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In recent decades, science and engineering have been rev-
olutionized by a momentous growth in the amount of
available data. However, despite the unprecedented ease
with which data are now collected and stored, labeling data
by supplementing each feature with an informative tag re-
mains to be challenging. Illustrative tasks where the label-
ing process requires expert knowledge or is tedious and
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time-consuming include labeling X-rays with a diagnosis,
protein sequences with a protein type, texts by their topic,
tweets by their sentiment, or videos by their genre. In
these and numerous other examples, only a few features
may be manually labeled due to cost and time constraints.
How can we best propagate label information from a small
number of expensive labeled features to a vast number of
unlabeled ones? This is the question addressed by semi-
supervised learning (SSL).

This article overviews recent foundational develop-
ments on graph-based Bayesian SSL, a probabilistic frame-
work for label propagation using similarities between fea-
tures. SSL is an active research area and a thorough review
of the extant literature is beyond the scope of this article.'
Our focus will be on topics drawn from our own research
that illustrate the wide range of mathematical tools and
ideas that underlie the rigorous study of the statistical accu-
racy and computational efficiency of graph-based Bayesian
SSL.

1. Semi-Supervised Learning (SSL)

Let us start by formalizing the problem setting. Suppose
we are given

(i, ¥,

{xi}%in+1

labeled data,
unlabeled data,

(1)

where (x;,y;)/~, are independent draws from a random
variable with joint law .Z(X, Y), and {x;}}.,, 41 areindepen-
dent draws from the marginal law Z(X). We refer to the
x;'s as features and to the y;'s as labels.> Due to the cost
associated with labeling features, in SSL applications the
number n of labels is usually small relative to the number
N of features. The goal is then to propagate the few given
labels to the collection of all given features. Precisely, we
consider the problem of using all labeled and unlabeled
data to estimate the conditional mean function

Jo(x) = E[Y|X = x]

at the given features {x;}.,. We call f; the labeling func-
tion. For ease of exposition, we will restrict our attention to
regression and classification problems, where the labeled
pairs are generated from:

{Y = fo(X) +7, 7 ~N(0,6%)
P(Y = 11X) = fo(X)

regression,
s (2)
classification,
with § known in the regression setting. Regression and
classification are prototypical examples of SSL tasks with
real-valued and discrete-valued labels, respectively. To

'AMS Notices limits to 20 the references per article; for this reason, we refer to
[VEH20, GTKSSA20, SAY20b| for further pointers to the literature.

2In machine learning, features and labels are often referred to as inputs and out-
puts, respectively.
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streamline the presentation, we focus on binary classifi-
cation where there are only two distinct classes, labeled
by 0 and 1. Several probabilistic models for binary clas-
sification are reviewed in [BLSZ18]. Extensions to non-
Gaussian noise or multi-class classification can be treated
in a similar fashion.

As its name suggests, SSL lies between supervised and un-
supervised learning. In supervised learning, the goal is to
use labeled data to learn the labeling function f;, so that it
may later be evaluated at new features. On the other hand,
unsupervised learning is concerned with using unlabeled
data to extract important geometric information from the
feature space, such as its cluster structure. SSL leverages
both labeled and unlabeled data in the learning procedure;
all given features are used to recover the geometry of the
feature space, and this geometric information is exploited
to learn f;.

Task Labeled | Unlabeled
Supervised v X
Unsupervised X v
Semi-supervised v v

Relying on unlabeled data to estimate the labeling func-
tion may seem counterintuitive at first. Indeed, the ques-
tion of whether unlabeled data can enhance the learn-
ing performance in SSL has been widely debated, and dif-
ferent conclusions can be reached depending on the as-
sumed relationship between the label generating mecha-
nism and the marginal distribution of the features. We
will tacitly adopt the smoothness assumption —often satis-
fied in applications— that similar features should receive
similar labels. In other words, we assume that the label-
ing function varies smoothly along the feature space. Un-
der such a model assumption, one can intuitively expect
that unlabeled data may boost the learning performance:
uncovering the geometry of the feature space via the un-
labeled data facilitates defining a smoothness-promoting
regularization procedure for the recovery of the labeling
function. The main idea of the graph-based Bayesian ap-
proach to SSL is to use a graph-theoretical construction to
turn pairwise similarities between features into a probabilis-
tic regularization procedure.

2. Graph-Based Bayesian SSL

We will take a Bayesian perspective to learn the restriction
of fj to the features, denoted

fN = fO |{x1,...,xN}-

We view fy as a vector in RN, with coordinates fy(i) =
fo(x;). In the Bayesian approach, inference is performed
using a posterior distribution over fy, denoted uy. The pos-
terior density un(fy) will be large for functions fy that
are consistent with (i) the given labeled data; and (ii) our
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belief that similar features should receive similar labels.
The posterior density is defined by combining a likelihood
function and a prior distribution that encode, respectively,
these two requirements:

un(fn) &< L(fns y) an(fv) - (3)

posterior

likelihood  prior

Here and elsewhere y := {y, ..., y,,} is used as a shortcut for
all given labels. We next describe, in turn, the definition of
likelihood and prior, followed by a discussion of how the
posterior distribution is used to conduct inference in the
Bayesian framework.

Likelihood function. The likelihood function encodes the
degree of probabilistic agreement of a labeling function
fn with the observed labels y, based on the model defined
by (1) and (2). The independence structure in (1) implies
that the likelihood factorizes as

n
L(fx:y) 1= POl = [ [ POilfiv):
i=1
and the Gaussian and binomial distributional assump-
tions in (2) give that
52y _|yl-—f1\£(i>|2 _
]
PG;lfy) = (2mé%) ze 2 o regre‘ssmr?, (4)
fn@Yi 1= fy@] 7" classification.

Note that the features are not involved in the definition of
the likelihood function; in particular, the likelihood func-
tion does not depend on the unlabeled data.

Prior distribution. The prior encodes the belief that the la-
beling function should take similar values at similar fea-
tures. We thus seek to design the prior so that its density
7 (fn) is large for functions fy that vary smoothly along
the feature data. We will achieve this goal by defining the
prior as a transformation of a Gaussian random vector uy
as follows:

regression,

classification.

B {z(uN)
TN =
L(D(uy))

Here ® : R — (0,1) is a link function that ensures that in
the classification setting the prior samples take coordinate-
wise values in (0,1). Section 3 will discuss how to use
graph-based techniques to define the covariance structure
of the latent vector uy so that uy (i) and up(j) are highly
correlated if the features x; and x; are similar. We term
the approach “graph-based” because we will view each fea-
ture X; as a node of a graph, and use a matrix W of pair-
wise similarities between features to define weighted edges.
Then, the covariance of uy will be defined using a graph-
Laplacian to penalize certain discrete derivatives of uy. In
applications, the pairwise similarities often take the form
Wi = K(p(x;), ¢(x;)), where @ is a feature representation
map that embeds the feature space in a suitable Euclidean
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space, and X is a kernel function such as the squared ex-
ponential X (s, t) = e~5=!F, with | - | the Euclidean norm.

Note that labels are not used in the definition of the
prior; instead, the prior is designed using pairwise similar-
ities between all labeled and unlabeled features {x;}Y ,.
Bayesian inference. Bayes's formula (3) combines likeli-
hood and prior to obtain the posterior distribution, used
to perform Bayesian inference. Before moving forward, no-
tice again that the prior is constructed solely in terms of
the features, whereas only the labels enter the likelihood
function. This insight will be important in later sections.

The posterior density un(fy) quantifies our degree of
belief that fy is the true (restricted) labeling function that
generated the given data. A natural point estimator for fy
is hence the posterior mode,

~

fn = argmax uy(g)
geERN

= argmax log L(g;y) + log mn(g).

gERN

(5)

The right-hand side showcases that the posterior mode,
also known as the maximum a posteriori estimator, can be
found by optimizing an objective function comprising a
data misfit and a regularization term, defined by the log-
likelihood function and the log-prior density, respectively.
This observation reconciles the Bayesian approach with
classical optimization methods that —without a proba-
bilistic interpretation— recover the labeling function by
minimizing an objective that comprises data misfit and
regularization terms.

Under the Bayesian framework, however, the poste-
rior mean and the posterior median can also be used as
meaningful point estimators that can be robust to outliers
or model misspecification. Moreover, in addition to en-
abling point estimation, the posterior distribution also al-
lows one to quantify the uncertainty in the reconstruction
of the labeling function by computing Bayesian confidence
intervals, correlations, or quantiles. All these quantities
can be expressed as expectations with respect to the poste-
rior distribution. As will be detailed later, sampling algo-
rithms such as Markov chain Monte Carlo may be used to
approximate these posterior expectations.

[llustrative example. Figure 1 contains a synthetic binary
classification toy example where the features are sam-
pled from two disjoint semi-circles, corresponding to two
classes. We are given N = 200 features, with only n = 10
of them labeled (marked with red dots), and aim to clas-
sify the unlabeled ones. Using a graph-based prior defined
following the ideas in Section 3, we compute the poste-
rior mean —which estimates the probability with which
each data point belongs to the lower semi-circle— and the
posterior standard deviation —which represents the uncer-
tainty in the estimation. Thresholding the posterior mean
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Figure 1. Posterior inference for a synthetic dataset. Each
circle represents a feature. Labeled features are marked with
red dots. Upper: posterior mean of probabilities of cluster
assignment. Lower: the corresponding posterior standard
deviations.

at 0.5 for classification, the results indicate very high ac-
curacy, with lower uncertainty in the reconstruction near
labeled features. This example demonstrates a typical sce-
nario in SSL, where the geometric information carried by
the unlabeled data helps to achieve good learning perfor-
mance with few labels.

Outline. Having introduced the graph-based Bayesian for-
mulation of SSL, we are ready to outline the questions that
will be explored in the rest of this article, along with their
practical motivation:

1. Prior Design: How to define the latent field uy so that
the prior 7y promotes smoothness, facilitates com-
putationally efficient inference, and yields a posterior
that achieves optimal estimation for a large class of
labeling functions?
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2. Posterior Continuum Limit: For a fixed number n of
labels, do the graph-based posteriors uy converge to a
well-defined probability measure in the limit of a large
number N of features?

3. Posterior Sampling: Can we design sampling algo-
rithms whose rate of convergence does not deteriorate
in the large N limit?

4. Posterior Contraction: In the joint limit where both
N and n are allowed to grow, does the posterior distri-
bution concentrate around the true labeling function?
How should N scale with n to achieve optimal estima-
tion?

These questions, along with their interrelations, will be
considered in the next four sections. We will focus on
graph-based Bayesian SSL, but related asymptotic analyses
of SSL include [NSZ09, BHL*21]. An overarching theme
in our Bayesian setting will be to guarantee that the prior
and the posterior distributions are well defined in the limit
of a large number of features (interpreted as graph nodes).
This idea is formalized through the study of continuum lim-
its that play an essential role in understanding the statisti-
cal performance of graph-based Bayesian SSL and the scal-
ability of sampling algorithms.

In order to set the theory on a rigorous footing, we
will adopt the manifold assumption that the features lie on
a hidden low-dimensional manifold [BN04] embedded
in an Euclidean space; for the study of posterior contrac-
tion, fy will be assumed to be a smooth function defined
in this manifold. We emphasize that the manifold set-
ting is used only for theoretical insight, but the method-
ology is applicable beyond this setting. The manifold as-
sumption is widely adopted in machine learning and high-
dimensional statistics, and encapsulates the empirical ob-
servation that high-dimensional features often exhibit low-
dimensional structure.

We end this section by showing, in a concrete applica-
tion, the interpretation of features and labels, as well as
the intuition behind manifold and smoothness assump-
tions. The MNIST dataset {x;}}., consists of N = 60000
images of hand-written digits from 0 to 9. We may want
to classify images given labels {y;}l-; with y; € {0,...,9}
and n < N. Each image x; € R? is a d = 784-dimensional
vector, but the space of digits has been estimated [HAO5]
to have dimension around m = 10, and can be concep-
tualized as an m-dimensional manifold embedded in R?.
The smoothness assumption reflects the idea that images
that are similar are likely to correspond to the same digit,
and should therefore receive the same label. As in the syn-
thetic example of Figure 1 we need to construct a suitable
prior for functions over the features x; and study posterior
sampling algorithms.
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3. Prior Design

In this section we discuss the definition of the Gaussian
random vector uy used to specify the prior 7. It will
be convenient to think of uy as a random function over
My = {xq, ..., xn}, or arandom process discretely indexed
by My . We will denote by uy (i) := up(x;) the value of the
ith coordinate of uy. Such notation will help highlight
the analogies between the design of our discretely indexed
random vector uy and the design of Gaussian processes
(GPs) in Euclidean domains.

In GP methodology, it is important to impose adequate

smoothness assumptions. For instance, in the popular
Matérn class of GPs (to be defined shortly in Section 3.2)
in Euclidean space, the mean square differentiability of
sample paths is tuned by a smoothness parameter. How-
ever, here we seek to define a discretely indexed random
vector over abstract features—not necessarily embedded
in Euclidean space—and the usual notions of smoothness
are not readily applicable. To circumvent this issue, we
will rely on a matrix W of pairwise similarities between
features. At a high level, we would like uy to be a ran-
dom function that varies smoothly over My with respect
to the pairwise similarities, i.e., the function values up (i)
and uy(j) for i # j should be close if the similarity W ;;
between x; and x; is high. In other words, if we view the
features My as a graph whose edge information is encoded
in the similarity matrix W, then we wish uy to be regular
with respect to the graph structure of (M, W). Techniques
from spectral graph theory will allow us to construct a ran-
dom vector that fulfills this smoothness requirement.
3.1. GPs over graphs. Graph-Laplacians, reviewed here
succinctly, will be central to our construction. Given the
similarity matrix W € R¥*N, let D € RN*N be the diago-
nal matrix with entries D;; = Zj.vzl W ;. The unnormalized
graph-Laplacian is then the matrix Ay = D — W. Several
normalized graph-Laplacians can also be considered (see,
e.g., [vLO7]), but for our purpose we will focus on the un-
normalized one. From the relation

N
1 . .
vITANL = 5 Z Wijlv@ —v(HIE, veRN  (6)
=1

we readily see that Ay is positive semi-definite. Moreover,
(6) implies that if we identify v with a function over My,
then v's that change slowly with respect to the similarities
lead to smaller values of vT Ay v. This observation suggests
considering Gaussian distributions of the form N(0, Ay!)
since its negative log density is proportional to (6) (up to
an additive constant) and therefore favors those “smooth”
U's. However Ay is singular, and the above Gaussian
would be degenerate. To remedy this issue, and to fur-
ther exploit the regularizing power of Ay, we will instead
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consider
uy ~ N(0,(tIy + Ax)~*) (7)

with 7,5 > 0 and Iy the identity matrix. Here we have two
additional parameters 7 and s which enhance the model-
ing flexibility. Roughly speaking, 7 and s control, respec-
tively, the inverse lengthscale and smoothness of the sam-
ples (interpreted as functions over the graph). To see this,
we can write the Karhunen-Loéve expansion of uy in (7)

N y
uy = 2T+ An) "N & 9 N(0,1), (8)
i=1

where {(Ay;,¥n)}L, are the eigenvalue - eigenvector
pairs of Ay with increasingly ordered eigenvalues. The
eigenvectors become more oscillatory as i increases, and
therefore a larger s —which implies faster decay of the
coefficients— yields more regular sample paths, whereas a
larger 7 incorporates more essential frequencies and makes
the sample paths more oscillatory. Figures 2a, 2b and
2c demonstrate this behavior for three sets of parameters
when the X;’s are sampled from the unit circle. Finally, to
further enhance the modeling flexibility, one can replace
7l with a vector 7,y with positive entries. Doing so intro-
duces a form of nonstationary local behavior, as shown in
Figure 2d, where 7 increases from 1 (the left end) to 30
(the right end).

3.2. Connection with Matérn GP. Besides the regular-
izing effect of the graph-Laplacian described above, the
Gaussian distribution (7) is also motivated by a close con-
nection to Matérn GPs on Euclidean spaces. To start with,
recall that the Matérn covariance function takes the follow-
ing form
AN 221_v Y ’
cx,x') =0 m(le—x DKy (elx =x'),  (9)

for x,x' € R%. Here I' is the gamma function and K, is the
modified Bessel function of the second kind. The Matérn
GP is a GP with the Matérn covariance function. It is a
popular modeling choice in Bayesian methodology due to
the flexibility offered by the three parameters o, v, x that
control, respectively, the marginal variance, sample path
smoothness, and correlation lengthscale. As we will see
shortly, it turns out that we can view the finite dimensional
Gaussian (7) as a discrete analog of the Matérn GP where
the parameters v and x play similar roles as our 7 and s.

The key connection is the stochastic partial differential
equation (SPDE) representation of Matérn GP proved by
[Whi63], which says that the Matérn GP u is the unique
stationary solution to

2 Ayv2+d/4,, — (4m)dl2T(v + d/2)x?v
(x®> = A) u= 0'\/ o) w,

(10)
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Figure 2. Plots of samples of (7) for different z's and s’s when the x;'s are sampled from the unit circle. The second row unfolds
the plots in the first to the interval [0, 27] for better visualization of the fluctuations.

where A is the usual Laplacian and W is a spatial white
noise with unit variance. With this in mind, we can rewrite
(7) in a similar fashion as

(TIN + AN)S/ZU,N = WN,

(11)

where Wy ~ N(0,Iy). Now, ignoring the marginal vari-
ance in (10), one can immediately see (11) as a discrete
analog of (10) under the relation s = v + d/2 and 7 = %2.
In other words, we can interpret (7) as a Matérn GP over
the graph (M, W).

3.3. Prior continuum limit. If we impose certain assump-
tions on the graph (My, W), it can be shown that our
graph Matérn GP uy is not only a discrete analog of the
usual Matérn GP, but a consistent approximation of cer-
tain continuum Matérn-type GPs. To formalize this stat-
ment, we rely on the manifold assumption that we had
previously foreshadowed. Suppose now that the x;'s are
independently sampled from the uniform distribution in
the manifold M. We then have the following result (see
[GTSA18, Theorem 4.2 (1)] and [SAY20a, Theorem 4.2]
for the formal version):

Result 3.1. Under a manifold assumption, the graph Matérn
GP (7) converges to a Matérn-type GP on M provided that the
similarity W is suitably defined and the smoothness parameter
s is sufficiently large.

We next provide some further context for this result.
First, the limiting Matérn-type GP on M is defined by

u ~ N(0, (I — Ayp)~5), (12)
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where I is the identity and A, is the Laplace-Beltrami op-
erator (the manifold analog of the usual Laplacian) on
M. By convention, A, is a negative semi-definite opera-
tor, which explains the minus sign. Just as the connection
between (7) and the SPDE representation of Matérn GP,
we can see (12) as a manifold analog of Matérn GP de-
fined by lifting (10). In particular, we can write a similar
series representation of (12)

u= Y (t+)" &P, & E9 N(,1),  (13)

i=1

in terms of the eigenpairs {(4;,9;)}{2; of —A,;. The eigen-
functions encode rich information about the geometry of
M and form a natural basis of functions over M. Com-
paring (8) and (13), it is reasonable to expect that large N
convergence will hold provided that we have convergence
of the corresponding eigenvalues and eigenfunctions. To
achieve this, we need to carefully construct the similarity
matrix W so that the graph-Laplacian Ay is a good approxi-
mation of —A,,. If we assume that M is an m-dimensional
compact submanifold of RY, then this is indeed the case if
we set

2(m +2)
i = ——=1{|x; — x;| < hyn},
ij Nthﬁ-'—z {l i _]| N}

(14)

where v,,, is the volume of the m-dimensional unit ball and
hy is a user-chosen graph connectivity parameter satisfy-
ing

(log N)em

1
Nim Khy <€ —

N/z2s’

(15)
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with ¢,, = 3/4if m = 2 and ¢, = 1/m otherwise. Small
values of hy induce sparse graphs, which are easier to
work and compute with; see Section 3.4 below. However,
very small values of hy render graphs that are so weakly
connected that they cannot induce any level of smooth-
ness in the functions that are likely to be generated by
the prior 7. It is thus important to set the connectiv-
ity hyy appropriately in order to take advantage of sparsity
while at the same time recovering the geometric informa-
tion of M. The specific lower bound in (15) characterizes
the level of resolution of the implicit discretization of the
manifold induced by the x;’s. We require hy to be larger
than this quantity to capture the geometry of the under-
lying manifold. Under these conditions on hy, it can be
shown that Ay converges spectrally towards —A,;. Other
types of graphs such as k-nearest neighbors and variable
bandwidth graphs can also be employed, and recent work
[GT19] have shown spectral convergence in these settings.

3.4. Sparsity. So far we have discussed the construction
of our prior from a modeling perspective, motivated by
the regularizing power of the graph-Laplacian and the con-
nection with usual Matérn GPs. We close this subsection
by mentioning its sparseness. Notice that with our choice
of weights (14), the similarity matrix W —and hence the
graph-Laplacian Ay— are sparse. Indeed, one can show

that for
e = (log N)m
N~ Nl/m

the number of nonzero entries of Ay is O(N*2). There-
fore, for small integer s in (7), we are left with a Gaussian
with sparse precision matrix, and numerical linear algebra
methods for sparse matrices can be employed to speed-up
computation. This is important for posterior inference al-
gorithms that may require factorizing Ay. Similar conclu-
sions can be reached with k-nearest neighbors graphs.

4. Posterior Continuum Limit

In this section we discuss the convergence of the posterior
un for large N (and fixed n) towards a continuum posterior
u defined later. For now, it suffices to note that the contin-
uum posterior is naturally characterized as a probability
distribution over the space I>(M). When formalizing a no-
tion of convergence for posteriors, a challenge arises: the
measures Uy and u are probability measures defined over
different spaces, i.e., [>(My) and I?(M), respectively. In
what sense should these measures be compared? In what
follows, we present a possible solution to this question,
which also arises in the rigorous analysis of continuum
limits for prior distributions considered in the previous
section.

4.1. Lifting to the space P(TI?). In order to compare the
measures 4y and y, we start by introducing a space where
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we can directly compare functions in [*(My) with func-
tions in I?(M). We let TI? be the set:

TI2 :={(6,8): 6 € P(M), g € I2(M,0)}.

In words, TI? is the collection of pairs of the form (6, g),
where 0 is a probability measure over M and g is an ele-
ment in I2(M, 6). For us, the most important choices for 6
are the empirical measure associated to the samples x; and
the data generating distribution .Z’(X). We use the simpli-
fied notation I?(My) and I*(M) to denote the I? spaces
for these two choices of 6. TI? can be formally interpreted
as a fiber bundle over the manifold P(M): each 6 € P(M)
possesses a corresponding I? fiber.
We endow TI? with the following distance:

dTL2 ((61; hl), (62, I’lz))z =
rerBLe: f/mm(dgﬂ (0, %) + [ (x) = ha (D)) dy(x, ),

where T'(6;,6,) represents the set of couplings between
0, and 6, —that is, the set of probability measures on
M x M whose first and second marginals are 6; and 6,,
respectively— and d,; denotes the geodesic distance in
M. It is possible to show that the d7;2 metric is, indeed,
a distance function. Moreover, the topology induced by
drr2 in each fixed fiber I?(M, 6) coincides with the topol-
ogy induced by the natural topology of the Hilbert space
I2(M, 0), a fact that motivates the notation TI?, which sug-
gests an [*-like convergence after transportation. We refer
to [TPK*17] for further details.

We proceed to define a notion of convergence for the
posteriors uy as N — oo. As discussed above, the TI?
space allows us to see I?(My) and I?(M) as subsets of the
bigger common space TI?. In turn, the measures 7 and
7y, as well as the measures ¢ and uy, can then be all in-
terpreted as probability measures on the space TI?. Using
this “lifting” we can now interpret the statement uy — u
as N — oo, as a statement about the weak convergence
of probability measures in the metric space TI?. Further
properties of the space TI? allow us to use a collection of
theorems, such as Portmanteau’s and Prokhorov’s, to char-
acterize convergence and compactness in the space P(TI?).

After specifying the notion of convergence of upy to-
wards u, we can now present a result, rigorously stated in
[GTSA18].

Result 4.1. Under a manifold assumption, the graph-based
posterior Uy converges to a continuum limit posterior u over
functions on M, provided that the similarity W is suitably de-
fined and the smoothness parameter s is sufficiently large.

Further context for this result will be given next.

4.2. Convergence of posteriors. Now that we have dis-
cussed the precise way in which we formalize the conver-
gence of uy towards u, we proceed to characterize y and
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describe the tools used to deduce this convergence. For
ease of exposition, we focus on the regression setting.

First, we notice that the posterior distribution up, in-
troduced in Section 2 via Bayes’s formula, can be charac-
terized variationally. Indeed, uy is the solution to the op-
timization problem

un = argmin Jy(vy),
YN

where, for vy € P(I*(My)),

mmo=mammm+f U y) dvn ().

L2(MN)
Here Dg; denotes the Kullback-Leibler divergence and
€(fn;y) denotes the negative log-likelihood. The first term
in Jyy will be small if v is close to the prior 7, while the
second term will be small if vy gives significant mass to
fn's that are consistent with the labeled data. Thererfore,
the minimizer uy of Jy represents a compromise between
matching prior beliefs and matching the observed labels.
Following this variational characterization, we define the
continuum posterior u in direct analogy with the graph
setting:

u = argmin J(v),

v

where, for v € P(I2(M)),

J@=mem+f o0 ) dn(f).

L2(m)

The energies Jy and J can be extended to P(TI?) by setting
them to be infinity outside the fibers I?(My) and I[2(M),
respectively. This extension is convenient so as to have
a collection of functionals defined over a common space.
The variational characterization opens the door to the use
of tools in the calculus of variations, which allow to prove
the convergence of minimizers of variational problems. In-
deed, the following three statements together imply the
convergence of the minimizer of J; towards the minimizer
of J, that is, the desired convergence of posteriors.

1. For every converging sequence vy — 7V we have
liminfy_ . JN(VN) = J(v).

2. For every v there exists a sequence {vy}%-; such that
limsupy,_  IN(VN) S T().

3. Every sequence {vnN}¥_; in P(TI?) satisfying

supJy(vy) < o0
N

is precompact.

As it turns out, it is possible to prove that, under the as-
sumptions of Result 4.1, these three statements hold simul-
taneously with probability one. The structure of Jy and
J —where prior and likelihood appear separately— facili-
tates the analysis. The most delicate part is to compare the
prior distributions 77y and 7, that is, the first terms of Jy
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and J. To provide some further intuition, we recall that a
random variable uy sampled from the discrete prior 7y
takes the form:

N
pid.

uy = )T+ An) "N &~ N0, 1),

i=1

while a sample u from the continuum prior 7 takes the
form:
o
u=y(t+ )" E;.
i=1
Here we use the same random variables &; in both u and
up, thereby coupling the measures 7 and 7. It can be
shown that the TI? distance between %y ; and ¢; can be
controlled with very high probability for all i up to some
mode b smaller than N. We can thus expect that the sum of
the first b terms in uy is close, in the TI? sense, to the sum
of the first b terms in u. For modes larger than b, on the
other hand, it will not be possible to obtain decaying esti-
mates for the distance between the corresponding discrete
and continuum eigenfunctions. This is to be expected as
the graph cannot resolve the geometry of the manifold M
at lengthscale ~ h. To control the higher modes, we must
use the fact that the terms (7 + 4;) %2 can be controlled by
a factor of the form ~ b=5/™, as it follows from the well-
known Weyl's principle describing the growth of eigenval-
ues of Laplace-Beltrami operators on compact manifolds.
Here it is worth recalling our discussion in earlier sections
regarding the level of regularity induced by higher value
of s: a large enough value of s can be used to control the
contribution of high order modes. The above argument
eventually leads to the following estimate:
min [ [ @rs(on)dron.0)
yel(zn,m) TL2 JTL2
<E [dTLz(uN,u)Z] - 0,

as N - oo. In other words, in the Wasserstein space over
TI?, the measure 7y converges towards 7 as N — co, and
thus, the convergence holds also in the weak sense, im-
plying the convergence of the prior terms. With the con-
vergence of priors in hand, the proofs of statements 1-2-3
reduce to a careful use of lower semi-continuity properties
of the Kullback-Leibler divergence. We refer to [GTSA18]
for further details, and describe next why establishing con-
tinuum limits for posterior distributions is important in
the design of scalable algorithms for posterior sampling.

5. Posterior Sampling

As noted in Section 2, the construction of point estimates
and confidence intervals in Bayesian inference rests upon
computing expectations with respect to the posterior distri-
bution. For instance, finding the posterior mean, marginal
variances, and quantiles requires one to compute £, [h]
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for various test functions 4 : RY — R. When the poste-
rior is not tractable —such as in SSL classification— expec-
tations can be approximated using sampling algorithms.
The goal of this section is to show how the continuum
limit of posteriors described in Section 4 can be exploited
to design Markov chain Monte Carlo (MCMC) sampling
algorithms with a rate of convergence that is independent
of the number N of features. Subsection 5.1 contains the
necessary background on the Metropolis-Hastings MCMC
algorithm. In Subsection 5.2 we introduce the graph pre-
conditioned Crank-Nicolson (pCN) algorithm, a Metropolis-
Hastings scheme that exploits the continuum limit to en-
sure scalability to large datasets. Finally, in Section 5.3 we
discuss how the large N scalability of the graph pCN algo-
rithm can be formalized through the notion of uniform
spectral gaps.

5.1. Metropolis-Hastings sampler. Metropolis-Hastings
MCMC is one of the most widely used algorithms in sci-
ence and engineering, and is a cornerstone of computa-
tional Bayesian statistics. The basic idea is simple: for a
given sample size K, the Metropolis-Hastings sampler ap-
proximates

K
Euylhl % 2 ) (7). (16)
k=0

where { fls,k)}{fzo are samples from a Markov chain whose
kernel pypg satisfies detailed balance with respect to up,
that is,

un(f) pmu(f,8) = un(@ pmu(e. ), Vf.g.  (17)

The detailed balance condition (17) guarantees that y is
the stationary distribution of the Markov chain, and, con-
sequently, Js,k) will be approximately distributed as up for
large k, under mild assumptions.

The Metropolis-Hastings algorithm is built upon an ac-
cept/reject mechanism that turns a given proposal kernel
into a Metropolis-Hastings Markov kernel pyy that satis-
fies the desired detailed balance condition.

Proposal N Accept/ Metrqpolis—
|  kernel . reject Hastings
. kernel

, the (k + 1)-th sample is ob-
First, a proposed

Given the k-th sample f(k)
tained following a two-step process.
move is sampled gl(\’,{) ~ q(f; (k), -) from the given proposal
kernel q. Second, the proposed move is accepted with
probability a( fls,kﬂ), g(kH)) and rejected with probability
1- a(flﬁ,"“),g%‘“)). If the move is accepted, one sets
ISIkH) = g%ﬁl); if rejected, flsjkﬂ) = fls,k). The Metropolis-
Hastings acceptance probability

un(8) q(g, f) }
“un(f) a(f. 2

a(f,g) = min{l
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is defined in such a way that the procedure renders a
Markov chain whose kernel pyy satisfies (17). Moreover,

under mild assumptions the distribution M%‘) of the k-th

sample fIE]k) converges to uy as k — oco. How fast this con-
vergence occurs —and, as a consequence, how accurate the
approximation (16) is for a given sample size K— depends
crucially on the choice of proposal kernel q. In the follow-
ing subsection we introduce the graph pCN algorithm: a
Metropolis-Hastings MCMC algorithm that uses a specific
proposal kernel to ensure that the rate of convergence of
the chain #1(\1;) to the posterior uy does not deteriorate in
the large N limit.

5.2. The graph pCN algorithm. The proposal kernel
gpcn of the graph pCN algorithm [BLSZ18] is chosen so
that it satisfies detailed balance with respect to the prior
distribution 7. For ease of exposition, we present the al-
gorithm in the regression setting. Let 8 € (0,1) be a tuning
parameter, and set

g = -2 P 18y, €7 ~ 7y, (18)

where 7y is the prior on fy introduced in Section 3, with
covariance Cy. A direct calculation shows that the Markov
kernel

dpen(f>) = N((A = 9)V2f,92Cy)
implicitly defined by the proposal mechanism (18) satis-
fies detailed balance with respect to ;. Therefore, for

the graph-pCN algorithm, the Metropolis-Hastings accep-
tance probability is given by

un(g) dpen (g f)}
un(f) quN(fug)

L(g; y)mn(g) 9pen(8s f) }

TL(f; )N (f) qpen(f5 8)
L(gy) }

"L(fsy) )

where we used detailed balance of ¢y with respect to 7y
in the last equation. Note that the probability of accepting
amove is hence completely determined by the value of the
likelihood at the proposed move relative to its value at the
current state of the chain. In particular, moves that lead to
a higher likelihood are always accepted. Putting everything
together, the graph pCN algorithm [BLSZ18, GTKSSA20] is
outlined in Algorithm 1.

Notice that the prior distribution —and hence the unla-
beled features— are only used in the proposal step, while
the likelihood function —and hence the labels— are only
used in the accept/reject step. Therefore, one would expect
that the acceptance rate should not fundamentally depend
on the number of unlabeled features, provided that the
prior approaches a continuum limit and the number of
labels are kept fixed. This insight can be formalized into

apon(f.8) = minf1,

= min{l

= min{l
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Algorithm 1 Graph pCN.
Input: Prior 7y, likelihood L(-;y), 9 € (0,1).
Initialize: Pick f(O).
Fork=0,1,2,...do:
1. Proposal step: Set
(k) =(1- 92)1/2f(k) + 9§(k) é'(k) ~ TN
2. Accept/reject step: Compute
(k).

a(g(k), (k)) _mln{l M}
L5 y)
and set
(k+1) _ [&(\If) w.p. a(g(k) (k)),
N Is,k) wp. 1-— a(g(k) Zs,k)).
3. k-ok+1.

Output: f(k) k=0,1,...

a rigorous guarantee of algorithmic scalability, discussed
next.

5.3. Uniform spectral gap. As noted above, under mild
assumptions on the likelihood function, it is possible to
show that the distribution ,u(k) of the k-th sample fy 2
the pCN algorithm converges to uy in the large k 11m1t
More precisely, for a suitable distance d between probabil-
ity measures, one can show that there are constants ¢ > 0
and ey € (0, 1) such that

A, un) < (1 —en)k,

The largest e satisfying this requirement is called the spec-
tral gap of the chain. A large spectral gap implies fast con-
vergence of the chain. In particular, a positive spectral gap
is sufficient to ensure the consistency and asymptotic nor-
mality of the estimator (16) for suitable test functions. It
is therefore important to understand if the spectral gaps €
deteriorate (i.e. decay to zero) as N grows. The following
result, formalized in [GTKSSA20], indicates that the spec-
tral gaps for the graph pCN algorithm are uniform, mean-
ing that they are bounded from below by a positive con-
stant independent of N.

k=0,1,..

Result 5.1. Under the conditions that ensure the existence of a
continuum limit for the posteriors uy;, the graph pCN algorithm
has a uniform spectral gap in Wasserstein distance.

The result hinges on the continuum limit of posteriors
discussed in Section 4 and on the use of the graph pCN
algorithm, which exploits it. Standard MCMC algorithms
based on random walks or Langevin dynamics fail to sat-
isfy a uniform spectral gap. The proof is based on a weak
Harris theorem [HMS11] that provides necessary condi-
tions for the existence of a Wasserstein spectral gap. An
I? spectral gap can be obtained as a corollary.
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6. Posterior Contraction

In Section 4 we studied convergence of posteriors uy to-
wards their continuum limit as N - oo with n fixed. The
previous section showed that exploiting this continuum
limit is essential in order to design sampling algorithms
that scale to large number N of features. In this section, we
study the performance of graph-based Bayesian SSL when
both N and n tend to infinity. The analysis of this double
limit discerns if, and how, unlabeled data enhances the
learning performance. We provide an affirmative answer
for regression and classification, with a quantitative analy-
sis of the scaling of N with n required to achieve optimal
learning performance.

Subsection 6.1 formalizes the problem setting and our
criterion used to quantify the learning performance. We
then show in Subsection 6.2 how the performance of
graph-based Bayesian SSL can be analyzed by bringing to-
gether the continuum limit of graph-based priors in Sub-
section 3.3 with the theory of Bayesian nonparametrics.
6.1. Background. To formalize our setting, recall that we
are given labeled data {(x;, y;)}/~; sampled independently
from the model (2) and unlabeled data {x; }l 41 sampled
independently from .Z(X). Notice that we have intro-
duced a subscript to the total number N,, of features since
we are interested in studying its scaling with respect to n.
We assume that the labels are generated from a fixed truth
fo and aim to study the performance of learning f; with
the graph-based Bayesian approach. For our theory, we
will view the truth f;, as a function defined on the mani-
fold from where the features are assumed to be sampled.

We will use the notion of posterior contraction rates
[GGvdV00] to quantify the learning performance. This
concept, which we will overview in what follows, provides
a rigorous footing for the analysis of Bayesian techniques
from a frequentist perspective. We will say that the poste-
riors uy, contract around f, with rate §, if, for all suffi-
ciently large M > 0,

un,(f ERN |If = folla SMS,) =1 (19)

in probability, where
1 n
If = foll = o DFx) = folxepl?.
i=1

Here again we identify a vector in RN» with a function
over {xi}li\i"l. The convergence (19) implies that, asymptot-
ically, the sequence of posteriors uy, will be nearly sup-
fore, §,, characterizes the rate at which the posterlor “con-
tracts” around f;, and can be intuitively interpreted as the
convergence rate of the posterior distribution towards the
truth. As a consequence of the convergence (19), the point
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estimator

Jo = argmax [y, (f € RN = |If = glln < M8y)]
geRNn
converges (in probability) to f with the same rate §,,. This
observation provides convergence rates for Bayesian point
estimators that can be compared with the optimal rates
from the minimax theory of statistical inference.

6.2. Performance and unlabeled data. We have the fol-
lowing result, formalized in [SAY20b, Theorem 2.1].

Result 6.1. Under a manifold assumption, optimal posterior
contraction rates can be achieved if Ny, > n*™.

~

The result suggests that unlabeled data helps and gives
a quantitative required scaling of unlabeled and labeled
data. We will now illustrate the main ideas behind it. First
of all, in order for the unlabeled data to help, there should
be some correlation between the truth f; and the marginal
distribution of X. This then relates back to the manifold as-
sumption that we have used throughout. The intuition is
then that if the truth f; is a smooth function over the man-
ifold, a better understanding of the underlying geometry
through the unlabeled data may improve the learning of
fo- This, in terms of our graph-based prior, is reflected by
the fact that it is constructed using all of the features. Since
the graph-based prior approximates an underlying contin-
uum prior on the manifold, incorporating the unlabeled
data allows one to get a better approximation at the level
of the prior, which leads to better learning performance at
the level of the posterior.

Another important ingredient in our analysis is that the
continuum prior gives optimal learning performance. Re-
call that the continuum prior is the Matérn type GP as in
(12) or (13) and s characterizes the smoothness properties
of the sample paths. It turns out that if the truth f, is -

regular (belonging to a Besov-type space Bfo,co), then the
posteriors with respect to the continuum prior with param-
eter s = B + m/2 contract around f, with rate n=#/(8+m)
(up to logarithmic factors), which is the minimax optimal
rate of estimating a §-regular function. The key is that, for
optimal performance, the prior smoothness parameter s
needs to match (up to an additive constant that depends
only on the intrinsic dimension) the smoothness § of the
truth f,. This agreement is also needed when working with
Matérn GPs on Euclidean spaces.
Now the final step is to combine the above two main
observations:
1. The graph-based prior approximates the continuum
prior.
2. The continuum prior gives optimal posterior contrac-
tion rates.

A result from the Bayesian nonparametrics literature then
implies that if the graph-based prior approximates the
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continuum prior sufficiently well (satisfying an error rate
of n7! in an L*® version of the dr;2 metric introduced in
Section 4), then the graph-based prior gives the same pos-
terior contraction rates as the continuum prior, which is
again optimal. Therefore the remaining piece is to quan-
tify the approximation error of the continuum prior by the
graph-based prior, which is shown to be on the order of
N7 V2™ Therefore the scaling in Result 6.1 is obtained by
matching n~! and N;; /™. The message is that the conver-
gence rate of the graph-based prior suffers from the curse
of dimensionality, which is not surprising since the resolu-
tion of the x;'s scales like N;; ™. But the abundance of the
unlabeled data alleviates such an issue and leads to an ac-
curate approximation of the underlying continuum prior,
based on which optimal performance can be achieved.

7. Summary and Open Directions

In this article we have overviewed the graph-based
Bayesian approach to SSL. We have emphasized how the
study of continuum limits provides a rigorous foundation
for the design of prior distributions and sampling algo-
rithms with large number of features, and is also a key
ingredient in the statistical analysis of posterior contrac-
tion. The foundations of graph-based Bayesian learning
are still emerging, and we expect that future contributions
will require the development and the synergistic use of
a broad range of mathematical tools, including topology,
calculus of variations, spectral graph theory, ergodicity of
Markov chains, optimal transport, numerical analysis, and
Riemannian geometry. We conclude this article with some
theoretical, methodological, and applied open directions.

7.1. Theory. The uniform spectral gap of the graph pCN
algorithm ensures its independent rate of convergence in
the limit N — oo with fixed number n of labels. How-
ever, the rate of convergence of this algorithm would de-
teriorate in the joint limit N,n — oo. The exploration of
MCMC algorithms that scale in this joint limit is an in-
teresting open direction. The contraction of the posterior
distribution in this regime has been discussed in Section
6. Existing results assume an a priori known smoothness
of the labeling function in order to achieve optimal con-
traction rates. We believe these results can be extended to
achieve statistical adaptivity: the smoothness could, in prin-
ciple, be inferred without hindering the contraction rate.
This is an interesting theoretical question, which may also
lead to the design of more flexible prior models. Finally,
the manifold assumption that our continuum limits rely
onis an idealization of the intuitive idea that features often
contain some low-dimensional structure while living in a
high-dimensional ambient space. In applications, how-
ever, data are noisy and it is important to ensure that algo-
rithms designed under a manifold assumption are not sen-
sitive to small perturbations in the data. In this regard, the
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paper [GTSAY19] explores how performing local averages
of noisy features can improve the learning performance
on noisy point clouds. In addition to relaxing the man-
ifold assumption to account for noisy data, it would be
interesting to further develop mathematical foundations
for graph-based Bayesian SSL under a cluster assumption
(which says that data belonging to the same cluster tend
to share the same label).

7.2. Methodology. The design of graph-based prior GPs
in SSL takes inspiration from, and shares ideas with, the
design of GPs in spatial statistics, where numerous tech-
niques have been developed to enhance the scalability of
GP methodology to large datasets. Some of these connec-
tions are investigated in [SAY20a], but there are still numer-
ous opportunities for cross-pollination of ideas. For in-
stance, [SAY21] analyzes the finite element approach from
spatial statistics using the techniques outlined in Section
6. A related topic that deserves further research is the mod-
eling of flexible nonstationary graph-based GPs by appro-
priate choice of graph-Laplacian and similarities between
features. Finally, an important asset of the Bayesian per-
spective is its ability to provide uncertainty quantification.
However, how best to utilize the Bayesian probabilistic
framework in the SSL context also requires further research.
We envision new opportunities to develop active learning
strategies for the adaptive labeling of features.

7.3. Applications. The ideas and techniques that under-
pin the foundations and algorithms outlined in this arti-
cle are bound to be useful beyond the SSL regression and
classification problems that have been our focus. Graph-
based Bayesian techniques can find application, for in-
stance, in nonlinear inverse problems. In this direction,
[HJKSA22, HSAY20] investigate PDE-constrained inverse
problems on manifolds, where both the prior distribu-
tion and the likelihood function involve differential opera-
tors supplemented with appropriate boundary conditions.
Graphical approximations of these operators call for new
continuum limit analyses.
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