®

Check for
updates

High Performance Dataframes
from Parallel Processing Patterns

Niranda Perera!®)@®, Supun Kamburugamuve?, Chathura Widanage?,

Vibhatha Abeykoon?, Ahmet Uyar?, Kaiying Shan®, Hasara Maithree?,
Damitha Lenadora®, Thejaka Amila Kanewala?, and Geoffrey Fox®

! Luddy School of Informatics, Computing, and Engineering, Indiana University,
Bloomington, IN 47408, USA
dnperera@iu.edu
2 Indiana University Alumni, Bloomington, IN 47405, USA
3 University of Virginia, Charlottesville, VA 22904, USA
4 University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
® University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
5 Biocomplexity Institute and Initiative, University of Virginia, Charlottesville,
VA 22904, USA

Abstract. The data science community today has embraced the con-
cept of Dataframes as the de facto standard for data representation and
manipulation. Ease of use, massive operator coverage, and popularization
of R and Python languages have heavily influenced this transformation.
However, most widely used serial Dataframes today (R, pandas) expe-
rience performance limitations even while working on even moderately
large data sets. We believe that there is plenty of room for improvement
by investigating the generic distributed patterns of dataframe operators.

In this paper, we propose a framework that lays the foundation for
building high performance distributed-memory parallel dataframe sys-
tems based on these parallel processing patterns. We also present Cylon,
as a reference runtime implementation. We demonstrate how this frame-
work has enabled Cylon achieving scalable high performance. We also
underline the flexibility of the proposed API and the extensibility of the
framework on different hardware. To the best of our knowledge, Cylon is
the first and only distributed-memory parallel dataframe system avail-
able today.

Keywords: Dataframes + High performance computing - Data
engineering *+ Relational algebra + MPI - Distributed Memory Parallel

1 Introduction

The Data Science domain has expanded monumentally in both research and
industry communities over the past few decades, predominantly owing to the
Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) offer
even more complexities to data engineering applications, which are now required
to process terabytes of data. Typically, a significant amount of developer time

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 291-304, 2023.
https://doi.org/10.1007/978-3-031-30442-2_22

292 N. Perera et al.

is spent on data exploration, preprocessing, and prototyping while developing
AI/ML pipelines. Therefore, improving its efficiency directly impacts the overall
pipeline performance.

With the wide adoption of R and Python languages, the data science com-
munity is increasingly moving away from established SQL-based abstractions.
Dataframes play a pivotal role in this transformation [14] by providing a func-
tional interface and interactive development environment for exploratory data
analytics. pandas is undoubtedly the most popular dataframe library available
today. Its open source community has grown significantly, and the API has
expanded up to 200+ operators. Despite this popularity, both R-dataframe and
pandas encounter performance limitations even on moderately large data sets. In
our view, dataframes have now exhausted the capabilities of a single computer,
which paves way for distributed dataframe systems.

There are several significant engineering challenges related to developing
a scalable and high performance distributed dataframe system (Sect.2.1). In
this paper, we analyze dataframe operators to establish a set of generic dis-
tributed operator patterns and present an open-source high performance dis-
tributed dataframe system framework based on them, Cylon. We take inspira-
tion from Mattson et al’s Patterns for Parallel Programming [13]. Our main
focus is to present a mechanism that promotes an existing serial/ local operator
into a distributed operator (Sect.2.2, 3). The proposed framework is aimed at
a distributed memory system executing in a Bulk Synchronous Parallel (BSP)
[8,20] environment. This combination has been widely employed by the high
performance computing (HPC) community for exascale computing applications
with admirable success.

2 Dataframe Systems

A dataframe is a heterogeneous data structure containing a set of arrays that
are individually homogeneous. In contrast, deep learning or machine learning
use tensors which are homogeneously typed multidimensional arrays. These two
data structures are integrated to support end-to-end data engineering workloads.
Dataframes were first introduced by the S language in 1990, and their popularity
grew exponentially with R and Python languages [14]. These libraries contain a
large number of SQL-like statistical, linear algebra and, relational algebra opera-
tors and are sequential in execution. With the increasing size of data, there have
been some attempts to scale dataframe execution both in the cloud and high per-
formance computing environments such as, Dask [19], Modin [18], and Koalas.

2.1 Engineering Challenges

While there is a compelling need for a distributed dataframe system, there are
several engineering challenges.

— Lack of Specification: Despite the popularity, there is very little consensus
on a specification/standard for dataframes and their operators amongst the

High Performance Dataframes from Parallel Processing Patterns 293

systems available today. Rapid expansion in applications and the increasing
demand for features may have contributed to this divergence. The current
trend is to use pandas as the reference API specification [18], and we also
follow this approach for the work described in this paper.

— Massive API: pandas API consists of 240 operators [3,18]. There is also
significant redundancy amongst the operators. It would be a mammoth under-
taking to parallelize each of these operators individually. Petersohn et al. [1§],
have taken a more practical approach by identifying a core set of operators
(Dataframe Algebra) listed in Table 1. In this paper, we have taken a differ-
ent approach by identifying distributed patterns in dataframe operators, and
devise a framework that can best scale them in a distributed memory parallel
environment,.

Table 1. Modin DataFrame

Distributed Op Al
gebra [18]
A Core ;] A S::; Selection Window
Local Op Local Op Local Op L Projection | Transpose
Executor Hash Partition Union Map
- —=
Shuffle % (All) Gather numpy, pandas Ordered Partition Difference | Aggregation
(All) Reduce Arrow Compute - N
Scatter | CuDF Ordered Merge Join ToLabels
Non-blocking send/ receive Unique FromLabels
Network Layer Hardware Layer G
OpenMPI/ UCX/ TCP x86/ ARM/ CUDA/ ROCm/ FPGA roupBy Rename
Sort

Fig. 1. Distributed Memory Dataframe Abstraction *Not categorized in Modin

— Efficient Parallel Execution: Distributed data engineering systems gen-
erally vary in their execution model. Dask, Modin, and Koalas dataframes
are built on top of a fully asynchronous execution environment. Conversely,
Bulk-Synchronous-Parallel (BSP) model is used in data parallel deep learning.
This mismatch poses a challenge in creating a fully integrated scalable data
engineering pipeline. Our framework attempts to bridge this gap by taking
an HPC approach to parallelizing Dataframe operators.

2.2 System Considerations

There are multiple aspects that need to be considered when developing a dis-
tributed data processing framework [11]. Our distributed dataframe model is
designed based on the following considerations.

— BSP Execution: The most widely used execution models are, 1) Bulk
Synchronous Parallel [8,20] and 2) Fully Asynchronous. The former assumes
all the tasks are executing in parallel, and the executors synchronize with each
other by exchanging messages at certain points. The sections of code between
communication synchronizations execute independently. In the latter, tasks
would be executed independently. Input and output messages will be delivered
using queues, and often this requires a central scheduler to orchestrate the

294 N. Perera et al.

tasks. Many recent data engineering frameworks (e.g. Apache Spark, Dask,
etc.) have adopted fully asynchronous execution. Our framework is based on
BSP execution in a distributed memory environment. Gao et al. [9] recently
published a similar concept for scaling joins over thousands of GPUs. We
intend to show that this approach generalizes to all operators and achieves
commendable scalability and high performance.

— Distributed Memory: Most often the parallel memory model of a sys-
tem is a choice between, 1) Shared: multiple CPU cores in a single machine
via threads/ processes (e.g. OpenMP), 2) Distributed: every instance of the
program is executed on an isolated memory, and data is communicated via
message passing (e.g. MPI), and 3) Hybrid: combines shared and distributed
models. Our framework is developed based on Distributed memory.

— Columnar Data Format: Most of dataframe operators access data along
columns, and using a columnar format allows operators to be vectorized
using SIMD and hardware accelerators (e.g. GPUs). As a result, the patterns
described in this paper focus on columnar dataframes.

— Row-based Partitioning: Dataframe partitioning is semantically different
from traditional matrix/tensor partitioning. Due to the homogeneously typed
data storage, when a matrix,/ tensor is partitioned, the effective computation
reduces for each individual partition. By comparison, dataframe operator pat-
terns (Sect. 3.3) show that not all columns of a dataframe contribute equally
to the computation, e.g. join is performed on key columns, while the rest of
the columns move alongside the keys. Both Apache Spark [23] and Dask [19]
follow a row-based partitioning scheme, while Modin [18] uses block-based
partitioning with dynamic partition ID allocation. Our framework employs
BSP execution on a distributed memory parallel environment. We would like
to distribute the computation among all available executors to maximize the
scalability. We also use row-based partitioning because it allows us to hand
over the data partitions with identical schema to each executor.

3 Distributed Memory Dataframe Framework

The lack of a specification presents a challenge in properly defining a dataframe
data structure. It is not quite a relation in an SQL sense, nor a matrix/multidi-
mensional array. For our distributed memory model, we borrow definitions from
Petersohn et al. [18]. Dataframes contain heterogeneously typed data originating
from a known set of domains, Dom = {dom;,doms, ...}. For dataframes, these
domains represent all the data types they support.

Definition 1. A Schema of a Dataframe, Sy is a tuple (Dyg, Cir), where Dy
is a vector of M domains and Cyy is a vector of M corresponding column labels.
Column labels usually belong to String/ Object domain.

Definition 2. A Dataframe is a tuple (Syr, Ay, Rn), where Sy is the
Schema with M domains, Anxpy is a 2-D array of entries where actual data
1s stored, and Ry is a vector of N row labels belonging to some domain. Length
of the Dataframe is N, i.e. the number of rows.

High Performance Dataframes from Parallel Processing Patterns 295

3.1 Distributed Memory Dataframe

“How to develop a high performance scalable dataframe runtime?” is the main
problem we aim to address in our framework. We attempt to promote an already
available serial (local) operator into a distributed-memory parallel execution
environment (Fig. 1). For this purpose, we extend the definition of a dataframe
for a distributed memory parallel execution environment with row-based parti-
tioning (Fig. 2).

Definition 3. A Distributed-Memory Dataframe (DMDF) is a virtual col-
lection of P Dataframes (named Partitions) of lengths {Ng,...,Np_1} and a
common Schema Syy. Total length of the DMDF is ¥ N; = N, and the row labels
vector is the concatenation of individual row labels, Ry = {RoRy...Rp_1}.

Distributed Dataframe[schema = S, len = N] Table 2. Communication semantics in
Schema (S,,) Dataframe Operators and the frequency of
Domains (D,,) D[0] D[M-1]
Col Labels (C,) C[0] C[M-1] occurrence

RIO; R,[O; s
: [] ?[_] Pa_rtltlono _ Operation Data Structure
| RIN,1] Ry[-1] [schema = S, len = N,] Dataframe | Array Scalar
3 Shuffle (AllToAll) |Common |Rare N/A
: Scatter Common |Rare N/A
i RIN-N R [0 iti
: [___FM] P;',[] Partition, : Gather/AllGather | Common |Common |Common
i RIN-1] Re,[-1] [schema =S, len =N,] Broadcast Common |Common | Common
; d Reduce/AllReduce [N/A Common | Common

Row Labels (R,)

Fig. 2. Distributed Memory Dataframe

3.2 Building Blocks

As shown in Fig. 1, a distributed operator is comprised of multiple components/
building blocks, such as,

1. Data Structures: The distributed memory framework we employ uses three
main data structures: dataframes, arrays, and scalars. While most of the
operators are defined on dataframes, arrays and scalars are also important
because they present different communication semantics.

2. Serial /Local Operators: These refer to single-threaded implementations of
core operators (Table 1). There could be one or more libraries that provide this
functionality (e.g. numpy, pandas, RAPIDS CuDF, Apache Arrow Compute,
etc). Choice of the library depends on the language runtime, the underlying
memory format, and the hardware architecture.

3. Communication Routines: A BSP execution allows the program to con-
tinue independently until the next communication boundary is reached
(Sect. 2.2). HPC message passing libraries such as MPI (OpenMPI, MPICH,
MSMPI) and UCX provide communication routines for memory buffers
(works for homogeneously typed arrays). The most primitive routines are
tag-based async send and async receive. Complex patterns (generally termed

296 N. Perera et al.

collectives) can be derived on top of these two primitive routines (e.g. MPI-
Collectives, UCX-UCC). The columnar data format represents a column by a
tuple of buffers and a dataframe is a collection of such columns. Therefore, a
communication routine would have to be called on each of these buffers. We
identified a set of communication routines required to implement distributed
memory dataframe operators. These are listed in Table 2.

. Auxiliary Operators: Partition operators are essential for distributed mem-
ory applications. Partitioning determines how a local data partition is split
into subsets so that they can be sent across the network. This operator is
closely tied with Shuffle communication routine. The goal of hash partition-
ing is to assign a partition ID to each row of the dataframe so that at the end
of the communication routine, all the equal /key-equal rows end up in the same
partition. Ordered Partitioning is used when the operators (e.g. Sort) need to
be arranged based on sorted order. Parallel sorting on multiple key-columns
further complicates the operation by accessing values along row-dimension
(cache-unfriendly). Rebalance repartitions data across the executors equally
or based on a sequence of rows per partition. On average, an executor would
only have to exchange data with its closest neighbors to achieve this. To
determine the boundaries, the executors must perform an AllGather on their
partition lengths. Merge is another important auxiliary operator. It is used
to build the final ordered dataframe in Sort operator to merge individually
ordered sub-partitions (~merge-sort).

3.3 Generic Operator Patterns

Table 3. Generic Dataframe Operator Patterns

Pattern Operators Result Semantic | Communication
Embarrassingly parallel | Select, Project, Map, Row-Aggregation | Partitioned
Loosely Synchronous
— Shuffle Compute Union, Difference, Join, Transpose Partitioned Shuffle
— Combine Shuffle Reduce | Unique, GroupBy Partitioned Shuffle
— Broadcast Compute Broadcast-Join* Partitioned Bceast
— Globally Reduce Column-Aggregation Replicated AllReduce
Globally Ordered Sort Partitioned Gather, Bcast, Shuffle, AllReduce
— Halo Exchange ‘Window Partitioned Send-recv
Partitioned I/0 Read/Write Partitioned Send-recv, Scatter, Gather

*Specialized join algorithm

Our key observation is that dataframe operators can be categorized into several
generic parallel execution patterns. We believe a distributed framework based on
these patterns would make the parallelization of the massive API more tractable.
These generic patterns (Table 3) have distinct distributed execution semantics,
and individually analyzing the semantics allowed us to recognize opportunities
for improvement. Rather than optimizing each operator individually, we can
focus more on improving bottlenecks of the pattern, and thereby benefiting all
operators derived from it.

High Performance Dataframes from Parallel Processing Patterns 297

Result Semantic: A local dataframe operator may produce dataframes, arrays,
or scalars as results. When we promote a local operator to distributed memory,
these result semantics could be nuanced (a global-viewed dataframe). Distributed
memory dataframes (and arrays) are partitioned, and therefore a dataframe/ar-
ray result (e.g. select, join, etc.) should also be partitioned. By contrast,
scalars cannot be partitioned, so when an operator produces a scalar, it needs
to be replicated to preserve the overall operator semantic.

Embarrassingly Parallel (EP). EP operators are the most trivial class of
operators. They do not require any communication to parallelize the computa-
tion. Select, Project, Map, and Row-Aggregation fall under this pattern. While
Select and Map apply to rows, Project works by selecting a subset of columns.
These operations are expected to show linear scaling. Arithmetic operations (e.g.
add, mul, etc.) are good examples of this pattern.

Loosely Synchronous

1. Shuffle-Compute: This is a common pattern that can be used for operators

that depend on Fquality/Key Equality of rows. Of the core dataframe oper-
ators, join, union and difference directly fall under this pattern, while
transpose follows a more nuanced approach.
Hash partitioning and shuffle communication rearrange data in such a way
that equal/key-equal rows are on the same partition. Corresponding local
operation can then be called trivially. Join, Union and Difference operators
follow this pattern:

‘ HashPartition l—>| Shuffle {—» LocalOp

The local operator may access memory randomly, and allowing it to work
on in-cache data improves the efficiency of the computation. We could also
simply attach a local hash partition block at the end of the shuffle to achieve
this since hash-partitioning can stream along the columnar data and is fairly
inexpensive.

[HashPartition [—»| Shuffle ‘—» [LocalHashPartition [~> LocalOp
A more complex scheme would be to hash-partition data into much smaller
sub-partitions from the start. Possible gains on each of these schemes depend
heavily on runtime characteristics.
Transpose is important for dataframe Pivot operations. It can be implemented
without communication in a block partitioned environment [18]. In a row
partitioned setup, a shuffie is required at the end of block-wise local transpose
to rearrange the blocks.

2. Combine-Shuffle-Reduce: An extension of the Shuffle-Compute pattern,
Combine-Shuffle-Reduce is semantically similar to the famous MapReduce
paradigm. The operations that reduce the resultant dataframe length such
as Groupby and Unique, could benefit from this pattern. The initial local
operation would reduce data into a set of intermediate results (similar to the
combine step in MapReduce) e.g. groupby.std, creating sum_x?, sum_x, and

298 N. Perera et al.

count_x, which would then be shuffled. Upon their receipt, a local operation is
performed to finalize the results. Perera et al. [17] also discuss a similar app-
roach for dataframe reductions. The effectiveness of combine-shuffle-reduce
over shuffle-compute depends on the Cardinality (C) (Sect.3.4).

‘ LocalOp (interm. res.) ‘—>‘ HashPartition ‘—>—>’ LocalOp (final res.) ‘

3. Broadcast-Compute: This requires a broadcast routine rather than shuf-
fle. broadcast_join, a special algorithm for join, is a good example of this
pattern. Broadcasting the smaller length relation to all other partitions and
performing a local join is potentially much more efficient than shuffling both
relations.

4. Globally-Reduce: This is most commonly seen in dataframe Column Aggre-
gation operators. It is similar to EP, but requires communication to arrive
at the final result. For example, calculating the column-wise mean requires a
local summation, a global reduction, and a final value calculation. Some util-
ity methods such as distributed length and equality also follow this pattern.
For large data sets, the complexity of this operator is usually governed by the
computation rather than the communication.

LocalOp |— | Allreduce ‘~> [Finalize [

5. Halo Exchange: This is closely related to window operations. pandas API
supports rolling and expanding windows. For row-partitions, the windows at
the boundaries would have to communicate with their neighboring partitions
and exchange partially computed results. The amount of data sent/received
is based on the window type and individual length of partitions.

6. Globally Ordered: Ascending order of rows (row; < row;) holds if all
elements in row; are less than or equal to the corresponding element in row;.
Ordered partitioning preserves this order along the partition indices. For a
single numerical key-column, the data can be range-partitioned based on a
key-data histogram.

‘ Sample ‘—» ‘ Allreduce range ‘—» ‘ Range part. ‘—» —>

For multiple key-columns, we use sample sort with regular sampling [12]. It
sorts data locally and sends out a sample to a central entity that determines
pivot points for data. Based on these points, sorted data will be split and
shuffled, and finally all executors merge the received sub-partitions locally.

Local Gather Calc. pivots Bcast . Local
sort | *} @rank0 | @rank0 | pivots — *) *) merge

Partitioned I/0. Partitioned Input parallelizes the input data (CSV,
JSON, Parquet) by distributing the files to each executor. It may distribute
a list of input files to each worker evenly. Alternatively, it receives a custom
one-to-many mapping from worker to input file(s) and reads the input files
according to the custom assignment. In Partitioned Output, each executor
writes its own partition dataframe to one file.

High Performance Dataframes from Parallel Processing Patterns 299

3.4 Runtime Aspects

— Cardinality: Hash-shuffle in Shuffle-Compute pattern roughly takes O(n) +
O(log Pxn), where n is average length of a partition. In the Combine-Shuffle-
Reduce pattern, the initial local operation has the potential to reduce com-
munication order to n’ < n. This gain depends on the Cardinality (C) of the
dataframe C € [%, 1], which is the number of unique rows relative to the
length. C ~ % = n/ « n, making the combine-shuffle-reduce much more
efficient than a shuffle-compute. Consequently, when C ~ 1 = n’ ~ n may
in fact worsen the combine-shuffle-reduce complexity. In such cases, shuffle-
compute pattern is more efficient (5).

— Data Distribution: This heavily impacts the partitioning operators. When
there are unbalanced partitions, some executors may be underutilized, thereby
affecting the overall distributed performance. Work-stealing scheduling is
a possible solution to this problem. In a BSP environment, pseudo-work-
stealing execution can be achieved by storing partition data in a shared object
store. Some operations could employ different operator patterns based on the
data distribution. (e.g. When one relation is very small, Join could use a
broadcast_join).

— Logical Plan Optimizations: An application consists of multiple
Dataframe operator. Semantically, they are arranged in a DAG (directed
acyclic graph), i.e. logical plan. An optimized logical plan can be generated
based on rules (e.g. predicate push-down) or cost metrics. While these opti-
mizations produce significant gains in real-life applications, this is an orthog-
onal detail to the individual operator patterns we focus on in this paper.

4 Cylon

Cylon is a reference distributed memory parallel dataframe runtime based on
Sect. 3. We extended concept to implement a similar GPU Dataframe system,
G Cylon. The source code is openly available in GitHub [6] under Apache License.

4.1 Architecture

— Arrow Format & Local Operators: Cylon was developed in C+-+
using Apache Arrow Columnar format, which allows zero-copy data trans-
fer between language runtimes. Arrow C++ Compute library is used for the
local operators where applicable. Some operators were developed in-house.
Additionally, we use pandas and numpy in Python for EP operators.

— Communication: Cylon currently supports MPI (OpenMPI, MPICH,
MSMPI), UCX, and Gloo communication frameworks. The communication
routines (Table 2) are implemented using a collection of non-blocking routines
on internal dataframe buffers. For the user, it would be a blocking routine on
dataframes. For example, Dataframe Gather is implemented via a series of
NB_Igatherv calls on each buffer.

300 N. Perera et al.

— Auxiliary Operators: Cylon supports all auxiliary operators discussed in
Sect. 3. These operators are implemented with utilities developed in-house
and from Arrow Compute, and for GCylon, we use CuDF utilities where
applicable.

— Distributed Operators Except for Window and Transpose, Cylon imple-
ments the rest of the operators identified in Table 1. As shown in Fig. 1, all of
them are implemented as a composition of local, auxiliary and communica-
tion operators based on the aforementioned patterns. Currently the pandas
operator coverage is at a moderate 25%, and we are working on improving
the coverage.

4.2 Features

— Scalability and High Performance: Cylon achieves above-average scala-
bility and higher performance than the commonly used distributed dataframe
systems. In Sect. 5, we compare strong scaling of Cylon, Modin, and Dask.

— Flexible Dataframe API: Cylon API clearly distinguishes between local
and distributed operators with minimal changes to the pandas API semantics.
This allows complex data manipulations for advanced users. As an example,
a join (shuffle) can be easily transformed into a broadcast_join just by
changing a few lines of code.

dfl = read csv_dist (..., env) # large df

df2 = read csv(...) if env.rank = 0 else None # read small df at rank 0
df2 b = env.broadcast(df2, root=0) # broadcast

df3 = dfl.merge(df2_b, ...) # local join

— Extensibility: With the proposed model, Cylon was able to switch between
multiple communication frameworks. Additionally, we extended this model to
develop an experimental distributed memory dataframe for GPUs, GCylon
with minimum development effort.

5 Experiments

Our experiments were carried out in a 15-node Intel® Xeon® Platinum 8160
cluster. Each node has a total RAM of 255 GB, uses SSD for storage and are
connected via Infiniband with 40 Gbps bandwidth. A maximum of 40 (of 48)
cores were used from each node. The software used: Python v3.8 & Pandas
v1.4; Cylon (GCC v9.4, OpenMPI v4.1, & Apache Arrow v5.0); Modin v0.12
(Ray v1.9); Dask v2022.1. Uniformly random distributed data was used with
two int64 columns, 10° rows (~16 GB), and C = 0.9. This constitutes a worse-
case scenario for key-based operators. The scripts to run these experiments are
available in Github [7].

The main goal of these operator benchmarks was to show how such generic
patterns helped Cylon achieve scalable high performance. Dask and Modin oper-
ators are compared here only as a baseline. We tried our best to refer to publicly
available documentation, user guides and forums while carrying out these tests
to get the optimal configurations.

High Performance Dataframes from Parallel Processing Patterns 301

Strong Scaling - Scalar Strong Scaling - Scalar Aggregation

10

0o

10°

10°

parallelism parallelism

Fig. 3. Strong Scaling (1B rows, Log-Log) with speed-up over pandas

— Scalability: Figure 3 depicts strong scaling for the patterns. Dotted lines rep-
resent the speed-up over pandas (pandas_time/time). Compared to Dask,
Modin, and pandas, Cylon shows consistent performance and superior scal-
ability. When the parallelism is increased from 1 to 256, the wall-clock time is
reduced, and it takes longer to complete at 512 parallelism. Per executor work
is at its lowest in this instance, therefore the communication cost dominates
over computation. For EP, a Barrier is called at the end and it might carry
some communication overhead. Cylon’s local operators also perform on par or
better than pandas, which validates our decision to develop in a C++ backend.
Unfortunately, Modin join for 1B rows failed, therefore we ran a smaller 100
million row test case (Fig. 4(a)). It only uses broadcast-join [15], which
explains the lack of scalability. However, we encountered similar problems for
the rest of the operators (Fig. 3). Compared to Modin, Dask showed compara-
ble scaling to Cylon for joins. However, the other operations lacked scalability,
especially the scalar operations.

Cardinality Impact: Figure4(b) illustrates the impact of Cardinality
(C) on the groupby performance. When C = 0.9, hash-groupby (shuffle-
compute) consistently outperforms the mapred-groupby (combine-shuffle-
reduce), because the local combining step does not reduce the shuffle work-
load sufficiently. Whereas when C = 107, shuffled intermediate result size is
significantly lesser, and therefore the latter is much faster. This shows that
the same operator might need to implement several patterns and choose an
implementation based on runtime characteristics.

302 N. Perera et al.

GroupBy Cardinality

10° 10°

Fig.4. a: Strong Scaling Joins with Modin (100M rows, Log-Log), b: Cardinality
Impact on Combine-Shuffle-Reduce (groupby, 1B rows, Log-Log)

6 Related Work

Dask distributed dataframe [19] was the first and foremost distributed dataframe
system. It was targeted at providing better performance in personal worksta-
tions. RAPIDS CuDF, later extended Dask DDF for GPU dataframes. In large-
scale supercomputing environments, HPC-based systems like MPI (Message
Passing Interface) [1], PGAS (partitioned global address space) [24], OpenMP,
etc. performed better compared to Apache Spark [23] and Dask [2,10,21]). Modin
[18], Dask [19], and Koalas (Apache Spark) are some of the emerging distributed
dataframe solutions, but the domain shows a lot more room for improvement.
HPC-based distributed data engineering systems show promising support for
workloads running in supercomputing environments [3,4,17,22], and this is the
main motivation for this paper.

7 Limitations and Future Work

Cylon Sort and Window operators are still under development. Additionally,
larger scale experiments have been planned to provide more finer-grained analy-
sis on communication and computation performance. Cylon execution currently
requires dedicated resource allocation, which may be a bottleneck in a multi-
tenant cloud environment. Furthermore, fault tolerance is another feature that
is yet to be added. We believe that both BSP and asynchronous executions are
important for complex data engineering pipelines and are currently working on
integrating Cylon with Parsl [5] and Ray [16]. This would enable the creation
of individual workflows that run on BSP, each of which can be scheduled asyn-
chronously, that would optimize resource allocation without hindering the overall
performance.

High Performance Dataframes from Parallel Processing Patterns 303

8 Conclusion

We recognize that today’s data science community requires scalable solutions
to meet their ever-growing data demand. Dataframes are at the heart of such
applications, and in this paper we proposed a framework based on a set of
generic operator patterns that lays the foundation for building scalable high
performance dataframe systems. We discussed how this framework complements
the existing literature available. We also presented Cylon, a reference runtime
developed based on these concepts and showcased the scalability of its operators
against leading dataframe solutions available today. We believe that there is far
more room for development in domain, and we hope our work contributes to the
next generation of distributed dataframe systems.

References

1. MPI: A Message-Passing Interface Standard Version 3.0 (2012). http://mpi-forum.
org/docs/mpi-3.0/mpi30-report.pdf. Technical Report

2. Abeykoon, V. et al.: Streaming machine learning algorithms with big data systems.
In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5661-5666.
IEEE (2019)

3. Abeykoon, V., et al.: Hptmt parallel operators for high performance data science
& data engineering. arXiv preprint arXiv:2108.06001 (2021)

4. Abeykoon, V., et al.: Data engineering for HPC with python. In: 2020 IEEE/ACM
9th Workshop on Python for High-Performance and Scientific Computing
(PyHPC), pp. 13-21. IEEE (2020)

5. Babuji, Y.N., et al.: Parsl: scalable parallel scripting in python. In: IWSG (2018)

6. CylonData: cylon (2021). https://github.com/cylondata/cylon

7. CylonData: cylon experiments (2021). https://github.com/cylondata/cylon
experiments

8. Fox, G., et al.: Solving problems on concurrent processors, vol. 1: general techniques
and regular problems. Comput. Phys. 3(1), 83-84 (1989)

9. Gao, H., Sakharnykh, N.: Scaling joins to a thousand GPUs. In: 12th International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@ VLDB (2021)

10. Kamburugamuve, S., Wickramasinghe, P., Ekanayake, S., Fox, G.C.: Anatomy of
machine learning algorithm implementations in MPI, Spark, and Flink. Int. J. High
Perform. Comput. Appl. 32(1), 61-73 (2018)

11. Kamburugamuve, S., et al.: Hptmt: operator-based architecture for scalable high-
performance data-intensive frameworks. In: 2021 IEEE 14th International Confer-
ence on Cloud Computing (CLOUD), pp. 228-239. IEEE (2021)

12. Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility
of parallel sorting by regular sampling. Parallel Comput. 19(10), 1079-1103 (1993)

13. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming (2004)

14. McKinney, W., et al.: pandas: a foundational python library for data analysis and
statistics. Python High Perform. Sci. Comput. 14(9), 1-9 (2011)

15. Modin: modin scalability issues (2021). https://github.com/modin-project/
modin/issues

304

16.

17.

18.

19.

20.

21.

22.

23.

24.

N. Perera et al.

Moritz, P., et al.: Ray: a distributed framework for emerging {AI} applications. In:
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), pp. 561-577 (2018)

Perera, N.; et al.: A fast, scalable, universal approach for distributed data reduc-
tions. In: International Workshop on Big Data Reduction, IEEE Big Data (2020)
Petersohn, D., et al.: Towards scalable dataframe systems. arXiv preprint
arXiv:2001.00888 (2020)

Rocklin, M.: Dask: parallel computation with blocked algorithms and task schedul-
ing. In: Proceedings of the 14th Python in Science Conference, 130-136. Citeseer
(2015)

Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103-111 (1990)

Wickramasinghe, P., et al.: Twister2: tset high-performance iterative dataflow. In:
2019 International Conference on High Performance Big Data and Intelligent Sys-
tems (HPBD&IS), pp. 55-60. IEEE (2019)

Widanage, C., et al.: High performance data engineering everywhere. In: 2020
IEEE International Conference on Smart Data Services (SMDS), pp. 122-132.
IEEE (2020)

Zaharia, M., et al.: apache spark: a unified engine for big data processing. Commun.
ACM 59(11), 56-65 (2016)

Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS exten-
sion for c++-. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 1105-1114. IEEE (2014)

