtracting Eq. (31) from Eq. (32), we get

0 AA| %L

al
0=, —k,D|AB |+]| 0 |AL (33)
0 AC’ 0
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where 7 is the identity matrix. The solution is

AA' Ya

ol
AB'|=-(J/ - k,D'| 0 [AL (34)
AC’ 0

Compared with Eq. (27), the differences are that the matrix J_ is replaced by (J; —k,1), and
x, Ax are replaced by x', Ax’, respectively.
The precision criterion again requires AC} /AT to be small. we have

ofa
AC , S
N —(J; =k, D)7 0 |f . (35)
0
3
which is equivalent to
- 0fp 0f, af af
r_ iy = || ZB2E _ (B _p e = ~
(T = 8gE) D3 [aA OB (aB kg)bA]A,,B/,C,/DEt(Jf gT) =0, (36)

leading to
~ 0. (37)

Comparing this equation for precision criterion Eq. (37) with the criterion Eq. (30) in the
absence of growth feedback, we find an extra term of k,. This explicit term of k, makes
the criterion more dil cult to satisfy with a range of different k, values. It requires either
dfc/0dA is zero or the four partial derivative terms change accordingly with a varying k, to
have exact cancellations.

For neither the NFBL nor the IFFL family, a/./0A = 0 can be satisfied. In none of the
425 network topologies, the link from node A to node C is absent (df./0A = 0). Thus with
a random sampling of the parameters for the circuits that have adaptation at k, = 0, the
probability that df./dA = 0 can occur is negligibly small.

Precision criterion with exact cancellations for the optimal family

As the criterion df./0A = 0 cannot be satisfied in three-node gene circuits, we discuss the
possibility of exact cancellations with varying k,. For the optimal circuit family demonstrated
in Fig. 5(b), we have 0 f. /0B = 0 as there is no direct link from node B to node C. The precision
criterion becomes

0 d
[(% — kg)ﬁ] ~ 0. (38)
AB).C)
Since df./0A # 0, this can be rewritten as
ofp
3B 4580, = Kk ~ 0. (39)

For this family, the precision criterion in the absence of growth feedback is

of
~5 o0, 0 (40)
Combining Egs. (39-40), we get
o*f o
ﬁ | 4g.Bo.co (Ag — Ao) + ac_ai; | 4g.B0,co (Co = Co)
~k,. (41)
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Using the approximation employed in Shi et al. (2017) for the NFB family that f; is a linear
function of B, we have
0fp(A,B.C)  fg(A,B.C)
0B - B
v
L H, (A H¢ 5(C) - d. (42)

BB
We thus have

dH, 3(A)

Lo He p(Co)(AL — Ap) + H (4 2 Hes©)
dA Ay "C,B 0 0 0 A.B 0

KBB
TIC"(C(; —Cy = Ekg. (43)
This equation can be solved analytically only in the regime of k, ~ 0 where (4] — 4,) and
(C; — C,) are approximately linear functions of k,. But it should be dill cult for the circuit to

meet this criterion with a random sampling of the circuits that have adaptation at k, = 0.
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Appendix 2

Network motifs supporting oscillations
As summarized in Novdk and Tyson (2008), three classes of motifs can support oscillations
in a three-node circuit.

Class 1 (the dominant class) Delayed negative-feedback loop with an intermediate node
inthe path of the negative feedback loop. A majority of the networks with an oscillation-
supporting motif belong to this class (237 out of 245 networks). All the circuits that
have more than 20% failures as oscillation-induced failures belong to this class.

Class 2 Amplified negative-feedback loop, with a node regulated by both a negative-feedback
loop through another node and a positive-feedback loop through the third node. There
are only 8 network topologies that fall into this class. They resultin 3% to 20% oscillation-
induced failures.

Class 3 Incoherently amplified negative-feedback loops, as demonstrated in Fig. 5(c) of
Novak and Tyson (2008). Among all the 425 networks capable of adaptation studied
in our work, no network belongs to this class.
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Self-activation and toggle switch circuits
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Appendix 3—figure 1. Scaling law of robustness measure for the single-gene self-activation circuit
and the two-gene toggle switch circuit. (a1,b1) The topology of the self-activation circuit and the decay
of the robustness measure with the growth feedback strength. (a2,b2) Same legends as (a1,b1),
respectively, for the toggle switch circuit. Note the drastic difference in the range of k, values in (b1)
and (b2) where R approaches zero much more quickly in the former than in the latter, indicating the
nearly immediate loss of functions of the single-gene circuit even under weak growth feedback.

The key quantitative results about the survival ratio R(k,) presented in the main text are
obtained from various circuit topologies with three genes. To demonstrate the general ap-
plicability of R(k,), we study two simpler gene circuits: a self-activation circuit with a single
gene and a toggle switch circuit with two genes. A comparative study of these two classes
of circuits has been carried out recently (Zhang et al., 2020), whose topological structures
are shown in Figs. 1(a1) and 1(a2), respectively. In the absence of growth feedback, both
networks exhibit bistability and a hysteresis loop. Under dilution, the self-activation circuit
quickly loses the memory while the toggle switch circuit can remain functional, as was ob-
served numerically and experimentally (Zhang et al., 2020).

Our simulation settings are mostly identical to that of 3-node circuits in the main text,
including the sampling regions of the random circuit parameters, the specifics of the ODE
solver, and the criterion for locating equilibrium. We set J = 1. Other than the network
topology, the only difference is the functionality criteria. Here, the desired function is a
hysteresis. We test the response of the circuit output when (i) the input is a switch from
an off-state (with input signal I = 107%) to an on-state (with input signal I, = 2) and (ii)
the input is switched from an on-state to an off-state. In the former trial, the steady-state
output is switched from O, . to 0, ,,, while in the latter it is switched from 0, to O, .
The criteria are: (i) the two steady states are distinguishable: AO = 0,,, — 0, ¢ > 0.1; and
(i) the system exhibits a hysteresis: (O, ,, — O o¢)/AO > 0.5 > (0, o, — O, 1) / AO.

Figures 1(b1) and 1(b2) show the scaling law of R(k,) with k, for the self-activation and
toggle switch circuits, respectively. It can be seen that, for the self-activation circuit, as the
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growth feedback strength increases, R(k,) approaches zero quickly, indicating that the cir-
cuit function cannot sustain even weak feedback with near zero strength. For the toggle
switch, R(k,) approaches zero eventually but at a much slower rate, a result that is con-
sistent with the finding in Zhang et al. (2020). Remarkably, the scaling of R(k,) with k, ex-
hibits qualitatively similar behavior as the scaling laws reported in the main text for various
three-gene circuits, lending further credence for the general applicability of the quantitative
measure R(k,) to characterize the effects of growth feedback on gene networks.
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Appendix 4

Regularized feed-forward neural networks for identifying critical links
We employed ensembles of regularized feed-forward neural networks to detect, in an au-
tomated fashion, the links that are crucial in determining the level of robustness R. The
neural-network structure is illustrated in Fig. 6(e), which has three layers: an input layer, a
hidden layer, and an output layer. The input layer receives a nine-dimensional circuit topol-
ogy vector where each entry represents a potential link in the three-node circuit, such as
A — A and B — C. For an activation (inhibition) link, the entry value is set to +1 (-1). In the
absence of such a link, the value is zero. In the hidden layer, there are only two neurons that
use a hyperbolic tangent activation function, creating a bottleneck that limits the complexity
of the extracted features. The output layer has one neuron that uses a hyperbolic tangent
activation function trained to output the estimated robustness R. The input and hidden
layers are connected by the matrix W, and the hidden and output layers are connected by
the matrix W,,,. Given the input vector u, the estimated R can be expressed as

R = tanh[ W, tanh(W,,u)]. (44)

We use all the 303 circuit topologies that have O(k, = 0) > 100 for training to minimize the
relative random fluctuations in the training data. The loss function for optimization is

wy Ly

Loss = [R—RI+ Y Y Wi, (45)
i=1 j=1

where g = 0.05 is the /-1 regularization coell cient, L, = 9 is the number of possible links
within a three-gene circuit, and w, = 2 is the width of the hidden layer. We train the net-
work using a stochastic gradient descent algorithm and repeat it 50 times with different
initial weights in the neural net matrices. The Omportancelof a link is determined by the
logarithm of the absolute value of the weights in W, corresponding to the gain of that link.
This importance measure is then averaged over all 50 neural networks.
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oss Lack of correlation between the circuit robustness and topological fam-
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o088 Appendix 5—figure 1. Demonstration of circuit robustness against growth feedback being unrelated
989 to NFBL or IFFL family membership. The green and blue colors represent the NFBL and IFFL families,
990 respectively. (a) Robustness measure R(k, = 0.6) versus Q(k, = 0), where each node represents a

901 network topology. Circuits from both families are widely distributed across different levels of R and
903 intermingled. (b) Distributions of R(k, = 0.6) for the two families, which are quite similar.

004 Asshownin Fig. 1, the network topologies belonging to the two different families (marked
005 in different colors) are mingled together and spread all over the range of R(k,), suggesting
906 no significant correlation between the circuit robustness and circuits family. To quantify this
097 irrelevance, we calculate the point biserial correlation between (a) the R(k,) values of all the
008 network topologies with Q(k, = 0) < 200 (to lower the fluctuations) and (b) a binary variable
999 b, whichis b, = 0 for the NFBL family and b, = 0 for the IFFL family. The calculation involves
1000 108 NFBL network topologies and 93 IFFL topologies. The resulting point biserial correlation
1001 isas small as 0.1. The 95% confidence interval for the true difference with respect to the two
1002 families of R(k,) is (-0.01,0.06), which is narrow around zero.
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wos  Appendix 6

1008 Results from low burden level

1005 For the simulation results reported in the main text, the burden parameter is fixed at J = 1.
1006 What are the possible behaviors of the gene circuit for different values of J? Suppose J
1007 is much larger than one. In this case, the burden term b that has J in the denominator is
1008 negligible, thereby reducing the complexity of the system and providing a parameter regime
1009 in which the contributing factors to the survival ratio R(k,) other than the burden can be
1010 identified.

1011

In the regime of large J, the burden in Eq. (8) in the main text is much smaller than one,
so Eq. (7) in the main text about growth rate can be simplified as

1012

1013

dN 1 1

i:: T_kgl—”NzkgmNzng, (46)
1016 indicating that cell growth is determined entirely by the growth-feedback strength ,. It can
1017 be seen from Egs. (4-6) in the main text that, in this case, the effect of growth feedback
1018 is equivalent to a linear change of the amount k, in the degradation terms d,. Further,
1010 the interaction between cell growth and the gene circuit is no longer of the type of mutual
1020 inhibition: the regulation is a one-way interaction from cell growth to the gene circuit. A
1021 semi-quantitative analysis of this scenario can be found in Appendix 1.
1022 We carry out the simulations as in the main text in the regime of large J and perform a
1023 comparative analysis of the results.

(a) (b)

9%

2% 31% 14%

49% 15% 2%
14%
19%
31%
I continuous: precision [ ] switching: initial state
[ continuos: sensitivity  [I switching: final state
[ continuous: oscillation [N others
[ switching: oscillation
1024
1025 Appendix 6—figure 1. Circuit performance for zero burden. Shown is a comparison of the
1026 distributions of circuit failure scenarios under growth feedback for (a) J = 1 as in the main text and (b)
1027 J — oo (zero burden). In both cases, there are six categories in spite of some quantitative differences
1028 in their probabilities, implying that, as the burden is reduced to zero from a finite value continuously,
1020 the failure scenarios are qualitatively the same. Notable is the fraction of circuits suffering type-I
1030 failures (violation of the precision criterion), which has a relatively large reduction for J — oo, a result
1032 that is consistent with the semi-quantitative analysis in Appendix 1.

The firstissue concerns the relative fractions of different failure scenarios. Figure 1 com-
pares the distributions of distinct types of circuit failures for J = 1 and J — . The possible
failure scenarios are identical in both cases, in spite of the quantitative differences in the
relative fractions of the failure mechanisms. Some of the differences are sizable, but none
is significant in the sense that none is beyond an order of magnitude. For example, for
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J =1, type-| failures are the most common (49%) where the precision criterion is broken in
a continuous fashion. For J — oo, the fraction is about 31%, but the reduction is still within
a factor of two. The plausible reason for the reduction is that the additional regulation of
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Appendix 6—figure 2. Scaling law of circuit robustness measure for zero burdens. (a1,b1)
Representative scaling relations between R(k,) and k, for J = 1 as in the main text, plotted on two
different scales. (a2,b2) Representative scaling relations for J — oo. The curves in (b2) are
approximately linear, suggesting the scaling law (1) in the main text. In (b1), the curves are less linear
where the added burden leads to more reduction in R(k,) in the regime of weak growth feedback.

The second issue is the scaling law between the survival ratio R(k,) and the growth-
feedback strength k,. Figure 2 compares the scaling laws of R(k,) for three circuit topologies
for J =1and J - o, where the results in Figs. 2(a1) and 2(a2) are represented on a linear
scale, while those in Figs. 2(b1) and 2(b2) are on a double-logarithmic versus logarithmic
scale. The approximately linear relation in Fig. 2(b2) suggests that, for J — o, the scaling
laws is given by (1) in the main text.
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For J = 1, the scaling law (1) is less accurate, as shown in Fig. 2(b1), which can be heuristi-
cally explained, as follows. Suppose we use Eq. (46) and reduce J from a large value to one,
which is equivalent to adding back the negative feedback from the burden b = A+ B+ C
to cell growth. Since cell growth effectively inhibits the gene regulation in the circuit, the
burden will be larger for smaller values of k,, suppressing the cell growth. Thus, for weak
growth feedback (corresponding to small values of k), for small J, R(k,) decreases more
slowly than for larger values of J. The difference becomes smaller for larger values of k,,
causing the curves on the left side in Fig. 2(b1) to be lower than those in Fig. 2(b2), but the
curves on the right side are similar in both cases.
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Appendix 6—figure 3. Dependence of the distribution of the robustness measure R(k, = 0.6) on
circuit topology. (a1) For J = 1 (as in the main text), R(k, = 0.6) versus Q(k, = 0) (a quantity that
measures the likelihood of a functional circuit) for all 425 network topologies. (b1) Histogram of
R(k, = 0.6) for J = 1 constructed from all network topologies. (c1) R(k, = 0.6) versus the burden
parameter. In (a1-c1), each data point represents a specific network topology. (a2-c2) The same
legends as in (a1-c1), respectively, for J — . For diminishing burden, the circuit topologies
associated with the red group remain to be more unstable comparing with those in the green group.
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1073 The third issue is the effect of the network topology on the survival ratio R(k,). Figure 3

1074 presents a comparison of the dependency of R on the circuit topology for J =1 and J — co.
1075 As discussed above, the difference in the burden b can be a major reason for the data points
1076 in the red group to have lower R values compared with those in the blue and green groups.
1077 When the term b is effectively removed by setting J — oo, the difference diminishes. It
1078 can be seen from Figs. 3(a2), 3(b2) and 3(c2) that, in this case, the range of R for the red
1079 group, in spite of the low R values, overlaps with that of the blue group. However, the R
1080 values associated with the red group are still distinctly smaller than those with the green
1081 group, suggesting some characteristic differences in the network motifs that define these
1082 two groups.

1083 Figures 3(b1) and 3(b2) indicate a persistent feature of the distribution of the survival ra-
1084 tio R(k, = 0.6) for the ensemble of networks: there are three peaks regardless of whether J
1085 has a small or a large value. Further, the three peaks are approximately located at the same
1086 positions for J = 1 and J — co. This feature provides a criterion to determine the likelihood
1087 of a given network topology being stable or unstable under growth feedback without the
1088 need to calculate the R(k,) value for many values of the feedback strength. In particular, if
1080 the network is such that its R(k, = 0.6) value is associated with the red peak, then it is highly
1000 likely to be unstable and fail to function under growth feedback. On the contrary, if a net-
1001 work belongslto the green peak, then the chance for it to sustain its function in a growth
1002 environment will be improved significantly.

1003 There can be two different mechanisms for growth-induced oscillations: (i) by altering
1004 the system parameter, and (ii) by altering the circuit topology with the additional dynamical
1005 variable N and regulations attached to it. Our results suggest the first mechanism is the
1006 major one, while the second one does not appear to play a significant role. The second
1007 mechanism only exists with a finite J. Thus, we compare the cases of J = 1 and the limit of
1008 alarge J. As shown in Fig. 3, the ratio of functional failures caused by growth-induced oscil-
1000 lations does not change much between the two cases. However, the oscillatory behavior is
1100 sensitive to the value of the dilution parameter. In order to have oscillations, it is necessary
1101 that the parameter be in some specific interval (Novdk and Tyson, 2008).
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Appendix 7—figure 1. (a) Ten representative four-gene circuits. The eight circuits in the first four
columns are from Qiao et al. (2019), and the two circuits in the fifth column are selected due to the
oscillation-related motifs in their topologies and the relatively high O(k, = 0) values when reduced to
three-gene circuits. (b-d) Examples of the three major categories of growth-feedback induced
functional failures in the four-gene circuits, where the upper panels display the circuit outputs with
smaller k, values for which the circuits remain functional and the lower panels showcase the circuit
outputs with larger k, values for which the circuits lose their functionality. The vertical red dashed line
marks the time when the input is switched to another state. The three failure categories are identical
to these in the three-gene circuits in the main text: (b1, b2) continuous trajectory deformation causing
the system to cross thresholds associated with the sensitivity criterion, (c1, c2) growth-strengthened
oscillations, and (d1, d2) growth-induced switching in bistability. The change in k, between panels (d1)
and (d2) is small so as to show the abrupt change in the response at a critical point.

To demonstrate the general applicability of our nonlinear dynamical analysis of the fail-
ure mechanism, we study four-gene circuits. Figure 1(a) shows ten representative circuits,
where eight are from Qiao et al. (2019) and two being the four-node modifications of three-
gene circuits with oscillation-related motifs. For each circuit, we test 10° random sets of pa-
rameters. To generate acceptable statistics, we ease the precision and sensitivity criteria to:
(1) 1(0,=0))/0,| < 0.4, (ii) Opes > 0.1, and (iii) Opeyi/O; > 0.5 0F O /O = (0, = 0,)/0,| > 0.1.
All other simulation settings are the same as those in the three-gene circuit simulations as
detailed in the main text. We collect a total of 3,275 trials exhibiting functional adaptation
in the absence of growth feedback (k, = 0). As the growth feedback is turned on so that
k, = 0increases k, = 0.5, 2,373 trials encountered functional failures across all ten circuits.

We then investigate the causes of the functional failures. We find that all 2,373 trials
fall into the same three categories identified for three-gene circuits: growth-induced oscil-
lations, growth-induced switching in bistability, and continuous deformation of the system
trajectory leading the system to cross the criteria thresholds, as shown in Figs. 1(b-d), respec-
tively. For the cases studied, continuous deformation is the dominant failure mechanism,
accounting for about 88% of the failures. The fractions of oscillation-related and bistability-
related failures are approximately 10% and 3%, respectively. These results indicate that four-
gene and three-gene circuits share the common mechanisms of growth-feedback induced
failures, implying the generality of these failure mechanisms.
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