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A B S T R A C T   

Variability and spatiotemporal changes in precipitation characteristics can have profound socioenvironmental 
impacts. Several studies have shown that the frequency and/or magnitude of precipitation events have changed 
over the contiguous United States (CONUS) in the past decades. Most previous studies used only one precipi
tation dataset and only investigated mean or extreme precipitation. Here, using 6 gridded daily precipitation 
datasets, we show that there are substantial discrepancies in the changes in characteristics of both extreme and 
non-extreme precipitation events from 1983 to 2017. Our results highlight that using a single record to study 
precipitation changes can potentially lead to biased results. Using different datasets enables examining the 
overall agreements and discrepancies in precipitation characteristics. For example, we show that almost all 
datasets agree that some areas show statistically significant changes in the annual precipitation maxima; how
ever, the locations and signs of changes are not consistent across datasets. There is a relative agreement between 
datasets on changes in the total annual precipitation. When examining other percentiles of the precipitation 
distribution, including non-extreme values, however, we find widespread discrepancies among different pre
cipitation products (e.g., what part of the precipitation distribution is changing). In fact, depending on the source 
of data, there exist opposing trends and patterns of change in precipitation characteristics. This highlights the 
need to further investigate non-extreme precipitation events to unravel potential non-extreme but “unexpected” 
or “unusual” patterns. Finally, we argue that protocols for data selection are needed to address the issue of inter- 
data variability and to ensure reliability of statistical analysis.   

1. Introduction 

Global land and ocean temperature has been increasing at an average 
rate of 0.18 ◦C per decade since 1981 (Hansen et al., 2006; Meehl et al., 
2009). This increase in temperature is changing the hydrological cycle 
(Held and Soden, 2006; Wasko et al., 2015) with significant implications 
for precipitation characteristics, such as timing, magnitude, and fre
quency (Papalexiou and Montanari, 2019; Pendergrass and Hartmann, 
2014a, 2014b; Rajulapati et al., 2020; Trenberth et al., 2003). Precipi
tation is an important element of the hydrological cycle, and possible 
changes in precipitation characteristics can have profound impacts on 
the human-built environment and natural ecosystems 

(Foufoula-Georgiou et al., 2020; Mallakpour et al., 2020; Kidd and 
Huffman, 2011). Increasing evaporation and enhanced atmospheric 
water holding capacity in the face of a warming climate collectively 
change precipitation characteristics (Scheff and Frierson, 2014; Fischer 
and Knutti, 2016). Global climate model simulations also project 
changes in the frequency, intensity, and timing of precipitation events 
over many regions through the 21st century (Fischer and Knutti, 2016; 
Easterling et al., 2017). 

A growing number of studies has investigated the changes in the 
magnitude and frequency of precipitation events over different regions 
(Agel et al., 2015; Alexander et al., 2006; Easterling et al., 2016; 
Groisman et al., 2012; Innocenti et al., 2019; Kunkel et al., 2013; 
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Schleussner et al., 2017). For example, Fischer and Knutti (2016) 
showed that an increase in the frequency of heavy rainfall events is 
noticeable from observed data in Europe and the US. The IPCC report in 
2018 concluded that globally more regions have observed increasing 
patterns in the magnitude and frequency of extreme precipitation events 
compared to those that observed decreasing patterns (Hoegh-Guldberg 
et al., 2018). This report also indicated that since 1951, mean precipi
tation has increased over the land area of mid-latitude regions. For the 
United States, with one of the highest density of precipitation gauge 
stations across the globe, the Climate Science Special Report in 2017 
concluded that both annual precipitation and extreme precipitation 
have increased since 1901, although regional differences in magnitude 
and frequency exist (Easterling et al., 2017). 

While different climate reports present a possible picture of historical 
changes in precipitation characteristics, findings depend on factors such 
as the data quality, study periods, and assessment methods (Papalexiou 
and Montanari, 2019). Reliable datasets are at the core of examining 
spatiotemporal changes in the distribution of precipitation, investi
gating extreme events, and managing water resources (Blunden and 
Arndt, 2019). The need for accurate and reliable precipitation data 
motivated several research groups and operational agencies (e.g., Na
tional Aeronautics and Space Administration (NASA), National Oceanic 
and Atmospheric Administration (NOAA)) to develop and maintain 
several datasets (Kidd and Huffman, 2011) based on gauges, satellites, 
radars, and their combinations (Roca et al., 2019; Sun et al., 2018). 
Various precipitation products also differ in terms of spatiotemporal 
resolution and coverage, accuracy, latency, methodology, and design 
objectives (Beck et al., 2017). High spatiotemporal variations challenge 
accurate estimation of precipitation at the large scales, which in turn 
complicate trend analyses of magnitude and frequency of precipitation 
events (Beck et al., 2019). 

Different precipitation datasets, indeed, may not be thoroughly 
consistent across space and time (Tapiador et al., 2017). For instance, 
Sun et al. (2018) investigated 17 gridded global precipitation products 
and found disagreements as large as 300 mm/year in the magnitude of 
annual precipitation across the world’s terrestrial lands. Therefore, 
there is a need to reevaluate the derivative products that are based on 
single precipitation datasets and reexamine the perceived changes in the 
characteristics of precipitation. Indeed, recent literature identifies the 
discrepancies between precipitation extremes in various products as one 
of the challenges yet to be addressed in a changing climate (e.g., Beck 
et al., 2019; Levizzani et al., 2018). The goal of this study is to present a 
comprehensive picture of observed changes in the precipitation char
acteristics over the contiguous United States (CONUS) between 1983 
and 2017 using some of the well-known and widely used daily precip
itation products. Here, the focus is mainly on the derivative messages 
about the shifts in magnitude and frequency of various precipitation 
events. We investigate the possible changes across the distribution of 
precipitation (from low to extreme precipitation) to (1) provide a 
comprehensive picture of observed changes in the distribution of pre
cipitation, and (2) examine the possible discrepancies between de
rivatives of different available gridded precipitation datasets. 

2. Data and methodology 

We use 6 well-known gridded daily precipitation datasets over the 
United States with at least 30 years of data. Based on the World Mete
orological Organization (WMO) guidelines more than 30 years of data is 
needed to perform a climate trend analysis (Burroughs, 2003). These 
datasets include unified Gauge-Based Climate Prediction Center (CPC), 
Daily Surface Weather and Climatological Summaries (DAYMET), Pre
cipitation Estimation from Remotely Sensed Information using Artificial 
Neural Networks-Climate Data Record (PERSIANN-CDR), Multi-Source 
Weighted-Ensemble Precipitation (MSWEP), Climate Hazards Group 
Infrared Precipitation with Stations (CHIRPS) datasets and Modern-Era 
Retrospective analysis for Research and Applications (MERRA); which 

are listed along with their properties in Table 1. These products are of 
high spatial resolution, consistent, reliable, and have relatively 
long-term continuous precipitation data. Moreover, these datasets are 
maintained and updated to the present time and have been developed by 
creditable agencies and research groups. Accessibility of the selected 
datasets are relatively high for researchers to evaluate, and this factor 
can affect the number of investigations and importance of these datasets 
in the precipitation analysis. For instance, PERSIANN-CDR, CHIRPS, and 
DAYMET are also available on the google earth engine platform. These 
datasets have been used extensively in the studies that analyzed pre
cipitation or used precipitation as an input parameter for modeling 
different hydrological parameters such as floods and droughts. For an 
extensive discussion about the available precipitation dataset along with 
their data sources and performance evaluations, refer to Beck et al. 
(2019), Sun et al. (2018), and Roca et al. (2019). 

To investigate potential changes in the magnitude of precipitation 
across its distribution, we computed annual time series for a range of 
different precipitation quantiles from low to extreme precipitation with 
a focus on intense precipitation (i.e., Q20, Q50, Q70, Q90, Qmax) from the 
daily precipitation records for each pixel in each dataset. For instance, to 
investigate the possible changes in the annual median precipitation, we 
extracted annual median precipitation (Q50) for the entire period of 
record for each grid. Then we employed the rank-based, nonparametric 
Mann-Kendall test (Kendall and Gibbons, 1990; Mann, 1945) to inves
tigate the presence of monotonic patterns at each quantile level. For this 
test, the null hypothesis (H0) is that there is no temporal change in the 
magnitude of the selected annual precipitation quantile, and the alter
native hypothesis (Ha), upon rejection of the null hypothesis, suggests a 
detectable monotonic trend in the magnitude of the selected annual 
precipitation quantile. 

To quantify potential changes in the frequency of precipitation 
events in different sections of the precipitation distribution, we use the 
peak-over-threshold (POT) approach and classify precipitation events 
into four categories: extreme precipitation which is precipitation events 
greater than the long-term 90th percentile, heavy to moderate precipi
tation which comprises of events between the long-term 75th and 90th 
percentiles, moderate precipitation which consists of events between the 
long-term 50th and 75th percentiles, and moderate to low precipitation 
that includes events between the long-term 25th and 50th percentiles 
(Brunetti et al., 2004). To define these long-term percentiles, we used 
only the days that a precipitation event with a magnitude of≥1 mm had 
occurred. For instance, to calculate the long-term 90th percentile at each 
pixel, we compute the climatological 90th percentile of the empirical 
precipitation distribution between 1983 and 2017 using only non-zero 
records. We identified the number of events in each precipitation cate
gory to investigate the change in the frequency of precipitation events 
with different intensities. Then we investigated the presence of statis
tically significant trends in the frequency of precipitation events in each 
of these categories using a Poisson regression model (Mallakpour and 
Villarini, 2015, 2017). In this regression model, the response variable is 
discrete and follows a Poisson distribution (e.g., Dobson and Barnett, 
2018). A positive (negative) trend in Poisson regression shows an in
crease (decrease) in the number of precipitation events. 

In this study, all precipitation events with a magnitude of <1 mm are 
neglected and treated as no precipitation events. Also, the analysis in 
this study is performed over the 1983–2017 time period. Here, we set 
the significance level to 5% for all the statistical analyses. We summa
rized the results based on the regional classification of the Fourth Na
tional Climate Assessment (NCA4): Midwest (MI), Northeast (NE), 
Southeast (SE), Northern Great Plains (NGP), Southern Great Plains 
(SGP), Northwest (NW), and Southwest (SW) (Fig. S1; Melillo et al., 
2014; Wuebbles et al., 2017). 

3. Results 

We first investigate the presence of monotonic trends over different 
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precipitation quantiles (i.e., Q20, Q50, Q70, Q90, Qmax) to explore how the 
distribution of precipitation events has changed over the past 34 years 
(Figs. 1 and S2). While we do not expect a 1-to-1 agreement between 
different precipitation datasets, the overall observed patterns for the 
changes in the magnitude of annual precipitation maxima, with some 

regional differences, are similar for all the datasets. For all the datasets, 
there are a number of pixels showing statistically significant changes in 
the annual precipitation maxima (Fig. 1; left column); however, the 
locations and signs of changes are not consistent across datasets. Studies 
based on observations also painted a similar picture for statistically 

Table 1 
Summarizing the information related to the gridded precipitation datasets that have been used in this study.  

Data Set Spatial 
Resolution 

Temporal 
Resolution 

Data Source Spatial Coverage Record 
Length 

Reference 

CPC US 
Unified 

0.25◦ ×

0.25o 
Daily Gauge 

Consisted of ~8000 gauges over the United State, using optimal 
interpolation (OI) objective analysis technique 

United States 1948- 
present 

Chen et al. (2008) 

DAYMET V3 1 km × 1 km Daily Gauge 
GHCN Daily dataset, interpolation is based on a truncated 
Gaussian convolution kernel 

North America, 
Hawaii, and Puerto 
Rico 

1980- 
present 

(Thornton et al., 
1997,2016) 

PERSIANN- 
CDR 

0.25◦ ×

0.25o 
Daily Gauge, Satellite 

PERSIANN algorithm on GridSat-B1 infrared satellite data, stage 
IV hourly precipitation data for training ANN algorithm, GPCP 
monthly precipitation for adjusting 

60◦S–60◦N 1983- 
present 

Ashouri et al. 
(2015) 

MSWEP 
V2.2 

0.1◦ × 0.1o Daily/3- 
Hourly 

Gauge, Satellite, Reanalysis 
117759 gauges (used 76747 gauges after quality control), GHCN- 
D database, GSOD database, ERAInterim, GridSat, GSMaP, JRA- 
55, TMPA-3B42RT 

Global 1979- 
present 

(Beck et al., 2017, 
2019) 

CHIRPS 
V2.0 

0.05◦ ×

0.05o 
Daily Gauge, Satellite, Reanalysis 

Used ~29000 stations information from FAO and GHCN datasets, 
TRMM3b31, CMORPH, GSOD, TMPA 3B42, CFS, TARCAT, 
interpolated using inverse distance weighting (IDW) 

50◦S–50◦N, Land 1981- 
present 

Funk et al. (2015) 

MERRA-2 0.5◦ × 0.65o Daily/Hourly Gauge, Satellite, Reanalysis gauge based (CPCU), satellite/ 
gauge based (CMAPc), original MERRA reanalysis, uses statistical 
interpolation system(GSI) 

Global 1980- 
present 

(Gelaro et al., 2017; 
Reichle et al., 2017)  

Fig. 1. Trends in the magnitude of different annual precipitation quantiles (Q20, Q50, Q70, Q90, Qmax) for 6 precipitation products over the 1983–2017 period. Blue 
(red) color shows regions with statistically significant increasing (decreasing) trends at the 5% level. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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significant trends, although non-significant trends are more widely re
ported (Min et al., 2011; Westra et al., 2013; Barbero et al., 2017; Sun 
et al., 2021). 

The picture, however, changes when we explore changes in other 
percentiles of the empirical precipitation distribution. For annual Q90, 
the CPC dataset shows a widespread increasing pattern over the eastern 
part of the CONUS, a trend that is only observed to some extent in 
MERAA-2. This increasing pattern is also observable in the same regions 
(i.e., MW, NE, SE, SGP) for the annual 70th and 50th percentiles. For the 
low precipitation threshold (i.e., Q20), there is a limited number of pixels 
showing a significant increasing pattern. These patterns for the CPC 
dataset are almost similar to the results for the MERRA dataset where we 
can identify statistically significant increasing patterns across MW, NE, 
SE, and SGP for the annual 90th, 70th, and 50th percentiles. Similarly, 
for the Q20, we observe a relatively smaller number of pixels showing 
statistically significant increasing trends. The similarity of observed 
patterns between the CPC and MERRA-2 can be attributed to the fact 
that MERRA-2 uses CPC as one of the data products to adjust the pre
cipitation estimation algorithm (Reichle et al., 2017). 

For DAYMET, while the annual 90th percentile does not reveal any 
predominant trends, a relatively higher number of pixels showing sta
tistically significant changes are detectable when we focus on the annual 

70th, 50th, and 20th percentiles with overall negative trends. Less 
detectably but similarly, PERSIANN-CDR, MSWEP, and CHIRPS datasets 
show an overall negative trend over the western part of the CONUS for 
the annual 70th, 50th, and 20th percentiles. Especially, PERSIANN-CDR 
shows a clear spatial pattern over the SW with an overall negative 
precipitation trend. In general, all the datasets are in agreement that 
there are a limited number of pixels revealing statistically significant 
changes in the annual precipitation maxima during 1983–2017. While 
over the other sections of the precipitation distribution, there are clearer 
spatial patterns of change, these patterns are distinct and different for 
each dataset. Temporal changes in the precipitation magnitude are 
stronger at lower than the 90th percentiles of the precipitation distri
bution whereas there is a disagreement between datasets on the sign of 
these changes. 

Fig. 2 summarizes the results for the presence of statistically signif
icant changes in the frequency of extreme, heavy to moderate, moder
ate, and moderate to low precipitation events for all datasets. The 
discrepancy between different datasets is more pronounced when we 
examine the temporal changes in the occurrence of precipitation events 
with different intensities as compared to the magnitudes of various 
precipitation quantiles. For the change in the frequency of extreme 
precipitation events, MERRA-2 and CHIRPS datasets show a limited 

Fig. 2. Trends of the frequency of precipitation events that fall in each precipitation category over the 1983–2017 period. Blue (red) color shows regions with 
statistically significant increasing (decreasing) patterns at the 5% level. “Extreme”: precipitation events greater than the long-term 90th percentile; “Heavy to 
moderate”: events between the long-term 75th and 90th percentiles; “Moderate”: events between the long-term 50th and 75th percentiles; “Moderate to low”: events 
between the long-term 25th and 50th percentiles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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number of pixels with any statistically significant increasing/decreasing 
trends. PERSIANN-CDR shows a strong tendency towards decreasing 
trends in the frequency of heavy precipitation days over the SW while 
other regions do not demonstrate any statistically significant patterns. 
Similar to PERSIANN-CDR, but with a smaller number of statistically 
significant pixels, the MSWEP dataset shows a decreasing pattern across 
the SW. DAYMET shows a widespread increase in the occurrence of 
extreme precipitation events across all regions except for the SW. The 
CPC product reveals an increase in the frequency of extreme precipita
tion over the southern regions of the CONUS. For the heavy to moderate 
events, DAYMET shows a strong tendency towards higher frequency 
over the eastern regions of the CONUS. Also, the CPC product shows an 
increasing pattern over the western portion of the CONUS. For the rest of 
the datasets, changes can be detected over the SW region of the country 
with a negative trend. 

Considering changes in the frequency of moderate events, CPC shows 
an increasing trend over the western parts of CONUS, while DAYMET 
displays an increasing pattern in the eastern parts. The pattern of trends, 
however, differs when we employ PERSIANN-CDR and MSWEP datasets, 
where SW and SGP show downward trends and parts of NE, NGP, and SE 
reveal increasing patterns. MERRA-2 and CHIRPS show limited loca
tions with statistically significant trends. Focusing on the moderate to 
low precipitation events, the results are similar to the observed changes 
for the moderate events except for the CHIRPS and MERRA-2 datasets. 
CHIRPS shows a statistically decreasing trend over SGP and SE. The 
decreasing signal is more pronounced in the MERRA-2 dataset, where it 
demonstrates a widespread tendency toward a decrease over the MW, 
SW, SGP, SE, and NW. These results suggest that there is a strong 

disagreement between different precipitation datasets in terms of the 
frequency of occurrence of events with different intensities. It is 
important to consider that while the datasets share some similarities, 
there are no guarantees that products should appear similar among all 
possible evaluation metrics. In general, the algorithms used in the pre
cipitation products are very sophisticated and nonlinear, making it hard 
to find a clear relationship between input data and the outcoming 
product (e.g., Reichle et al., 2017; Ashouri et al., 2015). For instance, 
CPC and MERRA will often show similarities because, as already 
mentioned, CPC is used in the development of the MERRA dataset. 
Additionally, DAYMET also uses rain gauge information to produce 
precipitation estimates. Therefore, these data sets will frequently appear 
to perform similarly under certain metrics. However, differences in 
model features, interpolation techniques, spatial resolution, and gauge 
network distribution can cause significant differences between datasets 
when evaluated under certain metrics. 

To analyze the importance of the above-described changes in the 
frequency of precipitation events, we investigate the relative contribu
tion of each of the four precipitation categories to the total annual 
precipitation over the 1983–2017 period (Fig. 3 and Table S1). Com
parisons of the relative contribution of the quantity of precipitation 
events that fall under each of the four precipitation categories to the 
total annual precipitation for all the datasets show largely good agree
ments in spatial pattern. The highest percentage of the events that 
contributed to the total annual precipitation is the extreme precipitation 
events with about 34% of total precipitation (events greater than 90th 
percentile) over the 1983–2017 period. Heavy to the moderate event is 
the next category that shows the highest relative contribution to total 

Fig. 3. Relative contribution of the four precipitation categories to the total annual precipitation over the 1983–2017 period. Color bars display the percentage [%] 
of the contribution. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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annual precipitation with about 24%, followed by moderate (with about 
22%) and moderate to low events (with about 11%). Any possible 
changes in the frequency and intensity of precipitation events can have 
significant water resources implications. Any increase in the frequency 
of extreme precipitation events can lead to the occurrence of severe 
flooding and landslide events (Piccarreta et al., 2013; Ragno et al., 
2018), and hence, extreme events have been investigated in more detail 
in the literature. Our results also show pronounced changes in 
non-extreme values that can have significant societal impacts, especially 
when preceded or followed by other events (Zscheischler et al., 2020). 
Moderate to heavy precipitation events, for example, can also cause 
flooding if preceded by precipitation events that elevated soil moisture 
to the saturation level (AghaKouchak et al., 2018; Sharma et al., 2018). 
Changes in low precipitation values can also have impacts on low flows 
and the duration and intensity of hydrologic droughts. 

In addition to the detection of temporal changes in the magnitude 
and frequency of precipitation distribution, we investigate the possible 
temporal changes in the annual total precipitation (Fig. 4). All datasets 
are in general agreement that the annual total precipitation over SW 
observed statistically significant negative trends. Among these datasets, 
PERSIANN-CDR, CPC, and MERRA-2 show the strongest spatial pattern 
over this region. Other than PERSIANN-CDR, all other datasets show a 
positive trend over the NE and some parts of the NGP. These positive 
changes are stronger when we use DAYMET and CHIRPS datasets. These 
two datasets show a large region over NE with an increasing change in 
the total annual precipitation. MERRA-2, CPC, and MSWEP show a 
decreasing pattern in the total annual precipitation over parts of NW. 
This result shows that there is a relatively higher spatial pattern agree
ment between different precipitation products in terms of observed 
changes in total annual precipitation. The relatively larger agreement 
between the datasets can also be noticed from the climatology of pre
cipitation rates (Fig. S3) where the spatial patterns of average precipi
tation is almost similar for all datasets. Moreover, the average 
precipitation rates over CONUS are about 2.12, 2.4, 2.33, 2.1, 1.97, and 
2.13 (mm/day) for CPC, DAYMET, PERSIANN-CDR, MSWEP, CHIRPS, 
and MERRA, respectively, for 1983–2017. This result shows a good 
agreement between these datasets in terms of climatological average 
precipitation rates. 

4. Discussion and conclusion 

Understanding potential changes in precipitation characteristics are 
essential for risk assessment and water resources planning and 

management. Hence, changes in the mean and extremes of this impor
tant element of the hydrological cycle have been studied extensively in 
recent years. The accuracy and skill of these analyses, however, tightly 
depend on the available high accuracy, spatial and temporal resolution 
precipitation datasets. The goal of this study was to provide a more 
comprehensive picture of possible changes in precipitation character
istics based on different data sets to not only understand how precipi
tation has changed but also how different data sets represent 
precipitation changes. We used 6 widely used gridded precipitation 
products to investigate whether or not the distribution of precipitation is 
changing across the Contiguous US (CONUS). We examined the agree
ments and discrepancies between these precipitation products in terms 
of observed changes in the magnitude, frequency, and total annual 
precipitation from 1983 to 2017. The analyses and findings of this study 
can be summarized as:  

1 We employed the Mann-Kendall test to investigate potential changes 
in the magnitude of different annual precipitation quantiles (Q20, 
Q50, Q70, Q90, Qmax). All datasets are in agreement that relatively 
small number pixels show statistically significant trends in the 
magnitude of annual precipitation maxima, although they should not 
be ignored. From the relatively small number of pixels that showed 
statistically significant changes in the magnitude of heavy precipi
tation, the majority of them revealed a positive trend for most of the 
datasets. This finding is in accordance with previous studies which 
also did not identify widespread evidence of statistically significant 
changes in the magnitude of annual precipitation maxima, although 
statistically non-significant trends were more conspicuous (Donat 
et al., 2013; Westra et al., 2013; Barbero et al., 2017; Mallakpour and 
Villarini, 2017; Nguyen et al., 2018; Papalexiou and Montanari, 
2019; Sun et al., 2021; Fig. S4). It is important to emphasize that 
trend analysis depends on statistical methods, timeframe, and data
sets (Papalexiou and Montanari, 2019). For instance, previously 
several studies have shown that annual maxima sampling techniques 
may dampen the signal of the trend by mixing winter and summer 
storms which may weaken the underlying trend signal (e.g., Mal
lakpour and Villarini, 2017; Barbero et al., 2017; Wasko et al., 2016; 
Contractor et al., 2021). 

2 When we examined the possible changes in percentiles of the pre
cipitation distribution other than annual maxima, we found wide
spread discrepancies among products. All datasets showed that the 
magnitude of precipitation is changing, but they diverged in the sign 
of this change. DAYMET, PERSIANN-CDR, MSWEP, and CHIRPS 

Fig. 4. Trends in the annual total precipitation over the 1983 to 2017 period. Blue (red) pixels show regions with statistically significant increasing (decreasing) 
trends at the 5% level. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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showed that decreasing patterns are more detectable across the Q20, 
Q50, Q70, and Q90 percentiles, while CPC and MERRA-2 showed a 
more dominant increasing pattern. The widespread disagreement 
between datasets indicates that we cannot confidently comment on 
the sign and significance of the change in precipitation at different 
quantiles.  

3 To analyze the changes in the frequency of precipitation events, we 
used the peak-over-threshold (POT) sampling technique and classi
fied precipitation events into four categories: extreme precipitation, 
heavy to moderate precipitation, moderate, and moderate to low 
precipitation. We employed Poisson regression to detect trends in the 
number of events in each precipitation category. The degree of 
discrepancy among studied products was even larger when we 
analyzed the changes in the frequency of precipitation events with 
different intensities, as compared to the analyses of magnitudes. 
While regionally different, CPC and DAYMET showed a large area 
with positive changes in the frequency of extreme, heavy to mod
erate, moderate, and moderate to low precipitation events across the 
CONUS. PERSIANN-CDR showed negative trends over SW, especially 
more pronounced in the frequency of extreme and heavy to moderate 
precipitation events. Similar but less marked, MSWEP showed 
negative trends over SW and NW for all precipitation categories. 
CHIRPS and MERRA-2 showed a relatively smaller number of pixels 
with statistically significant changes for all categories other than 
moderate to low events where a large region with negative trends 
can be located over the southern part of CONUS.  

4 We investigated the relative contribution of the four precipitation 
categories to the total annual precipitation for each dataset. While 
regionally different, all datasets similarly showed that the strongest 
contributions to the total annual precipitation are the extreme pre
cipitation events followed by heavy to moderate, moderate, and 
moderate to low events, respectively. This highlights the need to 
further investigate non-extreme precipitation events to unravel po
tential non-extreme but “unexpected” or “unusual” patterns.  

5 We also examined possible temporal changes in the total annual 
precipitation. For SW, all the datasets were in an agreement that a 
pronounced negative trend in the total annual precipitation can be 
identified. For NE, all datasets, other than PERSIANN-CDR, showed a 
clear spatial pattern with overall increasing trends in total annual 
precipitation. In general, there is a relatively high agreement be
tween datasets in terms of the sign of trend and regions that the total 
annual precipitation has changed through time over the 1983 to 
2017 period. 

Overall, we found a strong disagreement between the gridded pre
cipitation datasets in determining changes in the magnitude and fre
quency of precipitation events over the CONUS. Our findings are in 
agreement with that of Sun et al. (2018) that pointed out a relatively 
high discrepancy between different precipitation datasets in the esti
mation of the magnitude of precipitation. This can be related to different 
data sources, quality control processes, algorithms, rain gauge density, 
and algorithmic differences in resolving topographic complexity (Beck 
et al., 2019; Sun et al., 2018). The degree of discrepancy among studied 
products was smaller when investigating the relative contribution of 
various sections of the precipitation distribution to the total annual 
precipitation, the trend in total annual precipitation, and the clima
tology of precipitation. Beck et al. (2019) indicated that estimating 
climatological characteristics of precipitation are relatively simpler than 
estimating daily precipitation dynamics. 

Trend analysis of hydroclimatological data depends on statistical 
methods, timeframe, and datasets (Papalexiou and Montanari, 2019). 
Here, we used a common timeframe (1983–2017) and consistent sta
tistical methods with different datasets to investigate discrepancies be
tween precipitation datasets. Our goal was not to evaluate which of 
these datasets faithfully follow the change in the precipitation charac
teristics as that from in situ measurements, rather we investigated the 

discrepancy between available datasets. For this reason, we did not as
sume one is the best product to be used as the reference dataset. 
Gauge-based datasets are commonly referred to as the “ground-truth” 
but suffer from sparse gauge density over unpopulated and/or impass
able areas and require corrections for measurement errors (e.g., wind, 
instrumental, and evaporation loss corrections; Huffman et al., 1997; Xie 
and Arkin, 1997; McMillan et al., 2012; Newman et al., 2015). In 
addition, extending point observations to a gridded precipitation dataset 
with the means of sophisticated interpolation techniques introduces an 
additional source of uncertainty, especially in data-scarce regions that 
are dominated by orographic variability (Timmermans et al., 2019; 
Lundquist et al., 2010). Therefore, the resolution and spacing of the 
grids, the treatment of elevation and interpolation techniques, along 
with concentration and quality of gauge data can contribute to un
certainties associated with gauge-based products (Durre et al., 2010; 
Sevruk et al., 2009; Viney and Bates, 2004). Radar networks provide 
attractive alternatives for rain gauge networks due to their continuous 
rainfall measurements with high spatiotemporal resolutions. Many re
searchers used radar datasets (e.g., Stage-IV; Nelson et al., 2016) as the 
reference to evaluate precipitation products (Beck et al., 2019). How
ever, radar datasets generally are not suitable tools to perform trend 
analysis and climatic evaluations, since they have a relatively shorter 
length of records (Habib et al., 2012). Furthermore, radar networks do 
not cover remote areas as well as ocean regions. Satellite-based datasets 
offer global coverage and high temporal and spatial resolutions; how
ever, they are not a direct measurement of precipitation by capturing 
radiation from a column of the atmosphere (Beck et al., 2019; Sadeghi 
et al., 2020, 2021). Consequently, their accuracy depends on the com
plex algorithms and the availability of the rain gauges for calibration 
(Villarini and Krajewski, 2007). Therefore, they are subject to un
certainties associated with the relationship between observed atmo
spheric attributes and precipitation rates. The newest source of 
precipitation products are reanalysis datasets, which also based on their 
observational data, assimilation method, and attributes of the incorpo
rated numerical model, may present different rainfall patterns and 
trends (Bukovsky and Karoly, 2007; de Leeuw et al., 2015). Timmer
mans et al. (2019) highlighted that reanalysis products are sensitive to 
the source data assimilated as well as the method of data assimilation. 
This is because most of the reanalysis products are based on model 
simulation not completely based on gauge observations (Donat et al., 
2014; Bador et al., 2020). All the above-mentioned sources of un
certainties for different precipitation sources prevents naming a dataset 
as the most reliable precipitation product. 

Despite their shortcomings and discrepancies, the gridded precipi
tation datasets with a high spatiotemporal resolution are among the best 
available resources to gather insights about climate variability and 
changes. Therefore, any comprehensive precipitation trend analysis 
should be based on multiple datasets and requires careful interpretation 
of the findings. Currently, there is no standard protocol for selecting an 
appropriate precipitation dataset (or a set of observations) for different 
hydroclimatological studies. Moreover, currently, there is no standard 
protocol for the developers in terms of data file format, spatial and 
temporal resolutions, and supplementing easy-to-follow metadata that 
can document the necessary information needed by the user to make 
sure they are using a correct precipitation product for their needs 
(Timmermans et al., 2019; Roca et al., 2019). We note, however, current 
efforts to bridge this gap. For instance, recently, the Rainfall Estimates 
on a Gridded Network (REGEN; Contractor et al., 2020) dataset was 
released by a collaboration between the University of New South Wales 
(UNSW), GPCC, and NOAA’s National Center for Environmental Infor
mation (NCEI). REGEN is a global land-based daily precipitation dataset 
at 1-degree resolution from 1950 to 2016 and provides easy access 
metadata that documents the number of observations available in each 
grid, standard deviation, interpolation error, and, based on the un
certainties, they provided a data quality mask (Contractor et al., 2020, 
2021). Also, the Frequent Rainfall Observations on GridS (FROGS) 
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database by Roca et al. (2019) documented one of the few efforts to 
produce a database that contains several different satellites, 
ground-based and reanalysis gridded daily precipitation datasets on a 
common grid (1◦ × 1◦) and format (netCDF-4) to facilitate intercom
parison of datasets and evaluation exercises. While substantial progress 
has been made, we argue that the precipitation community needs to 
further address the issue of inter-data variability when examining 
observed changes in precipitation. Finally, we leave it to the researchers’ 
judgment to make sure the detail and accuracy of the precipitation 
datasets are suitable for their case study and area of interest. 

Data availability 

The data that support the findings of this study are openly available 
from:  

Data Set Website 

CPC US 
Unified 

https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html 

DAYMET V3 https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1328 
PERSIANN- 

CDR 
https://chrsdata.eng.uci.edu/ 

MSWEP V2.2 http://www.gloh2o.org/ 
CHIRPS V2.0 https://data.chc.ucsb.edu/products/CHIRPS-2.0/ 
MERRA-2 https://disc.sci.gsfc.nasa.gov/datasets?keywords=%22MERRA-2 

%22&page=1&source=Models%2FAnalyses%20MERRA-2  
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Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., 
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