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ABSTRACT

A prevalent approach of entity-oriented systems involves retriev-
ing relevant entities by harnessing knowledge graph embeddings.
These embeddings encode entity information in the context of the
knowledge graph and are static in nature. Our goal is to generate
entity embeddings that capture what renders them relevant for
the query. This differs from entity embeddings constructed with
static resource, for example, E-BERT. Previously, Dalton et al. [3]
demonstrated the benefits obtained with the Entity Context Model,
a pseudo-relevance feedback approach based on entity links in rel-
evant contexts. In this work, we reinvent the Entity Context Model
(ECM) for neural graph networks and incorporate pre-trained em-
beddings. We introduce three entity ranking models based on funda-
mental principles of ECM: (1) Graph Attention Networks, (2) Simple
Graph Relevance Networks, and (3) Graph Relevance Networks.
Graph Attention Networks and Graph Relevance Networks are the
graph neural variants of ECM, that employ attention mechanism
and relevance information of the relevant context respectively to
ascertain entity relevance. Our experiments demonstrate that our
neural variants of the ECM model significantly outperform the
state-of-the-art BERT-ER [2] by more than 14% and exceeds the per-
formance of systems that use knowledge graph embeddings by over
101%. Notably, our findings reveal that leveraging the relevance
of the relevant context is more effective at identifying relevant
entities than the attention mechanism. To evaluate the efficacy of
the models, we conduct experiments on two standard benchmark
datasets, DBpediaV2 and TREC Complex Answer Retrieval. To aid
reproducibility, our code and data are available.!
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1 INTRODUCTION

Entity Ranking is a task that involves retrieving a ranked list of
entities from a knowledge repository such as Wikipedia, for a given
query. It is an active research area and plays a pivotal role in various
NLP tasks, including entity linking, question answering, and more.
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The lead-acid battery is a
type of rechargeable battery
first invented in 1859 by
French physicist Gaston
Planté. It is the first type of
rechargeable battery ever
created. Compared to
modern rechargeable
batteries, lead—acid batteries
have relatively low energy

[..].Currently there is no large-scale
recharging network for plug in
vehicles. Battery technology also
hampers the feasibility of electric
vehicles. Lead acid batteries are
heavy and hold less charge than
their competitors, lithium-ion
batteries. Lithium-ion batteries hold
more charge and are lighter than
lead acid batteries, but are also

density.[..] more expensive.

Lead Text of Lead-acid Entity Context of Lead-acid Battery
Battery that reflects the connection between
the query Electric Car and the entity

Figure 1: Example of query Electric car and the relevant en-
tity Lead-acid battery. On the left side, the lead text of Lead-
acid battery is given (https://en.wikipedia.org/wiki/Lead-
acid_battery). The lead text contains the static and generic
description of the entity and does not contain any relation be-
tween the query and the entity. On the right side, the pseudo-
relevance feedback document, which serves as entity context,
elaborates on the connection between the relevant entity
Lead-acid battery and the query Electric car.

A predominant approach for entity ranking is using entity em-
beddings obtained using graph embedding methods. These knowl-
edge graph entity embeddings are static embeddings that encode
the semantics and knowledge of entities in the context of a Knowl-
edge Graph. Recently, knowledge-enhanced pre-trained language
models such as ERNIE [36] and E-BERT [22] have been proposed.
These models integrate entity information from the Knowledge
Graph into BERT embeddings. However, such embeddings also in-
ject static entity information, either through textual description or
knowledge graph entity embeddings, which leads to static embed-
dings. These entity embeddings are used to determine the relevance
of entities by capturing the similarity between the entities and the
entities mentioned in the queries. The static nature of such entity
embeddings does not capture the information of what makes an
entity relevant for a query. Our work aims to address this limitation
by creating embeddings that specifically capture the information
that makes an entity relevant to a given query.

In 2014, Dalton et al. [3] demonstrated that entity features can
be leveraged to obtain relevant entities which can be further used
to drive the text ranking task. In particular, they found that the
entity ranking feature, named Entity Context Model (ECM), based
on retrieved text passages that contain query terms and entity links
is the most effective entity ranking feature. The overarching idea
of ECM, which we depict in Figure 2, is that the entity context in
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the relevant documents can help us to identify relevant entities.
Entity links serve to disambiguate mentions of entities in the text
by connecting them to their corresponding entities in a knowledge
base. Thereby, entity links introduce connections between relevant
text and relevant entities. Consequently, it can be stated that entities
are represented through their entity contexts.

In our work, we focus on enhancing the entity ranking task by
adapting the fundamental idea of ECM. The ECM model demon-
strates that the entity contexts help to capture intricate relationships
between the queries and the entities, aiding in the identification
of relevant entities. For instance, for the query “Electric Car”, one
of the relevant entities is “Lead-acid battery”. This relevant
entity is not explicitly mentioned in the Wikipedia page of “Electric
Car” to indicate a direct connection. The textual description of the
relevant entity “Lead-acid battery” also does not contain any
clear signal that indicates a connection between the query “Electric
Car” and the relevant entity, as shown in Figure 1. However, the
entity context obtained via pseudo-relevance feedback documents
contains information that shows the connection between the query
and the relevant entity through the entity link.

To achieve our goal, we generate entity embeddings that capture
the contextual information contributing to the identification of an
entity’s relevance to a specific query. In essence, we aim to special-
ize the entity embeddings for the task of entity ranking, thereby
making the retrieval process more adaptive to the query. To this
end, we introduce three entity ranking models which are variants
of the ECM approach: (1) Graph Attention Networks (GAT), (2)
Simple Graph Relevance Network (Sim-GRN) and (3) Graph
Relevance Networks (GRNSs). GAT, is a neural variant of ECM
that incorporates neural components through graph neural net-
works and pre-trained embeddings. This variant uses the attention
mechanism to model the entity representations. While Sim-GRN
and GRN models are also built on the foundational principles of
ECM, we further utilize the relevance information of the entity
contexts as a signal to enhance entity representations by capturing
relevance to the query. Sim-GRN is a simple entity ranking feature
that utilizes the relevance information to determine the relevance
of entities without incorporating any neural components. GRN is a
neural variant that also capitalizes on the relevance information of
entity contexts while incorporating the neural components through
graph neural networks and pre-trained embeddings. In contrast to
GAT, which relies on attention mechanism, GRN utilizes relevance
information of entity contexts to model the entity representations.
In summary, we introduce three variants of the ECM approach as
below:

e GAT: A graph neural network variant that utilizes attention
mechanism

¢ Sim-GRN: A simple traditional entity ranking feature which
uses relevance information

e GRN: A graph neural variant of ECM based on relevance
information

Entity Ranking Task: Given a user’s information need g, we
return a list of entities E ranked by their relevance to the query. We
assume access to a text corpus consisting of text passages with entity
links. These entity links can be obtained via entity linkers such as
WAT [21] or REL [27] or by hyperlinks to Wikipedia Pages. We
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also assume that for each linked entity, we have a text description
available which is a lead text of the entity’s Wikipedia page.

We evaluate the performance on two standard entity ranking
benchmarks, DBpediaV2 and TREC Complex Answer Retrieval.

Contributions: The novel contribution of this work is entity
retrieval models that are based on the foundational principle of
ECM such that they generate entity embeddings that capture the
relevancy of entities for the queries for the entity ranking task.

e We reinvent the ECM model using pre-trained embeddings
and graph neural networks and show that the underlying
assumptions of ECM hold even in the neural version.

e We introduce the Graph Relevance Networks model which
incorporates relative relevance information of the entity
contexts to determine entities relevance.

e Our graph neural models outperform the SOTA BERT-ER
[2] baseline by 17-80% and also outperform entity ranking
systems that use knowledge graph embeddings.

2 RELATED WORK

2.1 Knowledge-enhanced BERT Models

Knowledge-enhanced BERT models infuse knowledge into the
BERT model through knowledge graph embeddings such as TransE
[1] and Wiki2Vec [34]. ERNIE [36] integrates entity information in
the BERT model by utilizing TransE entity embeddings during the
pretraining phase. It aligns the TransE entity embeddings with the
BERT word embedding corresponding to the initial wordpiece token
of each entity mention to generate encoded embeddings in a com-
mon embedding space. E-BERT [22] adapts Wiki2Vec entity embed-
dings to BERT without additional pretraining. Utilizing the shared
embedding space of Wiki2Vec, E-BERT learns a weight matrix by
linearly transforming Wiki2Vec word embeddings into BERT-like
embeddings. Using the learned weight matrix, it constructs a func-
tion to align the entity embeddings of Wiki2Vec with the BERT
word embeddings. KEPLER [30] utilizes entity descriptions corre-
sponding to the entities in relation triples and jointly optimizes
Knowledge Graph and Language Model representations. KELM [16]
injects knowledge in the BERT model via multi-relational subgraphs
from the Knowledge Graph and text.

2.2 Knowledge Graph Embeddings

Knowledge Graph embeddings serve as vector-based representa-
tions for entities in a Knowledge Graph. These embeddings encap-
sulate both semantic and structural characteristics of the entities
they represent. Bordes et al. [1] introduced a model called TransE,
which employs a translational approach to learn the embeddings of
both entities and their associated relations. In TransE, the model op-
erates under the assumption that a relation r acts as a translational
link between two entities h and . Both entities and relations are
mapped to a common vector space in TransE. However, a limitation
of TransE is that it is geared toward 1-to-1 relations and struggles
with 1-to-N, N-to-1, and N-to-N relationships. To address this, the
TransH [31] model was developed, which assigns two vectors to
each relation r. Another model, TransR [14], takes it a step further
by assigning a unique vector space for each relation r, into which
the entities h and t are then projected in the context of that relation.
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Yamada et al. [35] have introduced Wiki2Vec, a model that learns
embeddings for both entities and words by leveraging text and
structural data from Wikipedia. Gerritse et al. [6] uses Wiki2Vec
knowledge graph embeddings to determine the similarity score
between the initial entity candidate set and the entities linked in
the queries as described in Equation 1.

F(E, Q) = Z s(e) - cos(_E>,—e)) (1)
ecE(Q)
The initial entity candidate set is then re-ranked using interpola-
tion, through the Learning-to-Rank approach, with the similarity-
scored ranking.

scoresoral (B, Q) = (1=A) -scoreoper (E, Q) +A-F(E,Q) A € [0,1]

We use it as a reference baseline. Additionally, we also provide
other baselines where we replace Wiki2Vec entity embeddings with
ERNIE and E-BERT entity embeddings in GEEER [7] system.

2.3 Entity Ranking

Ranking through Fielded Retrieval Models. Models based on
the Markov Random Field [17] represent a joint distribution over
the terms from an entity’s description and the information from
semi-structured data about the entity. For example, the Sequen-
tial Dependence Model [17] and its variants [19, 37] estimate the
weights for unigrams and bigrams by representing entities using
multiple fields. Hasibi et al. [10] estimate the field weights using
entity annotations in the queries whereas Raviv et al. [23] model
the different representations of an entity (description, type, and
name) jointly with the query terms.

Ranking through Probabilistic Models. Liu and Fang [15] pro-
pose Latent Entity Space (LES) based on a generative probabilistic
framework that constructs a high-dimensional latent entity space.
In contrast, Xiong and Callan [32] proposes EsdRank, which is a
discriminative framework that marginalizes over a joint distribu-
tion of entities and documents. Raviv et al.[24] suggest entity-based
language models, while Xiong et al. [33] use a duet model of entities
and words.

Ranking through Pseudo-Relevance Feedback Documents.
Schuhmacher et al. [25] employs pseudo-relevance feedback method
for entity ranking by utilizing entity links found in web documents.
The entities receive higher rankings when they are mentioned in
the higher ranking feedback documents. ENT-Rank [4] combines
information about an entity, the entity’s neighbors, and context us-
ing Learning-To-Rank on a hypergraph of entities. Various features
from feedback runs such as entity mentions, entity co-occurrences,
etc. and features from entities are combined to determine the rele-
vance of entities.

Ranking through Language Models. Recent work has also fo-
cused on using Transformers [28] for entity ranking. EM-BERT (8]
incorporates the Wiki2Vec graph embeddings into BERT and per-
forms a two-stage fine-tuning on passage and entity ranking tasks.
BERT-ER [2] leverages BERT to generate query-specific entity rep-
resentations using query-specific entity descriptions and evaluate
them on the entity ranking task. BERT-ER employs various entity
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descriptions constructed using aspects, pseudo-relevance candidate
passages, and entity support passages. They combine various fea-
tures such as frequency of the entity, entity salience, etc. to select
the entity support passage that is relevant to both the query and
entity. Our work differs from BERT-ER as we learn to model the
entity representations through entity contexts of every entity in
our ranking model.

3 BACKGROUND

The underlying assumption of the Entity Context Model (ECM) is
that the more relevant the entities, the more frequently they are
mentioned near query terms in relevant documents. The original
ECM as proposed by Dalton et al. [3], first retrieves documents us-
ing a traditional text retrieval model, such as query likelihood, the
Sequential Dependence Model [18], or BM25. The top k documents
are then selected as a feedback set, and entity links within these
documents are identified. For each entity link, an entity context
consisting of 50 tokens (or alternatively 8 tokens) to the left and
right is extracted. For any entity e that has an entity link in the
feedback set, all corresponding link contexts are collected and con-
catenated to form a pseudo-document representation for that entity.
Using the same traditional text retrieval model, all entities are then
ranked based on their pseudo-documents.

4 APPROACH

In this section, we introduce three variants based on the founda-
tional principles of the ECM approach.

4.1 Graph Attention Networks

Graph perspective: The original ECM model can be conceptu-
alized as a message-passing on a graph, by denoting each passage
d and entity e in the feedback set as a node in the graph. Every
mention of an entity e in a passage d is represented as an edge
(d, e). Therefore, each entity e has a neighborhood of passages d
where the edges are directed from d to e. Edge weights and initial
node weights are set to 1.0. The process of concatenating the link
contexts to form a pseudo-document representation for entity e
can be considered as aggregating the neighborhood of node e.

é=() 10-d) ()

deP,

Graph Attention Networks (GAT):. We revitalize the ECM
model in the neural version through graph neural networks in
our GAT model. Neural Message-Passing Graph Networks [9, 38]
serve as a generalization of traditional random walk models and
are applicable to deep learning. Instead of heuristically defining
scalar updates, they learn vector-valued message representations
that propagate along edges to optimize a training objective.

In graph neural networks, a recurrence of updates to node?
representations e is based on messages sent from adjacent nodes
d. These messages can be composed of a weight d;_,, and a node
representation d. The messages are then aggregated and used to

For consistency with ECM, we refer to source nodes as d and target nodes as e. We
note that these ideas can be generalized to any graph.
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update the node representation e.

€ := upd(proj (€) + Z dge - Proj (d))
d:d~e N— ——
message from d to e

In this work, proj (...) refers to linear projections with bias term
in latent space.

A popular example of such networks are GATs proposed by
Velickovi¢ et al. [29], where the message weight d is modeled with
multi-head scaled dot product attention. After projecting each node
representation into multiple query, key, and value vectors, the atten-

tion is computed as dg_,, = #proj ((i) - proj (é). The attention
«

scores are then used to compute a weighted sum of the value vec-

tors proj (07) which is used to update the representation € of the

receiving node.

The underlying assumption of this paradigm is that the node
representations of entities € and passages d are sufficiently expres-
sive to model the relevance of edges. However, there is a downside
to this approach whenever the graph contains many non-relevant
nodes. To avoid the non-relevant information overwhelming the
node representation of an entity, the attention mechanism would
need to learn when to reduce the edge weight to zero, thereby
removing edges that would lead to wrong ranking decisions. In
the case of GATs the notion of relevance would need to be recov-
ered from the representations of passages d and entities €, which
can be challenging when the representations are not sufficiently
expressive and d not have knowledge of the query.

These representations are commonly derived from textual con-
tent, such as BERT for passages or entities. This is addressed by
query-specific node representations, such as a MonoBERT-style
cross-encoder [20] or a ColBERT-style late-interaction models [12]
or DPR-style bi-encoders [11] of query and passage text.

4.2 Simple Graph Relevance Networks

We contemplate a simpler version of ECM, Simple Graph Rel-
evance Networks (Sim-GRN), as depicted in Figure 2. We use
relevance information like the reciprocal rank of the entity link
contexts (in this case passages) to model the importance of each
passage in the graph.

We first entity link all the documents in the collection and split
each document into passages of approximately 50 terms. We then
retrieve the top k relevant documents using a traditional retrieval
model, which serves as a feedback set P. For each entity present in
the feedback set P, the passage text serves as the entity link context.
To obtain the relevance of each entity e, we combine the reciprocal
ranks of the link context (in this case passages) and rank the entities
based on the aggregated reciprocal ranks. In this simpler version,
we use the aggregated relative relevance of the link contexts, thus
the entities are represented by the relevance information of the link
contexts.

To aggregate the relevance information of passages, we follow
the weighting scheme of RM3 query expansion model [13] using
entity links: For every passage document d in the feedback set P,
we get the relevance distribution as p(d|q).
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Figure 2: Spreading of relevant (+) and less relevant (-) in-
formation through the GRN. In Sim-GRN and Special-GRN
only the relevance rank information is transmitted (no con-
tent representation). In GRN reciprocal rank information is
used in lieu of graph attention to aggregate content repre-
sentations. In GAT no relevance information is used, instead
attention is derived from the content representations.

S~ N~

Different aggregation methods for relevance information of pas-
sages can be used, summing reciprocal ranks or rank scores, or
using the geometric mean. In this work, we follow the weighting
of an RM3 query expansion model [13] just using linked entities
instead of words: Derive a categorical relevance distribution over
top retrieved documents models p(d|q). Derive per document distri-
butions over expansion terms (here: entity links) as denoted p(e|d).
Then the expansion distribution is derived via marginalization as
plelg) = Xqp(eld)p(d|g). Similar ideas also gave rise to work on
Latent Entity Space [15] and EsdRank [32].

In our experiments below, the score of Sim-GRN model is as
follows (d denotes passages)

1
_ (rank(d) ) counte € d
score(elq) = Z S d 1 total entity count in d )
dePe rank(d’)
e pleld)
r(dlq)

4.3 Graph Relevance Networks

Graph perspective: Similar to the original ECM model, the score
aggregation of the Sim-GRN model can be viewed as a message-
passing on a graph as depicted in Figure 2. Edge weights are defined
based on the reciprocal rank of the passages as given in equation
4. On this graph, a message-passing model is applied, such as Ran-
dom Walks with Restarts [26]. After the first iteration, all entity
nodes will obtain a new node weight by summing over all adjacent
passages (d ~ e):
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1
score(elq) = d;P W -count e € d (4)
T pleld)
r(dlq)
nodeweight(e) := Z weight;_,, - nodeweight(d) (5)
d:d~e
= > p(dig)p(eld) - 1 (©)
——

dep, )
edge weight passage representation

Random walks can also retain node weights from previous itera-
tions, relating to residual connections in neural networks.

Graph Relevance Networks (GRN):. We hypothesize that the
relevance information of the entity contexts can provide the signal
to distinguish the relevant nodes from the non-relevant ones to
enable more expressive representations of entities. While GAT em-
ploys an attention mechanism, we use relevance information from
a retrieval engine, to model the edge relevance in the graph net-
work, as depicted in Figure 2. We replace the attention mechanism
with relevance information associated with edges 7. This relevance
information is provided by a search engine and does not need to be
re-discovered from the nodes’ vector representations.

Various metrics from a a retrieval engine can be used for the
relevance-based edge weight 7;_,,: rank scores or reciprocal ranks
across multiple retrieval models and index representations as well
as similarity information. We use a simple relevance representation
that aligns with Sim-GRN: the passage reciprocal rank: 7y_,, =
p(dig)p(eld).

We incorporate the textual content representations of entities,
queries and passages from pre-trained resources from BERT. The
concrete setup we study in this work is defined as follows:

(1) Raw embedding: We obtain raw embedding content repre-
sentations for query, entity, and passage from pre-trained
embeddings.

(2) Query-specific representations: Using a hadamard product,
we obtain query-specific representations entities as € =
proj (Graw) © proj (raw). We reduce the parameter space
by first linearly down-projecting to dimensionality d, have
hadamard product between the down projected query and
entity embeddings. Passage representations d are projected
down and query-specific passage embeddings are obtained
in the similar fashion as entity.

(3) GRN: The entity’s node representation is updated via

€:= upd(proj (E) + Ddid~e Fd—>e - proj (d))

(4) Ranking: The rank score is obtained via linear projection to
a scalar score(e|q) = proj (é)

(5) Loss function: The model is trained end-to-end (fixing only
pre-trained embeddings), optimizing a pair-wise rank loss
defined on a subsample of posive/negative entity pairs.

Special-GRN. A special case of the GRN as defined in Equation
6 when nodes are represented by 1-dimensional vectors of 1 or
0. The result differs slightly as the proj (..) operator introduces
a constant scale factor and bias term, which could be set during
training. We refer to this special case model as Special-GRN.
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5 EXPERIMENTAL EVALUATION

We use two standard datasets to evaluate our models: DBpediaV2
and TREC Complex Answer Retrieval (CAR).

5.1 Datasets and Corpus

Datasets: DBpediaV2 consists of four different types of queries:
(1) INEX-LD contains IR-styled keywords. e.g., “electronic music
genre”; (2) SemSearchES contains short one entity search type
of queries, e.g., “brooklyn bridge” (3); QALD2 consists of natural
questions which are answerable by entities, e.g., “who is the mayor
of Berlin?”; (4) ListSearch which consists of queries searching for a
list of entities, e.g., “Professional sports team in Philadelphia”. TREC
CAR dataset consists of topical queries such as “air pollution”.

Corpus: As background corpus for both experiments, we use 20
million deduplicated passages from Wikipedia as provided in the
TREC CAR passage corpus. These contain entity links that were
manually inserted by the page author.

5.2 Feedback Set

For every query, we retrieve the top 1000 passages as feedback set
P using a traditional ECM passage ranking model. We use query
likelihood to retrieve initial candidate passage set and entity link
them. For each entity link in the passage, we consider the entire
passage as the entity context, as opposed to considering only 50
tokens. We form pseudo-document representation for each entity
by concatenating all the corresponding entity contexts. Using query
likelihood, the entities are ranked based on their pseudo-documents.
Subsequently, the score for each passage is determined as the sum-
mation of scores of its linked entities. Finally, passages are ranked
based on these scores.

5.3 Entity Candidate Sets

For the methods Special-GRN, Tuned BERT, GAT, and GRN, we
build an entity candidate set E where we consider all the entity links
present in the feedback set P. For every query, we further subsample
the entity candidate set E by randomly selecting 100 relevant i.e.,
positive and 100 non-relevant i.e., negative samples. Thus, for every
query the final candidate entity set E consists of in total 200 entities,
with 100 positive and 100 negative samples. Also, for each entity in
the entity candidate set E we use the entity’s Wikipedia page lead
text as its representation. The text of the passages P serves as the
entity link contexts.

5.4 Training

We train the models on a pair-wise ranking loss, where the goal is
to rank the relevant entities higher than the non-relevant entities of
queries by learning better representations of the entities. In ranking
problems, it is important to select informative negative samples
to learn high-quality ranking models. To select the negative sam-
ples for training the models, we use two approaches (1) Candidate
Negatives and (2) In-batch Negatives, which we describe below:

Candidate Negatives. We define the sub-sampled 100 negative
samples from the candidate entity set E for every query as Candidate
Negatives. This setting is more suitable for our approach as in the
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ECM model, the goal is to identify the relevant entities through the
entity link context.

In our work, we also utilize in-batch negatives along with the
candidate negatives to train the models. We provide the results of
the effectiveness of in-batch negatives on the overall performance
in Section 7.4.

Training Sets. We use 5-fold cross-validation to train DBpedia
V2 (DBpediaV2) experiments. TREC CAR dataset consists of a very
large training dataset which is divided in several subsets such as
Benchmark Y1, Benchmark Y2, Fold0-5. In our work, we train the
models on total of 317 queries from two subsets, 117 from Bench-
mark Y1 Train and 200 queries from Fold0 subset.

Model Selection. We train for 50 epochs with a batch size of
1000 for all the experiments. We consider the model with the high-
est MAP for evaluation set as the best model. We optimize with
pytorch’s Adam using a learning rate of 2e-5. We use a 1-head
attention for the GAT model. The model training takes maximum
3 hours to train on 1 NVIDIA A40 GPU.

5.5 Evaluation

Evaluation Sets and Metrics. For TREC CAR dataset, we use
Benchmark Y2 Test consisting of 65 topical queries as evaluation
set. For DBpediaV2 experiments, we use the evaluation set provided
by the dataset.

We use trec_eval metrics (mean) average precision (MAP),
Precision at number of relevant entities (P@R), and normalized
cumulative gain with cutoff rank 100 (NDCG). On TREC Complex
Answer Retrieval Y2 Test (CAR) we use evaluate complete rankings,
but on DBpediaV2, due to many missing judgments, we evaluate
entities that are explicitly judged as positive or negative.

Significance Testing. We test for the significance of improve-
ments with a one-sided test at p < 0.05. We denote significant
improvement over BERT-ER [2] with A and improvement over
Tuned BERT with 7.

5.6 Input Embeddings

In our experiments, we use the pre-trained 768-dimensional BERT
embeddings 3 of the [CLS] token for entities, queries, and passages.

6 EXPERIMENTS

6.1 Baselines

e Trad-BM25: Ranking Wikipedia page content with BM25.

o Sim-GRN: Simple Graph Relevance Network on 1000 expansion
passages.

o GEEER [7]: As an external reference system we use GEEER
[7]. GEEER uses Wiki2Vec embeddings and an entity ranking
(but does not use passage information). We will use the top 1000
entities of the Sim-GRN run. The queries are annotated by TagMe
entity linker and Wiki2Vec embeddings are used for both, queries
and entities representations.

o GEEER-ERNIE: Same as GEEER but instead of Wiki2Vec em-
beddings, we use ERNIE entity embeddings.

3DistilBERT: distilbert-base-uncased
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Table 1: Results on benchmarkY2-test TREC-CAR using au-
tomatic ground truth. A denotes significant improvement
over BERT-ER [2] and f indicates significant improvement
over Tuned BERT (only tested for MAP) using a paired t-test
at p < 0.05. Here, NDCG denotes NDCG @ 100.

Models MAP P@R NDCG
Trad-BM25 0.012 0.037 0.073
Sim-GRN 0.146 0.221 0.353
GEEER [7] 0.144 0.215 0.349

GEEER-ERNIE 0.145 0.218 0.353
GEEER-EBERT 0.144 0.218  0.349
BERT-ER [2] 0.263 0.319 0.482
Special-GRN 0.316A 0.366  0.543

Tuned BERT 0.469A 0.568 0.679
GAT 0.471A 0.580 0.677
GRN 0.494A7 0.565 0.695

e GEEER-EBERT: Same as GEEER but instead of Wiki2Vec em-
beddings, we use E-BERT entity embeddings.

e Tuned BERT: Ranking entities with fine-tuned query-specific
entity embeddings, ignoring the graph in step 3 of the model.

e BERT-ER [2]: The SOTA entity ranking system that generates
query-specific entity representations to rank the entities.

6.2 Our Variants

e GAT: Graph Attention Networks by replacing the message
with normalized dot product attention 7y_,, = \/Ldfke?c? of query-
specific representations in step 3.

e GRN: Graph Relevance Network using the passage reciprocal
rank as message Fy_,.. Query-specific representations € and d are
derived from entities, passages, and queries as described above.

o Special-GRN: Reducing the GRN model to the special case of
Sim-GRN as described in Section 4.3. Implemented by skipping
steps 1 and 2, by setting d=1and = 0and using the same
relevance weight 7 as in GRN.

7 RESULTS

Through our experiments, we address the following research ques-
tions:

e RQ1: Do the neural variants of ECM help to improve the entity
ranking task?

e RQ2: To what extent is graph structure helpful to identify rele-
vant entities?

e RQ3: Is relevance information a more effective indicator than
attention mechanism in the graph network for a ranking task?

7.1 RQ1: Overall Performance

From Tables 1 and 2, we observe that both the entity ranking mod-
els, GAT and GRN, based on the underlying concept of ECM sig-
nificantly outperform the state-of-the-art entity ranking system
BERT-ER [2] between 14-88% in MAP for both, TREC CAR and
DBpediaV2, datasets.
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Table 2: Results on DBpediaV2. A denotes significant improvement over BERT-ER [2] and ¥ indicates significant improvement
over Tuned BERT(only tested for MAP) using a paired t-test at p < 0.05. Here, NDCG denotes the NDCG@ 100 evaluation metric.

We highlight the best-performing models in bold.

Models ALL QALD_2 ListSearch INEX-LD SemSearch
MAP NDCG P@R  MAP NDCG P@R  MAP NDCG P@R  MAP NDCG P@R  MAP NDCG P@R
Trad-BM25 0363 0562 0374  0.257 0466 0279  0.300 0501 0348  0.306 0532 0330 0.608 0769 0558
Sim-GRN 0.298 0498 0339  0.269 0476 0286  0.354 0557 0424 0.236 0439 0299 0330 0516 0355
GEEER [7] 0318 0512 0365 0279 0485 0302  0.365 0563 0444  0.250 0447 0323 0377 0552 0399
GEEER-ERNIE  0.301 0501 0345  0.271 0478 0283  0.356 0557 0424 0.236 0439 0305 0340 0524 0369
GEEER-EBERT 0319 0515 0363  0.276 0486 0298  0.363 0563 0435  0.254 0452 0320 0386 0560  0.409
BERT-ER [2] 0.500 0.723 0461  0.410 0658 0381  0.507 0739 0472 0.469 0714 0437 0629  0.810 0570
Special-GRN  0.604aT 0713  0.608  0.585a 0711 0582  0.669A1 0760  0.681 0.523A%1 0.653 0528 0.6334 0723  0.634
Tuned BERT ~ 0595A 0708  0.612 0.580A 0706  0.589 0.658A 0755  0.681 05064  0.640  0.532 0629 0720  0.639
GAT 0587Aa% 0703 0.606  0.566AT 0698 0573  0.649A1 0750  0.679  0.496A  0.634 0531 0.631A 0721  0.636
GRN 0.6074% 0714 0610 0.592a% 0714  0.589 0.671AT 0760  0.680  0.520A%  0.651 0527 0.634A 0722 0.637
Both entity rar}kmg models achieve significant improvement of 0.6 { wmm BERT-ER
more than 200% in terms of MAP (MAP=0.144 to MAP=0.471 and . GAT
MAP=0.494), over entity ranking method based on static knowledge N GRN
graph embeddings such as GEEER [7] for TREC CAR. We observe 0.5 -
a similar performance increase for DBpediaV2 in Table 2. These
results show that the graph neural models grounded in the notion of
ECM improve the entity ranking task and thus support our RQ1. We 04
provide further evidence through exploration of the performance '
at the query level.
Query-level Analysis. We further investigate the performance 0.3
of the neural models, GAT and GRN with the state-of-the-art entity
ranking system BERT-ER at the query level. We divide the queries
into percentiles based on their difficulty for a baseline. Queries on 024
which the baseline obtains a lower MAP performance are considered '
to be more difficult queries.
From Figure 3, we observe that both, GAT and GRN, perform
better for all the queries than the BERT-ER method. This indicates 0.11
that the graph neural models improve the ranking quality consis-
tently across all queries. We observe the same phenomenon for the
DBpediaV2 dataset (results omitted). This shows that generating 0.0 -
0%-5%  5%-25% 25%-50% 50%-75% 75%-95% 95%-100%

entity embeddings specifically for entity ranking task that captures
the entity contextual information indicating what makes an en-
tity relevant to a particular query is important to determine the
relevance of entities.

7.2 RQ2: Importance of the Graph Structure

We observe from Tables 1 and 2, that for both the datasets, graph-
based models such as GRN, Special-GRN, and GAT obtain consis-
tently good performance compared to the Tuned BERT and BERT-
ER method. Special-GRN includes only the relevance information
through reciprocal rank without drawing on embeddings of the
entity contexts. In contrast, the graph models of GAT and GRN
include the entity contextual information along with the entity
representation of itself via self-loop and GRN also incorporates the
reciprocal rank information.

GAT and GRN: From Tables 1 and 2, we find that the graph
based models GAT and GRN improves the performance between
0.4-5% compared to Tuned BERT system for CAR dataset. These
models also achieve significant MAP improvement of 79% and 87%
respectively over the BERT-ER system. We observe a similar pattern

Figure 3: Dividing CAR queries into different percentiles of
difficulty for BERT-ER method, as measured in per-query
MAP performance. The y-axis displays the MAP performance
of each method on queries within. The x-axis displays dif-
ferent percentiles: Most difficult 5% queries for the BERT-ER
are on the left side and the easiest 5% queries are on the right
side.

for DBpediaV2 where both GAT and GRN outperform Tuned BERT
and BERT-ER. This indicates the significance of the entity contex-
tual information for the generation of entity embeddings to deter-
mine the relevance of entities. It also demonstrates the importance
of the graph structure induced by the entity links. This finding is
in line with the conclusions of several pre-neural studies 3, 5, 15],
but we show that it still holds in the era of Neural Networks.

Special-GRN. The Special-GRN model is similar in approach
to the traditional Sim-GRN method, with the graph induced from
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entity links. We observe that Special-GRN improves the MAP per-
formance significantly for the DBpediaV2 dataset, however, for
TREC CAR the performance of Special-GRN is significantly lower
compared to Tuned BERT.

We suspect that the reason for the higher performance of the
Special-GRN model for DBpediaV2 dataset is the characteristics of
the dataset itself that do not need any additional entity information
to identify the relevant entities. For example, one of the subsets of
DBpediaV2, the SemSearch subset includes queries such as “brook-
lyn bridge” that needs only lexical overlap between the query terms
and entity mentions to identify more than 80% of the relevant enti-
ties. This indicates that additional contextual information of any
entity is not required necessarily by many queries to identify rel-
evant entities. Hence, while entity link information is useful (as
the dataset is constructed from Wikipedia pages), entity contextual
information might not be overly helpful for many queries of the
DBpediaV2 dataset. Lack of entity contextual information can thus
be a potential reason for Special-GRN to perform on par with the
other graph models.

We note that the graph structures, in particular, help to elevate
the performance of recall-oriented metrics for both datasets.

7.3 RQ3: Attention vs Relevance

We hypothesized that the relevance information can serve as an ef-
fective signal to distinguish relevant information from non-relevant.
Indeed we find that for both benchmarks, the best-performing
method uses the relevance information provided by the search
engine. From the Tables 1 and 2, it is evident that incorporating
relevance information significantly enhances the accuracy of the
entity ranking task.

Compared to GRN, GAT needs to rediscover the semantic infor-
mation about relevance from the entity context representations.
This is an indirect way and only possible due to our query-specific
passage and entity representations. Moreover, it is unnecessary, as
the candidate set automatically comes with the relevance informa-
tion that merely needs to be used.

We further investigate how relevance information affects the
ranking of the entities. For example, one of the queries “protecting
the water supply” place relevant entities such as “Flocculation” and
“Cleveland” in higher ranking positions of 1 and 14 out of the top
14 relevant entities, whereas these entities are placed at 19 and 29
in GAT. We further expand on the understanding of the higher
rankings in GRN below.

Example. The GRN model includes the relevance information
of the entities through the reciprocal rank of the contexts. As an
example, we study the entity rankings of the query “glaciers” for
GRN and GAT to understand the effect of the inclusion of the
relevance information on the rankings.

As mentioned previously, GRN uses reciprocal rank information
along with the entity context and entity representation as opposed
to only entity context and entity representation information in GAT.
Thus, entities that are present in more relevant documents to the
query are considered to be more relevant in GRN. Hence, relevant
entities should be placed higher in the rankings. We observe that
for the query “glaciers”, in GRN all the top 12 ranking entities are

Oza, et al.

relevant while GAT contain only 6 relevant entities in the top 12 at
various ranks.

We further examine one of the relevant entities “Crevasse” which
ranks at a position 9 by GRN, whereas GAT place them at the rank
21 after various non-relevant entities. To understand the reason
behind the higher ranking, we determine the sum of the reciprocal
ranks for the connected passages to the entity “Crevasse”. We find
that “Crevasse” is connected to 31 relevant passages and the sum of
the reciprocal ranks is 0.182. This relevance information provides
a signal to the graph model GRN to provide more weight to the
entity “Crevasse” compared to other entities with lower reciprocal
rank sum. We understand that the reciprocal of the rank usually
results in a smaller number. We observe the same pattern for other
relevant entities that are placed at higher rankings in GRN.

7.4 Effect of In-batch Negatives

As mentioned earlier in Section 5.4, we train models on training
sets with different negative samples to understand the influence
of negative sampling on the results of the ranking models. Despite
incorporating both in-batch and candidate negatives, we observe
no performance gains across benchmarks. We suspect the potential
reason for no improvement in the performance is that the query-
specific entity representations generate representations that are
too diverse between the queries and hence exploring these repre-
sentations as negatives is not helpful to elevate the performance.

8 CONCLUSION

In this paper, we introduce three entity ranking models that are built
on the foundational principles of the ECM approach. In contrast
to the predominant approaches that exploit static entity embed-
dings, our neural models focus on entity contexts through pseudo-
relevance feedback documents.

GAT, a graph neural variant of ECM, extends the paradigm by
including the text representations of entity contexts and entities.
A simpler traditional Sim-GRN, which utilizes the relevance infor-
mation from the retrieval engine. We also introduce GRN, a graph
neural variant, which models the entity representations by using
the relevance information along with entity contexts and entities.

On two benchmarks consisting of a diverse range of queries, we
demonstrate the benefits of our entity ranking models. We find
that the relevance-based GRN model works best for both CAR and
DBpediaV2. On both datasets our approach significantly outper-
forms a range of strong baseline systems, such as BERT-ER [2],
GEEER [7], and Tuned BERT. By developing graph neural ranking
models based on a theoretical underpinning, we achieved significant
performance improvements. We demonstrate that incorporating
relevance information from retrieval engines, a less expensive alter-
native, into graph neural networks is more effective for the entity
ranking task than the attention mechanism.

Acknowledgements

This material is based upon work supported by the National Science
Foundation under Grant No. 1846017. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.



Neural Entity Context Models

REFERENCES

[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

[9

[10

[11

[12

(13

(15

[16

(17

(18

[19

]

]

]

]

]

]

]

sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational
Data. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates
Inc., Red Hook, NY, USA, 2787-2795.

Shubham Chatterjee and Laura Dietz. 2022. BERT-ER: Query-Specific BERT
Entity Representations for Entity Ranking. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Madrid, Spain) (SIGIR °22). Association for Computing Machinery, New York,
NY, USA, 1466-1477. https://doi.org/10.1145/3477495.3531944

Jeffrey Dalton, Laura Dietz, and James Allan. 2014. Entity Query Feature Expan-
sion Using Knowledge Base Links. In Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Gold
Coast, Queensland, Australia) (SIGIR ’14). Association for Computing Machinery,
New York, NY, USA, 365-374. https://doi.org/10.1145/2600428.2609628

Laura Dietz. 2019. ENT Rank: Retrieving Entities for Topical Information Needs
through Entity-Neighbor-Text Relations. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Paris, France) (SIGIR’19). Association for Computing Machinery, New York, NY,
USA, 215-224. https://doi.org/10.1145/3331184.3331257

Faezeh Ensan and Ebrahim Bagheri. 2017. Document retrieval model through
semantic linking. In Proceedings of the tenth ACM international conference on web
search and data mining. 181-190.

Emma J. Gerritse, Faegheh Hasibi, and Arjen P. de Vries. 2020. Graph-Embedding
Empowered Entity Retrieval. In Advances in Information Retrieval: 42nd Euro-
pean Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020,
Proceedings, Part I (Lisbon, Portugal). Springer-Verlag, Berlin, Heidelberg, 97-110.
https://doi.org/10.1007/978-3-030-45439-5_7

Emma J Gerritse, Faegheh Hasibi, and Arjen P de Vries. 2020. Graph-Embedding
Empowered Entity Retrieval. In Advances in Information Retrieval, Proceedings
of the 42nd European Conference on Information Retrieval (ECIR 2020) (Lisbon,
Portugal) (Lecture Notes in Computer Science). Springer, Cham, 97-110. https:
//doi.org/10.1007/978-3-030-45439-5_7

Emma J. Gerritse, Faegheh Hasibi, and Arjen P. de Vries. 2022. Entity-Aware
Transformers for Entity Search. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Madrid,
Spain) (SIGIR ’22). Association for Computing Machinery, New York, NY, USA,
1455-1465. https://doi.org/10.1145/3477495.3531971

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. 1263-1272.

Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. 2016. Exploiting
Entity Linking in Queries for Entity Retrieval. In Proceedings of the 2016 ACM
International Conference on the Theory of Information Retrieval (Newark, Delaware,
USA) (ICTIR ’16). Association for Computing Machinery, New York, NY, USA,
209-218. https://doi.org/10.1145/2970398.2970406

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 6769-6781. https://doi.org/10.18653/v1/2020.emnlp-main.550
Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39-48.

Victor Lavrenko and W Bruce Croft. 2017. Relevance-based language models. In
ACM SIGIR Forum, Vol. 51. ACM New York, NY, USA, 260-267.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In AAAL
Xitong Liu and Hui Fang. 2015. Latent entity space: a novel retrieval approach
for entity-bearing queries. Information Retrieval Journal 18 (2015), 473-503.
Yinquan Lu, Haonan Lu, Guirong Fu, and Qun Liu. 2021. KELM: knowledge
enhanced pre-trained language representations with message passing on hierar-
chical relational graphs. arXiv preprint arXiv:2109.04223 (2021).

Donald Metzler and W. Bruce Croft. 2005. A Markov Random Field Model for
Term Dependencies. In Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (Salvador, Brazil)
(SIGIR °05). Association for Computing Machinery, New York, NY, USA, 472-479.
https://doi.org/10.1145/1076034.1076115

Donald Metzler and W Bruce Croft. 2005. A markov random field model for
term dependencies. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. 472-479.

Fedor Nikolaev, Alexander Kotov, and Nikita Zhiltsov. 2016. Parameterized
Fielded Term Dependence Models for Ad-Hoc Entity Retrieval from Knowledge
Graph. In Proceedings of the 39th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Pisa, Italy) (SIGIR ’16). Association for

[20

[21

[22

[23

[24

[25

[27

[28

[30

[31

[32

[33

[34

[35

[36

]

]

]

]

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Computing Machinery, New York, NY, USA, 435-444. https://doi.org/10.1145/
2911451.2911545

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).
Francesco Piccinno and Paolo Ferragina. 2014. From TagME to WAT: A New
Entity Annotator. In Proceedings of the First International Workshop on Entity
Recognition & Disambiguation (Gold Coast, Queensland, Australia) (ERD ’14).
Association for Computing Machinery, New York, NY, USA, 55-62. https://doi.
org/10.1145/2633211.2634350

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze. 2020. E-BERT: Efficient-Yet-
Effective Entity Embeddings for BERT. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020. Association for Computational Linguistics,
Online, 803-818. https://doi.org/10.18653/v1/2020.findings-emnlp.71

Hadas Raviv, David Carmel, and Oren Kurland. 2012. A Ranking Framework for
Entity Oriented Search Using Markov Random Fields. In Proceedings of the 1st
Joint International Workshop on Entity-Oriented and Semantic Search (Portland,
Oregon, USA) (JIWES ’12). Association for Computing Machinery, New York, NY,
USA, Article 1, 6 pages. https://doi.org/10.1145/2379307.2379308

Hadas Raviv, Oren Kurland, and David Carmel. 2016. Document retrieval using
entity-based language models. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval. 65-74.
Michael Schuhmacher, Laura Dietz, and Simone Paolo Ponzetto. 2015. Ranking
Entities for Web Queries Through Text and Knowledge. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management
(Melbourne, Australia) (CIKM °15). Association for Computing Machinery, New
York, NY, USA, 1461-1470. https://doi.org/10.1145/2806416.2806480

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In Sixth international conference on data mining
(ICDM’06). IEEE, 613-622.

Johannes M Van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Balog, and
Arjen P de Vries. 2020. Rel: An entity linker standing on the shoulders of giants.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2197-2200.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L. ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, 1. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph Attention Networks. In International Con-
ference on Learning Representations.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu,
Juanzi Li, and Jian Tang. 2021. KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Transactions of the Association for
Computational Linguistics 9 (2021), 176-194.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. Proceedings of the AAAI
Conference on Artificial Intelligence 28, 1 (Jun. 2014). https://doi.org/10.1609/aaai.
v28i1.8870

Chenyan Xiong and Jamie Callan. 2015. EsdRank: Connecting Query and Docu-
ments through External Semi-Structured Data. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (Mel-
bourne, Australia) (CIKM °15). Association for Computing Machinery, New York,
NY, USA, 951-960. https://doi.org/10.1145/2806416.2806456

Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. 2016. Bag-of-Entities Rep-
resentation for Ranking. In Proceedings of the 2016 ACM International Con-
ference on the Theory of Information Retrieval (Newark, Delaware, USA) (IC-
TIR ’16). Association for Computing Machinery, New York, NY, USA, 181-184.
https://doi.org/10.1145/2970398.2970423

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda,
Yoshiyasu Takefuji, and Yuji Matsumoto. 2020. Wikipedia2Vec: An Efficient
Toolkit for Learning and Visualizing the Embeddings of Words and Entities from
Wikipedia. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations. Association for Computational
Linguistics, 23-30.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda,
Yoshiyasu Takefuji, and Yuji Matsumoto. 2020. Wikipedia2Vec: An Efficient
Toolkit for Learning and Visualizing the Embeddings of Words and Entities from
Wikipedia. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 23-30. https://doi.org/10.18653/v1/2020.emnlp-demos.4
Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
2019. ERNIE: Enhanced Language Representation with Informative Entities.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 1441-1451.
https://doi.org/10.18653/v1/P19-1139



Conference acronym 'XX, June 03-05, 2018, Woodstock, NY Oza, et al.

[37] Nikita Zhiltsov, Alexander Kotov, and Fedor Nikolaev. 2015. Fielded Sequential [38] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Dependence Model for Ad-Hoc Entity Retrieval in the Web of Data. In Proceedings Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
of the 38th International ACM SIGIR Conference on Research and Development in A review of methods and applications. AI open 1 (2020), 57-81.

Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing Ma-
chinery, New York, NY, USA, 253-262. https://doi.org/10.1145/2766462.2767756



