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Abstract: Assistive robotic devices are a particularly promising field of applica-
tion for neural networks (NN) due to the need for personalization and hard-to-
model human-machine interaction dynamics. However, NN based estimators and
controllers may produce potentially unsafe outputs over previously unseen data
points. In this paper, we introduce an algorithm for updating NN control policies
to satisfy a given set of formal safety constraints, while also optimizing the orig-
inal loss function. Given a set of mixed-integer linear constraints, we define the
NN repair problem as a Mixed Integer Quadratic Program (MIQP). In extensive
experiments, we demonstrate the efficacy of our repair method in generating safe

policies for a lower-leg prosthesis.
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1 Introduction

Robot learning has the potential to revolutionize the field
of wearable robotic devices, such as prosthetics, orthoses
and exoskeletons [1]. Often, such devices are designed
in a “one size fits all” manner using models based on av-
erage population statistics. However, machine learning
techniques can help adapt control parameters automat-
ically to the wearer’s individual characteristics, motion
patterns or biomechanics. The result is a substantial im-
provement in ergonomic comfort and quality-of-life. De-
spite these benefits, the adoption of machine learning and,
in particular, deep learning [2] in this field is still limited,
largely due to safety concerns. In the case of a prosthe-
sis, for example, it may be important to guarantee that
the generated control values do not exceed a maximum
threshold under a set of testing conditions. Other safety
constraints include limits on velocities, joint angles and
bounds on the change in control inputs.
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Figure 1: A lower-leg prosthesis run-
ning a neural network for control. A
neural network repair process ensures
that safety constraints are satisfied.

In this paper, we derive an algorithm for training neural networks controllers to satisfy given safety
specifications, in addition to fitting the given training/test data. In particular, we use our approach to
derive controllers for a robotic lower-leg prosthesis that satisfy basic safety conditions, (see Fig. 1).
Our proposed approach inputs a trained network (e.g., a network obtained using backpropagation on
the training data) along with a specification that places restrictions on the possible outputs for a given
set of inputs. It then generates a modified set of weights that obeys the desired safety constraints on
the output using deterministic global optimization. We provide theoretical guarantees of optimality
for this technique (assuming no numerical errors). Furthermore, in real-world robot experiments
we show that the introduced methodology produces safe neural policies for a lower-leg prosthesis

satisfying a variety of constraints.
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Figure 2: Overview of our approach. Left: a given (unsafe) neural network is trained to control a
prosthesis. However, its outputs violate the formal safety constraints. Right: Using our NN Repair
strategy, we identify an adjusted set of neural network weights that removes all violations while still
maintaining the underlying behavior of the controller.

Contributions. The proposed method can repair any layer in a network increasing the size of the
solution space and the likelihood of a feasible successful repair. More importantly, it comes with
theoretical guarantees on successfully repairing all discovered unsafe samples. When compared to
retraining or fine-tuning methods, it also has two distinct benefits: (1) it does not require modification
of the training data so as to satisfy the constraints, and (2) it does not utilize gradient optimization
methods which do not guarantee constraint satisfaction even for the discovered unsafe data points.
Finally, when compared to other property driven repair works, i.e., [3, 4, 5, 6, 7], it is applied for the
first time to a real physical system, i.e., a powered prosthetic device, as opposed to a model.

Related Works. Learning based control for prosthetics is motivated by the challenges in model-
ing human-prosthesis dynamics, which exhibits time varying behavior. Several different approaches
that utilize learning based methods for controlling prosthetic devices have been proposed in the lit-
erature [8, 9]. Nevertheless, this short review focuses only on neural network (NN) based methods.
Gao et al. [10] provide a prosthetic controller based on recurrent neural networks, and show that
this type of controller effectively minimizes the difference between desired and actual trajectories
on a powered prosthetic device. In another direction, Keles and Yucesoy [11] and Vonsevych et al.
[12] focus on utilizing electromyography (EMG) signals to predict control parameters for prosthetic
ankles and hands. Our work follows a similar approach in predicting ankle control parameters with a
neural network, which then drives the prosthesis through a PD controller. The verification of neural
networks has been widely studied in order to check specifications for a given NN as a standalone
component [13, 14, 15, 16] (for a survey see [17]). or as part of a closed loop system [18, 19, 20].
Testing techniques can produce counterexamples (adversarial samples) for a variety of NN-based
applications, e.g., [21, 14, 22, 23, 24, 25]. One approach to ensuring that a NN satisfies given set of
safety properties is to use retraining and fine-tuning based on counter-examples [26, 27, 7]. However,
this approach has a number of pitfalls. First, the labels for the counterexamples need to be available.
This may involve further data-collection, which is often cumbersome. Also, gradient descent opti-
mization approaches cannot provide any guarantees that the result satisfies the provided constraints.
Our approach, in contrast, avoids generating adversarial examples or performing gradient descent.
The problem of “repairing” a network, which involves modifying weights of the network in a mini-
mal manner to satisfy some safety properties, is thus more involved than simply retraining a network
on some additional data involving counterexamples. Some methods in the literature [3, 4, 5, 6] make
progress toward the goal of repairing NNs. Goldberger et al. [3] can only repair the output layer,
which drastically reduces the space of possible successful repairs (and in many cases a repair is not
even possible). The method of Fu and Li [4] produces patches for certain partitions of the input
space wherein the corresponding outputs are modified. The direction of adding patches on the NN
output is very promising; however, it is unclear how the approach will scale for high dimensional
inputs, since it requires partitioning the input space into affine subregions. Authors in [6] repair the
linear regions related to each faulty sample in the faulty network’s weight space using a decoupled
DNN architecture. However, this method causes the repaired network to be discontinuous. There-
fore, it cannot be employed in robot learning and control applications which is the target application
of this paper. This method is not also applicable for the networks with more than three inputs.



2 Problem Formulation

Without loss of generality, we motivate and discuss our approach using the task of learning safe
robot controllers for a lower-leg prosthesis. The goal of this task is to learn a policy my which
generates control values for the ankle angle of the powered prosthesis given a set of sensor values.
Most critically, however, policy 7y is required to satisfy a set of safety constraints W. Fig. 2 provides
an overview of our methodology in addressing this challenge. For now, we assume that an unsafe
prior policy network may exist, see Fig. 2 (left). The network parameters # may be learned with
through imitation learning [10], reinforcement learning [28] or any of the common machine learning
paradigms. The policy may be optimized for task efficiency, e.g., stable and low-effort walking
gaits, but may not yet satisfy any safety constraints. Our goal is to find an adjusted set of network
parameters that satisfy any such constraint. We may now choose, for example, to restrict the control
rate to specific bounds. Running the network on the input values of a validation data set reveals that
violations occur at a number of time steps, as seen in Fig. 2. Our approach, called NNRepLayer
(Layer-wise Neural Network Repair), takes the original network parameters 6 and the predicates ¥
and yields the updated parameters that generate no violations.

Notation. We denote the set of variables {a;,as,--- ,an} with {a,}N_;. Let 7y be a network
policy with L hidden layers. The nodes at each layer [ € {l }IL:O are represented by z!, where
|z!| denotes the dimension of layer I (2 represents the input of network). The network’s output is
also denoted by y or my(2"). We consider fully connected policy networks with weight and bias
terms {(6.,,6}) leJrll. The training data set of N inputs 20 and target outputs t,, is denoted by

{(29,t,)}Y_, sampled from the input-output space X x 7 C RI°l x RI*l. We use 2!, to denote
the vector of nodes at layer [ for sample n. In this work, we focus on the policy networks with the
Rectified Linear Unit (ReLU) activation function R(z) = max{0, z}. Thus, given the n™ sample,
in the /" hidden layer, we have 2! = R (Gfﬂzl’l + Gé). An activation function is not applied to the

last layer, i.e. y = 0L t1xl + gF

Problem Statement (Repair Problem). Let 7y be a trained policy network over the training input-

output space X x T C R’ x RI* and U(y, 2°) be a predicate on the output y of network for a set
of inputs of interest z° € X,. C X. The Repair Problem is to modify the weight 6., and bias terms
0 of Ty such that the repaired policy my, satisfies ¥(y, 2°).

The repair of the policy network should not only satisfy the predicate ¥(y,x?) but should also
maintain the performance of original policy. To satisfy the latter, the method proposed in [3] ensures
the satisfaction of predicate only with a minimal deviation of weights in the last layer. However,
as we show latter in the experimental results, the repair of last layer is not necessarily feasible or
sufficient to satisfy the predicates with a minimal deviation from the original parameters. Moreover,
the minimal deviation from the original weights is not a sufficient guarantee to maintain the original
performance of network. It is well-known that subtle changes in the weights may cause the network
to significantly deviate from its original performance [29]. Therefore, it is important for the repaired
policy 7y, to also minimize the loss w.r.t. its original training data. We propose NNRepLayer
(Layer-wise Neural Network Repair) that satisfies a predicate ¥ (y, 2°) by repairing a specific layer
of the policy network while minimizing the training loss.

3 NNRepLayer

We can formulate our framework as the minimization problem of the loss function E(6,,, 8;) subject
to (2°,¢t) € X x T and ¥(y,z") for 2° € X,. However, the resulting optimization problem
is non-convex and difficult to solve due to the nonlinear ReLLU activation function and high-order
nonlinear constraints resulted from the multiplication of terms involving the weight/bias variables.
In our approach, we obtain a sub-optimal solution by just focusing on repairing a single layer.
We therefore modify the weight and bias terms of a single layer to adjust the predictions so as to
minimize E(6,,,0,) and to satisfy ¥(y, 2°). Thus, we solve the following problem

Problem 1. Let wy denote a trained policy network with L hidden layers over the training input-

output space X x T C RI=°l x R and U(y, 2°) denote a predicate representing constraints on the
output y of my for the set of inputs of interest x° € X, C X. NNRepLayer modifies the weights of a



layer 1 € {1,---,L + 1} in my such that the new network Ty, satisfies ¥ (y,x°) while minimizing
the loss of network E (6!, Hll,) with respect to its original training set.

Since A&, and X are not necessarily convex, we formulate NNRepLayer over a data set
{@8,t)}N_) ~ X x TUX, x T, where T is the set of original target values of inputs in X,
The predicate ¥(2°, y) defined over 2° € X, is not necessarily compatible with the target values in
7. It means that the predicate may bound the NN output for &. input space such that not allowing
an input 20 € X, to reach its target value in 7. It is a natural constraint in many applications.
For instance, due to the safety constraints, we may not allow a NN controller to follow its original
control reference for a given unsafe set of input states. For a given layer [, we also define E(6!,,0!)
in the form of sum of square loss F(6.,,6!) = 22;1 yn (22, 0L,,0%) — t,]13, where ||-||2 denotes
the Euclidean norm. Here, since we only repair the weight and bias terms of target layer [, the loss
term E is a function of 6!, and 6}, respectively. Hence, the weight and bias terms of all layers except
the target layer [ are fixed. We define our optimization formulation as follows.

NNRepLayer Optimization Formulation. Let my be a neural network with L hidden layers,
WU(y, ") be a predicate, and {(z9,¢,)}N_; be an input-output data set sampled from (X x T) U

(X, x T) over the sets X, X, T, and T all as defined in Problem 1. NNRepLayer minimizes the
loss (1) by modifying 6!, and 6! subject to the constraints (2)-(5).

Here, constraint (2) represents the lin-
ear forward pass of network’s last layer.

Constraint (3) represents the forward pass (1) o m‘inL . E(0L,,0)) + 4,
of hidden layers starting from the layer O B0 yn iy {dn i
. Except the weight and bias terms of s.t.
the I layer, i.e. 0!, and 6!, the weight
’ w ’ _ pL+1,.L | pL+1
and bias terms of the subsequent lay- @) oy =0 ey 0T
ers {(0],,6)}7), are fixed. The sam-(3)  gi, = R(6},2i7" +06]), for {i}k,

ple values of x!~! are obtained by the

weighted sum of the nodes in its previous @ Wlyn, o), for zj, € X,
layers starting from 20 for all N samples 5) 6> |6, — 0L, |16) — gévi"”Hoo > 0.
{n})_,. Each ReLU node z! is formu-
lated using Big-M formulation [30, 31] by
ot > 0Lalmt + 0] 2t < (02l + 6)) — Ib(1 — ¢), and 2! < ub ¢, where 2! € [0,00), and
¢ € {0,1} determines the activation status of node x'. The bounds b, ub € R are known as Big-M
coefficients, 0!, z.-1 + 6! € [Ib,ub], that need to be as tight as possible to improve the perfor-
mance of MIQP solver. We used Interval Arithmetic (IA) Method [32, 14] to obtain tight bounds
for ReLU nodes (read the supplementary materials, Sec. A, for further details on IA). Constraint
(4) is a given predicate on y defined over ° € X,.. NNReplayer addresses the predicates of the
form \/CC=1 ¥.(zY, y) where C represents the number of disjunctive propositions and 1; is an affine
function of z° and y. Finally, constraint (5) bounds the entry-wise max-norm error between the
weight and bias terms 6%, and 6}, and the original 6" and 6" by §. Considering the quadratic
loss function E(6!,, 6!) and the affine disjunctive forms of ¥ (y,,, z% ) and R(0%,xi~1 +6}), we solve
NNRepLayer as a Mixed Integer Quadratic Program (MIQP).

Theorem 1. Given the predicate V(y,z), and the input-output data set {(z°,t,)}N_, sampled
from (X x T)U (X, x T) over the sets X, X, T, and T as defined in Problem 1, assume that 6!,
and 0}, are feasible solutions to (1)-(5). Then, ¥(my, (29), 20) is satisfied for all input samples x°

rrn n*

Proof. Since the feasible solutions ¢, and Qé satisfy the hard constraint (4) for the repair data set
{20, ), U(my, (29),20) is satisfied. O

n=1> »¥n

Given Thm. 1, the following Corollary is straightforward.

Corollary 1. Given the predicate ¥ (y, x°), and the input-output data set {(z9,t,)}_, sampled
from (X x T)U(X, xT) over the sets X, X,, T, and T as defined in Problem I, assume that 0, and
0L are the optimal solutions to the NNRepLayer. Then, for all input samples 0, from {(x9,t,,)}_,,

U(mg, (20), 22) is satisfied.



4 Evaluation

We explore the applicability of the framework in satisfying the following three types of constraints.
Global constraints that encode global bounds on the network’s output, i.e., ¥ € [Ymin, Ymaz)-
Input-output constraints that ensure the network’s output y to stay within
a certain bound with respect to the network’s input 2%, i.e., {t.(2°,y) <
0}<_,, where C is the number of constraints and 1, is an affine function
of 20 and y. Finally, conditional constraints that encode if-then-else con-
straints described as {¢.(2°,y) < 0, if 20,y € S.} ¢, where C specifies the
number of conditions, v, is an affine function of 2" and y, and S. C X x T. ;
We designed a number of experiments to validate that our repair framework 2y “u
. . . Sl
can successfully apply these constraints to the policy network. Following our .
motivation, all experiments were performed on the prosthetic walking gait ay
generation task introduced in Fig. 2. Through these experiments we aim to
answer the following questions: (1) Does our method enable the Prosthetic Figgre 3: Prosthetic
device to address all the three types of aforementioned constraints? (2) Can device model.
the repaired controller be employed in a real walking scenario successfully? (3) How robust is the
policy repaired through our technique against the unseen constraint-violating samples?
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Experimental Setup. In our experiment, we train a policy network 7y for controlling a prosthesis,
which then undergoes the repair process to ensure compliance with the safety constraints. To this
end, we first train the model using an imitation learning [33] strategy. For data collection, we con-
ducted a study approved by the Institutional Review Board (IRB), in which we recorded the walking
gait of a healthy subject without any prosthesis. Walking data included three inertial measurement
units (IMUs) mounted via straps to the upper leg (Femur), lower leg (Shin), and foot. The IMUs
acquired both the angle and angular velocity of each limb portion in the world coordinate frame at
100Hz. Ankle angle o, was calculated as a post process from the foot and lower limb IMUs. We
then trained the NN to generate the ankle angle from upper and lower limb IMU sensor values. More
specifically, the NN model receives the angle and velocity from the upper and lower limb sensors
(network inputs 29), o, Gt i, Gay, respectively, to predict the ankle angle o, (network output
y) which is, later, used as the control parameter for a PD controller on the prosthetic. See Fig. 3
for a visualization of the individual sensor readings. We used a sliding window of input variables,
denoted as dt (dt = 10 in all our experiments), to account for the temporal influence on the control
parameter and to accommodate for noise in the sensor readings. Therefore, the input to the network
is dt x |2°|, or more specifically the current and previous dt sensor readings. In all experiments, we
trained a three-hidden-layer deep policy network with 32 ReLLU nodes at each hidden layer. After
the networks were fully trained we assessed the policy for constraint violations and collected sam-
ples for NNRepLayer. We tested NNRepLayer on the last and the second to the last layer of network
policy to satisfy the constraints with a subset of the original training data including both adversarial
and non-adversarial samples. In all experiments, we used 150 samples in NNRepLayer and a held
out set of size 2000 for testing. Finally, the repaired policies to satisfy global and input-output con-
straints are tested on a prosthetic device for 10 minutes of walking, see Fig. 5. More specifically, the
same healthy subject was fitted with an ankle bypass; a carbon fiber structure molded to the lower
limb and constructed such that a prosthetic ankle can be attached to allow the able-bodied subject to
walk on the prosthesis, as shown in Fig. 2. The extra weight and off-axis positioning of the device
incline the individual towards slower, asymmetrical gaits that generates strides out of the original
training distribution [34, 10]. The participant is then asked to walk again for 10 minutes to assess
whether constraints are satisfied.

To evaluate if the repair can be generalized to the unseen adversarial samples, we analyze the vi-
olation degree. The violation degree is measured as the distance of the network output with re-
spect to the constraint set. For each experiment, we explain how this distance between the out-
put and the constraint set is calculated. We compared our framework with retraining, fine-tuning
[26, 35, 27, 7], and the patch-based repair method in [4] (REASSURE). Adversarial samples in
the repair data set are hand-labeled for fine-tuning and retraining so that the target outputs satisfy
the given predicates. In fine-tuning, as proposed in [26, 35], we used the collected adversarial
data set to train all the parameters of the original policy by gradient descent using a small learn-
ing rate (10~%). To avoid over-fitting to the adversarial data set, we trained the weights of the top
layer first, and thereafter fine-tuned the remaining layers for a few epochs. The same hand-labeling
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Figure 4: Global constraint: (a) ankle angle, «,, (b) the error between the predicted and the reference
controls, (c¢) the violation degree vs. Lo-distance between the test and repair sample inputs.

strategy is applied in retraining, except that a new policy is trained from scratch for all original
training samples. In both methods, we trained the policy until all the adversarial samples in the
repair data set satisfy the given predicates on the network’s output. Our code is available on GitHub:
https://github.com/klmajd/NNRepLayer.qgit.

4.1 Experiments and Results

Global Constraint. The global constraint ensures that the prosthesis control, i.e., 4, stays within
a certain range and never outputs an unexpected large value that disturbs the user’s walking balance.
Additionally, the prosthetic device we utilized
in these scenarios contains a parallel compliant @ Rep. input-output constraint
mechanism. As such, either the human subject == == 10
or the robotic controller could potentially drive H
the mechanism into the hard limits, potentially Lo
damaging the device. In our walking tests,

we therefore specified global constraints such ' ' ' L5
that the ankle angle stays within the bounds
of [—14,24] [deg] regardless of whether it is
driven by the human or the robot. In simula-
tion experiments, we enforced artificially strict
bounds on the ankle angle «, to never ex-
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ceed o, = 10 [deg] which is a harder bound
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am™®| |, — o™}, otherwise. As shown in

Figure 5: Real prosthesis walking test results for
imposing the global constraint of [—14, 24] to the
control (shown in red) and bounding the control
rate by 2 [deg/s] (shown in black). The color bar

Fig. 4 (a)-(b), the repaired network successfully
satisfies the constraints in the original faulty
regions while maintaining the tracking perfor-
mance of the controller in the unconstrained regions. Figure 4 (c) demonstrates that the violation
degree stays almost zero for even distant originally violating data points after repairing the mid layer.
The red control signal in Fig. 5 also shows that our method successfully imposes the control bounds
[—14, 24] to the actual prosthesis walking test.

represents the normalized L»-distance of each test
input to its nearest neighbor in the repair set.

Input-output Constraint. Deep neural networks as highly non-linear function approximators
have the ability to change the outputs more rapidly than what is feasible for the robotic prosthesis
or for the human subject to accommodate. Therefore, we propose an additional constraint over the
possible change of control actions from one time-step to the next. This constraint should act to both
smooth the control action in the presence of sensor noise, as well as to reduce hard peaks and oscil-
lations in the control action. To capture this constraint as an input-output relationship, we trained the
policy network by adding the previous dt control actions {c«, (z)}f;}_ 4¢ as inputs to the policy net-
work along the values of upper and lower limb sensors. Imposed constraints in this example follow
the form |a, () — aq (t — 1)| < Aa/™**. In prosthetic walking tests, we bounded the control rate by
Aa]*** = 2 [deg/s], and in our simulations we tested Aa*** = 1.5 and Aa*** = 2 [deg/s]. Our
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simulation results in Fig. 6 demonstrate that NNRepLayer satisfies both bounds on the control rate
which subsequently results in a smoother control output. It can also be observed that NNRepLayer
successfully preserves the tracking performance of controller. In this experiment, we defined the
violation degree as 0 if the |Aa, (t)] < Ao and |Aag(t) — Aa**|, otherwise. Figure 7 (a)
demonstrates that the violation degree of NNRepLayer is almost zero by increasing the distance of
the test samples from the repair set. Same results are obtained in the actual prosthetic walking tests
as shown in Fig. 5. The satisfaction of input-output constraints (black signal) is achieved even for
the samples that are distant from the repair set. Finally, in this experiment, applying NNRepLayer
to the last layer does not obtain even a feasible solution to the optimization problem (1)-(5).

Conditional Constraint. Depending on the ergonomic needs and medical history of a patient,
the attending orthopedic doctor or prosthetist may iden-

L)
tify certain body configurations that are harmful, e.g., g (a)
they may increase the risk of osteoarthritis or muscu- 81~ -
loskeletal conditions [36, 37]. Following this rationale, © i
we define a region S of joint angles space that should 2 <
be avoided. An example of such a region is demon- 3 Z
strated in Fig. 8 as a grey box & = {(qwui, a0) | @t € Z S ——
[—2,—0.5], aq € [1,3]} in the joint space of ankle and o 2 T— o ®)
femur angles. To satisfy this constraint the control rate S | — Reiire q
should be tuned such that the joint ankle and femur an- SRS Fine tunod
gles stay out of set S. This constraint can be defined é o = Retrained
as an if-then-else proposition a,,; € [-2,—-0.5] = A AN
(vq € (—00,1]) V (aq € [3,00)) which can be for- > S T
mulated as the disjunction of linear inequalities on the 0.0 07 13 2.0
network’s output. For each given test input and its cor- Lo-distance to the nearest neighbor

responding output ¢, the degree of violation is defined

as the distance of «, to the box if «, is outside the Figure 7: The violation degree vs. Lo-
box, and 0 otherwise. Figure 8 demonstrates the output  distance between the test and repair sam-
of new policy after repairing with NNRepLayer. As it ple inputs for (a) input-output constraint,
is shown, our method avoids the joint ankle and femur  and (b) conditional constraint cases.
angles to enter the unsafe region S. Figure 7 (b) also

illustrates low output violation degree for the distant test input samples from the repair input set.
Finally, we observed that repairing the last layer does not result in a feasible solution.

Comparison w\Fine-tuning, Retraining, and REASSURE. In each experiment, we demon-
strated the violation degree and the control signals of our method compared with fine-tuning,
retraining [26, 35, 27, 7], and REASSURE [4]. Comparing to [4], while REASSURE guar-
antees the satisfaction of constraints in the local repaired linear regions, we showed that this
method significantly reduces the performance of network in the repaired local regions, see Fig-
ures 4 and 6. This method cannot address the input-output constraints given the faulty sam-
ples, and it introduces 500 times more faulty samples compared to our technique. REASSURE
cannot also accommodate the conditional constraints. Unlike REASSURE that guarantees the



Table 1: The table reports: RT: runtime, MAE: Mean Absolute Error between the repaired and
the original outputs, RE: the percentage of adversarial samples that are repaired (Repair Efficacy),
and IB: the percentage of test samples that were originally safe but became faulty after the repair
(Introduced Bugs). The metrics are the average of 50 runs.

NNRepLayer REASSURE [4]
RT [s] MAE RE [%] 1B [%] RT [s] MAE RE [%] 1B [%]
Global 233 + 159 1.44+0.11 99+1 0.09+0.20 1441 2.3+0.78 97+1 0
Input-output 112+122  0.54+0.03 98+1 0.19+0.18 30£8 0.6 £0.03 19+4 85+ 5
Conditional 480+ 110 0.35+0.07  93+2 0.11 £0.26 Infeasible Infeasible Infeasible Infeasible
Fine-tune Retrain
RT [s] MAE RE [%] 1B [%] RT [s] MAE RE [%] 1B [%]
Global 25+ 13 1.2+ 0.03 97+4 095+045 127+30 1.4+0.08 98 +3 0.65 £ 0.40

Input-output 8+2 0.6 £0.03 88+2 247+049 101+1 0.5£0.04 98 +1 0.28 £ 0.32
Conditional 18+ 3 0.74+0.10 72+5 027+025 180£2 0.31£0.03 76 £2 0.12 & 0.35

satisfaction of constraints for the samples in the same linear region as the repaired samples,
our technique only guarantees the satisfaction of constraints for the repaired samples. While
we empirically showed the generalizability of our technique in a local neighborhood of the re-
paired samples, our method does not theoretically guarantee the satisfaction of constraints for
the unseen adversarial samples. We proposed a sound algorithm in the supplementary materi-
als, Sec. B, that guarantees the safety for all other unseen samples. Table 1 better illustrates the
success of our method in satisfying the constraints while maintaining the control performance.
As shown in Table 1, retraining and NNRepLayer both per-

form well in maintaining the minimum absolute error and the 4.0

generalization of constraint satisfaction to the unseen testing

samples for global and input-output constraints. However, the ¢ |

satisfaction of if-then-else constraints is challenging for re- &

training and fine-tuning as the repair efficacy is dropped by al- &

most 30% using these techniques. It also highlights the power %f’ -2.8 1

of our technique in generalizing the satisfaction of conditional

constraints to the unseen cases. For further details on the com- £ 6.1

parison results, read the supplementary materials, Sec. C. ® Original
® Repaired

S Conclusion & Discussion %30 16 o2 12 26

Femur angle [deg]

In this paper, we introduced an algorithm for training safe neu-
ral network controllers that satisfy a formal set of safety con-
straints. Our approach, NNRepLayer, performs a global opti-
mization step in order to perform layer-wise repair of neural
network weights. In real-robot experiments, we have shown that the introduced methodology pro-
duces safe neural policies for a lower-leg prosthesis satisfying a variety of constraints. We argue that
this type of approach is critical for human-centric and safety-critical applications of robot learning,
e.g., the next-generation of assistive robotics.

Figure 8: Enforcing the conditional
constraints to keep the joint femur-
ankle angles out of the grey box.

Discussion. The introduced approach does not generally ensure that for any input the constraints
will be satisfied. Instead it guarantees this property for all data points provided at the time of repair.
Hence, proper care has to be taken to ensure that the repair process involves representative samples
of the variety of inputs seen in the application domain. From a computational vantage point, solving
the MIQP underlying NNRepLayer is a demanding process which scales with the size of the net-
work. In our experiments, we successfully repaired NN layers with up to 256 neurons, with global
optimization taking between multiple minutes and up to 10 hours (read the supplementary materials,
Sec. D, for the detailed experimental results). Moreover, we showed in the supplementary materials,
Sec. E, that the repair of randomly selected sub-nodes of a hidden layer can accurately repair the
network in much shorter time (more that 12 times faster than the full repair). Finally, our approach is
limited to repairing individual layers in a network. Early results on iteratively repairing multiple lay-
ers are promising and will be reported in the future. However, our approach cannot simultaneously
repair multiple layers or the entire network.
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