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Abstract

This work considers the problem of learning a feed-forward neural network controller to safely

steer an arbitrarily shaped planar robot in a compact, obstacle-occluded workspace. When training

neural network controllers, existing closed-loop safety assurances impose stringent data density

requirements close to the boundary of the safe state space, which are hard to satisfy in practice.

We propose an approach that lifts these strong assumptions and instead admits graceful safety

violations, i.e., of a bounded, spatially controlled magnitude. The method employs reachability

analysis techniques to include safety constraints in the training process. The method can simultane-

ously learn a safe vector field for the closed-loop system and provide proven numerical worst-case

bounds on safety violations over the whole configuration space, defined by the overlap between an

over-approximation of the closed-loop system’s forward reachable set and the set of unsafe states.

Keywords: Safe learning, neural network control, reachability analysis.

1. Introduction

Recent progress in machine learning has furnished a new family of neural network controllers for

robot systems that significantly simplify the design process. As these controllers are adopted in real-

world systems, the ability to train neural networks with safety considerations becomes necessary.

The design of data-driven controllers that result in safe closed-loop systems has typically relied

on methods that couple state-of-the-art machine learning algorithms with control Perkins and Barto

(2003); Geibel and Wysotzki (2005). A popular approach employs control barrier functions to

appropriately constrain the control inputs so that a specified safe subset of the state space remains

invariant during execution and learning Li and Belta (2019); Ohnishi et al. (2019); Cheng et al.

(2019). However, designing appropriate barrier functions for robotic systems operating in complex

environments is generally hard. Additionally, conflicts between the reference control laws and the

barrier certificates may introduce unwanted equilibria to the closed-loop system. While Robey et al.

(2020); Lindemann et al. (2020) proposed a method to learn control barrier functions from expert

demonstrations, this method requires dense enough sampled data and Liptchitz constants of the

system’s dynamics and corresponding neural network controller that are hard to obtain in practice.

Compared to the control barrier function methods discussed above that can usually only en-

sure invariance of a conservative subset of the set of safe states, backwards reachability methods
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can instead compute the exact set of safe states which, similar to control barrier function meth-

ods, can then be rendered invariant by an appropriate design of controllers that take over when the

system approaches the boundary of that safe set Bajcsy et al. (2019); Fisac et al. (2018); Li et al.

(2020). A common point in these methods is that they generally apply reachability analysis on

the open loop dynamics without considering the specific structure of the reference neural network

controller, owning to its complexity. Reachability analysis of neural networks is an actively studied

topic and recent solutions have been proposed for verification Katz et al. (2017); Ruan et al. (2018);

Dutta et al. (2017) and robust training Zhang et al. (2018, 2019) alike. These methods have been

successfully adapted for estimating the forward reachable set of dynamical systems in feedback

interconnection with feed-forward neural network controllers Dutta and Sankaranarayanan (2019);

Huang et al. (2019); Hu et al. (2020); Xiang et al. (2018). Although these methods provide accu-

rate over-approximations of the reachable set of neural network controllers, they only address the

verification problem of already trained controllers and do not consider safety specifications.

In this paper, we propose a framework for learning safe neural network controllers that relies on

reachability analysis techniques to encapsulate safety constraints in the training process. The unique

aspects of this framework are that it (i) provides proven numerical worst-case bounds on safety vio-

lations over the whole configuration space, defined by the overlap between the over-approximation

of the forward reachable set of the closed-loop system and the set of unsafe states, and (ii) con-

trols the tradeoff between computational complexity and tightness of these bounds. Compared to

the methods in Cheng et al. (2019); Robey et al. (2020); Bajcsy et al. (2019) that employ control

barrier functions or Hamilton-Jacobi reachability to design fail-safe projection operators or supervi-

sory control policies, respectively, that can be wrapped around pre-trained nominal neural network

controllers that are possibly unsafe due to, e.g., insufficient data during training, here we directly

train neural network controllers with safety specifications in mind. On the other hand, unlike the

methods in Li et al. (2020); Ohnishi et al. (2019); Cheng et al. (2019) that also directly train safe

neural network controllers using sufficiently many safe-by-design training samples, here safety of

the closed-loop system does not depend on data points, but on safety violation bounds defined over

the whole configuration space that enter explicitly the loss function as penalty terms during training.

As a result, when our method fails to guarantee safety of the closed-loop system in the whole con-

figuration space, it does so with grace by also providing safety violation bounds whose size can be

controlled. Such guarantees on the closed-loop performance cannot be obtained using the methods

in Li et al. (2020); Ohnishi et al. (2019); Cheng et al. (2019) that depend on the density of sampling.

Perhaps most closely related to this work is the method in Sun and Shoukry (2021), which also

trains provably safe neural network controllers for robot navigation. Compared to Sun and Shoukry

(2021), the proposed method is not restricted to ReLU neural networks, can accommodate any

class of strictly increasing continuous activation functions, applies to non-point robots, and returns

smooth trajectories that respect the robot dynamics. Finally, feasibility of the control synthesis

problem in Sun and Shoukry (2021) strongly relies on the availability of sufficient data needed

to train neural network weights that belong to the regions found to be safe. Our proposed method

removes such strong assumptions on training data that are costly in robotics applications and instead

allows for graceful safety violations, of a bounded magnitude that can be spatially controlled.

Notation: We will refer to an interval on the set of real numbers R as a simple interval, whereas

Cartesian products of simple intervals will be referred to as a composite. An n-dimensional interval

is a composite interval of the form [xl,1, xu,1] × [xl,2, xu,2] × . . . × [xl,n, xu,n]. Given a compact

set S ∈ R
n and a vector δ = [δ1, δ2, . . . , δn] ∈ R

n, volδ (S) denotes the volume of S after scaling
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the i-th dimension by the δi, i.e., volδ (S) =
∏n

i=1 δi · (xu,i − xl,i). For brevity, vol (S) denotes

volδ (S) when δ = [1, 1, . . . , 1]. Let Br ⊂ R
2 be the ball of radius r ≥ 0 centered at the origin.

2. Problem Formulation

Figure 1: Robot, R, operating in a

workspace,W , with two inner obstacles.

We consider a polygonal shaped robot R operating in a com-

pact, static workspace W ⊂ R
2 defined by an outer boundary

∂W0 and NO inner boundaries ∂Wi, i ∈ IO ≜ {1, 2, . . . , NO},

corresponding to a set of disjoint, fixed inner obstacles Oi,

as seen in Figure 1. We assume that the boundary ∂R of

the robot’s body and the boundaries ∂W0, ∂Wi, i ∈ IO of

the workspace are polygonal Jordan curves. Let FW and FR

be coordinate frames embedded in the workspace and on the

robot, respectively, and let p = [x, y, θ]T denote the configu-

ration of the robot on the plane, specifying the relative position [x, y]T ∈ R
2 and the orientation

n̂ (θ) = [cos θ, sin θ]T , θ ∈ [0, 2π), of FR with respect to FW . We assume that the robot is able to

translate and rotate subject to the following discrete-time non-linear dynamics

zk+1 = f (zk, uk) , (1)

where z =
[

pT , qT
]T ∈ Z ⊂ R

n, and u ∈ R
m denote the robot’s state and control input, respec-

tively, and q denotes miscellaneous robot states, e.g., linear and angular velocities, accelerations,

etc. We define Z ≜ Z[p] × Z[q], where Z[p] = W × S
1, and Z[q] ⊂ R

n−3 is a (n− 3)-dimensional

interval of miscellaneous safe robot states, e.g., allowed bounds on the robot’s velocities. The non-

linear function f : Rn+m 7→ R
n is assumed known and continuously differentiable. Furthermore,

we assume that a function F is known which maps composite intervals A and B of Z and R
m,

respectively, to composite intervals of Z such that

f (z, u) ∈ F (A,B) , ∀z, u ∈ A× B. (2)

In order to steer the robot to a desired safe state z⋆, we equip the robot with a feed-forward

multi-layer neural network controller ϕ : Rn 7→ R
m that consists of Nϕ fully connected layers, i.e.,

u = ϕ(z) = ϕNϕ

(

ϕNϕ−1(. . . ϕ1(z) . . .)
)

, (3)

ϕi(x) = hi(wi · x+ bi), ∀i ∈ INϕ
, (4)

where wi, bi, hi denote the weight matrix, bias vector and activation function of the i-th layer, for

all i ∈ INϕ
. Specifically, the i-th layer of ϕ consists of ni neurons, i.e., wi ∈ R

ni×ni−1 , bi ∈ R
ni×1,

hi ∈ R
ni×1, for all i ∈ INϕ

where n0 = n and nNϕ
= m.

To identify wi, bi, i ∈ INϕ
that allow the controller ϕ to steer the robot to the desired state z⋆,

we assume that we are given a set D consisting of points (zi, ui) ∈ Z × R
m sampled from robot

trajectories in the set of safe robot states beginning at different random states z ∈ Z and terminating

at z⋆. This sampling need not cover all possible states and actions. A state z =
[

pT , qT
]T

is said

to be safe if q ∈ Z[q] and the robot is entirely in the workspace at the corresponding configuration,

i.e., R (p) ⊂ W , where R (p) denotes the robot’s footprint which is a set of states that must be in

the workspace to maintain safety when the robot is placed at [x, y]T with orientation θ. For a large
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enough parameter space of the network, ϕ, and dataset, D, parameters w, b can be typically found

by solving

minimize
w,b

J (w, b) (5)

J (w, b) = λB ·
∑

(z,u)∈D
(u− ϕ (z;w, b))2 + λR · r (w, b) . (6)

In the loss function (6), w =
[

w1, w2, . . . , wNϕ

]

, b =
[

b1, b2, . . . , bNϕ

]

, r (·) is a regularization

term and λB , λR are positive constants. We remark that the controller obtained by solving (5)-(6) is

expected to be safe only around the trajectories in the training dataset D. This behavior is generally

not desirable. Instead, it is desired that the robot dynamics (1) under the control law (3) ensure that

the safe set of states remains invariant. Therefore, in this paper we consider the following problem.

Problem 1 Given a static workspace W , a polygonal robot R subject to dynamics f , a safe set

of miscellaneous robot states Z[q], and a dataset D, train a neural network controller ϕ so that the

closed-loop trajectories fit the data in the set D and the safe set, Zs ≜ {(p, q) ∈ Z|R (p) ⊂ W},

either remains invariant or possible safety violations are explicitly bounded.

3. Methodology

In order to address Problem 1, we first employ standard learning methods to solve the optimization

problem (5) and obtain initial values for the parameters w and b. As discussed before, the controller

ϕ obtained at this stage is expected to be safe only around the points in D, assuming that they have

been sampled from safe trajectories and the network fits the dataset adequately. Next, we employ

the subdivision method presented in subsection 3.1 to obtain a partition P of the safe space into

cells that provide a tight over-approximation Zs of the robot’s safe state space Zs. Using the over-

approximation of the safe set Zs as a set of initial robot states, in subsection 3.2, we compute an

over-approximation Zc of the forward reachable set Zc of the closed loop system under the neural

network controller ϕ. Since the accuracy of the over-approximation Zc depends on the partition P
of the over-approximation of the safe set Zs, we also propose a method to refine the partition in

order to improve the accuracy of the over-approximation Zc. Finally, in subsection 3.3, we use the

overlap between the over-approximation of the forward reachable set Zc and the set of unsafe states

to design penalty terms in problem (5) that explicitly capture safety specifications. As the parameters

w, b of the neural network ϕ get updated, so does the shape of the forward reachable set Zc, which

implies that the initial partition P of the over-approximation of the safe set Zs does no longer

accurately approximate Zc. For this reason, we repeat the partition refinement and training steps

proposed in subsection 3.2 and subsection 3.3 for a sufficiently large number of epochs Nepochs.

The procedure described above is outlined in Algorithm 1.

3.1. Over-Approximation of the Safe State Space

To obtain a tight over-approximation Zs of the robot’s safe state space, that will be used to com-

pute the closed-loop system’s forward reachable set and its overlap with the unsafe state space, we

adaptively partition the safe state space Zs into cells using the adaptive subdivision method pro-

posed in Zhu and Latombe (1991). Specifically, we start with a composite interval enclosing the

set of safe states Zs. Since numerous well-established methods exist to select cell coverings, we
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Algorithm 1: Safety-aware controller design.

function {w, b} =TRAIN(ϵw, ϵVp
, ϵVq

, Nepochs)

w, b← Solve problem (5);

P ←BUILDPRTN(W,R, ϵw) ; // Use Algorithm 2

for i in 1, 2, . . . , Nepochs do

P ←REFINEPRTN(P, ϵw, ϵVp
, ϵVq

; W, R, Z[q], f ); // Use Algorithm 3

w, b← Solve problem (8); // Update w, b

end

end

omit a detailed discussion of the construction. Then, we recursively subdivide this interval into

subcells based on whether appropriately constructed under- and over-approximations of the robot’s

footprint intersect with the workspace’s boundary. The key idea is that cells for which the under-

approximation (resp. over-approximation) of the robot’s footprint overlaps (resp. does not overlap)

with the complement of W contain only unsafe (resp. safe) states and subdividing them any further

will not improve the accuracy of the partition whereas cells which contain both safe and unsafe

states should be further subdivided into subcells as they reside closer to the boundary of Zs. This

procedure is repeated until cells that constitute the partition of safe state space either contain only

safe states or intersect with the boundary of Zs and their size is below a user-specified threshold.

To begin, recall that the set Zs is defined as Z[p],s ×Z[q] where Z[q] is a composite interval and

Z[p],s is defined as the largest subset of Z[p] such that R (z) ⊆ W for all z ∈ Z[p],s. Thus, in order

to compute Zs, we need to find a valid over-approximation Z [p],s of Z[p],s. Additionally, we require

that the over-approximation Zs is defined by the union of a finite number of composite intervals, i.e.,

cells. This construction is necessary to obtain the forward reachable set of the closed loop system

using the method proposed in subsection 3.2. We now consider a composite interval C in the robot’s

state space Z which we shall refer to as a state space cell. Each state space cell C can be written as

C[p] × C[q], where C[p] ∈ Z[p] denotes a configuration space cell, i.e., a set of robot’s positions and

orientations. We notice that if R (p) ⊆ W for all p ∈ C[p], then the cell C[p] consists entirely of safe

robot configurations and thus must lie entirely inside Z[p],s. On the contrary, if R (p)∩W ̸= R (p)
for all p ∈ C[p], then the cell C[p] consists entirely of unsafe robot configurations and thus must

lie outside Z[p],s. Since checking the above conditions to classify cells as safe or unsafe is not

easy due to the complex shape of Zs and the robot, we instead employ for this purpose over- and

under-approximations of the robot’s footprint, R
(

C[p]
)

and R
(

C[p]
)

, respectively, associated with

the configuration space cell C[p] (see Figure 3 in Vlantis et al. (2022)) that satisfy

R
(

C[p]
)

⊇
⋃

p∈C[p]

R (p), and R
(

C[p]
)

⊆
⋂

p∈C[p]

R (p). (7)

We remark that such over- and under-approximations of the robot’s footprint can be easily computed

for box shaped cells C[p] using techniques such as the Swept Area Method Zhu and Latombe (1991).

Additionally, we notice that a cell C[p] for which R
(

C[p]
)

⊆ W (resp. R
(

C[p]
)

̸⊆ W) lies entirely

inside (resp. outside) Z[p],s. We shall refer to the first type of cells as safe and to the second as

unsafe. Cells not belonging to either of these two classes intersect with the boundary of Z[p],s and

will be labeled as mixed. Our goal is to approximate Z[p],s by the union of a finite number of safe

cells but, in general, the shape of the robot’s configuration space does not admit such representations.
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As such, we instead compute a cover of Z[p],s consisting of both safe and mixed cells, where the

size of the mixed cells should be kept as small as possible. To do so, we propose the adaptive

subdivision method outlined in Algorithm 2. Beginning with the state space cell defined by the

Cartesian product of the axis-aligned bounding box of W and the set Z[q], the proposed algorithm

builds a partition P of the robot’s state space by adaptively subdividing cells that lie on its boundary

F . Specifically, at each iteration, a cell (C[p], C[q]) ∈ F is selected and if R
(

C[p]
)

lies inside W ,

then it is added to P . Instead, if R
(

C[p]
)

overlaps with the complement of W , then that cell gets

discarded. If, at this point, the cell cannot be labeled either safe or unsafe and its size is not smaller

than a user specified threshold ϵw, then the cell gets subdivided and the new cells are added to

the boundary F . Otherwise, if the cell’s size is smaller than the specified threshold and cannot be

subdivided any more, it is included in the partition P . Finally, the desired over-approximation Zs

can be obtained as the union of the cells in the partition P .

In the following theorem we show that Algorithm 2 terminates in finite time and its worst case

run-time is related to the size of the workspace and the reciprocal of the volume of the smallest

allowable cell. Moreover, we show that the resulting cell partition P lies in the workspace and

covers the robot’s entire safe set, exceeding it in proportion to a user-selected tolerance. Finally, we

bound the possible safety violations that can result from the operation of the robot in P . Specifically,

we show that violations are proportional to the size of translation outside of Zs, but rotations outside

of Zs are amplified by the maximum distance from any point in the robot to its center of rotation.

A proof of Theorem 1 can be found in Vlantis et al. (2022).

Theorem 1 Suppose a compact set W ⊂ R
2, a mapping R : R

2 × [0, 2π) 7→ S(R2), and

ϵw > 0. Let also R,R : S(R2 × [0, 2π)) 7→ S(R2) be mappings satisfying Equation 7. Let F0

be the initialization of F . Then Algorithm 2 terminates in finite time after at most 2ϵ−3
w vol (F0)

repetitions of the while loop. It’s output, P , is a collection of cells in W satisfying Zs ⊆ ∪C∈PC ⊆
Zs ⊕ (Cϵw × 0). Suppose further that R([x, y, θ]T) = R(θ)R + [x, y]T, where R(θ) is a rotation

in R
2, and R ⊆ Br for some r > 0. In this case, ∪C∈PC ∪p∈C[p] R(p) ⊆ W ⊕ Bv where v =

2r2(1− cos(ϵw)) + 2
√
2ϵw.

3.2. Over-Approximation of the Forward Reachable Set of the Closed-Loop System

Using the over-approximation Zs of the robot’s safe state space as a set of initial robot states, this

section employs reachability analysis to over-approximate the closed-loop system’s forward reach-

able set. Since the accuracy of the over-approximation of the forward reachable set depends on the

partition P of the over-approximation of the safe set Zs, we propose to refine the partition P to im-

prove the accuracy of the over-approximation Zc. This controls the tradeoff between computational

complexity affected by the number of cells in P and accuracy of the over-approximation Zc.

More specifically, to obtain a tight over-approximation of the set of states Zc reachable from

Zs using the robot’s closed-loop dynamics, we begin by noting that the partition constructed by

Algorithm 2 consists of cells defined by n-dimensional intervals. As such, given a state space

cell C ∈ Zs, the state space cell R (C) reachable from C can be computed using F defined in (2)

which returns a bounding box enclosing the set of states reachable from C under the neural network

controller, i.e., R (C;w, b) = F (C,Φ (C;w, b)) where Φ is a continuous map of a n-dimensional

interval to a m-dimensional interval such that ϕ (z;w, b) ∈ Φ (C;w, b) , ∀z ∈ C. To obtain a

function Φ that returns a valid over-approximation of the set of control inputs generated by the
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Algorithm 2: Given a robot described by, R, an allowable workspace, W , and a tolerance,

ϵw, produce a cell collection, P , covering Zs with bounded safety violations.

function P =BUILDPRTN(W,R, ϵw)

P, F ← {} , {A bounded cell covering ofW}× S
1 ;

while F is not empty

C[p] ← a cell in F ;

F ← F \ C[p];

ifR
(

C[p]
)

⊆ W
P ← P ∪

{

C[p] ×Z[q]

}

elseifR
(

C[p]
)

⊆ W
if MAXWIDTH(C[p])< ϵw
F ← F∪SUBDIVIDECELL(C[p])

else

P ← P ∪
{

C[p] ×Z[q]

}

end

end

end

end

neural network ϕ, we employ the Interval Bound Propagation (IBP) method Xiang et al. (2018). In

other words, for each cell C ∈ P , we employ the IBP method (function Φ) to compute bounds on

the robot’s control inputs, which we then propagate (function F ) to obtain bounds on the robot’s

forward reachable set. Thus, the over-approximation Zc of the set of states reachable by the closed-

loop system after one step can be obtained as Zc =
⋃

C∈P

R (C;w, b).
We remark that the over-approximation error between the bounds on the control inputs com-

puted using IBP and the actual bounds on the control inputs generated by ϕ for the states in C
increases with the size of C, as explained in Xiang et al. (2018). Therefore, a fine partition P of the

safe space over-approximation Zs is generally required in order to obtain a tight over-approximation

of Zc. To refine P while keeping the total number of cells as low as possible, we further subdivide

only cells whose forward reachable set intersects with the complement of Zs. To identify such

cells, we recall that the forward reachable set R (C) of C is a composite interval with the same

dimension as C and consider the two components C′
[p] ∈ Z[p] and C′

[q] ∈ Z[q] of R (C) such that

R (C) = C′
[p] × C′

[q]. Following the procedure presented in subsection 3.1, we can compute an

over-approximation R
(

C′
[p]

)

of the robot’s footprint corresponding to the forward reachable set of

configurations C′
[p]. Therefore, a cell C in P only needs to be subdivided if R

(

C′
[p]

)

intersects with

the complement of the workspace W .

The above process is outlined in Algorithm 3 which adaptively subdivides cells in P with large

over-approximation errors of their forward reachable sets. Specifically, for each cell C = (C[p], C[q])
in P , we check whether the area of cmpl(W) covered by R

(

C′
[p]

)

or the volume of cmpl
(

Z[q]

)

covered by C′
[q] are greater than user specified thresholds ϵVp and ϵVq , respectively. If these condi-

tions hold and the size of the cell admits further subdivision, then the cell gets split and replaced

by smaller ones. Otherwise, the sibling Csib of cell C is retrieved1 and if the volume of their par-

ent cell Cmrg that lies outside the set of safe state Zs is negligible, then the cells C and Csib are

1. Notice that, since each cell can be split only once into two subcells, P can be represented as a binary tree.

7



BOUNDEDLY UNSAFE NEURAL NETWORK CONTROLLERS

Algorithm 3: Refine P and remove cells where the robot’s one-step reachable set violates

safety beyond specified tolerances.

function P ′ =REFINEPRTN(P, ϵw, ϵVp
, ϵVq

; W, R, Z[q], f )

F , P ′ ← P, ∅ ;

while F is not empty

C ← a leaf cell in the last level of F that has not yet been examined;

if PENALTYTEST(C, ϵVp
, ϵVq

; W, R, Zs, f )

if MAXWIDTH(C[p])> ϵw
F ← F ∪

(

SUBDIVIDECELL(C[p])× C[q]
)

; // Children of C
else

F ← F \ C ;

end

else

Csib, Cpar ← GETSIBLING(C), GETPARENT(C);

if PENALTYTEST(Csib, ϵVp
, ϵVq

; W, R, Zs, f )

if MAXWIDTH(Csib[p] )< ϵw

F ← F ∪
(

SUBDIVIDECELL(Csib[p] )× Csib[q]

)

; // Children of Csib

else

F ← F \ C ;

end

elseif Csib = ∅ or CANNOTMERGE(C, Csib)

F ← (F \ {C, Csib, Cpar}), P ′ ← P ′ ∪ C ∪ Csib ;

else

F ← (F \ {C, Csib, Cpar})∪ MERGE(Csib, C) ; // Replace Cpar
end

end

end

end

merged to reduce the size of P . Finally, the over-approximation Zc is obtained as the union of

the forward reachable set of each cell in P . Algorithm 3 effectively controls the trade-off between

computational complexity affected by the number of cells in the partition P and accuracy of the

over-approximation Zc.

In the following theorem we show that Algorithm 3 terminates in finite time and its worst case

run-time is related to the size of the workspace, the number of intervals in Z[q], and the reciprocal

of the volume of the smallest allowable cell. Moreover, we show that the resulting cell partition

P ′ inherits the safety assurances of P and that safety violations of its one-step reachable set are

bounded by a user-specified tolerance. A proof of Theorem 2 can be found in Vlantis et al. (2022).

Theorem 2 Suppose Algorithm 2 is applied to a compact set W ⊂ R
2 and let P = P[p] × Z[q]

denote its output. Consider also the mapping R : R2 × [0, 2π) 7→ S(R2), the tolerance ϵw > 0,

and assume that the assumptions of Theorem 1 hold. Suppose that Algorithm 3 is applied to P
with discrete-time forward dynamics governed by Equations 1-4 and tolerances ϵVp , ϵVq > 0. Then,

Algorithm 3 terminates after #
(

Z[q]

)

vol
(

P[p]

)

ϵ−3
w repetitions of its while loop and the output, P ′,

satisfies ∪C∈P ′C ⊆ Zs ⊕ (Cϵw × 0) and ∪C∈P ′C ∪p∈C[p] R(p) ⊆ W ⊕ Bv. Moreover, if C′ = R (C)
for C ∈ P ′, then vol

(

R
(

C′
[p]

)

∩ cmpl(W)
)

≤ ϵVp and vol
(

C′
[q] ∩ cmpl

(

Z[q]

)

)

≤ ϵVq .
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Algorithm 4: Check whether the outer approximation of the robot’s one-step reachable set

violates safety by more than margins ϵVp , ϵVq anywhere in cell C.

function A =PENALTYTEST(C, ϵVp
, ϵVq

; W, R, Z[q], f )

A, C′ ← false, R (C) ;

if vol
(

R
(

C′[p]
)

∩ cmpl(W)
)

> ϵVp
or vol

(

C′[q] ∩ cmpl
(

Z[q]

))

> ϵVq

A ← true ;

end

end

3.3. Safety-Aware Control Training

This section uses the over-approximation of the forward reachable set of the closed loop system Zc,

to design appropriate penalty terms which, when added to the loss function (6), minimize the overlap

between this forward reachable set and the set of unsafe states. In this way, we can reduce safety

violations after re-training of the neural network controller (3). To do so, we solve the following

optimization problem at every iteration of Algorithm 1 to update the neural network parameters

minimize
w,b

J⋆ (w, b) (8)

J⋆ (w, b) = J (w, b) + λS · h (w, b) , (9)

where λS is a positive constant and h a penalty term that measures safety violations. The goal in

designing the penalty term h is to push the over-approximation of the new forward reachable set

Zc inside the under-approximation Zs = ∪C∈PS
C of the set of safe states Zs, where PS denotes

the subset of the partition P consisting of only safe cells. To do so, we define the penalty term h

as h (w, b) =
∑

C′∈R(P)
V
(

C′,PS

)2
, where R(P) = {R (C) | C ∈ P} and V (C,PS) is a valid

metric of the volume occupied by the intersection of the composite interval C and ∪C∈PS
C. Thus,

h vanishes only if C′ ⊆ ∪C∈PS
C for all C′ ∈ R(P), i.e., the set of safe states is rendered invariant

under the closed-loop dynamics. Note that the overlap between the forward reachable set and the set

of unsafe states Zc \ Zs also provides numerical bounds on possible safety violations by the closed

loop system, that can be used as a measure of reliability of the neural network controller (3).

4. Numerical Experiments

This section illustrates the proposed method through numerical experiments involving a rectangular

robot operating inside an H-shaped workspace shown in Figure 2. The robot is assumed to obey

the simple, holonomic kinematic model zk+1 = zk +K · ϕ (zk) , with z = p and K = 0.01. The

dataset D was assembled by computing 500 feasible trajectories using the RRT⋆ algorithm Kara-

man and Frazzoli (2010) and initializing the robot at random configurations. Particularly, each

point (z, u) ∈ D corresponds to a sampled trajectory point (z, u′), where the control input u′ is

modified to ensure that the implicitly defined vector field vanishes at the goal configuration, i.e.,

u = 10 · u′

∥u′∥
∥z⋆−z∥

1−∥z⋆−z∥ . The over-approximation of the robot’s forward reachable set for each cell

C is computed as the Minkowski sum between that cell and the controller’s output reachable set for

that cell, i.e., F (C,Φ (C)) = C ⊕ (K · Φ (C)) . To evaluate the penalty term, h, the metric is defined

by V (C,PS) = (volδ (C))1/3 −
(

∑

C′∈PS
volδ (C ∩ C′)

)1/3
, where δ = [δx, δy, δθ] = [1, 1, 1/2π]

9
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are constant scaling factors. Particularly, the cubic root of the volume of composite intervals in

V (C,PS) is used to prevent terms corresponding to slim cells from vanishing too fast when, e.g.,

only one of their dimensions has grown small whereas the others have not. The scaling factors

δx, δy, δθ admit different weights to each dimension, given that they have incompatible units.

Three separate neural network controllers ϕ1, ϕ2, ϕ3 with various shapes were trained to safely

steer the robot to the desired configuration using the proposed method with different subdivision

thresholds ϵw; for details on the selection of parameters see Vlantis et al. (2022). After initially

training each network using the data in D, we used Algorithm 2 to obtain an initial partition P
of the robot’s configuration space. Then, we applied Algorithm 3 to refine the initial partition P
based on the system’s forward reachable sets. Table 1 of Vlantis et al. (2022) shows the number

of cells in the partition P associated with each neural network controller before and after the first

refinement. We remark that blindly partitioning the configuration space W × S
1 into cells with

dimensions 0.1 × 0.1 × 0.2π would result in 14000 cells or more, but that the proposed method

requires 1 − 6990/14000 ≈ 50% and 1 − 5536/14000 ≈ 60% fewer subdivisions for ϕ1 and ϕ3,

respectively. Finally, 50 refinement and update iterations of of Algorithm 1 were performed.

(a) ϕ1: Before re-training

(b) ϕ1: After re-training

Figure 2: Projections of cells (blue boxes) of

partition corresponding to neural network controller

ϕ1 onto the xy-plane overlayed with the over-

approximations of their forward reachable sets (red

boxes) before and after retraining. Cell projections for

ϕ2 and ϕ3 are visualized in Vlantis et al. (2022).

Example projections of the cells in each par-

tition onto the xy-plane along with the over -

approximations of their forward reachable sets be-

fore and after retraining can be seen in Figure 2. Fur-

ther projections and sample trajectories can be found

in Vlantis et al. (2022). We remark that the area cov-

ered by the over-approximation of the robot’s for-

ward reachable set (colored in red) that lies outside

the set of initial states (colored in blue) has notice-

ably decreased at the end of 50-th epoch, especially

for the case of the neural network controller ϕ1. This

area provides spatial bounds on possible safety vio-

lations induced by the trained controllers.

5. Conclusions

This work addresses the problem of safely steer-

ing a polygonal robot operating inside a compact

workspace to a desired configuration using a feed-

forward neural network controller trained to avoid

collisions between the robot and the workspace

boundary. By dividing the safe region into cells, interval analysis admits computationally tractable

inner and outer approximations of the reachable set despite nonlinear dynamics. Compared to exist-

ing methods that train neural network controllers with closed-loop safety guarantees, our approach

lifts burdensome data density requirements near the boundary of the safe state space, and instead al-

lows for graceful safety violations, i.e., of a bounded magnitude that can be spatially controlled. Fu-

ture work will incorporate further experiments incorporating more complex environments and com-

paring to existing methods, including Lin et al. (2020); Yang et al. (2022), techniques to limit con-

straint violations over multi-step trajectories, and generalized cell refinement and re-combination

schemes to include robots moving in three dimensional environments.
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