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ABSTRACT
We solve a long-standing challenge to the integrity of votes cast

without the supervision of a voting booth: “improper influence,”
which we define as any combination of vote buying and voter coer-

cion. In comparison with previous proposals, our system is the first

in the literature to protect against a strong adversary who learns

all of the voter’s keys—we call this property “extreme coercion re-
sistance.” Our approach allows each voter, or their trusted agents

(which we call “hedgehogs”), to “nullify” (effectively cancel) their

vote in a way that is unstoppable and irrevocable, and such that

the nullification action is forever unattributable to that voter or

their hedgehog(s). We demonstrate the security of VoteXX in the

universal composability model. Additionally we provide concrete

implementations of sub-protocols—including inalienable authenti-

cation, decentralized bulletin boards, and anonymous communica-

tion channels—that are usually left as abstract assumptions in the

literature.

As in many other coercion-resistant systems, voters are autho-

rized to vote with public-private keys. Each voter registers their

public keys with the Election Authority (EA) in a way that convinces

the EA that the voter has complete knowledge of their private keys.

Voters concerned about losing their private keys can themselves,

or by delegating to one or more hedgehog(s), monitor the bulletin

board formalicious ballots cast with their keys, and can act to nullify

these ballots in a privacy-preserving manner with zero-knowledge

proofs.

In comparison with previous proposals, our system makes fewer

assumptions and protects against a stronger adversary. For example,

VoteXXmakes none of the following assumptions made by previous

systems: the voter must complete registration before being coerced;

the election will not close before the voter can cast a ballot after

coercion; the voter needs to generate a fake password to evade

coercion; and the voter knows an honest Election Authority official.
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1 INTRODUCTION
For over 150 years, the voting booth helped prevent voters from

being bribed and coerced. For example, a controlling family member

might coerce a voter by observing them vote, if votes are cast

online from home or by mail. The booth, however, is becoming

untenable as information technology provides the means for people

to vote more frequently and conveniently without booths, including

using combinations of mailed paper forms and online interactions.

Moreover, growing use of technology facilitates vote buying and

voter coercion with electronic payments, live video streaming from

voter phones, and various types of online threats.

Three daunting challenges make Internet voting difficult: (1) The

lack of a secure physical voting precinct facilitates improper influ-

ence, including vote selling and coercion. (2) Malware on a voter’s

device (e.g., phone) might undetectably modify votes and spy on

the voter. (3) Determined adversaries might try to launch an online

attack, including causing outages. Of these challenges, the most

elusive has been mitigating improper influence.

We present a solution to the problem of improper influence in
voting without booths that enables any voter to “nullify” (effectively
cancel) their vote in a way that is unstoppable, irrevocable, and

forever unattributable to that voter. Our approach allows each voter

to recruit one or more trusted agents, which we call “hedgehogs.”
The voter, or their hedgehog(s), can nullify the vote by proving
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Table 1: Properties of related work for resisting improper influence in online end-to-end (E2E) verifiable elections. Properties are
fully present ( ), partially present ( ), or not present ( ). It is best to receive for each property. Decoy ballots act indirectly
against influence ( ❡q ).
Influencer: System resists coercion when the influencer: (0) acts before/during registration; (1) colludes with the EA; (2) colludes with

hardware manufactures; (3) acts at any time; (4) learns all information stored by the voter, including all keys required by the protocol (i.e.,
mitigates extreme coercion); (5) learns every action taken by the voter. Other: (6) voter can undo coercion undetectably; (7) system is

inexpensive; (8) system has low cognitive burden; (9) system has security proof (none/game-based/UC).

0 1 2 3 4 5 6 7 8 9

Type Example Influencer Other
Baseline (coercible) Helios (2008) [2]

Fake credentials JCJ (2005) [27]

Masked ballots WeBu09 (2009) [43]

Panic passwords Selections (2011) [10]

Decoy ballots RS-Voting (2012) [8] ❡q ❡q
Secure hardware AOZZ (2015) [3]

Re-voting (E2E) VoteAgain (2020) [32]

Hedgehogs VoteXX (2022)

knowledge of the voter’s private key using a zero-knowledge proof
(ZKP)without revealing the private key. This paper provides details
for these ideas, which we introduced in 2022 [1].

Hedgehogs can be recruited before or during the election, from

the voter’s acquaintances or using a service selected on reputation.

Hedgehogs can prove to the voter that they perform their services

correctly. We call a “coercer” any entity who obtains a voter’s key

by coercion or bribery, whereas a “hedgehog” is an entity the voter

trusts and to whom the voter voluntarily provides the key to protect

the voter against coercers.

We accept that certain types of coercion are impossible to prevent

in practice: a coercer can generally block a voter from registering for

an election, and if a coercer posses all knowledge and attributes of

the voter, they cannot be distinguished from the voter. Our approach

differs from previous approaches with end-to-end verifiability (see

Section 2)—e.g., revoting, fake credentials, and decoy ballots—by

protecting against what we believe to be the strongest possible

adversarial model that can be realistically protected against. Specif-

ically we assume adversaries can learn all voter secrets and observe

all voter interactions with the system, excluding interactions with

the hedgehogs which distinguish the voter from the coercer. We

call this protection “extreme coercion resistance.”
An essential component of our system is ensuring voters actually

know their private keys at registration time. Recent work by Kelkar

et al. [28] argues that proofs of knowledge, signing challenge mes-

sages, and other techniques that often appear in voting systems do

not rule out the possibility that private keys are encumbered by an

adversary (e.g., using hardware enclaves) so that voters can access

enough of the key to satisfy the protocol without actually knowing

it. Their alternative is “complete knowledge.” Registration in our

system contains a probabilistic test that the voter has complete

knowledge of their secret key.

Some may yearn for an ideal world in which every voter can vote

and vote their desires, but, unfortunately, the imperfect reality is

that, in any system, a powerful coercer can always prevent a voter

from voting. Nullification is a useful form of coercion resistance,

and VoteXX achieves this form of coercion resistance, which is the

best possible given the constraints of reality. There is no widely

agreed upon well-defined notion of coercion resistance, and some

authors make the weak adversarial assumption that coercers cannot

prevent voters from voting. Our work explores what can be done

under very strong adversarial assumptions.

This paper presents an architecture, design, implementation, and

universal composability (UC) [7] security proof (see Appendix C)

of our voting system, called VoteXX. The main feature of VoteXX

is that it protects against extreme coercion, which we formally

define in terms of UC ideal functionality (see Section 3.2). Our

VoteXX protocols include comprehensive mechanisms to handle

all of the security requirements, including, for example, inalienable

authentication, which many other voting systems simply assume

without providing constructions. We describe the user experience

for several settings, which experiences are intuitive and require few

steps. We have implemented the entire VoteXX system and made

all of our sourcecode publicly available as an artifact (see Section 7).

Performance analysis and benchmarking show that the system is

highly practical (see also Section 8.4).

Our primary contributions are: (1) We introduce the new no-

tions of nullification and hedgehogs, and present a new solution

to improper influence based on them. (2) We give cryptographic

protocols realizing nullification, and show how nullification can

be applied to several voting settings, including vote-by-mail and

online. (3) We present a new fully-decentralized scalable voting

system, VoteXX, including registration, voting, nullification, and

tallying. (4) We describe our implementation of VoteXX, which uses

an anonymous communication system (ACS) for registration, vote
casting, and other communication. (5) We provide a formal state-

ment and UC proof of VoteXX’s ballot secrecy, coercion resistance,

and tally integrity. In addition, while other systems complicate reg-

istration and vote casting, our approach allows simple registration

and vote casting by keeping nullification separate. Consequently,

our system can be used as an overlay in conjunction with other

approaches, such as re-voting and decoy ballots.

In the rest of this paper, we compare our approach with those

of previous work, detail our adversarial model, give our problem

specification, show the VoteXX architecture, define the VoteXX
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cryptographic protocols, describe voter interfaces for several set-

tings including vote-by-mail and online, mention possible exten-

sions to VoteXX, sketch the VoteXX implementation and discuss its

performance, and explain the significance of our work. Appendix C

gives our UC proofs.

Throughout, we use the terms “coercion” and “improper influ-

ence” synonymously.

2 COMPARISON TO PREVIOUS WORK
Coercion resistance guarantees that each voter may vote freely.

Informally, a voting system is coercion resistant if and only if no

ballot is “counted as coerced,” that is, no voter can prove to any

coercer that the voter cast a counted ballot according to the coercer’s

instructions. As explained in Sections 3.2 and C.2, we uniquely adopt

a very strong form of coercion resistance, which we call extreme
coercion, in which the coercer learns all of the voter’s keys. By

contrast, other researchers assume only weaker forms of coercion,

such as semi-honest coercion (receipt-freeness) inwhich the the voter
must follow the voting protocol (see Table 1), or active coercion in

which the voter can interact with the coercer during the voting

protocol (see Table 1). Some researchers aim only to detect coercion

rather than to mitigate it (e.g., Caveat Coercitor [20]).

In an unpublished manuscript, Smyth [39] surveys four defini-

tions of coercion resistance and finds that “coercion resistance has

not been adequately formalized.” According to Smyth, three of the

definitions are too weak, and the general definition by Küsters [30]

is complex and too strong. His observations are controversial but

demonstrate that settling definitions is still an elusive goal. Similarly,

there remains some debate on the definition of receipt freeness [15]

Previous work often makes strong assumptions: the voter knows

an honest Election Authority (EA) official [11]; the voter needs a

special device to evade coercion [4, 5, 11, 27]; the voter needs to

performmental arithmetic to evade coercion [43]; the voter needs to

generate a fake password to evade coercion [10, 16]; the voter must

complete registration before being coerced [27]; the electionwill not

close before the voter can cast a ballot after coercion [32, 40, 42]; and

the probability of successful coercion is lowered by flooding voters

with decoy ballots [8]. VoteXX makes none of these assumptions.

We do assume the voter can use an untappable channel, as all
coercion-resistant systems must—if an adversary can always in-

fluence the voter, they are indistinguishable from the voter [24].

Some systems establish windows for this channel, such as during

registration, or after coercion occurs. VoteXX is as flexible as it

could be. The channel is used once or twice between the voter and

each hedgehog (who can be any person in the world): first to induct

the hedgehog (any time before the end of the election), and possibly

second to signal the hedgehog (after coercion and before the end

of the election).

VoteXX guarantees that the voter is able to nullify their coerced

vote. Unlike some systems, in VoteXX, the voter cannot change

their coerced ballot selection. VoteXX can be used as an overlay,

providing an additional coercion-resistant mechanism to others

already in place. Thus, VoteXX can support re-voting (as outlined in

our protocol description): if a voter were unable to re-vote (due to

coercion at the end of the election), nullification would be a failsafe.

Similarly, VoteXX can be used together with decoy ballots.

Table 1 compares our solution to previous proposed mechanisms.

We do so by scoring each mechanism with regard to five properties

of the influencer and five other properties.We state each assumption

and property positively, meaning it is better to receive than .

Appendix B explains our assumptions and the basis for our scoring.

In any system, an adversary could always prevent a voter from

voting. In this sense, VoteXX achieves an optimal solution. Further-

more, we conjecture, that for Column 6 in Table 1, no system that

resists extreme coercion can also undo coercion undetectably.

3 SYSTEM OVERVIEW
In VoteXX, each voter has a public-private key pair for “YES” votes,

and another such pair for “NO” votes. Without revealing their

private keys, each voter registers their public keys with the EA.

Each voter may share their keys with one or more hedgehogs.

During nullification, the voter, or one or more of their hedgehog(s),

can interact with the ACS to nullify a vote by proving knowledge

of one of the voter’s private keys via a ZKP. We describe a fully

decentralizable implementation of VoteXX, including its public

bulletin board (BB), which could be implemented on a blockchain.

3.1 Adversarial Model
The adversary could be anyone—including a voter or an EA trustee,

located close to or far away from their target. The adversary might

be covert or overt. The adversary’s goal might include any or all

of the following: tamper with the tally, influence a voter’s ballot

choice through coercion, learn how a voter voted, or disrupt or

discredit an election. The adversary can engage in coercion at any

time, including before or during voter registration.

We assume a secure ACS that protects against traffic analysis.

Examples include TOR with hidden services [41], I2P [25], xx net-

work [45], and Oxen [35]. We further assume that the adversary

cannot defeat standard cryptographic functions and protocols, in-

cluding encryption, digital signatures, cryptographic hashing, pseu-

dorandom number generation, and ZKPs. We assume an untappable

channel between the voter and their hedgehog(s), as explained in

Section 2

3.2 Ideal Functionality
A foundational component of our UC proof (Appendix C) is the

voting ideal functionalityF𝑛,𝑘,𝑡
Vote , whichwe now introduce and define

in Fig. 1.

The ideal functionality. The voting ideal functionality F𝑛,𝑘,𝑡
Vote

has four phases: preparation, registration, voting, and tally. In the

voting phase, F𝑛,𝑘,𝑡
Vote receives ballots from the voters and records

them. In particular, F𝑛,𝑘,𝑡
Vote accepts a special type of request: “nullify.”

Upon receiving a nullify request, the former choice of the voter will

not be counted in the final tally.

Extreme coercion. In our UC model, the adversary has the

power of extreme coercion. When the adversary A sends an “ex-

treme coercion” request to a voter, V𝑖 , V𝑖 will hand his state to A
and follow A’s instructions, but V𝑖 can still communicate with his

hedgehog(s) H𝑖 secretly.

Connection with the properties. It is easy to see that our UC

definition implies the basic properties of a secure voting scheme.
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The functionality F𝑛,𝑘,𝑡Vote interacts with a set of voters V :=

{V1, . . . ,V𝑛 }, a set of hedgehogs H := {H1, . . . ,H𝑛 }, a set of

trustees T := {T1, . . . , T𝑘 }, the Election Authority (EA), and the ad-

versary S. Internally it keeps variables status, ballots, 𝜏 , and J. Let
Pcor be the set of corrupted parties.

Initially, set status := 0, ballots := 𝜏 := J := ∅.

Preparation:
• Upon receiving (Start, sid) from the trustee T𝑗 ∈ T , set
J := J ∪ {T𝑗 }, and send a notification (Start, sid, T𝑗 ) to the

adversary S. (If status ≠ 0, then ignore the request.)

• Upon receiving (Begin, sid) from the EA, if | J | < 𝑘 ignore

the request. Otherwise, send a notification (Begin, sid) to the

adversary S, and set status := 1. (If status ≠ 0, then ignore

the request.)

Registration:
• Upon receiving (Register, sid) from the voter V𝑖 , send

(Register, sid,V𝑖 ) to the adversary S. (If status ≠ 1, then

ignore the request.)

• Upon receiving (EndReg, sid) from EA, send (EndReg, sid)
to the adversary S and set status := 2. (If status ≠ 1, then

ignore the request.)

Voting:
• Upon receiving (Vote, sid, 𝑥 ) from a voter V𝑖 ∈ V , set

ballots[𝑖 ] := 𝑥 (𝑥=YES/NO), and send (VoteNotify, sid,V𝑖 )
to the adversary S. (If status ≠ 2, then ignore the request.)

• Upon receiving (EndVote, sid) from EA, compute

𝛿 ← TallyAlg(ballots) (Cf Fig. 6). Send (PreTally, sid, 𝛿 ) to
the adversary S. Set status := 3. (If status ≠ 2, then ignore

the request.)

• Upon receiving (Nullify, sid) from a voter V𝑖 ∈ V or V𝑖 ’s

hedgehog H𝑖 , set ballots[𝑖 ] := nullify. Send
(NullifyNotify, sid) to the adversary S. (If status ≠ 3, then

ignore the request.)

Tally:
• Upon receiving (Tally, sid) from EA, compute

𝜏 ← TallyAlg(ballots) (Cf Fig. 6). Send (Tally, sid, 𝜏 ) to the

adversary S. (If status ≠ 3, then ignore the request.)

• Upon receiving (Result, sid) from any party 𝑃 , if 𝜏 := ∅,
then ignore the request, otherwise return (Result, sid, 𝜏 ) to
the requester.

Functionality F𝑛,𝑘,𝑡
Vote

Figure 1: Functionality F𝑛,𝑘,𝑡
Vote .

First, F𝑛,𝑘,𝑡
Vote does not leak the ballot of a voter to anyone else, so it

implies ballot privacy. Second, as mentioned above, the ideal decep-

tion is able to nullify the ballot and the coercer cannot know if the

coercion was successful, so our definition implies coercion resis-

tance. Third, F𝑛,𝑘,𝑡
Vote ensures that the tally procedure is performed

correctly, so it implies verifiability.

3.3 Problem Specification
Our main requirement is a coercion-resistant remote voting sys-

tem that achieves a level of security at least as strong as that for a

precinct-based in-person voter-verifiable paper secret-ballot sys-

tem. The system must maximize the ability to prevent or remediate

serious failures by eliminating undetectable attacks, preventing

scalable “wholesale” attacks, and making “retail” attacks as diffi-

cult as possible. The key requirements, specific to our context, are

coercion resistance, malware resistance, and availability.
Coercion resistance. An adversary cannot be convinced that the

voter’s ballot is “counted as coerced,” that is, counted the way the

coercer instructed the voter to vote. This property is related to

ballot secrecy but we assume that the adversary can watch the voter

vote or vote for them. The adversary, however, cannot be sure how

that vote is counted, so they have no incentive to threaten or pay

the voter to vote a certain way. While rarely a significant issue

in polling place elections, this problem is much more important

in uncontrolled environments such as absentee voting or Internet

voting.

Malware resistance.Anymodification of the hardware or software

that changes the result must be detectable. This property is similar

to software independence but with the caveat that a version of the

software exists without the undetected change before or after the

election. In other words, the adversary does not, for all time, control

everything read or written to all devices used by the voter for voting.

Availability. The system must not have single points of failure. It

should resist denial of service attacks, and no single entity should

be able to prevent completion of the election.

3.4 System Architecture
As shown in Fig. 2, we describe VoteXX in terms of the following

entities and elements. There are 𝑛 voters 𝑣1, 𝑣2, . . . , 𝑣𝑛 who interact

with a publicly readable BB, which is a distributed ledger such as

a blockchain. The writing interactions take place via an ACS. The

ACS disassociates the device, physical location, and other associated

metadata by all clients posting to the BB, protecting the metadata

of voters and hedgehogs, as well as sensitive election authority

equipment. Read operations can take place through the ACS or via

a direct interaction with the BB. Each voter may have one or more

trusted hedgehog(s). Each hedgehog interacts with the BB via the

ACS. The EA comprises a set of independent and non-colluding

(up to a threshold) entities called trustees. The trustees of the EA
are authoritative over registration, voting, and tallying. The EA

can read and write to the BB via the ACS. The EA is a multiparty

computation; it cannot compute any tally (preliminary or otherwise)

without cooperation of the specified threshold of its members. The

system includes a set of auditors who can read from the BB and

verify the correctness of operations performed by the EA and via

the ACS.
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Voter(s)

Election

Authority

Bulletin Board Auditor(s)

Hedgehog(s)

ACS

ACS

Figure 2: VoteXXArchitecture. Arrows represent information
flows (i.e., read/write) between system entities. Thick lines
represent communications that take place over the ACS. The
EA can write to the BB directly or via the ACS. Voters submit
(encrypted) ballots over the ACS, read from the BB, and share
their secret key over an untappable channel (dotted) to their
hedgehog(s). The hedgehogs submit a ZKP to nullify the
corresponding vote(s) over the ACS. Auditors read from the
BB.

4 PROTOCOLS
Protocol Boxes 1–3 explain the four main stages of the VoteXX

protocols: registration, voting, and tallying (including nullification).

Section 5 explains nullification in more detail.

The VoteXX protocol assumes a number of cryptographic primi-

tives that are common in the voting literature. All operations are

performed in the same elliptic curve group, where the decisional

Diffie-Hellman (DDH) problem (and by extension, the discrete log-

arithm problem) is hard. Digital signatures are performed with

the Schnorr signature scheme. Encryption is performed with ElGa-

mal [14], which can be augmented with distributed key generation
(DKG) and threshold decryption (for𝑚 out of 𝑛 key holders [37]).

We use standard Σ−Protocols to prove knowledge of discrete log-
arithms (Schnorr [38]), knowledge of representations (Okamoto [34]),

and knowledge of Diffie-Hellman tuples (Chaum-Pedersen [9]),

which also corresponds to ElGamal re-randomizations and decryp-

tions. We also use techniques to allow the trustees to compute

jointly, verifiably (i.e., produce Σ−Protocol proofs), and privately

on ElGamal ciphertexts the following: (i) a random shuffle of cipher-

texts (Verificatum), and (ii) the evaluation of an exclusive-or (XOR)
operation based on its logic lookup table (mix and match [26]).

Protocol 1 describes registration. Registration can be re-opened

by re-running set-up. Each voter needs to carry out registration only

once, and the resulting keys can be reused in subsequent elections.

Protocol 1 is one way of performing registration, but any method

that results in a posting of the voter’s public key (in encrypted

format) is fine. A simple way is for the voter to have the private key

(full entropy, not based on a passphrase) on a hardware device and

provide the public key. One problem that we tackle in Protocol 1

is providing assurance that the voter actually knows their private

key—and it is not, for example, supplied by a coercer. This assurance

is one of two properties of so-called inalienable authentication. The

other property is that the adversary cannot impersonate the voter.

Other authors do not provide concrete constructions for inalienable

authentication; some simply tacitly assume it in their proofs of

coercion resistance. In VoteXX, we provide a concrete instance

of the first half of an unalienable authentication protocol, and we

present a voting protocol that does not need the second half. That is,

we care only that the voter knows their secret key—if the adversary

also knows it too, we can still achieve coercion resistance. There are

significant advantages in authentication strength with in-person

registration, but other choices can be made.

Voting performs a straightforward signature using a registered

key (see Protocol 2). At the end of registration, voter keys are

unlinked from their identity. Until the election closes, votes are

encrypted to preserve the secrecy of the tally, and ballots are submit-

ted through the ACS to unlink them from the voter communication

metadata.

5 NULLIFICATION
We explain the nullification protocol in detail. First, we present an

overview. Second, we give the construction of the nullification ZKP

and propose a novel succinct ZKP with 𝑂 (log𝑛) proof size, where
𝑛 is the number of total ballots.

5.1 Overview
The tallying process (Protocol 3) includes our novel nullification

technique. Consider a list of public keys that voted YES and assume

the hedgehog wants to nullify one of them. It cannot point out

which key it wants to nullify or the coercer would know the voter

is working with (or is personally acting as) a hedgehog to intervene.

So the hedgehogmust hide its flag (J1K) in a set of false flags (J0K) for
each YES key in the tally. We could allow the hedgehog to choose a

fixed-sized subset of 𝛽 keys at random to serve as an anonymity

set, which improves performance but sacrifices full anonymity

(cf. [10]). For simplicity, the protocol boxes do not explain that, for

nullification, we use exponential ElGamal [14] instead of standard

ElGamal used in registration and voting (under the same election

master key).

If a hedgehog flags a key with (J1K), it must know the associ-

ated private key; otherwise, any hedgehog could nullify any vote.

However, if it submits a false flag (J0K), it does not need to know

the associated key. Anyone can serve as a dummy hedgehog by

submitting a full set of false flags. To enforce these constraints, the

hedgehog must construct a ZK proof to prove that: [for each flag,

(it is an encryption of 0) or (it is an encryption of 1 and I know skno
corresponding to this pkno)]. We will describe the NIZK proof for

the above statement in Section 5.2.

Once a hedgehog computes and submits a set of flags (along

with the NIZK proof Π), Protocol 3 simplifies the description by

having the EA wait to perform Steps 1–2 after the nullification

period. In practice, it should not wait—the process is quadratic

work (number of hedgehogs times number of voters) and subject to

“board-flooding” attacks [29]. The EAmust process the nullifications

as they arrive; that is, use “concurrent authorization” [16]. Doing

so is possible. When a new set of flags arrives, the EA checks each

proof and computes the XOR between the submitted flag. The EA

also computes the accumulation of previous flags—each of these two

5
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Registration is an in-person ceremony between the voter, using a voting client device, and an officer for the EA. At completion, the voter registers two public keys〈
pkyes, pkno

〉
, which are not learned by the EA officer and will be used to vote YES and NO, respectively. The keys are for a digital signature. They are based on a passphrase

that can be regenerated from any voting client. The EA additionally does not learn the passphrase but has high assurance through the protocol that the human voter knows

the passphrase.

Registration Set-up.
Registration uses a trapdoor commitment scheme. The commitment aspect allows the voter to present her passphrase in a hidden form to the EA and answer queries about

specific characters within it. The trapdoor is revealed after registration closes and allows each voter to convert the format of their commitments into the format of a public key.

(1) The generator 𝑔0 is a parameter of the election.

(2) The EA computes a generator 𝑔1 as follows: each trustee𝑇,𝑇 ′,𝑇 ′′, . . . privately chooses one random value 𝑎1 , reveals 𝑔
𝑎
1

0
, and proves knowledge of 𝑎1 with a

Schnorr Σ−Protocol. Then 𝑔1 = 𝑔
(𝑎
1
+𝑎′

1
+𝑎′′

1
+...)

0
.

(3) This process is repeated, with new random 𝑎𝑖 values, to complete a set of 𝑁 generators: base← ⟨𝑔0, 𝑔1, 𝑔2, . . . , 𝑔𝑁 −1 ⟩. The same base is used for all voters in a

registration period.

(4) Call the set of all 𝑎 values (split across the trustees): trapdoor.
Registration.

(1) Each voter generates two 𝑁 -character passphrases (for YES and NO). Steps 2–4 describe the process for the first passphrase and are repeated for the second.

(2) The voting client parses the passphrase as a sequence of Base64 characters ⟨𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑁 ⟩ and computes its deterministic commitment using base:
passCommit←

〈
𝑔
𝑐
0

0
· 𝑔𝑐1

1
· 𝑔𝑐2

2
· . . . · 𝑔𝑐𝑁 −1

𝑁 −1
〉
.

(3) The voting client sends JpassCommitK to the EA, which is an encryption of passCommit under the EA’s threshold encryption scheme.

(4) The EA officer issues a challenge like: “Reveal Character 4.” The voter responds “F.” The EA client computes disclosedChar← (JpassCommitK/𝑔F
4
). The voting

client proves knowledge of a representation of disclosedChar using a Σ−Protocol. This step is repeated to build confidence that the voter knows the passphrase, but

bounded in repetitions to protect the passphrase.

(5) The EA client posts

〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
to the BB.

Registration Finalization.

(1) After the registration period, the EA takes the list of

〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
entries, removes the VoterID component, and verifiably

shuffles, threshold-decrypts, and posts〈
passCommityes, passCommitno

〉
for each (now anonymous) voter.

(2) Each trustee𝑇,𝑇 ′,𝑇 ′′, . . . reveals their values producing trapdoor.
(3) Each voter uses trapdoor to reformat their two passCommit values into key pairs ⟨sk, pk⟩ such that pk = passCommit = 𝑔sk

0
as follows. Consider generator 𝑔𝑖 and

let 𝛼𝑖 = 𝑎𝑖 + 𝑎′𝑖 + . . .. With this notation, sk = 𝑐0 + 𝛼1 · 𝑐1 + 𝛼2 · 𝑐2 . . ..
(4) Given that

〈
passCommityes, passCommitno

〉
=

〈
pkyes, pkno

〉
, the EA holds an anonymized list, which we call the Roster, of

〈
pkyes, pkno

〉
keys for each registered

voter.

Protocol 1: Registration Protocol.

Voting.
Each voter completes voting online. At completion, each voter will have submitted their ballot using a passphrase from registration.

(1) The value nonce is a parameter of the election.

(2) To mark a ballot for YES, the voter uses their YES passphrase to generate skyes and uses this key to sign n0 : 𝜎yes ← Sign(nonce) . Corresponding values are used to

vote NO.

(3) The voter uses the EA’s threshold encryption scheme to compute ballot←
〈
J𝑝𝑘yesK, J𝜎yesK, 𝜋ppk

〉
, where each group element of 𝜎 is individually encrypted and

𝜋ppk is a proof of plaintext knowledge using the Chaum-Pedersen Σ−Protocol.
(4) The voter submits ballot over the ACS to the BB. The EA marks it as invalid if it is an exact duplicate or if the proofs are invalid.

Protocol 2: Voting Protocol.

steps is parallelizable for each flag. Thus, when nullification closes,

the only remaining task is to threshold decrypt the accumulation

of flags, which process is linear in the number of votes.

5.2 The Nullification ZKP
We provide a formal description of the nullification ZK proof. It is

well known that Σ−Protocols can be stacked through conjunction
and disjunction (CDS) [13, 18].We first present the CDS-composition

ZKP and then propose a novel succinct ZKP.

The CDS-composition ZKP. The CDS-composition ZKP takes

a voter’s public key 𝑝𝑘 and makes a disjunctive proof that either

Case 1 ORCase 2 is true: In Case 1, the hedgehog proves (flag = J0K).
For exponential ElGamal, assume ⟨𝑐1, 𝑐2⟩ = Enc(𝑚) = ⟨𝑔𝑟 , 𝑔𝑚𝑦𝑟 ⟩

for generator 𝑔, public key 𝑦, and message𝑚. A proof it encrypts 𝑚̂

is equivalent to proving

〈
𝑔, 𝑐1, 𝑦, 𝑐2𝑚̂

−1〉
is a DDH tuple, which can

be done with the Chaum-Pedersen Σ−Protocol. Call this subproof A.
In Σ−Protocol format, its transcript is ⟨𝑎𝐴, 𝑒𝐴, 𝑧𝐴⟩.

In Case 2, the hedgehog proves a conjunctive statement: (flag =

J1K) and it knows 𝑠𝑘 , which corresponds to 𝑝𝑘 for the associated

voter’s public key. Call the subproof that (flag = J1K) B. It is imple-

mented the same as in subproof A, with transcript ⟨𝑎𝐵, 𝑒𝐵, 𝑧𝐵⟩. Call
the proof of knowledge of 𝑠𝑘 subproof C, which can be implemented

with a Σ−Protocol due to Schnorr: ⟨𝑎𝐶 , 𝑒𝐶 , 𝑧𝐶 ⟩. To summarize, the

hedgehog proves: Π := [A OR (B AND C)] for each flag.

Further, the resulting proof can be made non-interactive (typi-

cally in the random oracle model with the Fiat-Shamir heuristic [17],

6
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Provisional Tally.
After the voting period ends, the EA produces a verifiable provisional tally.

(1) The EA takes the list of ⟨JpkK, J𝜎K⟩, then threshold-decrypts them: ⟨pk, 𝜎 ⟩.
(2) For each ballot, the ballot is marked invalid if 𝜎 does not verify under its corresponding pk.
(3) For each valid signature, pk is matched to its entry on the Roster. The EA determines if it is a YES or NO key, and counts the vote only if it is the only ballot cast that

corresponds to that roster entry. (Since ballots are not shuffled, other policies are feasible such as counting the most recent vote.)

Nullification.
The goal of nullification is to allow voters to modify their cast ballots, particularly in the case of coercion. Unlike other protocols, voters can enlist the help of others parties,

called hedgehogs. The nullification period runs after the provisional tallying. If the provisional tally contains pkno , it can be nullified using skyes (the “opposite” key). In other

words, casting a YES and nullifying a NO vote use the same key, as these two actions are aligned in their intention.

(1) At any convenient time, before or after voting, the voter covertly communicates with a hedgehog to develop a coercion-resistant strategy. For example, assume the

following strategy: the voter wants to vote YES and reveals skyes to the hedgehog, along with

〈
pkyes, pkno

〉
. They request the hedgehog engage in nullification if

pkno is in the provisional tally.

(2) Using the Roster and set of valid signatures from the provisional tally, the EA reformats the election data into two lists. The first list establishes, in arbitrary order,

the set of pkno keys from voters who cast valid votes for YES (call it yesVotes). The second list contains pkyes from voters who voted NO.

(3) For example, assume YES received six votes in the provisional tally. yesVotes consists of six pkno keys. If the hedgehog wants to nullify the fourth key, it prepares a

list of encrypted “flags” marking the ballot it wants to nullify: ⟨J0K, J0K, J0K, J1K, J0K, J0K⟩.
(4) The first encrypted flag corresponds to the first pkno in yesVotes. The hedgehog adds a proof to this list using the nullification ZK protocol. Concisely, the proof

statement is: [for each flag, (it is an encryption of 0) or (it is an encryption of 1 and I know skno corresponding to this pkno)].
Final Tally.

After the nullification period ends, the EA produces a verifiable final tally.

(1) The EA takes all the encrypted flags for the first pkno key in yesVotes and computes its xor under encryption using the mix and match SFE protocol [26]. It repeats

this process for the remaining pkno keys.
(2) The EA takes the list of encrypted xored flags, sums them under encryption, and verifiabily threshold-decrypts the result. The EA subtracts this value from the

number of YES votes in the provisional tally to produce the final tally for YES votes.

(3) The EA repeats Steps 1–2 for each pkyes key in noVotes.

Protocol 3: Tallying Protocol (including nullification).

in its strong form [6], but other heuristics exist [23]). Specifically,

the prover generates a single challenge 𝑒 for Π. To handle the con-

junction within Case 2, 𝑒𝐵 = 𝑒𝐶 ; for the disjunction across the cases,

𝑒 = 𝑒𝐴 + 𝑒𝐵 . In Case 1, the prover computes ⟨𝑎𝐴, 𝑒𝐴, 𝑧𝐴⟩ and simu-

lates ⟨𝑎𝐵, 𝑒𝐵, 𝑧𝐵⟩ and ⟨𝑎𝐶 , 𝑒𝐵, 𝑧𝐶 ⟩. In Case 2, the prover simulates

⟨𝑎𝐴, 𝑒𝐴, 𝑧𝐴⟩ and computes ⟨𝑎𝐵, 𝑒𝐵, 𝑧𝐵⟩ and ⟨𝑎𝐶 , 𝑒𝐵, 𝑧𝐶 ⟩.
A new succinct ZKP. We propose a novel succinct nullification

ZKP with 𝑂 (log𝑁 ) proof size, where 𝑁 is the number of total

ballots. Assuming that in the nullification phase, each nullification

request nullifies only one ballot. To nullify a ballot, the hedgehog

will form a list of encrypted “flags,” where there is one encryption

of 1 and the other flags are encryptions of 0. The hedgehog needs

to prove in ZK that (i) there is one encrypted flag containing J1K
and the others are J0K, and (ii) I know the corresponding sk.

Formally, let ℎ denote the ElGamal public key, and let J𝑥 ; 𝑟K de-
note exponential ElGamal encryption with explicit randomness, i.e.,

J𝑥 ; 𝑟K := (𝑔𝑟 , 𝑔𝑥ℎ𝑟 ). Let ck denote the Pedersen commitment key,

and letCom denote Pedersen commitment, i.e.,Com(𝑥 ; 𝑟 ) := 𝑔𝑥 ck𝑟 .
Denote the public keys in yesVotes as pk

0
, . . . , pk𝑁−1. Denote the

encrypted flags as 𝐸0, . . . , 𝐸𝑁−1. Let 𝑛 := ⌈log𝑁 ⌉. We will give a

ZK protocol for the relation

R = {((pk
0
, . . . , pk𝑁−1, 𝐸0, . . . , 𝐸𝑁−1), 𝑟0, . . . , 𝑟𝑁−1, ℓ, sk) |

ℓ ∈ {0, . . . , 𝑁 − 1} ∧ pkℓ = 𝑔sk ∧ 𝐸ℓ = J1; 𝑟ℓK ∧
𝐸𝑖 = J0; 𝑟𝑖K, 𝑖 ≠ ℓ}.

(1)

Following the idea of [21, 47], the prover first commits bit-wise

to the binary representation of ℓ . The key observation is that there

exists a data-oblivious algorithm that takes as input the binary rep-

resentation of ℓ and generates a unit vector where the ℓth element

is 1.

Concretely, the protocol can be split into two parts: The first

part proves that there is one encrypted flag containing J1K and

the others are J0K, which is actually a unit vector proof [47]. The

second part proves that the prover knows the corresponding sk,
which can be proven by modifying the one-out-of-many proof [21].

The modification works as follows. The prover first computes the

commitment of sk, denoted as 𝑐 . Then, the verifier can compute

𝑐𝑖 := pk𝑖/𝑐 . Now {𝑐𝑖 } is a vector satisfying 𝑐ℓ = Com(0) so that the
one-out-of-many proof [21] can be applied. The prover needs to

additionally prove that he knows the opening of 𝑐 .

We specify the polynomial 𝑝𝑖 (𝑥) used in the protocol. Follow-

ing [21], we write 𝑖 = 𝑖1 . . . 𝑖𝑛 and ℓ = ℓ1 . . . ℓ𝑛 in binary, and we

let 𝛿𝑖 𝑗 be Kronecker’s delta, i.e., 𝛿ℓℓ = 1 and 𝛿𝑖ℓ = 0 for 𝑖 ≠ ℓ .

We let 𝑓𝑗 = ℓ𝑗𝑥 + 𝑎 𝑗 , let 𝑓𝑗,1 = 𝑓𝑗 = ℓ𝑗𝑥 + 𝑎 𝑗 = 𝛿1ℓ𝑗 𝑥 + 𝑎 𝑗 and
𝑓𝑗,0 = 𝑥 − 𝑓𝑗 = (1− ℓ𝑗 )𝑥 −𝑎 𝑗 = 𝛿0ℓ𝑗 𝑥 −𝑎 𝑗 . Then, 𝑝𝑖 (𝑥) =

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗

has the form:

𝑝𝑖 (𝑥) =
𝑛∏
𝑗=1

(𝛿𝑖 𝑗 ℓ𝑗 𝑥) +
𝑛−1∑︁
𝑘=0

𝑝𝑖,𝑘𝑥
𝑘 = 𝛿𝑖ℓ𝑥

𝑛 +
𝑛−1∑︁
𝑘=0

𝑝𝑖,𝑘𝑥
𝑘 . (2)

Fig. 3 shows the ZK protocol for relation R. By the Fiat-Shamir

heuristic [17], it can be transformed into a NIZK proof.

Theorem 5.1. Assume that the DDH problem is hard. The protocol
in Fig. 3 for relation R is a 4-move public coin ZK protocol with
completeness, soundness, and special honest verifier ZK.

Proof. For completeness, it is easy to see that 𝑐𝑥
ℓ𝑗
𝑐𝑎 𝑗

=

Com(𝑓𝑗 ; 𝑧𝑎 𝑗
) and 𝑐

𝑥−𝑓𝑗
ℓ𝑗

𝑐𝑏 𝑗
= Com(0; 𝑧𝑏 𝑗

) hold for 𝑗 ∈ {1, . . . , 𝑛}
7
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CRS: the ElGamal public key ℎ, the Pedersen commitment key ck;
Statement: pk

0
, . . . , pk𝑁 −1, 𝐸0, . . . , 𝐸𝑁 −1 ;

Witness: 𝑟0, . . . , 𝑟𝑁 −1, ℓ, sk such that ℓ ∈ {0, . . . , 𝑁 − 1} ∧ pkℓ =

𝑔sk ∧ 𝐸ℓ = J1; 𝑟ℓ K ∧ 𝐸𝑖 = J0; 𝑟𝑖K, 𝑖 ≠ ℓ .

Verifier:
• 𝑉 → 𝑃 : Random 𝑦 ← Z𝑞 .

Prover:
• Randomly pick 𝑡 ← Z𝑞 , compute 𝑐 := Com(sk; 𝑡 ) ;
• For 𝑖 = 0, . . . , 𝑁 − 1, compute 𝑐𝑖 := pk𝑖/𝑐 .
• For 𝑗 = 1, . . . , 𝑛

– Randomly pick 𝜏 𝑗 , 𝑎 𝑗 , 𝑠 𝑗 , 𝑡 𝑗 , 𝜌𝑘 ← Z𝑞 ;
– Compute 𝑐ℓ𝑗 := Com(ℓ𝑗 ;𝜏 𝑗 ) ; 𝑐𝑎𝑗 := Com(𝑎 𝑗 ; 𝑠 𝑗 ) ;

𝑐𝑏𝑗 := Com(ℓ𝑗𝑎 𝑗 ; 𝑡 𝑗 ) ;
– Compute 𝑐𝑑𝑘 :=

∏𝑁 −1
𝑖=0 𝑐

𝑝𝑖,𝑘
𝑖

Com(0; 𝜌𝑘 ) (using 𝑘 = 𝑗 − 1

and 𝑝𝑖,𝑘 from Eq. 2);

– Pick random 𝑅𝑘 ← Z𝑞 and compute

𝐷𝑘 := J
∑𝑁 −1

𝑖=0 (𝑝𝑖,𝑘 · 𝑦𝑖 ) ;𝑅𝑘K (using 𝑘 = 𝑗 − 1 and 𝑝𝑖,𝑘
from Eq. 2);

• Randomly pick 𝑠′, 𝑡 ′ ← Z𝑞 , compute 𝑚 := Com(𝑠′, 𝑡 ′ ) ;
• 𝑃 → 𝑉 :

(𝑐, 𝑐ℓ
1
, 𝑐𝑎

1
, 𝑐𝑏

1
, 𝑐𝑑

0
, 𝐷0, . . . , 𝑐ℓ𝑛 , 𝑐𝑎𝑛 , 𝑐𝑏𝑛 , 𝑐𝑑𝑛−1 , 𝐷𝑛−1,𝑚) .

Verifier:
• 𝑉 → 𝑃 : Random 𝑥 ← Z𝑞 .

Prover:
• For 𝑗 = 1, . . . , 𝑛

– Compute 𝑓𝑗 := ℓ𝑗𝑥 + 𝑎 𝑗 ; 𝑧𝑎𝑗 = 𝜏 𝑗𝑥 + 𝑠 𝑗 ;
𝑧𝑏𝑗 = 𝜏 𝑗 (𝑥 − 𝑓𝑗 ) + 𝑡 𝑗 ;

• Compute 𝑧𝑑 = (−𝑡 )𝑥𝑛 − ∑𝑛−1
𝑘=0

𝜌𝑘𝑥
𝑘
;

• Compute 𝑅 :=
∑𝑁 −1

𝑖=0 (𝑟𝑖 · 𝑥𝑛 · 𝑦𝑖 ) +
∑𝑛−1

𝑘=0
(𝑅𝑘 · 𝑥𝑘 ) ;

• Compute 𝑣1 := 𝑠′ + 𝑥 · sk, 𝑣2 := 𝑡 ′ + 𝑥 · 𝑡 ;
• 𝑃 → 𝑉 : (𝑓1, 𝑧𝑎

1
, 𝑧𝑏

1
, . . . , 𝑓𝑛, 𝑧𝑎𝑛 , 𝑧𝑏𝑛 , 𝑧𝑑 , 𝑅, 𝑣1, 𝑣2 ) .

Verifier:
• For 𝑖 = 0, . . . , 𝑁 − 1, compute 𝑐𝑖 = pk𝑖/𝑐 .
• For all 𝑗 ∈ {1, . . . , 𝑛}, check 𝑐𝑥ℓ𝑗

𝑐𝑎𝑗 = Com(𝑓𝑗 ;𝑧𝑎𝑗 ) and

𝑐
𝑥−𝑓𝑗
ℓ𝑗

𝑐𝑏𝑗 = Com(0;𝑧𝑏𝑗 ) ;

• Check

∏𝑁 −1
𝑖=0 𝑐

∏𝑛
𝑗=1

𝑓𝑗,𝑖 𝑗

𝑖
·∏𝑛−1

𝑘=0
𝑐−𝑥

𝑘

𝑑𝑘
= Com(0;𝑧𝑑 ) , using

𝑓𝑗,1 = 𝑓𝑗 and 𝑓𝑗,0 = 𝑥 − 𝑓𝑗 ;

• Check∏𝑁 −1
𝑖=0

(
(𝐸𝑖 )𝑥

𝑛 · J−∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 ; 0K

)𝑦𝑖 ·∏𝑛−1
𝑘=0
(𝐷𝑘 )𝑥

𝑘
= J0;𝑅K,

using 𝑓𝑗,1 = 𝑓𝑗 and 𝑓𝑗,0 = 𝑥 − 𝑓𝑗 .

• Check 𝑔𝑣1 ck𝑣2 =𝑚 · 𝑐𝑥 ;
• Output 1 iff all the checks pass.

ZK protocol for relation R

Figure 3: ZK protocol for relation R .

and 𝑔𝑣1ℎ𝑣2 =𝑚 · 𝑐𝑥 holds. Then, observe that

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 is a poly-

nomial in the challenge 𝑥 of the form 𝑝𝑖 (𝑥) = 𝛿𝑖ℓ𝑥
𝑛 +∑𝑛−1

𝑘=0
𝑝𝑖,𝑘𝑥

𝑘
.

By the additive homomorphism of Pedersen commitment,∏𝑁−1
𝑖=0 𝑐

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗

𝑖
·∏𝑛−1

𝑘=0
𝑐−𝑥

𝑘

𝑑𝑘
= Com(0; 𝑧𝑑 ) always holds since 𝑐ℓ

is a commitment to 0. Similarly, denote 𝐸𝑖 = J𝑒𝑖 ; 𝑟𝑖K, we have∏𝑁−1
𝑖=0

(
(𝐸𝑖 )𝑥

𝑛 · J−∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 ; 0K

)𝑦𝑖 · ∏𝑛−1
𝑘=0
(𝐷𝑘 )𝑥

𝑘
= J

∑𝑁−1
𝑖=0 (𝑒𝑖 ·

𝑥𝑛 − 𝑝𝑖 (𝑥) +
∑𝑛−1
𝑘=0

𝑝𝑖,𝑘𝑥
𝑘 ) · 𝑦𝑖 ;𝑅K = J0;𝑅K. Thus, the protocol is

perfectly complete.

To prove that the protocol is sound, suppose the adversary creates
𝑛 + 1 accepting responses 𝑓

(0)
1

, . . . , 𝑣
(0)
2

, . . . , 𝑓
(𝑛)
1

, . . . , 𝑣
(𝑛)
2

to 𝑛 +
1 different challenges 𝑥 (0) , . . . , 𝑥 (𝑛) on the same initial message

𝑐, . . . ,𝑚.

We first show that ℓ𝑗 ∈ {0, 1} for 𝑗 ∈ [1, 𝑛]. Pick two responses

𝑓
(0)
𝑗

, 𝑧
(0)
𝑎 𝑗

, 𝑧
(0)
𝑏 𝑗

and 𝑓
(1)
𝑗

, 𝑧
(1)
𝑎 𝑗

, 𝑧
(1)
𝑏 𝑗

to challenges 𝑥 (0) , 𝑥 (1) on the

commitments 𝑐𝑎 𝑗
, 𝑐𝑏 𝑗

. By combining the verification equations we

obtain 𝑐𝑥
(0)−𝑥 (1)

ℓ𝑗
= Com(𝑓 (0)

𝑗
− 𝑓
(1)
𝑗

; 𝑧
(0)
𝑎 𝑗
− 𝑧 (1)𝑎 𝑗

) and

𝑐
𝑥 (0)−𝑓 (0)

𝑗
−𝑥 (1)+𝑓 (1)

𝑗

ℓ𝑗
= Com(0; 𝑧 (0)

𝑏 𝑗
− 𝑧 (1)

𝑏 𝑗
). Defining ℓ𝑗 =

𝑓
(0)
𝑗
−𝑓 (1)

𝑗

𝑥 (0)−𝑥 (1)

and 𝛾 𝑗 =
𝑧
(0)
𝑎𝑗
−𝑧 (1)𝑎𝑗

𝑥 (0)−𝑥 (1) we extract an opening of 𝑐ℓ𝑗 = Com(ℓ𝑗 ;𝛾 𝑗 ).

Furthermore, since 𝑐
𝑥 (0)−𝑓 (0)

𝑗
−𝑥 (1)+𝑓 (1)

𝑗

ℓ𝑗
= 𝑐
(1−ℓ𝑗 ) (𝑥 (0)−𝑥 (1) )
ℓ𝑗

=

Com(ℓ𝑗 (1−ℓ𝑗 ) (𝑥 (0)−𝑥 (1) );𝛾 𝑗 (1−ℓ𝑗 ) (𝑥 (0)−𝑥 (1) )) = Com(0; 𝑧 (0)
𝑏 𝑗
−

𝑧
(1)
𝑏 𝑗
), either ℓ𝑗 (1 − ℓ𝑗 ) = 0 or the binding property of Pedersen

commitment is broken. Thus, we have ℓ𝑗 ∈ {0, 1} and extract ℓ =

ℓ1 . . . ℓ𝑛 .

Then, the soundness is two-fold. In the first part, we prove 𝑐 =

Com(sk) ∧ 𝑝𝑘ℓ = 𝑔sk and extract sk. In the second part, we prove

that 𝐸ℓ = J1; 𝑟ℓK ∧ 𝐸𝑖 = J0; 𝑟𝑖K, 𝑖 ≠ ℓ .

Let 𝑎 𝑗 be the number committed in 𝑐𝑎 𝑗
, from the verification

equation 𝑐𝑥
ℓ𝑗
𝑐𝑎 𝑗

= Com(𝑓𝑗 ; 𝑧𝑎 𝑗
) we conclude that 𝑓 (0)

𝑗
= ℓ𝑗𝑥

(0) +

𝑎 𝑗 , . . . , 𝑓
(𝑛)
𝑗

= ℓ𝑗𝑥
(𝑛) + 𝑎 𝑗 for all 𝑗 = 1, . . . , 𝑛 unless the adversary

breaks the binding property of Pedersen commitment.

From the form of 𝑓𝑗 ’s we have 𝑓𝑗,1 = ℓ𝑗𝑥 + 𝑎 𝑗 and 𝑓𝑗,0 = (1 −
ℓ𝑗 )𝑥−𝑎 𝑗 . For 𝑖 ≠ ℓ , it follows that 𝑝𝑖 (𝑥) =

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 is a polynomial

of degree at most 𝑛 − 1, and for 𝑖 = ℓ it is a polynomial of the

form 𝑝ℓ (𝑥) = 𝑥𝑛 + . . . . Therefore we can rewrite

∏𝑁−1
𝑖=0 𝑐

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗

𝑖
·∏𝑛−1

𝑘=0
𝑐−𝑥

𝑘

𝑑𝑘
= Com(0; 𝑧𝑑 ) as

𝑐𝑥
𝑛

ℓ ·
∏𝑛−1

𝑘=0
𝑐𝑥

𝑘

∗𝑘 = Com(0; 𝑧𝑑 ), (3)

for some fixed 𝑐∗0 , . . . , 𝑐∗𝑛−1 , which can be computed from commit-

ments in {𝑐𝑖 }𝑖∈[0,𝑁−1] and the initial message.

Observe that the vectors (1, 𝑥 (𝛽 ) , . . . , (𝑥 (𝛽 ) )𝑛) can be viewed

as rows in a Vandermonde matrix because 𝑥 (0) , . . . , 𝑥 (𝑛) are all

different. The matrix is invertible and we can therefore find a lin-

ear combination (𝛼0, . . . , 𝛼𝑛) of the rows that give us the vector
(0, . . . , 0, 1). Combining the 𝑛 + 1 accepting verification equations,

it follows that

𝑐ℓ =

𝑛∏
𝛽=0

(𝑐 (𝑥
(𝛽 ) )𝑛

ℓ
·
𝑛−1∏
𝑘=0

𝑐
(𝑥 (𝛽 ) )𝑘
∗𝑘 )𝛼𝛽 = Com(0;

𝑛∑︁
𝛽=0

𝛼𝛽𝑧
(𝛽 )
𝑑
) . (4)

This equation gives us an extracted opening of 𝑐ℓ to 0. Since 𝑐𝑖 =

pk𝑖/𝑐 , and denoting pkℓ = 𝑔sk, we have 𝑐 = 𝑔skck𝑡 , where 𝑡 =

−∑𝑛
𝛽=0

𝛼𝛽𝑧
(𝛽 )
𝑑

.

Then, by 𝑔𝑣1ck𝑣2 =𝑚 · 𝑐𝑥 we have that

𝑐 = 𝑔 (𝑣
(0)
1
−𝑣 (1)

1
) (𝑥 (0)−𝑥 (1) )−1ck(𝑣

(0)
2
−𝑣 (1)

2
) (𝑥 (0)−𝑥 (1) )−1 . (5)

This equation extracts sk = (𝑣 (0)
1
− 𝑣 (1)

1
) (𝑥 (0) − 𝑥 (1) )−1.

Next, we start to prove that 𝐸ℓ = J1; 𝑟ℓK ∧ 𝐸𝑖 = J0; 𝑟𝑖K, 𝑖 ≠ ℓ .

Denote 𝐸𝑖 = J𝑒𝑖 ; 𝑟𝑖K. Since 𝑥 is randomly chosen after the 𝐷𝑘 ’s are

committed, by the verification equation∏𝑁−1
𝑖=0

(
(𝐸𝑖 )𝑥

𝑛 ·J−∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 ; 0K

)𝑦𝑖 ·∏𝑛−1
𝑘=0
(𝐷𝑘 )𝑥

𝑘
= J0;𝑅K, we have
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that

∏𝑁−1
𝑖=0

(
(𝐸𝑖 )𝑥

𝑛 · J−∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗 ; 0K

)𝑦𝑖 · ∏𝑛−1
𝑘=0
(𝐷𝑘 )𝑥

𝑘
encrypts

a zero polynimial w.r.t 𝑥 with overwhelming probability (by the

Schwartz-Zippel Lemma). Therefore, by denoting 𝑖 𝑗,1 = ℓ𝑗 , 𝑖 𝑗,0 =

1 − ℓ𝑗 , we obtain 𝑄 (𝑦) = ∑𝑁−1
𝑖=0 (𝑒𝑖 −

∏𝑛
𝑗=1 𝑖 𝑗,𝑖 𝑗 ) · 𝑦𝑖 = 0. Since

𝑦 is randomly chosen after the 𝐸𝑖 ’s are encrypted, 𝑄 (𝑦) is a zero
polynomial w.r.t𝑦 with overwhelming probability (by the Schwartz-

Zippel Lemma). Hence, we have 𝑒𝑖 =
∏𝑛

𝑗=1 𝑖 𝑗,𝑖 𝑗 for 𝑖 ∈ [0, 𝑁 − 1].
To prove that the protocol is special honest verifier SK, we build a

simulator that is given𝑥,𝑦 ← Z𝑞 . It first randomly picks 𝑓1, . . . , 𝑣2 ←
Z𝑞 . It then picks 𝑐 ← G at random and 𝑐ℓ1 , . . . , 𝑐ℓ𝑛 , 𝑐𝑑1 , . . . , 𝑐𝑑𝑛−1 ←
Com(0) as random commitments to 0. Next, it picks𝑈𝑖 , 𝑅𝑖 ← Z𝑞 at

random and computes 𝐷𝑖 := J𝑈𝑖 ;𝑅𝑖K for 𝑖 ∈ [1, 𝑛−1]. After the ran-
dom selection, it computes 𝑐𝑖 := pk𝑖/𝑐; 𝑐𝑎 𝑗

:= 𝑐−𝑥
ℓ𝑗

Com(𝑓𝑗 ; 𝑧𝑎 𝑗
),

𝑐𝑏 𝑗
:= 𝑐

𝑓𝑗−𝑥
ℓ𝑗

Com(0; 𝑧𝑏 𝑗
), 𝑚 := 𝑔𝑣1ℎ𝑣2𝑐−𝑥 , and

𝑐𝑑0 :=
∏𝑁−1

𝑖=0
𝑐

∏𝑛
𝑗=1 𝑓𝑗,𝑖 𝑗

𝑖
·
∏𝑛−1

𝑘=1
𝑐−𝑥

𝑘

𝑑𝑘
· Com(0;−𝑧𝑑 ) (6)

and

𝐷0 :=
J0;𝑅K∏𝑁−1

𝑖=0

(
(𝐸𝑖 )𝑥𝑛 J−∏𝑛

𝑗=1 𝑓𝑗,𝑖 𝑗 ; 0K
)𝑦𝑖 ·∏𝑛−1

𝑘=1
(𝐷𝑘 )𝑥

𝑘
. (7)

The simulator outputs the transcript (𝑦, 𝑐, . . . ,𝑚, 𝑥, 𝑓1, . . . , 𝑣2).
We argue that the adversary cannot distinguish the simulation

from a real argument. First, in both real proofs and simulated proofs,

𝑓1, . . . , 𝑣2 are uniformly random in Z𝑞 ; 𝑐 is uniformly random in G.
Furthermore, by the verification equations, 𝑐𝑎1 , 𝑐𝑏1 , . . . , 𝑐𝑎𝑛 , 𝑐𝑏𝑛 ,𝑚,

𝑐𝑑0 , 𝐷0 are determined by 𝑓1, . . . , 𝑣2 and 𝑐, 𝑐ℓ1 , . . . , 𝑐ℓ𝑛 , 𝑐𝑑1 , . . . , 𝑐𝑑𝑛−1 ,

𝐷1, . . . , 𝐷𝑛−1 both in real and in simulated proofs. The adversary’s

advantagemust come from being able to distinguish 𝑐, 𝑐ℓ1 , . . . , 𝑐ℓ𝑛 , 𝑐𝑑1 ,

. . . , 𝑐𝑑𝑛−1 , 𝐷1, . . . , 𝐷𝑛−1 in real and simulated proofs. To do so, the

adversary must either break the binding property of Pedersen com-

mitment or break the IND-CPA property of ElGamal encryption by

a standard hybrid argument. □

6 DESIGN AND CLIENT INTERFACES
Building on our system architecture (Section 3.4), we now explain

our design and client interfaces. Section 7 describes our implemen-

tation.

Design elements. VoteXX differs from other election systems in

that the BB is at the center. The BB receives all posts through an

ACS; all other communication is directly peer-to-peer, or in person.

The BB, via the ACS, is part of a public, preexisting decentralized

infrastructure. The BB uses a multicast feature of the ACS, allowing

all BB instances, auditors, and other observers to record the same

data sent through the network at the same time.

Client interfaces. There are 4 clients, a voter client, a hedgehog
client, an EA client, and an Auditor client. Each voter client operates

like a calculator, without state or persistent storage. The voter can

enter their YES or NO passphrase on another voter client device at

any time to regenerate their ballot, and the voter client will verify

that the ballot is properly posted to the BB.

The hedgehog client is integrated into the same mobile phone

app as the voter client. Any voter can be a hedgehog for themselves

or other voters. Voters and hedgehogs can send and receive ballot

secrets directly between each other using their ACS identities.

The EA client posts data associated with EA operations, such as

starting an election by posting a signed election parameters file.

Any client can read and write messages to the BB. Messages are

ignored unless they are signed by eligible clients. Auditor clients

read data posted directly from the ACS to the BB; they verify sig-

natures and validate posted data.

7 IMPLEMENTATION
We built proof-of-concept implementations for all components of

VoteXX, included as an artifact in our submission. We wrote the EA

and auditor in Java with the BouncyCastle [31] library. We wrote

the nullification and proofs in C++ with the cryptopp [12] library.

Both implementations use the secp256k1 group. We can send inputs

and outputs through ACS clients written in Golang using the native

cryptographic libraries to interact with the BB, which currently is

a simple file store utility.

We benchmarked specific operations on a PC using a AMDRyzen

5 5600X 6-Core Processor with 2 16 GiB DIMMs at 2133 MT/s. The

most expensive voting operation, tallying, took 15.34 seconds for

a simulated 2
20

(1 million) voters. Assuming that a very high 2
17

(25%) of voters nullify, it would take 9.21 minutes to verify the

proofs. Each proof was 5.93 KB in size. See Section 8.4 for more

general performance analysis.

8 DISCUSSION
We now discuss our major design decisions, nullification options

(cancel or flip), not revealing nullifications, performance analysis,

extensions, and open problems.

8.1 Major Design Decisions
Toward our goal of addressing improper influence and supporting

online verifiable elections, we made three major design decisions:

(1) Nullification achieves the theoretically optimal coercion resis-
tance, and using hedgehogs depends on a more realistic assumption

than that assumed in previous work. (2) Our decentralized archi-

tecture provides availability and malware resistance. (3) In-person
registration involving passphrases enhances voter authentication

and supports key functionality for malware resistance.
Nullification and hedgehogs. Nullification allows the voter to

share a passphrase anytime after they conceive of it. In-person

registration ensures the voter knows their passphrases, providing

ample opportunity even for captive voters (e.g., a spouse or child)
to signal a hedgehog. Because each passphrase can nullify a ballot

only in one direction (the NO key can only vote NO or nullify YES;

the YES key can only vote YES or nullify NO), voter intent matters

and a signal to coordinate with a hedgehog can be optional. For

example, a candidate who is a hedgehog might always nullify a

ballot cast against them if possible.

Decentralized architecture. Routing all audit data through the

ACS creates a special challenge to the adversary not present in

traditional election systems: Any attack on the infrastructure must

disable a much larger system, where there is an independent fi-

nancial incentive for it to remain online. The BB, decentralized

through the ACS, is not vulnerable to denial-of-service. Flooding

9



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Chaum et al.

the BB with data [29] is limited as adversaries must pay for ACS

bandwidth. Because all BB data are public and we use known E2E-

voting constructions, the system meets the requirements for voter

verifiable ballots, contestability, and auditability Park et al. [36].

In-Person registration. Our registration design roots trust into

passphrases known to the voter and written on physical paper

associated with a specific person. This design provides a critical

feature for the system’s malware resistance: passphrases make it

possible to detect and prove misbehavior by the software because

all data posted to the BB can be regenerated with the passphrases

on any device.

VoteXX greatly complicates undetectable wholesale attacks: the

adversary must deploy malicious software across all devices con-

trolled by checking with a passphrase. The deployment must go

undetected forever, or at least until the election completes. If the

attack is detected after the election, the adversary risks loss of

confidence from a provably improper election outcome. It would

be intractable for an adversary to remain undetected for a useful

period of time. Our design decisions allow VoteXX to prevent un-

detectable wholesale attacks at scale and provide detection and

mitigation against retail attacks.

8.2 Cancel or Flip
Our design supports a variety of options for implementing the

semantics of nullification, including what we call “cancel” or “flip.”

We recommend flip, which is the default. Consider a vote that might

have been nullified by one or more entities. We will describe the

case for when there are two ballot choices (See Section 8.5 for the

general case of 𝑘 ballot choices). Assume that this vote selects from

one of two ballot choices numbered 0, 1. With cancel, the vote is
cancelled if and only if at least one entity nullified it (and this idea

can be generalized to at least 𝑡 entities for some threshold 𝑡 ). With

flip, the vote becomes 𝑥 + 𝑦 mod 2, where 𝑥 is the ballot choice

of the vote, and 𝑦 is the number of times the vote was nullified.

Intuitively, cancel gives the voter the ability to cancel the vote,

whereas flip gives the voter the ability to randomize the vote.

Each of these options can be implemented using different alge-

braic operations during Step 1 of the third phase (Final Tally) of

Protocol 3: AND for cancel (realized with a homomorphic addition of

the encrypted flags for each ballot followed by a plaintext equality

test with J0K), and ADDITION modulo 2 for flip (realized with mix

and match. Step 2 replaces the final summation with a verifiable

shuffle and threshold decryption of the flag set for each key).

We view flip not as re-voting, but as “randomizing” the vote,

which is a form of nullification. As we point out below, under

stronger assumptions there are some use cases in which flip can

be used to re-vote. Also, nullification can be used as an overlay in

conjunction with re-voting strategies.

A useful application of flip arises for a common form of low-

intensity coercion. Suppose during remote voting at home, a coercer

tells their spouse to vote for Alice and watches them comply, but

the coercer does not collect the spouse’s keys. Without any advance

planning, the spouse can later flip their vote to Bob without the

coercer knowing.

8.3 Not Revealing Which Ballots are Nullified
Our base proposal irrevocably hides whether any particular ballot

was nullified. This action provides absolute protection of voters

from coercers. If a voter’s keys are exposed (e.g., malware or sharing

a password), it puts the voter in the same position as a potential

coercer: they cannot know if the ballot was nullified, because they

do not know what the other parties with access to their keys might

have done with respect to nullification.

A facility that could be helpful in this situation would let a voter

view any nullification of their vote but only in a special booth at

a controlled location. An extension to our current protocol could

allow for such a change, and can be designed so that the total

number of voters for which such viewings can be arranged is at

least public. Any public process creates a cost asymmetry for an

attacker to force each voter through the process to complete their

coercion. Assuming a legal and policy framework that provides

protection for voters is in place, such solutions achieve our stated

goals.

8.4 Performance Analysis
We analyze the running time of VoteXX for elections with𝑇 trustees,

𝑉 voters, and𝐻 hedgehogs. If a passphrase is ℓ characters long with

𝛼 possible characters, registration setup takes Θ(ℓ𝛼𝑇 ) work (com-

prised of modular exponentiations and Σ−Protocols). The proof

size and verification time for the auditor is also Θ(ℓ𝛼𝑇 ). Example

parameters might be 𝛼 = 64 characters of length ℓ = 20 and 𝑇 = 10

trustees. The shuffle proof dominates registration, generally tak-

ing Θ(𝑉𝑇 log𝑉 ). Each vote has a constant amount of signatures,

encryptions, and Σ−Protocols for the voter. Proof size and verifi-

cation time for the auditor is Θ(𝑉 ). The provisional tally consists

of another shuffle, Θ(𝑉𝑇 log𝑉 ), and decryption (subsumed in the

shuffle), with the proof size and verification time of the same order

for the auditor.

Nullification is an involved protocol. As mentioned in Section 4,

to avoid a quadratic bottleneck during the final tally, it is essential

to process hedgehog flags as they arrive. Each hedgehog performs

Θ(𝑉 ) work (encryptions and Σ−Protocols) that an auditor must

fetch and validate (space and time of Θ(𝑉 )). For each of the 𝑉

flags from one hedgehog, the trustees can precompute a logic gate

(two-input gates are effectively constant time). Applying the gate

to the inputs is Θ(𝑇 ) (plaintext equality tests and Σ−Protocols). In
total, nullification is Θ(𝐻𝑉𝑇 ) work for the EA and auditors, with

same order proof size on the BB. The final tally is fast: Θ(𝑉𝑇 ) work
(consisting of decryption and Σ−Protocols) for the trustees and

auditors, with same order proof size.

8.5 Extensions
We briefly describe several possible extensions of VoteXX.

Multiple candidates. VoteXX can be easily extended to support an

election with multiple candidates. For example, for a 𝑘-candidate

race, the voter can register 𝑘 key pairs and then vote using the

desired key. Without any major changes, nullification still operates

as before. For example, to perform a flip, the system can use an

addition modulo 𝑘 to determine what flip to apply to the initially

cast vote. Since the nullification protocol scales linearly in the
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number of voters and hedgehogs, introducing multiple candidates

does not affect the overall performance of the nullification process.

Voting in person or by mail. To support the existing voting in-

frastructure, VoteXX can allow for a setting where the voting is

accomplished by mail or in precincts using paper ballots. This ca-

pability can be achieved by incorporating a code-voting protocol,

such as that used in Remotegrity [46].

Malware protection. To enhance protection against malware,

where the voting device is running malicious software and can

alter the operations performed by the voter, VoteXX allows for a

two-phase voting process. In Phase 1, the user submits a vote or

a vote commitment. In Phase 2, using a different device, the voter

checks if the submission is correctly posted on the BB. Optionally,

this extension can include an additional set of keys, where the user

submits a payload signed with the additional keys and thereby

“locks in” their submission.

Roster changes. If detected early in the election, it is possible to

contest and remove a compromised passphrase. Providing proper

documentation, the affected voter would rerun the in-person regis-

tration process.

Online registration. For lower-security elections, it is possible to

replace the in-person registration with an online registration that

follows appropriate identification mechanisms or uses an identity

verification service [44].

8.6 Open Problems and Future work
Open problems include:

(1) Explore how the number of nullifications might provide a

measure of coercion [20]. This measure might even be used to

reject an election outcome, if there were too many nullifications.

A danger is that such a mechanism might be abused to discredit a

valid outcome.

(2) Investigate how our technical machinery of nullification

might be used in non-voting applications, such as contract signing.

Next steps for VoteXX include the following. Building on our UC

proofs (Appendix C), we plan to carry out a formal-methods analysis

of selected VoteXX protocols using protocol-analysis tools and build

a formally verified implementation of key system elements. We also

plan to conduct a pilot election and user study to assess the overall

usability and howwell VoteXX achieved its design goal of providing

a voting experience that is intuitive with few steps. Results can

help us improve the system and facilitate widespread adoption. To

enhance the availability of VoteXX, we plan to decentralize the

protocol further, enabling a subset of the EA to perform certain

election steps.

9 CONCLUSION
Leveraging hedgehogs, anACS, BBs, and user-generated passphrases,

VoteXX provides a new, practical, and versatile solution to improper

influence in elections against strong adversaries who learn the

voter’s voting keys. VoteXX works through the use of nullifica-

tion supported by voter associates whom we call hedgehogs. In

comparison with previous approaches, our solution makes fewer

assumptions and protects against stronger adversaries. By sepa-

rating our mechanism for mitigating improper influence from the

mechanisms of ballot marking and collection, our technique works

with a wide range of voting systems, including precinct voting with

paper ballots, voting by mail, and Internet voting. For example, our

mechanism works harmoniously with techniques for mitigating

malware attacks, including allowing voters to check across multiple

systems and devices. Also, our nullification mechanism can be used

in addition to other mechanisms for mitigating improper influence.

Currently, election systems without voting booths are vulnerable

to potential improper influence attacks. For example, a nation state,

terrorist organization, billionaire, or anonymous hackers might

offer significant amounts of money to vote for certain candidates.

It could likely be impossible to know the extent to which such

attacks succeeded. Such attacks would discredit the election, and

re-running the election with the same technology would not resolve

the issue. Our paper offers a solution to this threat that achieves

the theoretically best possible result. Having demonstrated that

extreme coercion resistance is possible, even in Internet voting,

democratic societies should insist that, as a matter of due diligence,

all voting systems should provide coercion resistance. Our work

protects voting beyond the booth, and such voting is an essential

enabler for the advance of democracy.
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A ACRONYMS AND ABBREVIATIONS
ACS anonymous communication system

BB bulletin board

CDS stacked through conjunction and disjunction

DDH decisional Diffie-Hellman

DKG distributed key generation

EA Election Authority

E2E end-to-end

NIZK non-interactive zero knowledge

TA Tally Authority

UC universal composability

VA Voting Authority

ZK zero knowledge

ZKP zero-knowledge proof

B EXPLANATION OF PROPERTIES IN TABLE 1
(0) System resists coercion when the influencer: acts before/during

registration. In a number of coercion resistance mechanisms,

the voter is expected to register a user-chosen key, pass-

word, or be assigned a key. If registration can be done in the

presence of the adversary or using inputs supplied by the

adversary (and compliance can be checked by the adversary),

without impacting coercion resistance, we award . Other-

wise if the system assumes the adversary cannot be active

during this process or places limitations on their actions in

corrupting the registrants, we award .

(1) System resists coercion when the influencer: colludes with
the EA. A system should maintain coercion-resistance even

when the coercer is able to corrupt a minority of the EA

( ). Limitations on this assumption might result in : for

example, in fake credentials, it is assumed the coercer can

corrupt any member of the EA but the voter must know

which EA member has not been corrupted. Other systems

fail to provide coercion resistance ( ) under this assumption.

(2) System resists coercion when the influencer: colludes with hard-
ware manufactures. A system that does not rely on trusted

hardware to provide coercion-resistance is awarded . By

contrast, as system that makes hardware assumptions be-

yond typical computational equipment, such as a trusted

execution environment [3], is awarded (along with sys-

tems that do not provide coercion resistance).

(3) System resists coercion when the influencer: acts at any time.
Assumming an influencer cannot act at all times (see Prop-

erty 5), are there additional restrictions on when they can

act? If not: . Systems receive include ones that assume

the influencer does not act before or during registration, and

systems like re-voting that assume the coercer does not act

at the very end of the voting period (blocking a re-vote).

(4) System resists coercion when the influencer: learns all infor-
mation stored by the voter, including all keys required by the
protocol. Our main contribution is that VoteXX achieves co-

ercion resistance even if all the voter’s stored keys/secrets

are leaked—extreme coercion resistance. This property is

stronger than the literature, which generally assumes voters

can establish and maintain secret keys or passwords (and lie

convincingly about them as necessary) that will need to be
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recalled to cast a vote: . While non-verifiable re-voting does

not require voter secrets or private keys, end-to-end verifi-

able systems do as a way to cryptographically link ballots

and prevent multiple votes from the same voter. VoteAgain

is designed as an exception to this rules; in it, such keys exist

but are maintained by a special election trustee so voters

do not need to. However it must be completely trusted for

coercion resistance (and in fact, must be trusted for ballot

privacy and election integrity as well [22]). Use of a trusted

third party also receives . Trusting a hardware enclave to

maintain keys is awarded . Systems that assume the influ-

encer cannot impersonate the voter but do not provide a

specific mechanism for online settings are also awarded .

(5) System resists coercion when the influencer: learns every action
taken by the voter. With reasonable assumptions on how

voting works, this property is in fact shown to be impossible

to achieve, as the voter can never act independently [24].

We include it to highlight this fact and as an open problem:

perhaps some other trust model or assumptions on the voter

would enable this property.

(6) Voter can undo coercion undetectably. Coercion needs to be

corrected when the voter’s intent is different than the in-

fluencer’s. Assuming the coercion resistance mechanism is

allowed to work, if the voter is always able to vote their

true intent, the mechanism is awarded . By contrast, sys-

tems are awarded when voters cannot reliably vote their

true intent. These systems, however, can still be considered

coercion resistant if they do allow the voter to cancel the

coercer’s intent by spoiling, nullifying, or randomizing their

ballot. In VoteXX, voters can vote their true intent if they

can predict the influencer’s actions and respond strategi-

cally. However, we cannot assume this ability will always

be the case, and so, at best, voters can cancel or randomize

their ballots. In VoteXX this choice depends on a system

configuration discussed in Section 8.2.

(7) System is inexpensive. A system that does not introduce new

expenses beyond the EA running a server and voters hav-

ing access to standard computational devices is awarded .

A system that requires special equipment or hardware for

either the EA or for the voters is awarded (e.g., special
hardware for digital signatures [3]).

(8) System has low cognitive burden. If the human voters strat-

egy for evading coercion is automated or does not require

any cognitive effort, it is awarded . If the voter needs to

remember passwords, it is awarded . Any strenuous mental

effort (e.g., remembering an integer offset and performing

mental arithmetic [43]) is awarded .

(9) System has security proof. A universal composability proof

is awarded , a game-based security definition and proof is

awarded , while informal security arguments and sketches

are awarded .
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C SECURITY ANALYSIS
We formally state and prove properties of VoteXX in the Universal
Composability (UC) framework [7]. To begin, we define types of

coercion and state the security of VoteXX. Next, we give a UC speci-

fication of VoteXX and state and prove a theorem that characterizes

its security properties, using “cancel” nullification (see Section 8.2).

We model our proofs in part from those of Alwen, Ostrovsky, Zhou,

and Zikas [3].

C.1 Preliminaries
In this section, we formally define the cryptographic primitives in

VoteXX and their properties.

NIZK. A non-interactive zero-knowledge proof (NIZK) for relation
R consists of four probabilistic polynomial algorithms

(Setup, Prove,Verify, Sim) such that

(𝜎, 𝜏) ← Setup(R): The setup algorithm outputs a common

reference string 𝜎 and a simulation trapdoor 𝜏 for relation R.
𝜋 ← Prove(R, 𝜎, 𝜙,𝑤): the prover algorithm takes as input a

common reference string 𝜎 and (𝜙,𝑤) ∈ R and outputs a proof 𝜋 .

0/1 ← Verify(R, 𝜎, 𝜙, 𝜋): the verification algorithm takes as

input a common reference string 𝜎 , a statement 𝜙 and a proof 𝜋 ,

and it returns 0 OR 1 for rejection OR acceptance, respectively.

𝜋 ← Sim(R, 𝜏, 𝜙): the simulation algorithm takes as input a

simulation trapdoor 𝜏 and a statement 𝜙 , and it outputs a proof 𝜋 .

Completeness. Completeness says that an honest prover can al-

ways convince an honest verifier. Formally, for all (𝜙,𝑤) ∈ R,
Pr[(𝜎, 𝜏) ← Setup(R);

𝜋 ← Prove(R, 𝜎, 𝜙,𝑤) : Verify(R, 𝜎, 𝜙, 𝜋) = 1] = 1.

Zero-Knowledge. A proof is zero-knowledge if it does not leak
any information except that the statement is true. Consider the

following experiment:

Experiment EXPTzkA,NIZK (𝜆):

(1) For a relation R, (𝜎, 𝜏) ← Setup(R), (𝜙,𝑤) ∈ R, the chal-
lenger computes𝜋0 ← Prove(R, 𝜎, 𝜙,𝑤) and𝜋1 ← Sim(R, 𝜏, 𝜙).

(2) The challenger picks a random bit 𝑏 ∈ {0, 1}.
(3) A is given (𝜎, 𝜋𝑏 ) as input, and it outputs a guess bit 𝑏′ ∈
{0, 1}.

(4) If 𝑏 = 𝑏′, output 1; otherwise, output 0.

A NIZK is zero-knowledge if the adversary A’s advantage

AdvzkNIZK (A, 𝜆) := |2 · Pr[EXPTzkA,NIZK (𝜆) = 1] − 1| is negligible in
𝜆.

Soundness. Soundness says that a prover cannot prove a false

statement. Consider the following experiment:

Experiment EXPTsoundA,NIZK (𝜆):

(1) For a relation R, (𝜎, 𝜏) ← Setup(R).
(2) Given 𝜎 as input, A outputs (𝜙, 𝜋).
(3) If Verify(R, 𝜎, 𝜙, 𝜋) = 1 and 𝜙 ∉ 𝐿R , output 1; otherwise,

output 0.

ANIZK is sound if the adversaryA’s advantageAdvsoundNIZK (A, 𝜆) :=
Pr[EXPTsoundA,NIZK (𝜆) = 1] is negligible in 𝜆.

Encryption scheme. An encryption scheme consists of three
probabilistic polynomial algorithms (Keygen, Enc,Dec). We require

the underlying encryption scheme to be indistinguishable under

chosen-plaintext attack (IND-CPA). Consider the following experi-
ment:

Experiment EXPTIND-CPAA,Enc (𝜆):

(1) The challenger performs the key generation algorithm

(pk, sk) ← Keygen(𝜆) and sends pk to the adversary A.

(2) A sends𝑚0,𝑚1 to the challenger.

(3) The challenger picks a random bit 𝑏 ∈ {0, 1} and sends

𝑐 ← Encpk (𝑚𝑏 ) to A.

(4) A outputs a guess bit 𝑏′ ∈ {0, 1}. If 𝑏 = 𝑏′, output 1; other-
wise, output 0.

An encryption scheme is IND-CPA secure if the adversary A’s

advantage AdvIND-CPAEnc (A, 𝜆) := |2 · Pr[EXPTIND-CPAA,Enc (𝜆) = 1] − 1|
is negligible in 𝜆.

Signature. A signature scheme consists of three probabilistic

polynomial algorithms (Keygen, Sign,Verify). We require the un-

derlying signature scheme to be existentially unforgeable under
chosen-message attack (EUF-CMA). Consider the following experi-
ment:

Experiment EXPTEUF-CMA
A,Sig (𝜆):

(1) The challenger performs the key generation algorithm

(pk, sk) ← Keygen(𝜆) and sends pk to the adversary A.

(2) A can repeatedly request for signatures on chosen messages

(𝑚0, . . . ,𝑚𝑞), and receives the valid signatures (𝜎0, . . . , 𝜎𝑞)
in response.

(3) A outputs a message and signature (𝑚∗, 𝜎∗).
(4) If 𝑚∗ is not one of the messages requested in Step 2, and

Verifypk (𝑚∗, 𝜎∗) = 1, output 1; otherwise, output 0.

A signature scheme is EUF-CMA if the adversary A’s advantage

AdvEUF-CMA
Sig (A, 𝜆) := Pr[EXPTEUF-CMA

A,Sig (𝜆) = 1] is negligible in 𝜆.

Bulletin Board. A bulletin board is required for any voting

scheme to record ballots and other related information. We model

the bulletin board as a UC global functionality GBB, which is de-

picted in Fig. 4. It has two interfaces: Read andWrite, and records

all the valid messages. GBB ensures that all the communication

with the bulletin board is anonymous.

The ideal functionality GBB is globally available to all participants. It

is parameterized with a predicate Validate.
Upon initialization, set Storage := ∅.
Upon receiving (Read, sid) from 𝑃 :

• Let val := Storage[sid];
• Return (READ, sid, val) to the requestor.

Upon receiving (Write, sid, inp) from 𝑃 , do the following:

• Let val := Storage[sid];
• If Validate(val, inp) = 1, then set Storage[sid] := val | |inp,

return (Receipt, sid) to the requestor;

• Otherwise, return (Reject, sid) to the requestor.

Functionality GBB

Figure 4: Functionality GBB
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C.2 Types of Coercion
To articulate the capability of the coercer in VoteXX, we define a

new type of coercion: extreme coercion, which differs from previous

notions of semi-honest coercion (receipt-freeness) and active coercion.
Semi-Honest coercion. This type of coercion is most common

in the literature; resistance against semi-honest coercion is called

receipt-freeness. In this case, the coercer provides an input to the

coerced party and expects evidence that such input was used, which

evidence is called a “receipt.” For example, the receipt can be the

entire view of the protocol execution.

Active coercion.Moran and Naor [33] proposed this stronger

type of coercion. Instead of merely requiring a receipt, the coercer

can query the current view interactively and send commands to

the coerced party during the protocol execution.

Extreme coercion.We define this new stronger type of coer-

cion, called “extreme coercion,” which captures the real world more

accurately. The coercer can obtain all the secret keys and passwords
of the coerced party, and can perform operations in substitution

for the coerced party. The coerced party, however, can secretly

communicate with other people via some untappable channel.

Extreme coercion captures real world coercion more realistically

because the coercer may ask the coerced party to hand over their

device to extract the secret keys and monitor the coerced party’s

action. Because we consider it impossible to coerce a target through-

out their entire life, they can recruit a hedgehog and agree on some

secret action in advance.

C.3 Ballot privacy, coercion resistance and
verifiability.

In this section, we give (informal) definitions of ballot privacy,

coercion resistance, and verifiability. Then, we give intuition why

VoteXX satisfies these properties.We formalize the secure definition

in Section C.4 under the UC framework and argue that the UC

definition implies these properties.

Ballot privacy [19]. All votes must be secret.

The link between the voter and the corresponding public key

in the roster is hidden by the verifiable shuffle in the registration

phase. In addition, all the ballots are encrypted under the EA’s

threshold encryption scheme in the voting phase. Thus, VoteXX

ensures ballot privacy assuming that the majority of EA trustees

are honest.

Coercion resistance. No coercer can tell if the coerced party is

trying to deceive.

The ballots and nullification requests are posted on the BB via

an ACS to avoid identity leakage. In the nullification phase, the

flags marking which ballots are to be nullified are encrypted and

a ZKP establishes knowledge of the corresponding secret key. In

addition, we assume that there is an untappable channel between

the voter and his hedgehog(s) that cannot be blocked by the coercer.

Therefore, the coercer cannot stop a coerced party from nullifying

his vote and cannot know if the ballot is nullified.

Verifiability [19]. No one can falsify the result of the voting.

We assume an honest BB and the messages posted on the BB

cannot be deleted OR changed. In the provisional and final tallies,

VoteXX uses ZKPs to ensure that the shuffle and decryption are

performed correctly. The max-and-match SFE protocol [26] in the

final tally is publicly verifiable.

C.4 Security Definition.
We define the security of VoteXX in the UC framework [7]. A pro-

tocol is represented as a set of interactive Turing machines (ITMs),
where each ITM represents the program to be run by a participant.

There are two additional entities: the environmentZ and the adver-
saryA. The environmentZ can communicate withA and provides

inputs to the parties. We assume that each ITM is a probabilistic
polynomial-time (PPT) machine.

Security is based on the indistinguishability between real/hybrid
world executions and ideal world executions. Specifically, in the ideal

world, all the participants are dummy parties and there is an ideal

functionality F that serves as a trusted third party. We say that a

protocol 𝜋 UC-realizes F if and only if, for any PPT adversary A,

there exists a PPT simulator S such that no PPT environmentZ
can distinguish between the real/hybrid world and the ideal world.

Our protocol contains pre-tally and nullification phases. There-

fore, by comparing the final tally with the pre-tally, the coercer can

discern the amount by which nullification altered the results. The

coercer, however, cannot attribute such difference to the voter. To

capture this feature, we model the ideal world as follows.

Ideal deception. Our treatment of incoercibility in the ideal

world is inspired by Alwen, Ostrovsky, Zhou, and Zikas [3]. Alwen

et al. define an ideal deception strategy DI as a mapping applied

on the message given by the coercer to an intended choice, and

they realize this ideal deception with the assumption of trusted

hardware. In our system, since we make the minimal assumption of

an untappable channel between the voter and their hedgehog(s), we

cannot realize such a strong DI. Alternatively, we define a weaker
DI: If DI chooses to obey, it forwards the coercer’s input to the ideal
functionality. If DI chooses to deceive, it forwards the coercer’s

input to the ideal functionality but sends a nullification request at

the end of voting phase. Meanwhile, the ideal functionality accepts

a special command—“nullify”—and leaks the provisional tally to the

simulator S, which captures the features of VoteXX. In this type of

weaker ideal deception, the coercer may know that there are people

deceiving him, but he cannot attribute such deception to the voter.

Definition C.1. Let 𝜋 be any protocol and let F be any ideal func-

tionality. Let A be the adversary who has the power of corruption

and coercion. We say that 𝜋 IUC realizes F if, for every 𝑖 ∈ [𝑛] and
for every ideal deception strategy DI𝑖 , there exists a real deception
strategy DR𝑖 such that, for every PPT adversary A, there exist a

simulator S such that, for any set DIJ = {DI𝑖 : 𝑖 ∈ J} and any

environmentZ,

EXECF,DIJ ,S,Z ≈ EXEC𝜋,DRJ ,A,Z . (8)

TheoremC.2. (Universal composition) Let 𝜋, 𝜌 be any polynomial-
time protocols, and let F be any ideal functionality. If 𝜋 IUC realizes
F , then 𝜌𝜋 IUC realizes 𝜌F .

Following Alwen et al., it is easy to see that our framework

remains universally composable with the same type of DI.
The ideal functionality. The voting ideal functionality F𝑛,𝑘,𝑡

Vote
has four phases: preparation, registration, voting, and tally. In the
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voting phase, F𝑛,𝑘,𝑡
Vote receives ballots from the voters and records

them. In particular, F𝑛,𝑘,𝑡
Vote accepts a special type of request: “nullify.”

Upon receiving a nullify request, the former choice of the voter will

not be counted in the final tally. Fig. 5 is a formal description of

F𝑛,𝑘,𝑡
Vote .

Extreme coercion. In our UC model, the adversary has the

power of extreme coercion. It is modeled as follows. When the ad-

versaryA sends a “extreme coercion” request to a voter, V𝑖 , V𝑖 will
hand his state toA and followA’s instructions, but V𝑖 can still com-

municate with his hedgehog(s) H𝑖 secretly, i.e., the communication

between V𝑖 and H𝑖 is not controlled by the adversary.

The functionality F𝑛,𝑘,𝑡Vote interacts with a set of voters V :=

{V1, . . . ,V𝑛 }, a set of hedgehogs H := {H1, . . . ,H𝑛 }, a set of

trustees T := {T1, . . . , T𝑘 }, the Election Authority (EA), and the ad-

versary S. Internally it keeps variables status, ballots, 𝜏 , and J. Let
Pcor be the set of corrupted parties.

Initially, set status := 0, ballots := 𝜏 := J := ∅.

Preparation:
• Upon receiving (Start, sid) from the trustee T𝑗 ∈ T , set
J := J ∪ {T𝑗 }, and send a notification (Start, sid, T𝑗 ) to the

adversary S. (If status ≠ 0, then ignore the request.)

• Upon receiving (Begin, sid) from the EA, if | J | < 𝑘 ignore

the request. Otherwise, send a notification (Begin, sid) to the

adversary S, and set status := 1. (If status ≠ 0, then ignore

the request.)

Registration:
• Upon receiving (Register, sid) from the voter V𝑖 , send

(Register, sid,V𝑖 ) to the adversary S. (If status ≠ 1, then

ignore the request.)

• Upon receiving (EndReg, sid) from EA, send (EndReg, sid)
to the adversary S and set status := 2. (If status ≠ 1, then

ignore the request.)

Voting:
• Upon receiving (Vote, sid, 𝑥 ) from a voter V𝑖 ∈ V , set

ballots[𝑖 ] := 𝑥 (𝑥=YES/NO), and send (VoteNotify, sid,V𝑖 )
to the adversary S. (If status ≠ 2, then ignore the request.)

• Upon receiving (EndVote, sid) from EA, compute

𝛿 ← TallyAlg(ballots) (Cf Fig. 6). Send (PreTally, sid, 𝛿 ) to
the adversary S. Set status := 3. (If status ≠ 2, then ignore

the request.)

• Upon receiving (Nullify, sid) from a voter V𝑖 ∈ V OR V𝑖 ’s

hedgehog H𝑖 , set ballots[𝑖 ] := nullify. Send
(NullifyNotify, sid) to the adversary S. (If status ≠ 3, then

ignore the request.)

Tally:
• Upon receiving (Tally, sid) from EA, compute

𝜏 ← TallyAlg(ballots) (Cf Fig. 6). Send (Tally, sid, 𝜏 ) to the

adversary S. (If status ≠ 3, then ignore the request.)

• Upon receiving (Result, sid) from any party 𝑃 , if 𝜏 := ∅,
then ignore the request, otherwise return (Result, sid, 𝜏 ) to
the requester.

Functionality F𝑛,𝑘,𝑡
Vote

Figure 5: Functionality F𝑛,𝑘,𝑡
Vote

Connection with the properties. It is easy to see that our UC

definition implies the basic properties of a secure voting scheme.

First, F𝑛,𝑘,𝑡
Vote does not leak the ballot of a voter to anyone else, so it

implies ballot privacy. Second, as mentioned above, the ideal decep-

tion is able to nullify the ballot and the coercer cannot know if the

Input: a table ballots consisting of all the ballots.

Output: tally result 𝜎 .

The algorithm performs as follows:

• Set nryes := 0, nrno := 0.

• For 𝑖 := 1 to 𝑛, if ballots[𝑖 ] = YES then nryes := nryes + 1; if
ballots[𝑖 ] = NO then nrno := nrno + 1.

• Return 𝜎 := (nryes, nrno )

Tally Algorithm TallyAlg

Figure 6: Tally Algorithm TallyAlg

coercion was successful, so our definition implies coercion resis-

tance. Third, F𝑛,𝑘,𝑡
Vote ensures that the tally procedure is performed

correctly, so it implies verifiability.

C.5 UC Specification of VoteXX
Before we give a UC proof for VoteXX, we give a UC description

of the VoteXX protocol. We assume that the protocol uses “cancel”

nullification (Cf. 8.2). We will discuss the security of “flip” variant

nullification in Section C.7.

VoteXX protocol Π𝑛,𝑘,𝑡
VoteXX

Denote the voters asV := {V1, . . . ,V𝑛}, the hedgehogs asH :=

{H1, . . . ,H𝑛}, the trustees as T := {𝑇1, . . . ,𝑇𝑘 }, and the Election

Authority as EA. We assume that EA cannot be corrupted.

Preparation phase:
Upon receiving (Start, sid) from the environmentZ, the trustee

𝑇𝑖 performs the following:

• Privately choose one random values {𝑎𝑖, 𝑗 } 𝑗∈[𝑁−1] , reveal
𝑔
𝑎𝑖,𝑗
0

, and prove knowledge of 𝑎𝑖, 𝑗 with a Schnorr Σ−Protocol.
Upon receiving (Begin, sid) from the environment Z, the EA

performs the following:

• Compute 𝑔 𝑗 :=
∏𝑘

𝑖=1 𝑔
𝑎𝑖,𝑗
0

, 𝑗 ∈ [𝑁 − 1].
• Set base← ⟨𝑔0, 𝑔1, 𝑔2, . . . , 𝑔𝑁−1⟩ and send (Write, sid, base)
to GBB.

Registration phase:
Upon receiving (Register, sid) from the environment Z, the

voter V𝑖 performs the following:

• Send (Read, sid) to GBB and get base.
• Generate two 𝑁 -character passphrases (for YES and NO).

• Parse the passphrase as a sequence of Base64 characters

⟨𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑁 ⟩ and compute its deterministic commit-

ment using

base: passCommit←
〈
𝑔
𝑐0
0
· 𝑔𝑐1

1
· 𝑔𝑐2

2
· . . . · 𝑔𝑐𝑁 −1

𝑁−1
〉
.

• Send (PassCommit, sid,
〈
passCommityes, passCommitno

〉
)

to the EA.

Upon receiving (PassCommit, sid,
〈
passCommityes, passCommitno

〉
)

from the voter V𝑖 , the EA performs the following:

• Send (Write, sid, ⟨VoterID, JpassCommityesK, JpassCommitnoK⟩)
toGBB, where JpassCommitK is an encryption of passCommit
under the EA’s threshold encryption scheme.
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• Prove to the voter client the correctness of the encryptions

using the Chaum-Pedersen Σ−Protocol.
Upon receiving (EndReg, sid) from the environmentZ, the EA

performs the following:

• Take the list of

〈
VoterID, JpassCommityesK, JpassCommitnoK

〉
entries, remove the VoterID component, and verifiably shuf-

fle, threshold-decrypt, and send

(Write, sid,
〈
passCommityes, passCommitno

〉
) to GBB.

• Send (Reveal, sid) to each trustee 𝑇𝑖 .

Upon receiving (Reveal, sid) from EA, trustee 𝑇𝑖 sends

(Write, sid, {𝑎𝑖, 𝑗 } 𝑗∈[𝑁−1] ) to GBB.
Upon receiving (EndReg, sid) from the environmentZ, the EA

sends (StartVote, sid) to each voter.

Voting phase:
Upon receiving (StartVote, sid) from EA, voter V𝑖 performs

the following:

• Send (Read, sid) to GBB and get {𝑎𝑖, 𝑗 }𝑖∈[𝑘 ], 𝑗∈[𝑁−1] .
• Compute sk := 𝑐0+𝛼1 ·𝑐1+𝛼2 ·𝑐2 . . ., where𝛼𝑖 := 𝑎1,𝑖+𝑎2,𝑖+. . ..
• Send (SecretKey, sid,

〈
skyes, skno

〉
) to his hedgehog H𝑖 .

Upon receiving (Vote, sid, 𝑥) from the environmentZ, voter V𝑖
performs the following:

• If 𝑥 = YES, generate 𝜎yes ← Sign(nonce) and use EA’s

threshold encryption scheme to compute

ballot←
〈
JpkyesK, J𝜎yesK, 𝜋ppk

〉
, where each group element

of 𝜎 is individually encrypted and

𝜋ppk ← NIZKballot .prove(JpkyesK, J𝜎yesK) is a proof of plain-
text knowledge using the Chaum-Pedersen Σ−Protocol.
• If 𝑥 = NO, generate 𝜎no ← Sign(nonce) and use EA’s thresh-
old encryption scheme to compute ballot←

〈
JpknoK, J𝜎noK, 𝜋ppk

〉
,

where each group element of 𝜎 is individually encrypted and

𝜋ppk ← NIZKballot .prove(JpknoK, J𝜎noK) is a proof of plain-
text knowledge using the Chaum-Pedersen Σ−Protocol.
• Send (Write, sid, ballot) to GBB.

Upon receiving (EndVote, sid) from the environment Z, the

EA performs the following:

• Send (Read, sid) to GBB and get the list of

〈
JpkK, J𝜎K

〉
, then

threshold-decrypt them: ⟨pk, 𝜎⟩. Send (Write, sid, ⟨pk, 𝜎⟩ , 𝜋)
to GBB, where 𝜋 ← NIZKDec .prove(JpkK, J𝜎K, pk, 𝜎) is the
decryption NIZK.

• For each ballot, the ballot is marked invalid if 𝜎 does not

verify under its corresponding pk.
• For each valid signature, determine if it is a YES OR NO

key, and count the vote only if it is the only ballot cast that

corresponds to that roster entry.

• Use the Roster and set of valid signatures from the provi-

sional tally to reformat the election data into two lists. The

first list establishes, in arbitrary order, the set of pkno keys
from voters who cast valid votes for YES (call it yesVotes).
The second list contains pkyes from voters who voted NO

(call it noVotes).
• Send (Write, sid, ⟨yesVotes, noVotes⟩) to GBB.
• Send (EndVote, sid) to every voter.

Upon receiving (Nullify, sid, 1) from the voter V𝑖 , the hedgehog
H𝑖 does the following:

• Send (Read, sid) to GBB and find the key to be nullified in

yesVotes OR noVotes. Denote the index of the key as ℓ .

• Prepare a list of encrypted “flags” 𝐿 marking the ballot it

wants to nullify, i.e., the 𝑖’th element is J1K and the other

elements are J0K.
• Add a proof to this list using the nullification Σ−Protocol.
Concisely, the proof statement is: [(this flag is an encryption

of 0) OR (this flag is an encryption of 1 and I know skno
corresponding to this pkno)]. Denote the nullification proof

as 𝜋 ← NIZKnul .prove(yesVotes/noVotes, 𝐿).
• Send (Write, sid, ⟨𝐿, 𝜋⟩) to GBB.

Upon receiving (Nullify, sid, 0) from the voter V𝑖 , the hedgehog
H𝑖 does the following:

• Prepare a list of encrypted “flags” 𝐿 where all the elements

are J0K.
• Add a proof to this list using the nullification Σ−Protocol.
Concisely, the proof statement is: [(this flag is an encryption

of 0) OR (this flag is an encryption of 1 and I know skno
corresponding to this pkno)]. Denote the nullification proof

as 𝜋 ← NIZKnul .prove(yesVotes/noVotes, 𝐿).
• Send (Write, sid, ⟨𝐿, 𝜋⟩) to GBB.

Tally phase:
Upon receiving (Tally, sid) from the environment Z, EA per-

forms the following:

• Send (Read, sid) to GBB and collect all encrypted flags.

• For each pkno in yesVotes, take all encrypted flags and com-

pute their OR under encryption using the max-and-match

SFE protocol [26].

• Take the list of encrypted ORed flags, sum them under en-

cryption (denote it as 𝑐), and verifiably threshold-decrypt

the result (denote it as 𝑥 ).

• Subtract this value from the number of YES votes in the

provisional tally to produce the final tally for YES votes.

• Repeat the above three steps for each pkyes key in noVotes.
• Denote the final tally result as 𝜏 . Send (Write, sid, ⟨𝜏, 𝜋⟩)
to GBB, where 𝜋 ← NIZKDec .prove(𝑐, 𝑥) is the decryption
proof.

Upon receiving (Result, sid) from the environmentZ, the party

𝑃 returns (Result, sid, 𝜏).

C.6 UC Proof for VoteXX
We have the following theorem.

Theorem C.3. Assume that NIZKballot, NIZKnul and NIZKDec
are complete, sound and zero-knowledge; the encryption scheme is
IND-CPA secure; and the signature scheme is existentially unforgeable
against chosen-message attack. The VoteXX protocol Π𝑛,𝑘,𝑡

VoteXX IUC

realizes F𝑛,𝑘,𝑡
Vote against static corruption and mobile extreme coercion

in the GBB-hybrid model.

Proof. To prove the theorem, we need to construct the real de-

ception strategies DR and a simulator S such that no non-uniform
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PPT environmentZ can distinguish (i) the real execution

EXECGBB
Π𝑛,𝑘,𝑡

VoteXX,DR,A,Z
from the (ii) the ideal execution EXECGBB

F𝑛,𝑘,𝑡Vote ,DI,S,Z
.

Real Deception Strategy. The real deception strategy DR𝑖 inter-
nally runs DI𝑖 , forwarding messages to and from the environment

Z. DR𝑖 works as follows:
DR𝑖 follows the coercer’s instructions. Upon receiving (EndVote, sid)

from the EA:

• If DI𝑖 does not send a nullification request to F𝑛,𝑘,𝑡
Vote , then

DR𝑖 sends (Nullify, sid, 0) to the hedgehog H𝑖 via the un-

tappable channel.

• If DI𝑖 sends (Nullify, sid) to F𝑛,𝑘,𝑡
Vote , then DR𝑖 sends

(Nullify, sid, 1) to the hedgehogH𝑖 via the untappable chan-

nel.

Simulator. The simulator S internally runs A, forwarding mes-

sages to and from the environmentZ. The simulator S works as

follows:

In the preparation phase:

• Upon receiving (Start, sid,𝑇𝑖 ) from the functionality F𝑛,𝑘,𝑡
Vote ,

S simulates the trustee 𝑇𝑖 following the protocol Π𝑛,𝑘,𝑡
VoteXX as

if 𝑇𝑖 received (Start, sid) from the environmentZ.

• Upon receiving (Begin, sid) from the functionality F𝑛,𝑘,𝑡
Vote ,

S simulates the EA following the protocol Π𝑛,𝑘,𝑡
VoteXX as if EA

received (Begin, sid) from the environmentZ.

In the registration phase:

• Upon receiving (Register, sid,V𝑖 ) from the functionality

F𝑛,𝑘,𝑡
Vote , the simulator S simulates V𝑖 following the protocol

Π𝑛,𝑘,𝑡
VoteXX as if V𝑖 received
(Register, sid) from the environmentZ.

• Upon receiving (EndReg, sid) from the functionality F𝑛,𝑘,𝑡
Vote ,

the simulatorS simulates EA following the protocol Π𝑛,𝑘,𝑡
VoteXX

as if the EA received (EndReg, sid) from the environment

Z.

In the voting phase:

• Upon receiving (VoteNotify, sid,V𝑖 ) from the functionality

F𝑛,𝑘,𝑡
Vote , send an encryption of 0

〈
J0K, J0K, 𝜋ppk

〉
to GBB.

• If a corrupted party V𝑖 casts a valid ballot for an honest voter

on GBB, S will abort.

• When a corrupted party V𝑖 casts a ballot on GBB, decrypt the
ballot to get the choice 𝑥 = YES/NO and send (Vote, sid, 𝑥)
to F𝑛,𝑘,𝑡

Vote on behalf of V𝑖 in the ideal world.

• Upon receiving (PreTally, sid, 𝛿) from the functionalityF𝑛,𝑘,𝑡
Vote ,

the simulator S simulates the pre-tally result by simulating

the NIZK for decryption based on 𝛿 .

• Upon receiving (NullifyNotify, sid) from the functionality

F𝑛,𝑘,𝑡
Vote , the simulator sends a dummy nullification request (a

nullification request where the encrypted flags are all J0K)
to GBB.
• If a corrupted party V𝑖 sends a valid nullification request for

an honest voter on GBB, S will abort.

• When a corrupted party V𝑖 sends a nullification request on

GBB, decrypt the nullification request. Otherwise, if it is not

a dummy nullification request, send (Nullify, sid) to F𝑛,𝑘,𝑡
Vote

on behalf of V𝑖 in the ideal world.

In the tally phase:

• Upon receiving (Tally, sid, 𝜏) from the functionality F𝑛,𝑘,𝑡
Vote ,

S simulates EA doing the following:

– For each pk in yesVotes and noVotes, take all the encrypted
flags, compute its OR under encryption. Sum them under

encryption for yesVotes and noVotes, respectively.
– Simulate the decryption of the summed encrypted flags

and the corresponding NIZK proof 𝜋 based on 𝜏 .

– Send (Write, sid, 𝜏, 𝜋) to GBB.
Indistinguishability.

We prove indistinguishability through a series of hybrid worlds

H0, . . . ,H9.

HybridH0: This object is the real world execution

EXECGBB
Π𝑛,𝑘,𝑡

VoteXX,DR,A,Z
.

HybridH1:H1 is the same asH0 except the followings. Dur-

ing the pre-tally phase (upon receiving (EndVote, sid) from the

environment Z) and tally phase, the EA’s decryption proofs are

generated by NIZK simulator.

Claim 1: If the decryption NIZK is zero-knowledge with adver-

sary advantage AdvzkNIZKDec
(A, 𝜆), then H1 and H0 are indistin-

guishable with distinguishing advantage at most

(2𝑛 + 2) · AdvzkNIZKDec
(A, 𝜆).

Proof: Each ballot has two ciphertexts and there are 𝑛 voters in

total, so there are 2𝑛 ciphertexts to decrypt in pre-tally. In tally

phase, there are 2 ciphertexts to decrypt. Therefore, the overall

advantage is at most (2𝑛 + 2) · AdvzkNIZKDec
(A, 𝜆) by a standard

hybrid argument.

HybridH2:H2 is the same asH1 except the followings. During

the pre-tally phase (upon receiving (EndVote, sid) from the envi-

ronmentZ) and tally phase, the honest EA members’ decryption

shares are backward calculated from the pre-tally result and the

tally result, respectively.

Claim 2: If the encryption scheme is backward calculatable, then

H2 andH1 are perfectly indistinguishable.

Proof: The backward calculated decryption shares inH2 and the

decryption shares inH1 have the same distribution .

HybridH3:H3 is the same asH2 except the followings. Dur-

ing the voting phase, the honest voters’ ballot NIZK proofs are

generated by the NIZK simulator.

Claim 3: If the ballot NIZK proof is zero-knowledge with adver-

sary advantage AdvzkNIZKballot
(A, 𝜆), then H3 and H2 are indistin-

guishablewith distinguishing advantage atmost𝑛·AdvzkNIZKballot
(A, 𝜆).

Proof: There are at most 𝑛 honest voters, so the overall advantage

is at most 𝑛 · AdvzkNIZKballot
(A, 𝜆) by a standard hybrid argument.

HybridH4:H4 is the same asH3 except the followings. Dur-

ing the voting phase, the honest voters’ ballots are replaced with〈
J0K, J0K

〉
.

Claim 4: If the encryption scheme is IND-CPA secure with ad-

vantage AdvIND-CPAEnc (A, 𝜆), thenH4 andH3 are indistinguishable

with distinguishing advantage at most 2𝑛 · AdvIND-CPAEnc (A, 𝜆).
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Proof: There are at most 2𝑛 ciphertexts in total. Thus, the overall

advantage is at most 2𝑛 · AdvIND-CPAEnc (A, 𝜆) by a standard hybrid

argument.

HybridH5:H5 is the same asH4 except the followings. During

the voting phase, honest parties’ nullification NIZKs are generated

by the NIZK simulator.

Claim 5: If the nullification NIZK proof is zero-knowledge with

adversary advantage AdvzkNIZKnul
(A, 𝜆), thenH5 andH4 are indis-

tinguishablewith distinguishing advantage atmost𝑛·AdvzkNIZKnul
(A, 𝜆).

Proof: There are at most 𝑛 honest voters, so the overall advantage

is at most 𝑛 · AdvzkNIZKnul
(A, 𝜆) by a standard hybrid argument.

HybridH6:H6 is the same asH5 except the followings. During

the voting phase, honest parties’ nullification requests are replaced

with

〈
J0K, . . . , J0K

〉
.

Claim 6: If the encryption scheme is IND-CPA secure with ad-

vantage AdvIND-CPAEnc (A, 𝜆), thenH6 andH5 are indistinguishable

with distinguishing advantage at most 𝑛 · AdvIND-CPAEnc (A, 𝜆).
Proof: For each nullification request, there is an encryption of

1 replaced with encryption of 0, and there are at most 𝑛 honest

voters. Thus, the overall advantage is at most 𝑛 ·AdvIND-CPAEnc (A, 𝜆)
by a standard hybrid argument.

Hybrid H7: H7 is the same as H6 except that, if a corrupted

voter generates a valid nullification request for an honest voter, the

execution will abort.

Claim 7: If the nullification NIZK is sound with soundness er-

ror AdvsoundNIZKnul
(A, 𝜆), thenH7 andH6 are indistinguishable with

distinguishing advantage at most 𝑛 · AdvsoundNIZKnul
(A, 𝜆).

Proof: There are at most 𝑛 honest voters, so the probability of

aborting is no more than 𝑛 · AdvsoundNIZKnul
(A, 𝜆) by a standard hybrid

argument.

Hybrid H8: H8 is the same as H7 except that, if a corrupted

voter generates a valid ballot for an honest voter, the execution will

abort.

Claim 8: If the signature scheme is existentially unforgeable

against chosen-message attack with adversary advantage

AdvEUF-CMA
Sig (A, 𝜆), then H8 and H7 are indistinguishable with

distinguishing advantage at most AdvEUF-CMA
Sig (A, 𝜆).

Proof: Same as the previous proof, the probability of aborting is

no more than 𝑛 ·AdvEUF-CMA
Sig (A, 𝜆) by a standard hybrid argument.

HybridH9: This object is the ideal execution EXECGBB
F𝑛,𝑘,𝑡Vote ,DI,S,Z

.

Claim 9: If the decryption NIZK is sound with soundness error

AdvsoundNIZKDec
(A, 𝜆), the shuffle NIZK is sound with soundness error

AdvsoundNIZKshuffle
(A, 𝜆) and the max-and-match SFE protocol is robust

with adversary advantage AdvrobustSFE (A, 𝜆), then H9 and H8 are

indistinguishable with distinguishing advantage at most (𝑛 + 2) ·
AdvsoundNIZKDec

(A, 𝜆) + 𝑛 · AdvrobustSFE (A, 𝜆) + AdvsoundNIZKshuffle
(A, 𝜆).

Proof: To prove Claim 9, we will show that the real tally (pre-tally)

and ideal tally (pre-tally) are indistinguishable.

We first show that the real pre-tally and ideal pre-tally are in-

distinguishable. If decryption correctness of honest voters’ ballots

holds, the number of yesVotes and noVotes are identical in both real
pre-tally and ideal pre-tally. In the ideal execution EXECGBB

F𝑛,𝑘,𝑡Vote ,DI,S,Z
,

the corrupted parties’ ballots are honestly tallied, while honest and

coerced parties’ pre-tally are simulated by randomly choosing cor-

rect number of public keys. They are indistinguishable by the veri-

fiable shuffle in registration phase. Thus, the overall advantage in

pre-tally is no more than 𝑛 ·AdvsoundNIZKDec
(A, 𝜆) +AdvsoundNIZKshuffle

(A, 𝜆).
We then show that the real tally and ideal tally are indistinguish-

able. If the max-and-match SFE protocol is sound and decryption

correctness holds, the number of nullified ballots are identical in

both real tally and ideal tally. The max-and-match protocol is per-

formed for 𝑛 times. Thus, the overall advantage in tally is no more

than 𝑛 · AdvrobustSFE (A, 𝜆) + 2 · AdvsoundNIZKDec
(A, 𝜆).

In summary, the distinguishing advantage of H9 and H8 is at

most (𝑛+2)·AdvsoundNIZKDec
(A, 𝜆)+𝑛·AdvrobustSFE (A, 𝜆)+AdvsoundNIZKshuffle

(A, 𝜆).

Consequently, the real execution EXECGBB
Π𝑛,𝑘,𝑡

VoteXX,DR,A,Z
and ideal

execution EXECGBB
F𝑛,𝑘,𝑡Vote ,DI,S,Z

are indistinguishable with distinguish-

ing advantage no more than

(2𝑛 + 2) · AdvzkNIZKDec
(A, 𝜆) + 𝑛 · AdvzkNIZKballot

(A, 𝜆)+

3𝑛 · AdvIND-CPAEnc (A, 𝜆) + 𝑛 · AdvzkNIZKnul
(A, 𝜆) + 𝑛 · AdvsoundNIZKnul

(A, 𝜆)+

𝑛 · AdvEUF-CMA
Sig (A, 𝜆) + (𝑛 + 2) · AdvsoundNIZKDec

(A, 𝜆)+

𝑛 · AdvrobustSFE (A, 𝜆) + AdvsoundNIZKshuffle
(A, 𝜆)

This argument concludes the proof. □
□

C.7 Security of “Flip” Variant
In this section, we will illustrate that the above UC proof can be

adapted to “flip” nullification. To prove security of “flip” nullifi-

cation, the ideal functionality F𝑛,𝑘,𝑡
Vote has interface Flip instead of

Nullify. Upon receiving (Flip, sid) from a voter V𝑖 OR V𝑖 ’s hedge-
hog, F𝑛,𝑘,𝑡

Vote flips V𝑖 ’s vote and sends the notification to S. The ideal
deception strategy DI also needs to be modified accordingly: If DI
chooses to deceive, it forwards the coercer’s input to the ideal func-

tionality and has 50% probability sending a flip request to the ideal

functionality.

The construction of the real deception strategyDR𝑖 is straightfor-
ward. If DI𝑖 sends a flip request to the ideal functionality, DR𝑖 will
follow the protocol to flip the vote. Otherwise, DR𝑖 sends a dummy

flip request to BB. The construction of simulator S is completely

the same except that “cancel” request is replaced by “flip” request.

Then, through a series of same hybrid worlds, we can prove that

“flip” protocol UC realizes F𝑛,𝑘,𝑡
Vote .

D VOTEXXWITH DECOY
In this section, we will show that we can achieve better coercion

resistance by adding decoy ballots to VoteXX.

D.1 Intuition
A decoy ballot is a ballot that will not be counted in the final tally,

but is indistinguishable from a real ballot in the coercer’s view. In
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the registration phase, if the voter knows that he will be coerced,

he will register two (or more) public keys to the distributed EA and

only one of them is real, while the others are decoys. In the voting

phase, the voter can use the decoy secret key to submit a ballot

that will not be counted in the final tally, and use the real secret

key to vote as he wants. However, if the voter cannot hide the real

secret key from the coercer, he can still use VoteXX’s nullification

to nullify the vote. In conclusion, adding decoy allows a voter
to vote as he wants, if he can keep the real secret key from
the coercer, and to nullify if he cannot hold the secret.

To add decoy ballots into VoteXX protocol, we modify the regis-

tration phase and the final tally phase while keep the other parts

same as VoteXX. We assume that the VoteXX protocol uses “cancel”

nullification.

We assume that there is a public roster consisting of commit-

ments of voters’ credentials, and each voter holds his credential 𝜎 .

In the registration phase, if a voter knows that he will be coerced,

he (and his hedgehog) sends two (or more) ⟨pkyes, pkno, 𝜌⟩ tuples
to the distributed EA, where 𝜌 ← Sign𝜎 (pkyes | |pkno). At the end
of the registration phase, the distributed EA will a perform secure
multi-party computation (MPC) to generate the table of public keys,

which is of the form ⟨pkyes, pkno, 𝑖⟩, where 𝑖 ∈ {J0K, J1K} is called
a “decoy flag”. If 𝑖 = J1K, it means that the corresponding public

key is decoy. For the public keys signed by the same credential, the

distributed EA uses a public function to determine which public

key is real. The secure MPC ensures that none of the EA trustees

know which of the public keys are decoys.

In the final tally phase, for each key in yesVotes OR noVotes, the
EA takes all the encrypted flags and the corresponding “decoy flags”

to compute them OR under encryption using the max-and-match

SFE protocol [26]. In this way, if the ballot is a decoy ballot, it will

be nullified automatically since the “decoy flag” is an encryption of

1; if the ballot is a real ballot, it can be nullified the same way as in

VoteXX.

D.2 Security Definition
We analyze security of VoteXX with decoy under the UC frame-

work [7]. Comparing with VoteXX, the only difference is the ideal

deception strategy.

Ideal deception. VoteXX with decoy realizes a stronger DI,
which performs as follows: when DI receives an input 𝑥 from the

simulator (ideal coercer) S, it maps 𝑥 to 𝑥 ′ and sends (Vote, sid, 𝑥 ′)
to the ideal functionality F . (𝑥 ′ can be equal OR not equal to 𝑥 ,

representing obeying and deceiving, respectively.)

D.3 UC Specification of VoteXX with Decoy
VoteXX with decoy protocol Π𝑛,𝑘,𝑡

VoteXX−decoy
Denote the voters asV := {V1, . . . ,V𝑛}, the hedgehogs asH :=

{H1, . . . ,H𝑛}, the trustees as T := {𝑇1, . . . ,𝑇𝑘 }, and the Election
Authority as EA. We assume that EA cannot be corrupted. At the

beginning of the protocol, each voter holds his credential 𝜎 and

GBB contains commitments of 𝜎 .

Preparation phase:

Upon receiving (Begin, sid) from the environment Z, the EA

performs the initialization procedure of the secure multi-party

computation.

Registration phase:
Upon receiving (Register, sid) from the environment Z, the

voter V𝑖 performs the following:

• Send ⟨pkyes, pkno, 𝜌⟩ to the EA,where 𝜌 ← Sign𝜎 (pkyes | |pkno),
and hold the corresponding

〈
skyes, skno

〉
.

• (If V𝑖 will be coerced, he sends ⟨pkyes, pkno, 𝜌⟩ and
⟨pk′yes, pk′no, 𝜌′⟩ to the EA, where 𝜌 ← Sign𝜎 (pkyes, pkno)
and 𝜌′ ← Sign𝜎 (pk′yes | |pk′no). He holds the corresponding〈
skyes, skno

〉
and

〈
sk′yes, sk

′
no

〉
. Let

〈
skyes, skno

〉
be the real

key and

〈
sk′yes, sk

′
no

〉
be the decoy key.)

Upon receiving (EndReg, sid) from the environmentZ, the EA

performs the following:

• Perform secure multi-party computation to generate a list of

the form ⟨pkyes, pkno, 𝑖⟩, where 𝑖 ∈ {J0K, J1K}. For the public
keys signed by the same credential, the EA uses a public

function ℎ to determine which public key is real. The real

keys have 𝑖 = J0K while the decoy keys have 𝑖 = J1K.
• Send (Write, sid, {⟨pkyes, pkno, 𝑖⟩}) to GBB.

Voting phase is completely the same as Π𝑛,𝑘,𝑡
VoteXX.

Tally phase:
Upon receiving (Tally, sid) from the environment Z, EA per-

forms the following:

• Send (Read, sid) to GBB and collect all encrypted flags and

decoy flags.

• For each pkno in yesVotes, take all encrypted flags along
with the decoyflag and compute their OR under encryption

using the max-and-match SFE protocol [26].

• Take the list of encrypted ORed flags, sum them under en-

cryption, and verifiably threshold-decrypt the result.

• Subtract this value from the number of YES votes in the

provisional tally to produce the final tally for YES votes.

• Repeat the above three steps for each pkyes key in noVotes.
• Denote the final tally result as 𝜏 . Send (Write, sid, 𝜏, 𝜋) to
GBB, where 𝜋 is the NIZK for SFE and decryption.

Upon receiving (Result, sid) from the environmentZ, the party

𝑃 returns (Result, sid, 𝜏).

D.4 UC Proof for VoteXX with Decoy
By constructing a similar simulator, we have the following theorem.

Since we need to assume the voter knows he will be coerced in

the registration phase, the VoteXX with decoy protocol is secure

against static active coercion.

Theorem D.1. Assume that the NIZKs are complete, sound and
zero-knowledge; the encryption scheme is IND-CPA secure; and the
signature scheme is secure against existential forgery. The “VoteXX
with decoy” protocol Π𝑛,𝑘,𝑡

VoteXX-decoy IUC realizes F𝑛,𝑘,𝑡
Vote against static

corruption and static active coercion in the GBB-hybrid model.
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Proof sketch. To prove the theorem, we need to construct

the real deception strategies DR and a simulator S such that no

non-uniform PPT environment Z can distinguish (i) the real ex-

ecution EXECGBB
Π𝑛,𝑘,𝑡

VoteXX-decoy,DR,A,Z
from the (ii) the ideal execution

EXECGBB
F𝑛,𝑘,𝑡Vote ,DI,S,Z

.

Real Deception Strategy. The real deception strategy DR𝑖 inter-
nally runs DI𝑖 , forwarding messages to and from the outside. DR𝑖
works as follows:

In the registration phase, upon receiving (Register, sid) from
the environmentZ, V𝑖 sends ⟨pkyes, pkno, 𝜌⟩ and ⟨pk′yes, pk′no, 𝜌′⟩
to the EA, where 𝜌 ← Sign𝜎 (pkyes, pkno) and
𝜌′ ← Sign𝜎 (pk′yes | |pk′no), and holds the corresponding

〈
skyes, skno

〉
(real key) and

〈
sk′yes, sk

′
no

〉
(decoy key).

In the voting phase:

• When coerced, DR𝑖 provides the decoy key sk′yes, sk
′
no to the

coercer and simulates the transcript of using sk′yes, sk
′
no to

register. DR𝑖 follows the coercer’s instructions.
• IfDI𝑖 sends (Vote, sid, 𝑥 ′) to the ideal functionality,DR𝑖 per-
forms as if V𝑖 receives (Vote, sid, 𝑥 ′) from the environment

Z.

Simulator. The simulator S is almost the same as the simulator

for Π𝑛,𝑘,𝑡
VoteXX since we only modified the registration phase and tally

phase.

In the registration phase, the simulator S simulates the parties

following the protocol:

• Upon receiving (Register, sid,V𝑖 ) from the functionality

F𝑛,𝑘,𝑡
Vote , the simulator S simulates V𝑖 following the protocol

Π𝑛,𝑘,𝑡

VoteXX-decoy as if V𝑖 received
(Register, sid) from the environmentZ.

• Upon receiving (EndReg, sid) from the functionality F𝑛,𝑘,𝑡
Vote ,

the simulator S simulates EA following the protocol

Π𝑛,𝑘,𝑡

VoteXX-decoy as if the EA received (EndReg, sid) from the

environmentZ.

In the tally phase, the simulator S simulates the EA to perform

the tally procedure, but uses the NIZK simulator to generate the

NIZK proof:

• Upon receiving (Tally, sid, 𝜏) from the functionality F𝑛,𝑘,𝑡
Vote ,

S simulates EA doing the following:

– For each pk in yesVotes and noVotes, take all the encrypted
flags along with the decoy flag, compute its OR under

encryption. Sum them under encryption for yesVotes and
noVotes, respectively.

– Simulate the decryption of the summed encrypted flags

and the corresponding NIZK 𝜋 based on 𝜏 .

– Send (Write, sid, 𝜏, 𝜋) to GBB.
Same as the proof of Theorem A.2, through a series of hybrid

worlds, the real world and ideal world are indistinguishable.
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