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Variability and spatiotemporal changes in precipitation characteristics can have profound socioenvironmental
impacts. Several studies have shown that the frequency and/or magnitude of precipitation events have changed
over the contiguous United States (CONUS) in the past decades. Most previous studies used only one precipi-
tation dataset and only investigated mean or extreme precipitation. Here, using 6 gridded daily precipitation
datasets, we show that there are substantial discrepancies in the changes in characteristics of both extreme and
non-extreme precipitation events from 1983 to 2017. Our results highlight that using a single record to study

ng{mSIZtNN_CDR precipitation changes can potentially lead to biased results. Using different datasets enables examining the
MSWEP overall agreements and discrepancies in precipitation characteristics. For example, we show that almost all
CHIRPS datasets agree that some areas show statistically significant changes in the annual precipitation maxima; how-
MERRA2 ever, the locations and signs of changes are not consistent across datasets. There is a relative agreement between

datasets on changes in the total annual precipitation. When examining other percentiles of the precipitation
distribution, including non-extreme values, however, we find widespread discrepancies among different pre-
cipitation products (e.g., what part of the precipitation distribution is changing). In fact, depending on the source
of data, there exist opposing trends and patterns of change in precipitation characteristics. This highlights the
need to further investigate non-extreme precipitation events to unravel potential non-extreme but “unexpected”
or “unusual” patterns. Finally, we argue that protocols for data selection are needed to address the issue of inter-
data variability and to ensure reliability of statistical analysis.

1. Introduction

Global land and ocean temperature has been increasing at an average
rate of 0.18 °C per decade since 1981 (Hansen et al., 2006; Meehl et al.,
2009). This increase in temperature is changing the hydrological cycle
(Held and Soden, 2006; Wasko et al., 2015) with significant implications
for precipitation characteristics, such as timing, magnitude, and fre-
quency (Papalexiou and Montanari, 2019; Pendergrass and Hartmann,
2014a, 2014b; Rajulapati et al., 2020; Trenberth et al., 2003). Precipi-
tation is an important element of the hydrological cycle, and possible
changes in precipitation characteristics can have profound impacts on
the  human-built  environment and  natural ecosystems

(Foufoula-Georgiou et al., 2020; Mallakpour et al., 2020; Kidd and
Huffman, 2011). Increasing evaporation and enhanced atmospheric
water holding capacity in the face of a warming climate collectively
change precipitation characteristics (Scheff and Frierson, 2014; Fischer
and Knutti, 2016). Global climate model simulations also project
changes in the frequency, intensity, and timing of precipitation events
over many regions through the 21st century (Fischer and Knutti, 2016;
Easterling et al., 2017).

A growing number of studies has investigated the changes in the
magnitude and frequency of precipitation events over different regions
(Agel et al., 2015; Alexander et al., 2006; Easterling et al., 2016;
Groisman et al., 2012; Innocenti et al., 2019; Kunkel et al., 2013;
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Schleussner et al., 2017). For example, Fischer and Knutti (2016)
showed that an increase in the frequency of heavy rainfall events is
noticeable from observed data in Europe and the US. The IPCC report in
2018 concluded that globally more regions have observed increasing
patterns in the magnitude and frequency of extreme precipitation events
compared to those that observed decreasing patterns (Hoegh-Guldberg
et al., 2018). This report also indicated that since 1951, mean precipi-
tation has increased over the land area of mid-latitude regions. For the
United States, with one of the highest density of precipitation gauge
stations across the globe, the Climate Science Special Report in 2017
concluded that both annual precipitation and extreme precipitation
have increased since 1901, although regional differences in magnitude
and frequency exist (Easterling et al., 2017).

While different climate reports present a possible picture of historical
changes in precipitation characteristics, findings depend on factors such
as the data quality, study periods, and assessment methods (Papalexiou
and Montanari, 2019). Reliable datasets are at the core of examining
spatiotemporal changes in the distribution of precipitation, investi-
gating extreme events, and managing water resources (Blunden and
Arndt, 2019). The need for accurate and reliable precipitation data
motivated several research groups and operational agencies (e.g., Na-
tional Aeronautics and Space Administration (NASA), National Oceanic
and Atmospheric Administration (NOAA)) to develop and maintain
several datasets (Kidd and Huffman, 2011) based on gauges, satellites,
radars, and their combinations (Roca et al., 2019; Sun et al., 2018).
Various precipitation products also differ in terms of spatiotemporal
resolution and coverage, accuracy, latency, methodology, and design
objectives (Beck et al., 2017). High spatiotemporal variations challenge
accurate estimation of precipitation at the large scales, which in turn
complicate trend analyses of magnitude and frequency of precipitation
events (Beck et al., 2019).

Different precipitation datasets, indeed, may not be thoroughly
consistent across space and time (Tapiador et al., 2017). For instance,
Sun et al. (2018) investigated 17 gridded global precipitation products
and found disagreements as large as 300 mm/year in the magnitude of
annual precipitation across the world’s terrestrial lands. Therefore,
there is a need to reevaluate the derivative products that are based on
single precipitation datasets and reexamine the perceived changes in the
characteristics of precipitation. Indeed, recent literature identifies the
discrepancies between precipitation extremes in various products as one
of the challenges yet to be addressed in a changing climate (e.g., Beck
et al., 2019; Levizzani et al., 2018). The goal of this study is to present a
comprehensive picture of observed changes in the precipitation char-
acteristics over the contiguous United States (CONUS) between 1983
and 2017 using some of the well-known and widely used daily precip-
itation products. Here, the focus is mainly on the derivative messages
about the shifts in magnitude and frequency of various precipitation
events. We investigate the possible changes across the distribution of
precipitation (from low to extreme precipitation) to (1) provide a
comprehensive picture of observed changes in the distribution of pre-
cipitation, and (2) examine the possible discrepancies between de-
rivatives of different available gridded precipitation datasets.

2. Data and methodology

We use 6 well-known gridded daily precipitation datasets over the
United States with at least 30 years of data. Based on the World Mete-
orological Organization (WMO) guidelines more than 30 years of data is
needed to perform a climate trend analysis (Burroughs, 2003). These
datasets include unified Gauge-Based Climate Prediction Center (CPC),
Daily Surface Weather and Climatological Summaries (DAYMET), Pre-
cipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks-Climate Data Record (PERSIANN-CDR), Multi-Source
Weighted-Ensemble Precipitation (MSWEP), Climate Hazards Group
Infrared Precipitation with Stations (CHIRPS) datasets and Modern-Era
Retrospective analysis for Research and Applications (MERRA); which
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are listed along with their properties in Table 1. These products are of
high spatial resolution, consistent, reliable, and have relatively
long-term continuous precipitation data. Moreover, these datasets are
maintained and updated to the present time and have been developed by
creditable agencies and research groups. Accessibility of the selected
datasets are relatively high for researchers to evaluate, and this factor
can affect the number of investigations and importance of these datasets
in the precipitation analysis. For instance, PERSIANN-CDR, CHIRPS, and
DAYMET are also available on the google earth engine platform. These
datasets have been used extensively in the studies that analyzed pre-
cipitation or used precipitation as an input parameter for modeling
different hydrological parameters such as floods and droughts. For an
extensive discussion about the available precipitation dataset along with
their data sources and performance evaluations, refer to Beck et al.
(2019), Sun et al. (2018), and Roca et al. (2019).

To investigate potential changes in the magnitude of precipitation
across its distribution, we computed annual time series for a range of
different precipitation quantiles from low to extreme precipitation with
a focus on intense precipitation (i.e., Q29, Qs0, Q70, Q90, Qmax) from the
daily precipitation records for each pixel in each dataset. For instance, to
investigate the possible changes in the annual median precipitation, we
extracted annual median precipitation (Qsg) for the entire period of
record for each grid. Then we employed the rank-based, nonparametric
Mann-Kendall test (Kendall and Gibbons, 1990; Mann, 1945) to inves-
tigate the presence of monotonic patterns at each quantile level. For this
test, the null hypothesis (Hp) is that there is no temporal change in the
magnitude of the selected annual precipitation quantile, and the alter-
native hypothesis (H,), upon rejection of the null hypothesis, suggests a
detectable monotonic trend in the magnitude of the selected annual
precipitation quantile.

To quantify potential changes in the frequency of precipitation
events in different sections of the precipitation distribution, we use the
peak-over-threshold (POT) approach and classify precipitation events
into four categories: extreme precipitation which is precipitation events
greater than the long-term 90th percentile, heavy to moderate precipi-
tation which comprises of events between the long-term 75th and 90th
percentiles, moderate precipitation which consists of events between the
long-term 50th and 75th percentiles, and moderate to low precipitation
that includes events between the long-term 25th and 50th percentiles
(Brunetti et al., 2004). To define these long-term percentiles, we used
only the days that a precipitation event with a magnitude of>1 mm had
occurred. For instance, to calculate the long-term 90th percentile at each
pixel, we compute the climatological 90th percentile of the empirical
precipitation distribution between 1983 and 2017 using only non-zero
records. We identified the number of events in each precipitation cate-
gory to investigate the change in the frequency of precipitation events
with different intensities. Then we investigated the presence of statis-
tically significant trends in the frequency of precipitation events in each
of these categories using a Poisson regression model (Mallakpour and
Villarini, 2015, 2017). In this regression model, the response variable is
discrete and follows a Poisson distribution (e.g., Dobson and Barnett,
2018). A positive (negative) trend in Poisson regression shows an in-
crease (decrease) in the number of precipitation events.

In this study, all precipitation events with a magnitude of <1 mm are
neglected and treated as no precipitation events. Also, the analysis in
this study is performed over the 1983-2017 time period. Here, we set
the significance level to 5% for all the statistical analyses. We summa-
rized the results based on the regional classification of the Fourth Na-
tional Climate Assessment (NCA4): Midwest (MI), Northeast (NE),
Southeast (SE), Northern Great Plains (NGP), Southern Great Plains
(SGP), Northwest (NW), and Southwest (SW) (Fig. S1; Melillo et al.,
2014; Wuebbles et al., 2017).

3. Results

We first investigate the presence of monotonic trends over different
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Table 1
Summarizing the information related to the gridded precipitation datasets that have been used in this study.
Data Set Spatial Temporal Data Source Spatial Coverage Record Reference
Resolution Resolution Length
CPC US 0.25° x Daily Gauge United States 1948- Chen et al. (2008)
Unified 0.25° Consisted of ~8000 gauges over the United State, using optimal present
interpolation (OI) objective analysis technique
DAYMET V3 1km x 1km  Daily Gauge North America, 1980- (Thornton et al.,
GHCN Daily dataset, interpolation is based on a truncated Hawaii, and Puerto present 1997,2016)
Gaussian convolution kernel Rico
PERSIANN- 0.25° x Daily Gauge, Satellite 60°S-60°N 1983- Ashouri et al.
CDR 0.25° PERSIANN algorithm on GridSat-B1 infrared satellite data, stage present (2015)
IV hourly precipitation data for training ANN algorithm, GPCP
monthly precipitation for adjusting
MSWEP 0.1° x 0.1° Daily/3- Gauge, Satellite, Reanalysis Global 1979- (Beck et al., 2017,
V2.2 Hourly 117759 gauges (used 76747 gauges after quality control), GHCN- present 2019)
D database, GSOD database, ERAlInterim, GridSat, GSMaP, JRA-
55, TMPA-3B42RT
CHIRPS 0.05° x Daily Gauge, Satellite, Reanalysis 50°S-50°N, Land 1981- Funk et al. (2015)
V2.0 0.05° Used ~29000 stations information from FAO and GHCN datasets, present
TRMM3b31, CMORPH, GSOD, TMPA 3B42, CFS, TARCAT,
interpolated using inverse distance weighting (IDW)
MERRA-2 0.5° x 0.65° Daily/Hourly Gauge, Satellite, Reanalysis gauge based (CPCU), satellite/ Global 1980- (Gelaro et al., 2017;
gauge based (CMAPc), original MERRA reanalysis, uses statistical present Reichle et al., 2017)

interpolation system(GSI)

precipitation quantiles (i.e., Q20, Qs0, Q70, Qg0, Qmax) to explore how the
distribution of precipitation events has changed over the past 34 years
(Figs. 1 and S2). While we do not expect a 1-to-1 agreement between
different precipitation datasets, the overall observed patterns for the
changes in the magnitude of annual precipitation maxima, with some

regional differences, are similar for all the datasets. For all the datasets,
there are a number of pixels showing statistically significant changes in
the annual precipitation maxima (Fig. 1; left column); however, the
locations and signs of changes are not consistent across datasets. Studies
based on observations also painted a similar picture for statistically

CPC

DAYMET

MSWEP PERSIANN-

MERRA CHIRPS

B Positive trend

B Negative trend

Fig. 1. Trends in the magnitude of different annual precipitation quantiles (Q20, Qso, Q70, Qoo, Qmax) for 6 precipitation products over the 1983-2017 period. Blue
(red) color shows regions with statistically significant increasing (decreasing) trends at the 5% level. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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significant trends, although non-significant trends are more widely re-
ported (Min et al., 2011; Westra et al., 2013; Barbero et al., 2017; Sun
et al., 2021).

The picture, however, changes when we explore changes in other
percentiles of the empirical precipitation distribution. For annual Qg,
the CPC dataset shows a widespread increasing pattern over the eastern
part of the CONUS, a trend that is only observed to some extent in
MERAA-2. This increasing pattern is also observable in the same regions
(i.e., MW, NE, SE, SGP) for the annual 70th and 50th percentiles. For the
low precipitation threshold (i.e., Q20), there is a limited number of pixels
showing a significant increasing pattern. These patterns for the CPC
dataset are almost similar to the results for the MERRA dataset where we
can identify statistically significant increasing patterns across MW, NE,
SE, and SGP for the annual 90th, 70th, and 50th percentiles. Similarly,
for the Qy9, we observe a relatively smaller number of pixels showing
statistically significant increasing trends. The similarity of observed
patterns between the CPC and MERRA-2 can be attributed to the fact
that MERRA-2 uses CPC as one of the data products to adjust the pre-
cipitation estimation algorithm (Reichle et al., 2017).

For DAYMET, while the annual 90th percentile does not reveal any
predominant trends, a relatively higher number of pixels showing sta-
tistically significant changes are detectable when we focus on the annual

Extreme

Heavy to moderate
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70th, 50th, and 20th percentiles with overall negative trends. Less
detectably but similarly, PERSIANN-CDR, MSWEP, and CHIRPS datasets
show an overall negative trend over the western part of the CONUS for
the annual 70th, 50th, and 20th percentiles. Especially, PERSIANN-CDR
shows a clear spatial pattern over the SW with an overall negative
precipitation trend. In general, all the datasets are in agreement that
there are a limited number of pixels revealing statistically significant
changes in the annual precipitation maxima during 1983-2017. While
over the other sections of the precipitation distribution, there are clearer
spatial patterns of change, these patterns are distinct and different for
each dataset. Temporal changes in the precipitation magnitude are
stronger at lower than the 90th percentiles of the precipitation distri-
bution whereas there is a disagreement between datasets on the sign of
these changes.

Fig. 2 summarizes the results for the presence of statistically signif-
icant changes in the frequency of extreme, heavy to moderate, moder-
ate, and moderate to low precipitation events for all datasets. The
discrepancy between different datasets is more pronounced when we
examine the temporal changes in the occurrence of precipitation events
with different intensities as compared to the magnitudes of various
precipitation quantiles. For the change in the frequency of extreme
precipitation events, MERRA-2 and CHIRPS datasets show a limited

Moderate Moderate to low

CPC

DAYMET

PERSIANN-

MERRA CHIRPS MSWEP

B Positive trend

B Negative trend

Fig. 2. Trends of the frequency of precipitation events that fall in each precipitation category over the 1983-2017 period. Blue (red) color shows regions with
statistically significant increasing (decreasing) patterns at the 5% level. “Extreme™: precipitation events greater than the long-term 90th percentile; “Heavy to
moderate”: events between the long-term 75th and 90th percentiles; “Moderate”: events between the long-term 50th and 75th percentiles; “Moderate to low”: events
between the long-term 25th and 50th percentiles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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number of pixels with any statistically significant increasing/decreasing
trends. PERSIANN-CDR shows a strong tendency towards decreasing
trends in the frequency of heavy precipitation days over the SW while
other regions do not demonstrate any statistically significant patterns.
Similar to PERSIANN-CDR, but with a smaller number of statistically
significant pixels, the MSWEP dataset shows a decreasing pattern across
the SW. DAYMET shows a widespread increase in the occurrence of
extreme precipitation events across all regions except for the SW. The
CPC product reveals an increase in the frequency of extreme precipita-
tion over the southern regions of the CONUS. For the heavy to moderate
events, DAYMET shows a strong tendency towards higher frequency
over the eastern regions of the CONUS. Also, the CPC product shows an
increasing pattern over the western portion of the CONUS. For the rest of
the datasets, changes can be detected over the SW region of the country
with a negative trend.

Considering changes in the frequency of moderate events, CPC shows
an increasing trend over the western parts of CONUS, while DAYMET
displays an increasing pattern in the eastern parts. The pattern of trends,
however, differs when we employ PERSIANN-CDR and MSWEP datasets,
where SW and SGP show downward trends and parts of NE, NGP, and SE
reveal increasing patterns. MERRA-2 and CHIRPS show limited loca-
tions with statistically significant trends. Focusing on the moderate to
low precipitation events, the results are similar to the observed changes
for the moderate events except for the CHIRPS and MERRA-2 datasets.
CHIRPS shows a statistically decreasing trend over SGP and SE. The
decreasing signal is more pronounced in the MERRA-2 dataset, where it
demonstrates a widespread tendency toward a decrease over the MW,
SW, SGP, SE, and NW. These results suggest that there is a strong

Extreme Heavy to moderate
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disagreement between different precipitation datasets in terms of the
frequency of occurrence of events with different intensities. It is
important to consider that while the datasets share some similarities,
there are no guarantees that products should appear similar among all
possible evaluation metrics. In general, the algorithms used in the pre-
cipitation products are very sophisticated and nonlinear, making it hard
to find a clear relationship between input data and the outcoming
product (e.g., Reichle et al., 2017; Ashouri et al., 2015). For instance,
CPC and MERRA will often show similarities because, as already
mentioned, CPC is used in the development of the MERRA dataset.
Additionally, DAYMET also uses rain gauge information to produce
precipitation estimates. Therefore, these data sets will frequently appear
to perform similarly under certain metrics. However, differences in
model features, interpolation techniques, spatial resolution, and gauge
network distribution can cause significant differences between datasets
when evaluated under certain metrics.

To analyze the importance of the above-described changes in the
frequency of precipitation events, we investigate the relative contribu-
tion of each of the four precipitation categories to the total annual
precipitation over the 1983-2017 period (Fig. 3 and Table S1). Com-
parisons of the relative contribution of the quantity of precipitation
events that fall under each of the four precipitation categories to the
total annual precipitation for all the datasets show largely good agree-
ments in spatial pattern. The highest percentage of the events that
contributed to the total annual precipitation is the extreme precipitation
events with about 34% of total precipitation (events greater than 90th
percentile) over the 1983-2017 period. Heavy to the moderate event is
the next category that shows the highest relative contribution to total

Moderate Moderate to low

CPC

DAYMET

CDR

MERRA CHIRPS MSWEP PERSIANN-

0 10 20 30 40 50 0 10 20

%
30

20

Fig. 3. Relative contribution of the four precipitation categories to the total annual precipitation over the 1983-2017 period. Color bars display the percentage [%]
of the contribution. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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annual precipitation with about 24%, followed by moderate (with about
22%) and moderate to low events (with about 11%). Any possible
changes in the frequency and intensity of precipitation events can have
significant water resources implications. Any increase in the frequency
of extreme precipitation events can lead to the occurrence of severe
flooding and landslide events (Piccarreta et al., 2013; Ragno et al.,
2018), and hence, extreme events have been investigated in more detail
in the literature. Our results also show pronounced changes in
non-extreme values that can have significant societal impacts, especially
when preceded or followed by other events (Zscheischler et al., 2020).
Moderate to heavy precipitation events, for example, can also cause
flooding if preceded by precipitation events that elevated soil moisture
to the saturation level (AghaKouchak et al., 2018; Sharma et al., 2018).
Changes in low precipitation values can also have impacts on low flows
and the duration and intensity of hydrologic droughts.

In addition to the detection of temporal changes in the magnitude
and frequency of precipitation distribution, we investigate the possible
temporal changes in the annual total precipitation (Fig. 4). All datasets
are in general agreement that the annual total precipitation over SW
observed statistically significant negative trends. Among these datasets,
PERSIANN-CDR, CPC, and MERRA-2 show the strongest spatial pattern
over this region. Other than PERSIANN-CDR, all other datasets show a
positive trend over the NE and some parts of the NGP. These positive
changes are stronger when we use DAYMET and CHIRPS datasets. These
two datasets show a large region over NE with an increasing change in
the total annual precipitation. MERRA-2, CPC, and MSWEP show a
decreasing pattern in the total annual precipitation over parts of NW.
This result shows that there is a relatively higher spatial pattern agree-
ment between different precipitation products in terms of observed
changes in total annual precipitation. The relatively larger agreement
between the datasets can also be noticed from the climatology of pre-
cipitation rates (Fig. S3) where the spatial patterns of average precipi-
tation is almost similar for all datasets. Moreover, the average
precipitation rates over CONUS are about 2.12, 2.4, 2.33, 2.1, 1.97, and
2.13 (mm/day) for CPC, DAYMET, PERSIANN-CDR, MSWEP, CHIRPS,
and MERRA, respectively, for 1983-2017. This result shows a good
agreement between these datasets in terms of climatological average
precipitation rates.

4. Discussion and conclusion

Understanding potential changes in precipitation characteristics are
essential for risk assessment and water resources planning and

DAYMET
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management. Hence, changes in the mean and extremes of this impor-
tant element of the hydrological cycle have been studied extensively in
recent years. The accuracy and skill of these analyses, however, tightly
depend on the available high accuracy, spatial and temporal resolution
precipitation datasets. The goal of this study was to provide a more
comprehensive picture of possible changes in precipitation character-
istics based on different data sets to not only understand how precipi-
tation has changed but also how different data sets represent
precipitation changes. We used 6 widely used gridded precipitation
products to investigate whether or not the distribution of precipitation is
changing across the Contiguous US (CONUS). We examined the agree-
ments and discrepancies between these precipitation products in terms
of observed changes in the magnitude, frequency, and total annual
precipitation from 1983 to 2017. The analyses and findings of this study
can be summarized as:

1 We employed the Mann-Kendall test to investigate potential changes
in the magnitude of different annual precipitation quantiles (Q2o,
Qs0, Q70, Qg90, Qmax)- All datasets are in agreement that relatively
small number pixels show statistically significant trends in the
magnitude of annual precipitation maxima, although they should not
be ignored. From the relatively small number of pixels that showed
statistically significant changes in the magnitude of heavy precipi-
tation, the majority of them revealed a positive trend for most of the
datasets. This finding is in accordance with previous studies which
also did not identify widespread evidence of statistically significant
changes in the magnitude of annual precipitation maxima, although
statistically non-significant trends were more conspicuous (Donat
etal., 2013; Westra et al., 2013; Barbero et al., 2017; Mallakpour and
Villarini, 2017; Nguyen et al., 2018; Papalexiou and Montanari,
2019; Sun et al., 2021; Fig. S4). It is important to emphasize that
trend analysis depends on statistical methods, timeframe, and data-
sets (Papalexiou and Montanari, 2019). For instance, previously
several studies have shown that annual maxima sampling techniques
may dampen the signal of the trend by mixing winter and summer
storms which may weaken the underlying trend signal (e.g., Mal-
lakpour and Villarini, 2017; Barbero et al., 2017; Wasko et al., 2016;
Contractor et al., 2021).

2 When we examined the possible changes in percentiles of the pre-
cipitation distribution other than annual maxima, we found wide-
spread discrepancies among products. All datasets showed that the
magnitude of precipitation is changing, but they diverged in the sign
of this change. DAYMET, PERSIANN-CDR, MSWEP, and CHIRPS

PERSIANN-CDR

CHIRPS

B Positive trend

B Negative trend

Fig. 4. Trends in the annual total precipitation over the 1983 to 2017 period. Blue (red) pixels show regions with statistically significant increasing (decreasing)
trends at the 5% level. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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showed that decreasing patterns are more detectable across the Q2,
Qs0, Q70, and Qg percentiles, while CPC and MERRA-2 showed a
more dominant increasing pattern. The widespread disagreement
between datasets indicates that we cannot confidently comment on
the sign and significance of the change in precipitation at different
quantiles.

3 To analyze the changes in the frequency of precipitation events, we
used the peak-over-threshold (POT) sampling technique and classi-
fied precipitation events into four categories: extreme precipitation,
heavy to moderate precipitation, moderate, and moderate to low
precipitation. We employed Poisson regression to detect trends in the
number of events in each precipitation category. The degree of
discrepancy among studied products was even larger when we
analyzed the changes in the frequency of precipitation events with
different intensities, as compared to the analyses of magnitudes.
While regionally different, CPC and DAYMET showed a large area
with positive changes in the frequency of extreme, heavy to mod-
erate, moderate, and moderate to low precipitation events across the
CONUS. PERSIANN-CDR showed negative trends over SW, especially
more pronounced in the frequency of extreme and heavy to moderate
precipitation events. Similar but less marked, MSWEP showed
negative trends over SW and NW for all precipitation categories.
CHIRPS and MERRA-2 showed a relatively smaller number of pixels
with statistically significant changes for all categories other than
moderate to low events where a large region with negative trends
can be located over the southern part of CONUS.

4 We investigated the relative contribution of the four precipitation
categories to the total annual precipitation for each dataset. While
regionally different, all datasets similarly showed that the strongest
contributions to the total annual precipitation are the extreme pre-
cipitation events followed by heavy to moderate, moderate, and
moderate to low events, respectively. This highlights the need to
further investigate non-extreme precipitation events to unravel po-
tential non-extreme but “unexpected” or “unusual” patterns.

5 We also examined possible temporal changes in the total annual
precipitation. For SW, all the datasets were in an agreement that a
pronounced negative trend in the total annual precipitation can be
identified. For NE, all datasets, other than PERSIANN-CDR, showed a
clear spatial pattern with overall increasing trends in total annual
precipitation. In general, there is a relatively high agreement be-
tween datasets in terms of the sign of trend and regions that the total
annual precipitation has changed through time over the 1983 to
2017 period.

Overall, we found a strong disagreement between the gridded pre-
cipitation datasets in determining changes in the magnitude and fre-
quency of precipitation events over the CONUS. Our findings are in
agreement with that of Sun et al. (2018) that pointed out a relatively
high discrepancy between different precipitation datasets in the esti-
mation of the magnitude of precipitation. This can be related to different
data sources, quality control processes, algorithms, rain gauge density,
and algorithmic differences in resolving topographic complexity (Beck
etal., 2019; Sun et al., 2018). The degree of discrepancy among studied
products was smaller when investigating the relative contribution of
various sections of the precipitation distribution to the total annual
precipitation, the trend in total annual precipitation, and the clima-
tology of precipitation. Beck et al. (2019) indicated that estimating
climatological characteristics of precipitation are relatively simpler than
estimating daily precipitation dynamics.

Trend analysis of hydroclimatological data depends on statistical
methods, timeframe, and datasets (Papalexiou and Montanari, 2019).
Here, we used a common timeframe (1983-2017) and consistent sta-
tistical methods with different datasets to investigate discrepancies be-
tween precipitation datasets. Our goal was not to evaluate which of
these datasets faithfully follow the change in the precipitation charac-
teristics as that from in situ measurements, rather we investigated the
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discrepancy between available datasets. For this reason, we did not as-
sume one is the best product to be used as the reference dataset.
Gauge-based datasets are commonly referred to as the “ground-truth”
but suffer from sparse gauge density over unpopulated and/or impass-
able areas and require corrections for measurement errors (e.g., wind,
instrumental, and evaporation loss corrections; Huffman et al., 1997; Xie
and Arkin, 1997; McMillan et al., 2012; Newman et al., 2015). In
addition, extending point observations to a gridded precipitation dataset
with the means of sophisticated interpolation techniques introduces an
additional source of uncertainty, especially in data-scarce regions that
are dominated by orographic variability (Timmermans et al., 2019;
Lundquist et al., 2010). Therefore, the resolution and spacing of the
grids, the treatment of elevation and interpolation techniques, along
with concentration and quality of gauge data can contribute to un-
certainties associated with gauge-based products (Durre et al., 2010;
Sevruk et al., 2009; Viney and Bates, 2004). Radar networks provide
attractive alternatives for rain gauge networks due to their continuous
rainfall measurements with high spatiotemporal resolutions. Many re-
searchers used radar datasets (e.g., Stage-IV; Nelson et al., 2016) as the
reference to evaluate precipitation products (Beck et al., 2019). How-
ever, radar datasets generally are not suitable tools to perform trend
analysis and climatic evaluations, since they have a relatively shorter
length of records (Habib et al., 2012). Furthermore, radar networks do
not cover remote areas as well as ocean regions. Satellite-based datasets
offer global coverage and high temporal and spatial resolutions; how-
ever, they are not a direct measurement of precipitation by capturing
radiation from a column of the atmosphere (Beck et al., 2019; Sadeghi
et al., 2020, 2021). Consequently, their accuracy depends on the com-
plex algorithms and the availability of the rain gauges for calibration
(Villarini and Krajewski, 2007). Therefore, they are subject to un-
certainties associated with the relationship between observed atmo-
spheric attributes and precipitation rates. The newest source of
precipitation products are reanalysis datasets, which also based on their
observational data, assimilation method, and attributes of the incorpo-
rated numerical model, may present different rainfall patterns and
trends (Bukovsky and Karoly, 2007; de Leeuw et al., 2015). Timmer-
mans et al. (2019) highlighted that reanalysis products are sensitive to
the source data assimilated as well as the method of data assimilation.
This is because most of the reanalysis products are based on model
simulation not completely based on gauge observations (Donat et al.,
2014; Bador et al., 2020). All the above-mentioned sources of un-
certainties for different precipitation sources prevents naming a dataset
as the most reliable precipitation product.

Despite their shortcomings and discrepancies, the gridded precipi-
tation datasets with a high spatiotemporal resolution are among the best
available resources to gather insights about climate variability and
changes. Therefore, any comprehensive precipitation trend analysis
should be based on multiple datasets and requires careful interpretation
of the findings. Currently, there is no standard protocol for selecting an
appropriate precipitation dataset (or a set of observations) for different
hydroclimatological studies. Moreover, currently, there is no standard
protocol for the developers in terms of data file format, spatial and
temporal resolutions, and supplementing easy-to-follow metadata that
can document the necessary information needed by the user to make
sure they are using a correct precipitation product for their needs
(Timmermans et al., 2019; Roca et al., 2019). We note, however, current
efforts to bridge this gap. For instance, recently, the Rainfall Estimates
on a Gridded Network (REGEN; Contractor et al., 2020) dataset was
released by a collaboration between the University of New South Wales
(UNSW), GPCC, and NOAA’s National Center for Environmental Infor-
mation (NCEI). REGEN is a global land-based daily precipitation dataset
at 1-degree resolution from 1950 to 2016 and provides easy access
metadata that documents the number of observations available in each
grid, standard deviation, interpolation error, and, based on the un-
certainties, they provided a data quality mask (Contractor et al., 2020,
2021). Also, the Frequent Rainfall Observations on GridS (FROGS)
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database by Roca et al. (2019) documented one of the few efforts to
produce a database that contains several different satellites,
ground-based and reanalysis gridded daily precipitation datasets on a
common grid (1° x 1°) and format (netCDF-4) to facilitate intercom-
parison of datasets and evaluation exercises. While substantial progress
has been made, we argue that the precipitation community needs to
further address the issue of inter-data variability when examining
observed changes in precipitation. Finally, we leave it to the researchers’
judgment to make sure the detail and accuracy of the precipitation
datasets are suitable for their case study and area of interest.

Data availability

The data that support the findings of this study are openly available
from:

Data Set Website

CPC US https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
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PERSIANN- https://chrsdata.eng.uci.edu/
CDR

MSWEP V2.2 http://www.gloh2o0.0rg/

CHIRPS V2.0 https://data.chc.ucsb.edu/products/CHIRPS-2.0/

MERRA-2 https://disc.sci.gsfc.nasa.gov/datasets?keywords=%22MERRA-2

%22&page=1&source=Models%2FAnalyses%20MERRA-2
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