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Abstract

We propose a physics-based method to learn environmental fields (EFs) using a mobile robot.

Common data-driven methods require prohibitively many measurements to accurately learn such

complex EFs. On the other hand, while physics-based models provide global knowledge of EFs,

they require experimental validation, depend on uncertain parameters, and are intractable to solve

onboard mobile robots. To address these challenges, we propose a Bayesian framework to select

and improve upon the most likely physics-based models of EFs in real-time, from a pool of nu-

merical solutions generated offline as a function of the uncertain parameters. Specifically, we use

Gaussian Processes (GPs) to construct statistical models of EFs, and rely on the pool of numerical

solutions to inform their prior mean. To incorporate flow measurements into these GPs, we control

a custom-built mobile robot through a sequence of waypoints that maximize the information con-

tent of the measurements. We experimentally demonstrate that our proposed framework constructs

a posterior distribution of the flow field that better approximates the real flow compared to the prior

numerical solutions and purely data-driven methods.

Keywords: Environmental flow fields, physics-based learning, active learning, mobile robots,

Gaussian processes.

1. Introduction

Mobile robots have been widely used in environmental sensing applications to collect informative

measurements in a cost effective manner Dunbabin and Marques (2012); Yuh (2000). Knowledge of

the underlying flow field is often essential in these applications both for estimation and navigation.

Our goal in this paper is to develop a new physics-based method to learn high-fidelity statistical

models of flow fields using only sparse flow measurements, that is also tractable so that these mea-

surements can be collected online by a mobile robot.

A widely used method for estimating flow properties is numerical simulation based on the

Reynolds-averaged Navier Stokes (RANS) equations, a system of Partial Differential Equations

(PDEs). This approach is cost-effective and provides global estimation of the flow over a domain

of interest. Nevertheless, solutions provided by RANS models are generally incompatible with

each other and with empirical data and require experimental validation Ling and Templeton (2015).

Furthermore, precise knowledge of boundary conditions (BCs) and domain geometry is often un-

available, which results in even larger inaccuracies in the predicted flow properties. Finally, solving

RANS models onboard mobile robots with limited computational resources is still intractable. Due

to such challenges, the authors in Lee et al. (2019); Xu et al. (2013); Duecker et al. (2019); Nguyen
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et al. (2020) forgo the use of physics-based models and instead advocate the use of purely data-

driven statistical methods that rely on Gaussian processes (GPs) to estimate spatiotemporal fields

starting from non-informative constant priors. Such purely data-driven methods, however, can re-

quire a prohibitively large number of measurements to accurately estimate complex flow fields,

making them intractable in practice.

To address the computational and sample complexity of purely physics-based and data-driven

approaches, respectively, in this paper, we propose a Bayesian framework that combines empirical

data with physics-based models to learn accurate representations of unknown flow fields in real-

time. Specifically, given a distribution of the uncertain parameters like BCs, we generate offline

a pool of numerical models of the flow field by solving the RANS equations for different choices

of uncertain parameters selected according to this distribution. These numerical models may be

inconsistent with each other or the true flow and thus, are only used to inform the prior mean of a

corresponding pool of statistical GP models of the flow properties, specifically the mean velocity

components and turbulent intensity field. Then, the proposed Bayesian framework allows to incor-

porate empirical data collected by a mobile robot sensor, to select the most likely flow models from

the pool and to obtain the posterior distribution of the flow properties given each model. As such,

our approach takes advantage of the global information provided by physics-based models without

needing to solve for them online, and produces high fidelity estimations of the flow properties using

only sparse data, which is not possible with purely data-driven methods. A major contribution of

this paper is also the experimental validation of the proposed framework, demonstrating that it is

robust to the significant uncertainties that are present in the real-world; see Experiment (b,a) for a

visualization of such uncertainties. This is in contrast to the relevant literature that typically relies

on numerical simulations to showcase the proposed methods Xu et al. (2013); Duecker et al. (2019);

Nguyen et al. (2020).

Compared to path planning methods in marine robotics Hollinger et al. (2016); Ma et al. (2016);

Jones and Hollinger (2017); Kularatne et al. (2016); Edwards et al. (2017); Lee et al. (2019), where

flow fields are used for persistent monitoring of aquatic phenomena with an emphasis on designing

optimal paths subject to time and energy budget constraints, here the purpose of planning is to

maximize the information collected about the flow field itself. While those planning methods might

be optimal in theory, in practice they often require approximations to mitigate their computational

cost Jones and Hollinger (2017). Moreover, sophisticated algorithms like the stochastic optimal

control approach proposed in Duecker et al. (2019) for data-driven environmental sensing, have

only been demonstrated on simple uncertainty fields and it is unclear if they can be applied to

the highly nonlinear uncertainty fields considered here. In general, active learning of GPs has

been extensively investigated in the robotics literature with applications ranging from estimation of

nonlinear dynamics to spatiotemporal fields Berkenkamp et al. (2016); Berkenkamp and Schoellig

(2015); Ostafew et al. (2014); Wei et al. (2014); Lan and Schwager (2017, 2013). Closely related

are also methods for robotic state estimation and planning with Gaussian noise; see Freundlich et al.

(2017, 2015); Khodayi-mehr et al. (2019). This literature typically employs simple, explicit models

of small dimensions and does not consider model ambiguity or parameter uncertainty. Instead, here

we focus on complex models of continuous flow fields that are implicit solutions of RANS models,

a system of PDEs. Although our planning method is not theoretically optimal, we show that it is

effective in solving complex real-world environmental sensing problems.
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2. Statistical Model of Flow Fields

Consider a turbulent flow field over a domain of interest Ω̄ ⊂ R
3 and let q(x, t) : Ω̄× [0, T ] → R

3

denote the corresponding flow velocity vector, where x ∈ Ω̄ and t ∈ [0, T ]. Due to turbulence,

q(x, t) is a random variable (RV) subject to high variation. In what follows, we assume that the

turbulent flow q(x, t) is stationary and ergodic. In this case, the turbulent velocity field q(x, t) and

the turbulent intensity field i(x, t), which is a measure of turbulent variations, can be approximated

by their time averaged values q(x) and i(x), respectively. Consider also a mobile robot sensor that

can obtain instantaneous measurements of the random velocity field q(x, t) for a period of time

at a set of locations and let the vector ŷ denote the collection of these measurements.1 Then, the

problem that we address in the paper can be defined as follows.

Problem 1 (Environmental Sensing) Given the vector of measurements ŷ of the instantaneous

velocity field q(x, t), collected by a mobile robot, obtain the posterior distributions π̄(q̂(x, t)|ŷ)
and π̄(i(x, t)|ŷ) of the mean velocity field and turbulent intensity field.

2.1. Gaussian Process Models of Flow Properties

Let ξ ∈ R
nξ encode the parameters needed to specify the domain Ω̄ and flow conditions imposed on

its boundaries. Given ξ, we employ Reynolds-Averaged Navier Stokes (RANS) models to predict

the flow properties like the mean velocity components and turbulent intensity, globally over Ω̄.

Various RANS models exist that are broadly categorized into eddy viscosity models (EVMs) and

Reynolds stress models (RSMs) Wilcox (1993). The solution returned by these models can be

incompatible with each other. Moreover, there is often high uncertainty in the parameters ξ, i.e.,

the domain geometry and boundary conditions (BCs). As a result, numerical solutions generally

require experimental validation. Finally, solving RANS models onboard mobile robots in real-time

is still intractable. In what follows, we propose a statistical framework to address these challenges

and obtain a physics-based solution to Problem 1.

To do so, we first define Gaussian Process (GP) models for the mean velocity and turbulent

intensity fields. Specifically, given a value for parameters ξ, we solve a RANS model, e.g., RSM,

to obtain a prediction of the flow properties. Let µu(x) denote the prediction for the first mean

velocity component u(x) = q1(x). Then, we model the prior distribution of u(x), before collecting

any measurements, using the following GP

u(x) ∼ GP
(

µu(x), κ̄u
(

x, x′
))

, (1)

where, the kernel function κ̄u (x, x
′) is defined as

κ̄u
(

x, x′
)

= σ̄2
u

(

x, x′
)

ρ
(

x, x′
)

. (2)

In (2), the standard deviation σ̄u (x, x
′) ∈ R+ encapsulates the prior uncertainty in u(x) and ρ(x, x′)

is the correlation function. Explicitly, we define the standard deviation as

σ̄2
u

(

x, x′
)

= σ̄2
u,0 +

1

n0

q2ref i(x)i
(

x′
)

, (3)

1. See Section II-A in Khodayi-mehr and Zavlanos (2021) for details on computing q(x) and i(x) from measurements

of q(x, t).
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where the constant σ̄u,0 ∈ R+ is a measure of confidence in the numerical solution µu(x) and is

selected depending on the convergence metrics provided by the RANS solver. The second term

in (3), which is unavailable in purely data-driven approaches, captures the local variability due to

turbulence, by relying on the estimation of turbulent intensity i(x) provided by the RANS model.

n0 ∈ N+ is a nominal number of samples that scales this variability for the averaged velocity

component. We define the correlation function ρ(x, x′) in (2) as a compactly supported polynomial

ρ
(

x, x′
)

=

[(

1− ‖x− x′‖
ℓ

)

+

]2

, (4)

where ℓ ∈ N+ is the correlation characteristic length and the operator (α)+ = max(0, α). The

correlation function (4) implies that two points with distance larger than ℓ are uncorrelated, which

results in sparse covariance matrices Rasmussen and Williams (2006).

In practice, it is impossible to obtain noiseless samples of u(x). Thus, we consider a measure-

ment model for u(x) with additive Gaussian noise ǫu ∼ N (0, σ2
u(x)); see Section II-D in Khodayi-

mehr and Zavlanos (2021) for more details. Specifically, let yu(x) ∈ R denote a measurement of

the first mean velocity component at a location x given by

yu(x) = u(x) + ǫu(x). (5)

Then yu(x) is also a GP

yu(x) ∼ GP(µu(x), κu(x, x
′)) (6)

with the following kernel function

κu(x, x
′) = κ̄u(x, x

′) + σ2
u(x) δ(x− x′), (7)

where δ(x− x′) is the Kronecker delta function.

Given a vector of measurements yu,k collected by the mobile robot at a set of k locations Xk,

the predictive distribution of u(x) at a point x, conditioned on measurements yu,k, is a Gaussian

distribution whose mean and variance are given in closed-form by

µu (x | Xk) = µu(x) +ΣxXΣ
−1
XX

(yu,k − µX ) , (8a)

γ2u (x | Xk) = κ̄u(x, x)−ΣxXΣ
−1
XX

ΣXx , (8b)

where µX denotes the mean function evaluated at measurement locations Xk and the entries of the

covariance matrices Σ̄xX and ΣXX are computed using (2) and (7), respectively. Note that for

simplicity, we have dropped the subscripts u and k from the matrices in (8). It is easy to show

that the matrix ΣXX is positive-definite and invertible; see Proposition II.4 in Khodayi-mehr and

Zavlanos (2021).

From the Navier-Stokes PDEs, it follows that the mean velocity components are correlated

Wilcox (1993). However, since the prior fields, obtained from RANS models, already capture this

correlation, to simplify the pursuant development, we assume that turbulent flow properties are

independent and thus, uncorrelated. Then, we can independently define GPs for the second mean

velocity component v and the turbulent intensity field with appropriate subscripts.2

2. We only consider in-plane velocity components throughout the paper. The extension of the theoretical developments

for the third component is trivial.
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2.2. Hierarchical Bayesian Model Selection

In Section 2.1, we constructed GP models of the flow properties given known parameters ξ and

a specific RANS model. However, as discussed before, models constructed in this way, can be

inaccurate due to the high uncertainty in the parameters ξ and the assumptions that need to be made

to derive the RANS model. Next, we outline a model selection method that takes into account this

parameter uncertainty to generate offline, a pool of likely models that later, the robot can select from

and improve upon based on empirical data that it collects online.

Let N denote a RANS model and consider a possibly uniform discrete prior distribution π̃(N )
over the available models. Furthermore, let π̃(ξ) denote the discrete prior distribution on the domain

geometry and BC parameters ξ. If the prior on the parameters is continuous, we can construct a

discrete approximation π̃(ξ) using stochastic reduced order models (SROMs); see Calkins et al.

(2017) for details. Let M = (N , ξ) denote the numerical solution obtained using the RANS model

N given the parameters ξ. Noting that N and ξ are independent, π̃(M) = π̃(N )π̃(ξ). Let Mj

denote the j-th numerical model obtained for one combination of discrete N and ξ values and let

the collection π̃(M) = {pj,0,Mj}n̄j=1
denote the pool of numerical models, where pj,0 denotes the

prior probability of model Mj and n̄ is the number of models.

Given measurements yu,k, yv,k, and yi,k of the mean velocity components and turbulent inten-

sity at a set of k locations Xk, the posterior distribution over models can be obtained using Bayes’

rule as
π̃ (Mj | Xk) = απ̄ (yu,k,yv,k,yi,k | Mj) π̃ (Mj)

= απ̄ (yu,k | Mj) π̄ (yv,k | Mj) π̄ (yi,k | Mj) π̃ (Mj) ,
(9)

where α is the normalizing constant in Bayes’ rule and π̄(yu,k|Mj) is the likelihood of the mea-

surements yu,k given model Mj and similarly for yv,k and yi,k. Note that the joint likelihood of

the measurements in (9) is equivalent to the product of the individual likelihoods since the flow

properties are independent. From the definition of the GPs constructed for model Mj in Section

2.1, we can obtain these likelihoods in closed-form. For instance

π̄ (yu,k | Mj) =det (2πΣu,j)
−0.5 exp

(

− 1

2

(

yu,k − µu,j

)T
Σ−1

u,j

(

yu,k − µu,j

)

)

, (10)

where µu,j and Σu,j are short-hand notation for the mean and covariance of the GP corresponding

to yu(x) and Mj at locations Xk; see the discussion after equation (8). Since the sum of the

discrete posterior model probabilities equals one, i.e.,
∑n̄

k=1
π̃(Mj |Xk) = 1, we can compute the

normalizing constant α from (9) as

α =
(

∑n̄

j=1
π̄ (yu,k,yv,k,yi,k | Mj) π̃ (Mj)

)−1

. (11)

Given α, we can finally compute the posterior distribution π̃(Mj |Xk) over the pool of models using

(9). This amounts to Bayesian model selection and enables the mobile robot to assign probabilities

to models constructed for likely parameter values, given the latest empirical data. Note that although

hierarchical Bayesian models are extensively used in the literature Xu et al. (2013); Duecker et al.

(2019); Krause and Guestrin (2007), to the best of our knowledge, this work is the first to utilize

them for physics-based learning.

Given π̃(Mj |Xk), the desired posterior distributions in Problem 1 are the marginal distributions

π(u|Xk), π(v|Xk), and π(i|Xk) after integrating over the models. These marginal distributions are

5
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GP mixtures (GMs) with their mean and variance given by

µu (x | Xk)=
∑n̄

j=1
pj,kµu (x | Xk,Mj) , (12a)

γ2u (x | Xk)=
∑n̄

j=1
pj,kγ

2
u (x | Xk,Mj)+

∑n̄

j=1
pj,k [µu (x | Xk,Mj)− µu (x | Xk)]

2 , (12b)

where pj,k = π̃(Mj |Xk) denotes the posterior model probabilities obtained from (9). Equation

(12b) follows from the fact that the variance of a RV is the mean of conditional variances plus the

variance of the conditional means. The expressions for v(x) and i(x) are identical.

3. Learning Flow Fields using a Mobile Robot

In this section, we formulate a path planning problem for a mobile robot sensor to collect measure-

ments with maximum information content.3 Specifically, let Ω denote a discretization of the envi-

ronment where the robot sensor operates, excluding the points occupied by obstacles, and let R > 0
denote a constraint on maximum travel distance. Furthermore, given the current measurement loca-

tion xk and set of currently collected measurements Xk, let Sk+1 = {x ∈ Ω\Xk | ‖x− xk‖ ≤ R}
denote the feasible subset of candidate measurement locations at step k + 1. Then, our goal is to

select the next measurement location xk+1 from Sk+1 so that the joint entropy of mean velocity

components u(x) and v(x) at unobserved locations Ω\Xk+1, given the measurements in Xk+1, is

minimized. With a slight abuse of notation, let H(Ω\Xk+1 | Xk+1) denote this entropy.

Noting that H (Ω\Xk+1 | Xk+1) = H(Ω) − H (Xk+1), minimizing H (Ω\Xk+1 | Xk+1) is

equivalent to maximizing H (Xk+1). Furthermore, by the chain rule of entropy

H(Xk+1) = H(xk+1 | Xk) + · · ·+H(x2 | X1) +H(x1). (13)

Thus, we can find the next best measurement location xk+1 by solving the following optimization

problem

x∗k+1 = argmax
x∈Sk+1

H (x | Xk) . (14)

Next we derive an expression for the objective H(x | Xk) = H(u(x), v(x) | Xk) in (14). Since we

assume that u(x) and v(x) are independent, we have

H(u, v) = H(u | v) +H(v) = H(u) +H(v), (15)

where we have dropped dependence on x and Xk for simplicity.

Recall from Section 2.2 that the posterior distributions of u(x) and v(x) are GMs, for which

closed-form expressions for H(u) and H(v) are unavailable Huber et al. (2008). Instead, we opti-

mize the expected entropy over the n̄ models. Particularly, given a model Mj and measurements

Xk, u(x) is normally distributed according to (8). Then, the value of (differential) entropy is inde-

pendent of the mean and is given in closed-form as

H(u(x | Xk,Mj)) = log(c γu(x | Xk,Mj)), (16)

3. See Sections III-A and III-B in Khodayi-mehr and Zavlanos (2021) for details on the mobile robot design and mea-

surement noise, respectively.
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noend 1 Next Best Measurement Location

Require: Covariance matrix Σ̄ΩΩ, the sets Xk and Sk+1, and current model probabilities pj,k =
π̃(Mj | Xk);

1: for x ∈ Sk+1 do

2: for j = 1 : n̄ do

3: Compute δIH(x | Xk,Mj) using (20);

4: Set x∗
k+1 = argmaxx∈Sk+1

∑n̄

j=1
pj,k δIH(x | Xk,Mj);

where c =
√
2πe and γ2u(x | Xk,Mj) is defined in (8b). Given (16), the expected entropy for u(x)

is given by

H(u(x | Xk)) =
∑n̄

j=1
pj,k H(u(x | Xk,Mj)), (17)

where pj,k = π̃(Mj | Xk) denotes the probability of model Mj , given the current measurements

Xk, obtained from (9). A similar expression holds true for v(x). Then, from (15)

H(x | Xk) =
∑n̄

j=1
pj,k log

[

c2 γu(x | Xk,Mj) γv(x | Xk,Mj)
]

(18)

and we can rewrite the planning problem (14) explicitly as

x∗k+1 = arg max
x∈Sk+1

∑n̄

j=1
pj,k δIH(x | Xk,Mj), (19)

where

δIH(x | Xk,Mj) ∝ γ2u(x | Xk,Mj) γ
2
v(x | Xk,Mj) (20)

measures the information added by a potential measurement at x ∈ Sk+1, given current measure-

ments Xk and model Mj .

Algorithm 1 summarizes our proposed solution to the planning problem at step k+1. Note that

Algorithm 1 is suboptimal in that it only maximizes the information content of the next immediate

measurement. It is possible to consider a longer horizon although at the expense of exponentially

increased computational cost. Note also that Algorithm 1 exhaustively evaluates the objective in

(20) for all candidate measurement locations in Sk+1. Given that the domain Ω̄ is generally non-

convex, the prior uncertainty fields (3) are highly nonlinear, and the planning objective (20) can be

computed efficiently, this exhaustive approach is effective in practice and there is no need to for-

mulate and solve sophisticated optimization problems. In the relevant literature, more sophisticated

planning algorithms are often only studied for simple convex domains and constant prior uncertainty

fields for which the planning problem reduces to a simple exploration; see e.g. Xu et al. (2013);

Duecker et al. (2019).

4. Experimental Results

In this section, we demonstrate the robustness of our proposed framework to significant uncertainties

present in the real-world by considering an experiment in a 2.2×2.2×0.4m3 domain with an inlet,

an outlet, and an obstacle inside as shown in Figure 1; the origin of the coordinate system is located

at the bottom left corner of the domain.4

4. Extensive numerical and experimental results illustrating scalability of the proposed method and comparing its per-

formance to purely data-driven approaches are presented in Section IV in Khodayi-mehr and Zavlanos (2021). They

are omitted from this manuscript due to space limitations.

7



PHYSICS-GUIDED ACTIVE LEARNING OF ENVIRONMENTAL FLOW FIELDS

No. model qin (m/s) iin σ̄u,0 (m/s) σ̄i,0

1 k − ǫ 0.78 0.02 0.10 0.05

2 RSM 0.78 0.02 0.20 0.10

3 k − ω 0.78 0.02 0.20 0.10

4 k − ǫ profile 0.02 0.14 0.07

5 RSM profile 0.02 0.20 0.10

6 k − ω profile 0.02 0.20 0.10

7 RSM profile 0.05 0.14 0.07

8 RSM profile 0.03 0.20 0.10

9 RSM profile 0.01 0.20 0.10

10 RSM profile 0.04 0.20 0.10

11 RSM 0.76 0.03 0.20 0.10

12 RSM 0.80 0.03 0.14 0.07

Table 1: BCs and prior uncertainty values for the pool of numerical solutions obtained for combinations of

solvers and uncertain parameters.

Figure 1: Domain of the exper-

iment. A 2.2 × 2.2 × 0.4m3 box

with velocity inlet at bottom right

and outlet at bottom left. The ori-

gin of the coordinate system is

located at the bottom left corner.

We use a fan to generate a flow at the inlet with average velocity

qin = 0.78m/s and utilize a custom-built mobile robot to conduct

the experiment; see Sections III-A nd III-B in Khodayi-mehr and

Zavlanos (2021) for details on the design of the robot and mea-

surement model. We assume uncertainty in the inlet velocity and

turbulent intensity values. This results in n̄ = 12 different com-

binations of BCs and RANS models; see the first four columns in

Table 1 for details. In the third column, ‘profile’ refers to cases

where the inlet velocity is modeled by an interpolated function in-

stead of the constant value qin = 0.78m/s. Columns 5 and 6 show

the prior uncertainty in the solutions of the first velocity compo-

nent and turbulent intensity, where we set σ̄v,0 = σ̄u,0; see equation

(3). As discussed in Section 2.1, these values should be selected to

reflect the uncertainty in the numerical solutions. Here, we use the

residual values provided by ANSYS FLUENT as an indicator of the

confidence in each numerical solution.

Figure 2 shows the velocity magnitude fields obtained using models 1 and 2. The former is

obtained using the k− ǫ model whereas the latter is obtained using the RSM, as reported in Table 1.

Note that these two solutions are inconsistent and require experimental validation to determine the

correct flow pattern. We use m̄ = 9 initial exploration measurements and set the maximum number

of measurements to be m = 200 and the maximum travel distance to R = 1m. Figure 3 shows

the sequence of first 30 waypoints selected by Algorithm 1. The green dots in Figure 3 show the

1206 candidate measurement locations, collected in the set Ω, and the yellow stars show the m̄ = 9
initial exploration measurement locations selected over a lattice. The black dots show the sequence

of waypoints returned by Algorithm 1. Figure 4 shows the added information using the entropy

metric (20) after the addition of each of these measurements. It can be observed that the amount

of added information generally decreases as the mobile robot keeps adding more measurements.

This is expected by the submodularity of the entropy information metric (20). The oscillations

8
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in this figure are due to the travel distance constraint that might prevent the selection of the most

informative measurement location at every step k. Figure 5 shows the collected velocity vector

measurements. Referring to Figure 2, observe that this vector field qualitatively agrees with model

2 that was obtained using the RSM.

(a) k − ǫ model (b) RSM

Figure 2: Predictions of the velocity magnitude

field according to models 1 and 2 in the plane of

the mobile sensor located at the height of 0.27 cm.

The posterior probabilities pj,k converge shortly

after the exploration measurements are collected and

do not change afterwards. Particularly, the numeri-

cal solution from the RSM model 7 is the only so-

lution to have nonzero probability, i.e., p7,155 = 1.

This means that the most accurate model can be se-

lected given a handful of measurements that deter-

mine the general flow pattern. It is important to note

that all solutions provided by RSM share a similar

pattern and the empirical data help to select the most

accurate model. Note also that these posterior proba-

bilities are computed given ‘only’ the available mod-

els listed in Table 1 and they should be interpreted with respect to these models and not as absolute

probability values.

In Figure 6, the prior velocity magnitude and turbulent intensity fields corresponding to the most

likely model 7 and the posterior fields, computed using equations (12), are given. Comparing the

prior and posterior velocity fields, we observe a general increase in velocity magnitude at the top-

left part of the domain indicating that the flow sweeps the whole domain unlike the prior prediction

from model 7; see also Figure 5. Furthermore, comparing the prior and posterior turbulent intensity

fields, we observe a considerable increase in turbulent intensity throughout the domain. Referring

to Table 1, note that among all RSM models, model 7 has the highest turbulent intensity BC. In

Experiment (b), a visualization of the flow field is shown that validates the flow pattern depicted in

Figures 5 and 6.

To evaluate the prediction performance of the posterior model, we collect m̂ = 100 new mea-

surements at randomly selected locations. We define the total mean prediction error as

ek =
1

3
(eu,k + ev,k + qref ei,k), (21)

Figure 3: Path of the mobile

sensor according to the entropy

metric (20) overlaid on the turbu-

lent intensity field from model 7.
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Figure 4: Added information

vs measurement number for en-

tropy metric (20).
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Figure 5: Velocity vector mea-

surements for the experiment.
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(a) Prior velocity mag-

nitude

(b) Posterior velocity mag-

nitude

(c) Prior turbulent in-

tensity

(d) Posterior turbulent in-

tensity

Figure 6: The prior fields for the most likely model 7 and the posterior fields obtained using equations (12)

after conditioning on empirical data.

where eu,k = 1/m̂
∑m̂

l=1
|µu (xl | Xk)− ŷu (xl)| and the expressions for ev,k and ei,k are identical.

We also define ēk,j for the individual models Mj by using µu(xl|Xk,Mj) in definition (21) instead

of the mean value from (12a); similarly for v(x) and i(x). Using equation (21), the prior prediction

error is e0 = 0.092m/s while the posterior error is e155 = 0.037m/s, a 60% improvement compared

to e0. Moreover, given the posterior knowledge that model 7 is the most likely model, we have

ē0,7 = 0.052m/s which is still 29% higher than the posterior error value e155. This demonstrates

that the real flow field can be best predicted by systematically combining physical models and

empirical data.5 In Figure 7, we plot separately for u, v and i, the prior errors of individual models

as well as the prior and posterior models. It can be seen that the solutions using the RSM models,

including model 7, generally have smaller errors; see also Table 1.

5. Conclusion
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Figure 7: Prior error values for individual models

along with their averaged prior as well as the posterior

errors eu,155, ev,155, and ei,155.

We proposed a physics-based method to learn

environmental fields using a mobile robot.

Specifically, we constructed GP models of the

flow properties and used numerical simulations

to inform their prior mean. Then, utilizing

Bayesian inference, we incorporated measure-

ments of flow properties into these GPs. To col-

lect the measurements, we controlled a custom-

built mobile robot sensor through a sequence of

waypoints that maximize the information con-

tent of the measurements. We showed that,

compared to purely data-driven methods that

are common in the literature, our method can

produce high-fidelity global estimations using

only sparse measurements. To the best of our knowledge, this is the first physics-based frame-

work for active learning of environmental flow fields that has also been effectively demonstrated in

practice. An additional contribution of this work is that it provides new insights into how physics-

based models can be efficiently used to learn high-fidelity statistical models of complex dynamical

systems modeled by PDEs using only sparse measurements.

5. Note that, in practice, knowledge of the best model is not available a priori.
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