VoteXX: Extreme Coercion Resistance

David Chaum Jeremy Clark Bart Preneel
Richard T. Carback Mahdi Nejadgholi COSIC, KU Leuven and imec
Mario Yaksetig Concordia University Belgium
xx network Canada

Alan T. Sherman Filip Zagorski Bingsheng Zhang

Cyber Defense Lab, University of University of Wroclaw Zeyuan Yin
Maryland, Baltimore County (UMBC) Poland Zhejiang University

USA China
ABSTRACT CCS CONCEPTS

We solve a long-standing challenge to the integrity of votes cast
without the supervision of a voting booth: “improper influence,
which we define as any combination of vote buying and voter coer-
cion. In comparison with previous proposals, our system is the first
in the literature to protect against a strong adversary who learns
all of the voter’s keys—we call this property “extreme coercion re-
sistance.” Our approach allows each voter, or their trusted agents
(which we call “hedgehogs”), to “nullify” (effectively cancel) their
vote in a way that is unstoppable and irrevocable, and such that
the nullification action is forever unattributable to that voter or
their hedgehog(s). We demonstrate the security of VoteXX in the
universal composability model. Additionally we provide concrete
implementations of sub-protocols—including inalienable authenti-
cation, decentralized bulletin boards, and anonymous communica-
tion channels—that are usually left as abstract assumptions in the
literature.

As in many other coercion-resistant systems, voters are autho-
rized to vote with public-private keys. Each voter registers their
public keys with the Election Authority (EA)in a way that convinces
the EA that the voter has complete knowledge of their private keys.
Voters concerned about losing their private keys can themselves,
or by delegating to one or more hedgehog(s), monitor the bulletin
board for malicious ballots cast with their keys, and can act to nullify
these ballots in a privacy-preserving manner with zero-knowledge
proofs.

In comparison with previous proposals, our system makes fewer
assumptions and protects against a stronger adversary. For example,
VoteXX makes none of the following assumptions made by previous
systems: the voter must complete registration before being coerced;
the election will not close before the voter can cast a ballot after
coercion; the voter needs to generate a fake password to evade
coercion; and the voter knows an honest Election Authority official.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS °23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Association for Computing Machinery.

+ Applied computing — Voting / election technologies; - The-
ory of computation — Cryptographic protocols; « Security
and privacy — Privacy-preserving protocols; Distributed sys-
tems security; Web protocol security; Software security engineering.

KEYWORDS

Anonymous communication system, extreme coercion resistance,
decentralized election authority, election security, hedgehog, high-
integrity voting system, improper influence, Internet voting, mixnet,
mix network, nullification, online voting, remote voting, voter-
verifiable elections, VoteXX.

ACM Reference Format:

David Chaum, Richard T. Carback, Mario Yaksetig, Jeremy Clark, Mahdi
Nejadgholi, Bart Preneel, Alan T. Sherman, Filip Zagorski, Bingsheng Zhang,
and Zeyuan Yin. 2023. VoteXX: Extreme Coercion Resistance. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS °23), November 26-30, 2023, Copenhagen, Denmark. ACM, New
York, NY, USA, 21 pages.

1 INTRODUCTION

For over 150 years, the voting booth helped prevent voters from
being bribed and coerced. For example, a controlling family member
might coerce a voter by observing them vote, if votes are cast
online from home or by mail. The booth, however, is becoming
untenable as information technology provides the means for people
to vote more frequently and conveniently without booths, including
using combinations of mailed paper forms and online interactions.
Moreover, growing use of technology facilitates vote buying and
voter coercion with electronic payments, live video streaming from
voter phones, and various types of online threats.

Three daunting challenges make Internet voting difficult: (1) The
lack of a secure physical voting precinct facilitates improper influ-
ence, including vote selling and coercion. (2) Malware on a voter’s
device (e.g., phone) might undetectably modify votes and spy on
the voter. (3) Determined adversaries might try to launch an online
attack, including causing outages. Of these challenges, the most
elusive has been mitigating improper influence.

We present a solution to the problem of improper influence in
voting without booths that enables any voter to “nullify” (effectively
cancel) their vote in a way that is unstoppable, irrevocable, and
forever unattributable to that voter. Our approach allows each voter
to recruit one or more trusted agents, which we call “hedgehogs”
The voter, or their hedgehog(s), can nullify the vote by proving

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Chaum et al.

Table 1: Properties of related work for resisting improper influence in online end-to-end (E2E) verifiable elections. Properties are
fully present (®), partially present (©), or not present (O). It is best to receive ® for each property. Decoy ballots act indirectly

against influence (®).

Influencer: System resists coercion when the influencer: (0) acts before/during registration; (1) colludes with the EA; (2) colludes with
hardware manufactures; (3) acts at any time; (4) learns all information stored by the voter, including all keys required by the protocol (i.e.,
mitigates extreme coercion); (5) learns every action taken by the voter. Other: (6) voter can undo coercion undetectably; (7) system is
inexpensive; (8) system has low cognitive burden; (9) system has security proof (none/game-based/UC).

0 1 2 3 4 5 6 7 8 9
Type [Example Influencer [Other

Baseline (coercible) Helios (2008) [2] o) o o o) o) o) [) [©
Fake credentials JCJ (2005) [27] (o) © [} o} o) (o) [) [) [) ©
Masked ballots WeBu09 (2009) [43] o ° ° o o o o ° o °
Panic passwords Selections (2011) [10] o) ° ° o o) o) ® ® © ©
Decoy ballots RS-Voting (2012) [8] () © ° ® ® (o) (o) [© ()
Secure hardware AOZZ (2015) [3] () © o o © o) [) o) [()
Re-voting (E2E) VoteAgain (2020) [32] ° o ° o o o ° ° ° ©
Hedgehogs VoteXX (2022) ° ° ° ° ® o o)) °

knowledge of the voter’s private key using a zero-knowledge proof
(ZKP) without revealing the private key. This paper provides details
for these ideas, which we introduced in 2022 [1].

Hedgehogs can be recruited before or during the election, from
the voter’s acquaintances or using a service selected on reputation.
Hedgehogs can prove to the voter that they perform their services
correctly. We call a “coercer” any entity who obtains a voter’s key
by coercion or bribery, whereas a “hedgehog” is an entity the voter
trusts and to whom the voter voluntarily provides the key to protect
the voter against coercers.

We accept that certain types of coercion are impossible to prevent
in practice: a coercer can generally block a voter from registering for
an election, and if a coercer posses all knowledge and attributes of
the voter, they cannot be distinguished from the voter. Our approach
differs from previous approaches with end-to-end verifiability (see
Section 2)—e.g., revoting, fake credentials, and decoy ballots—by
protecting against what we believe to be the strongest possible
adversarial model that can be realistically protected against. Specif-
ically we assume adversaries can learn all voter secrets and observe
all voter interactions with the system, excluding interactions with
the hedgehogs which distinguish the voter from the coercer. We
call this protection “extreme coercion resistance.”

An essential component of our system is ensuring voters actually
know their private keys at registration time. Recent work by Kelkar
et al. [28] argues that proofs of knowledge, signing challenge mes-
sages, and other techniques that often appear in voting systems do
not rule out the possibility that private keys are encumbered by an
adversary (e.g., using hardware enclaves) so that voters can access
enough of the key to satisfy the protocol without actually knowing
it. Their alternative is “complete knowledge” Registration in our
system contains a probabilistic test that the voter has complete
knowledge of their secret key.

Some may yearn for an ideal world in which every voter can vote
and vote their desires, but, unfortunately, the imperfect reality is
that, in any system, a powerful coercer can always prevent a voter
from voting. Nullification is a useful form of coercion resistance,
and VoteXX achieves this form of coercion resistance, which is the
best possible given the constraints of reality. There is no widely

agreed upon well-defined notion of coercion resistance, and some
authors make the weak adversarial assumption that coercers cannot
prevent voters from voting. Our work explores what can be done
under very strong adversarial assumptions.

This paper presents an architecture, design, implementation, and
universal composability (UC) [7] security proof (see Appendix C)
of our voting system, called VoteXX. The main feature of VoteXX
is that it protects against extreme coercion, which we formally
define in terms of UC ideal functionality (see Section 3.2). Our
VoteXX protocols include comprehensive mechanisms to handle
all of the security requirements, including, for example, inalienable
authentication, which many other voting systems simply assume
without providing constructions. We describe the user experience
for several settings, which experiences are intuitive and require few
steps. We have implemented the entire VoteXX system and made
all of our sourcecode publicly available as an artifact (see Section 7).
Performance analysis and benchmarking show that the system is
highly practical (see also Section 8.4).

Our primary contributions are: (1) We introduce the new no-
tions of nullification and hedgehogs, and present a new solution
to improper influence based on them. (2) We give cryptographic
protocols realizing nullification, and show how nullification can
be applied to several voting settings, including vote-by-mail and
online. (3) We present a new fully-decentralized scalable voting
system, VoteXX, including registration, voting, nullification, and
tallying. (4) We describe our implementation of VoteXX, which uses
an anonymous communication system (ACS) for registration, vote
casting, and other communication. (5) We provide a formal state-
ment and UC proof of VoteXX’s ballot secrecy, coercion resistance,
and tally integrity. In addition, while other systems complicate reg-
istration and vote casting, our approach allows simple registration
and vote casting by keeping nullification separate. Consequently,
our system can be used as an overlay in conjunction with other
approaches, such as re-voting and decoy ballots.

In the rest of this paper, we compare our approach with those
of previous work, detail our adversarial model, give our problem
specification, show the VoteXX architecture, define the VoteXX

VoteXX: Extreme Coercion Resistance

cryptographic protocols, describe voter interfaces for several set-
tings including vote-by-mail and online, mention possible exten-
sions to VoteXX, sketch the VoteXX implementation and discuss its
performance, and explain the significance of our work. Appendix C
gives our UC proofs.

Throughout, we use the terms “coercion” and “improper influ-
ence” synonymously.

2 COMPARISON TO PREVIOUS WORK

Coercion resistance guarantees that each voter may vote freely.
Informally, a voting system is coercion resistant if and only if no
ballot is “counted as coerced, that is, no voter can prove to any
coercer that the voter cast a counted ballot according to the coercer’s
instructions. As explained in Sections 3.2 and C.2, we uniquely adopt
a very strong form of coercion resistance, which we call extreme
coercion, in which the coercer learns all of the voter’s keys. By
contrast, other researchers assume only weaker forms of coercion,
such as semi-honest coercion (receipt-freeness) in which the the voter
must follow the voting protocol (see Table 1), or active coercion in
which the voter can interact with the coercer during the voting
protocol (see Table 1). Some researchers aim only to detect coercion
rather than to mitigate it (e.g., Caveat Coercitor [20]).

In an unpublished manuscript, Smyth [39] surveys four defini-
tions of coercion resistance and finds that “coercion resistance has
not been adequately formalized” According to Smyth, three of the
definitions are too weak, and the general definition by Kiisters [30]
is complex and too strong. His observations are controversial but
demonstrate that settling definitions is still an elusive goal. Similarly,
there remains some debate on the definition of receipt freeness [15]

Previous work often makes strong assumptions: the voter knows
an honest Election Authority (EA) official [11]; the voter needs a
special device to evade coercion [4, 5, 11, 27]; the voter needs to
perform mental arithmetic to evade coercion [43]; the voter needs to
generate a fake password to evade coercion [10, 16]; the voter must
complete registration before being coerced [27]; the election will not
close before the voter can cast a ballot after coercion [32, 40, 42]; and
the probability of successful coercion is lowered by flooding voters
with decoy ballots [8]. VoteXX makes none of these assumptions.

We do assume the voter can use an untappable channel, as all
coercion-resistant systems must—if an adversary can always in-
fluence the voter, they are indistinguishable from the voter [24].
Some systems establish windows for this channel, such as during
registration, or after coercion occurs. VoteXX is as flexible as it
could be. The channel is used once or twice between the voter and
each hedgehog (who can be any person in the world): first to induct
the hedgehog (any time before the end of the election), and possibly
second to signal the hedgehog (after coercion and before the end
of the election).

VoteXX guarantees that the voter is able to nullify their coerced
vote. Unlike some systems, in VoteXX, the voter cannot change
their coerced ballot selection. VoteXX can be used as an overlay,
providing an additional coercion-resistant mechanism to others
already in place. Thus, VoteXX can support re-voting (as outlined in
our protocol description): if a voter were unable to re-vote (due to
coercion at the end of the election), nullification would be a failsafe.
Similarly, VoteXX can be used together with decoy ballots.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 1 compares our solution to previous proposed mechanisms.
We do so by scoring each mechanism with regard to five properties
of the influencer and five other properties. We state each assumption
and property positively, meaning it is better to receive ® than O.
Appendix B explains our assumptions and the basis for our scoring.

In any system, an adversary could always prevent a voter from
voting. In this sense, VoteXX achieves an optimal solution. Further-
more, we conjecture, that for Column 6 in Table 1, no system that
resists extreme coercion can also undo coercion undetectably.

3 SYSTEM OVERVIEW

In VoteXX, each voter has a public-private key pair for “YES” votes,
and another such pair for “NO” votes. Without revealing their
private keys, each voter registers their public keys with the EA.
Each voter may share their keys with one or more hedgehogs.
During nullification, the voter, or one or more of their hedgehog(s),
can interact with the ACS to nullify a vote by proving knowledge
of one of the voter’s private keys via a ZKP. We describe a fully
decentralizable implementation of VoteXX, including its public
bulletin board (BB), which could be implemented on a blockchain.

3.1 Adversarial Model

The adversary could be anyone—including a voter or an EA trustee,
located close to or far away from their target. The adversary might
be covert or overt. The adversary’s goal might include any or all
of the following: tamper with the tally, influence a voter’s ballot
choice through coercion, learn how a voter voted, or disrupt or
discredit an election. The adversary can engage in coercion at any
time, including before or during voter registration.

We assume a secure ACS that protects against traffic analysis.
Examples include TOR with hidden services [41], I2P [25], xx net-
work [45], and Oxen [35]. We further assume that the adversary
cannot defeat standard cryptographic functions and protocols, in-
cluding encryption, digital signatures, cryptographic hashing, pseu-
dorandom number generation, and ZKPs. We assume an untappable
channel between the voter and their hedgehog(s), as explained in
Section 2

3.2 Ideal Functionality

A foundational component of our UC proof (Appendix C) is the
voting ideal functionality ‘7"\Zj’fe’t, which we now introduce and define
in Fig. 1.

The ideal functionality. The voting ideal functionality ?'\;:)fet
has four phases: preparation, registration, voting, and tally. In the

voting phase, 7"\2)’5: receives ballots from the voters and records
k.t
t

them. In particular, 7:\2)’ o accepts a special type of request: “nullify”
Upon receiving a nullify request, the former choice of the voter will
not be counted in the final tally.

Extreme coercion. In our UC model, the adversary has the
power of extreme coercion. When the adversary A sends an “ex-
treme coercion” request to a voter, V;, V; will hand his state to A
and follow A’s instructions, but V; can still communicate with his
hedgehog(s) H; secretly.

Connection with the properties. It is easy to see that our UC
definition implies the basic properties of a secure voting scheme.

CCS *23, November 26-30, 2023, Copenhagen, Denmark

r—(Functionality T\Zfet} N\

The functionality ‘7’_\70{? interacts with a set of voters V :=
{V1,...,Vn}, a set of hedgehogs H := {Hi,...,H,}, a set of
trustees 7 := {Ty,..., Tk}, the Election Authority (EA), and the ad-
versary S. Internally it keeps variables status, ballots, 7, and J. Let
Peor be the set of corrupted parties.

Initially, set status := 0, ballots := 7 := J := 0.

Preparation:

e Upon receiving (START,sid) from the trustee T; € 7, set
J = JU{T;}, and send a notification (START,sid,T;) to the
adversary S. (If status # 0, then ignore the request.)

e Upon receiving (BeGIN, sid) from the EA, if | J| < k ignore
the request. Otherwise, send a notification (BEGIN, sid) to the
adversary S, and set status := 1. (If status # 0, then ignore
the request.)

Registration:

e Upon receiving (REGISTER, sid) from the voter V;, send
(REGISTER, sid, V;) to the adversary S. (If status # 1, then
ignore the request.)

e Upon receiving (ENDREG, sid) from EA, send (ENDREG, sid)
to the adversary S and set status := 2. (If status # 1, then
ignore the request.)

Voting:

e Upon receiving (VOTE, sid, x) from a voter V; € V, set
ballots[i] := x (x=YES/NO), and send (VoTeENoTIFY,sid,V;)
to the adversary S. (If status # 2, then ignore the request.)

e Upon receiving (ENDVOTE, sid) from EA, compute
S « TallyAlg(ballots) (Cf Fig. 6). Send (PReTALLY,sid,d) to
the adversary S. Set status := 3. (If status # 2, then ignore
the request.)

e Upon receiving (NULLIFY, sid) from a voter V; € V or V;’s
hedgehog Hj, set ballots[i] := nullify. Send
(NuLLiryNOTIFY, sid) to the adversary S. (If status # 3, then
ignore the request.)

Tally:

e Upon receiving (TALry,sid) from EA, compute
7 « TallyAlg(ballots) (Cf Fig. 6). Send (TaLLy,sid, 7) to the
adversary S. (If status # 3, then ignore the request.)

e Upon receiving (REsuLT, sid) from any party P, if 7:= 0,
then ignore the request, otherwise return (REsuLt,sid, 7) to
the requester.

Figure 1: Functionality T\Zfet

First, 7——\;25: does not leak the ballot of a voter to anyone else, so it
implies ballot privacy. Second, as mentioned above, the ideal decep-
tion is able to nullify the ballot and the coercer cannot know if the
coercion was successful, so our definition implies coercion resis-
tance. Third, ‘F\Z)’ﬁt ensures that the tally procedure is performed
correctly, so it implies verifiability.

3.3 Problem Specification

Our main requirement is a coercion-resistant remote voting sys-
tem that achieves a level of security at least as strong as that for a
precinct-based in-person voter-verifiable paper secret-ballot sys-
tem. The system must maximize the ability to prevent or remediate
serious failures by eliminating undetectable attacks, preventing
scalable “wholesale” attacks, and making “retail” attacks as diffi-
cult as possible. The key requirements, specific to our context, are
coercion resistance, malware resistance, and availability.

Coercion resistance. An adversary cannot be convinced that the
voter’s ballot is “counted as coerced,” that is, counted the way the

Chaum et al.

coercer instructed the voter to vote. This property is related to
ballot secrecy but we assume that the adversary can watch the voter
vote or vote for them. The adversary, however, cannot be sure how
that vote is counted, so they have no incentive to threaten or pay
the voter to vote a certain way. While rarely a significant issue
in polling place elections, this problem is much more important
in uncontrolled environments such as absentee voting or Internet
voting.

Malware resistance. Any modification of the hardware or software
that changes the result must be detectable. This property is similar
to software independence but with the caveat that a version of the
software exists without the undetected change before or after the
election. In other words, the adversary does not, for all time, control
everything read or written to all devices used by the voter for voting.

Availability. The system must not have single points of failure. It
should resist denial of service attacks, and no single entity should
be able to prevent completion of the election.

3.4 System Architecture

As shown in Fig. 2, we describe VoteXX in terms of the following
entities and elements. There are n voters vy, v, .. ., v, who interact
with a publicly readable BB, which is a distributed ledger such as
a blockchain. The writing interactions take place via an ACS. The
ACS disassociates the device, physical location, and other associated
metadata by all clients posting to the BB, protecting the metadata
of voters and hedgehogs, as well as sensitive election authority
equipment. Read operations can take place through the ACS or via
a direct interaction with the BB. Each voter may have one or more
trusted hedgehog(s). Each hedgehog interacts with the BB via the
ACS. The EA comprises a set of independent and non-colluding
(up to a threshold) entities called trustees. The trustees of the EA
are authoritative over registration, voting, and tallying. The EA
can read and write to the BB via the ACS. The EA is a multiparty
computation; it cannot compute any tally (preliminary or otherwise)
without cooperation of the specified threshold of its members. The
system includes a set of auditors who can read from the BB and
verify the correctness of operations performed by the EA and via
the ACS.

VoteXX: Extreme Coercion Resistance
Election
Authority

Bulletin Board]—{ Auditor(s)]
ACS -

ACS

~
g >l Hedgehog(s) l

Figure 2: VoteXX Architecture. Arrows represent information
flows (i.e., read/write) between system entities. Thick lines
represent communications that take place over the ACS. The
EA can write to the BB directly or via the ACS. Voters submit
(encrypted) ballots over the ACS, read from the BB, and share
their secret key over an untappable channel (dotted) to their
hedgehog(s). The hedgehogs submit a ZKP to nullify the
corresponding vote(s) over the ACS. Auditors read from the
BB.

4 PROTOCOLS

Protocol Boxes 1-3 explain the four main stages of the VoteXX
protocols: registration, voting, and tallying (including nullification).
Section 5 explains nullification in more detail.

The VoteXX protocol assumes a number of cryptographic primi-
tives that are common in the voting literature. All operations are
performed in the same elliptic curve group, where the decisional
Diffie-Hellman (DDH) problem (and by extension, the discrete log-
arithm problem) is hard. Digital signatures are performed with
the Schnorr signature scheme. Encryption is performed with ElGa-
mal [14], which can be augmented with distributed key generation
(DKG) and threshold decryption (for m out of n key holders [37]).

We use standard X—Protocols to prove knowledge of discrete log-
arithms (Schnorr [38]), knowledge of representations (Okamoto [34]),
and knowledge of Diffie-Hellman tuples (Chaum-Pedersen [9]),
which also corresponds to ElGamal re-randomizations and decryp-
tions. We also use techniques to allow the trustees to compute
jointly, verifiably (i.e., produce E—Protocol proofs), and privately
on ElGamal ciphertexts the following: (i) a random shuffle of cipher-
texts (Verificatum), and (ii) the evaluation of an exclusive-or (XOR)
operation based on its logic lookup table (mix and match [26]).

Protocol 1 describes registration. Registration can be re-opened
by re-running set-up. Each voter needs to carry out registration only
once, and the resulting keys can be reused in subsequent elections.

Protocol 1 is one way of performing registration, but any method
that results in a posting of the voter’s public key (in encrypted
format) is fine. A simple way is for the voter to have the private key
(full entropy, not based on a passphrase) on a hardware device and
provide the public key. One problem that we tackle in Protocol 1
is providing assurance that the voter actually knows their private
key—and it is not, for example, supplied by a coercer. This assurance
is one of two properties of so-called inalienable authentication. The

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

other property is that the adversary cannot impersonate the voter.
Other authors do not provide concrete constructions for inalienable
authentication; some simply tacitly assume it in their proofs of
coercion resistance. In VoteXX, we provide a concrete instance
of the first half of an unalienable authentication protocol, and we
present a voting protocol that does not need the second half. That is,
we care only that the voter knows their secret key—if the adversary
also knows it too, we can still achieve coercion resistance. There are
significant advantages in authentication strength with in-person
registration, but other choices can be made.

Voting performs a straightforward signature using a registered
key (see Protocol 2). At the end of registration, voter keys are
unlinked from their identity. Until the election closes, votes are
encrypted to preserve the secrecy of the tally, and ballots are submit-
ted through the ACS to unlink them from the voter communication
metadata.

5 NULLIFICATION

We explain the nullification protocol in detail. First, we present an
overview. Second, we give the construction of the nullification ZKP
and propose a novel succinct ZKP with O(log n) proof size, where
n is the number of total ballots.

5.1 Overview

The tallying process (Protocol 3) includes our novel nullification
technique. Consider a list of public keys that voted YES and assume
the hedgehog wants to nullify one of them. It cannot point out
which key it wants to nullify or the coercer would know the voter
is working with (or is personally acting as) a hedgehog to intervene.
So the hedgehog must hide its flag ([1])) in a set of false flags ([0])) for
each YES key in the tally. We could allow the hedgehog to choose a
fixed-sized subset of f§ keys at random to serve as an anonymity
set, which improves performance but sacrifices full anonymity
(¢f- [10]). For simplicity, the protocol boxes do not explain that, for
nullification, we use exponential ElGamal [14] instead of standard
ElGamal used in registration and voting (under the same election
master key).

If a hedgehog flags a key with ([1]), it must know the associ-
ated private key; otherwise, any hedgehog could nullify any vote.
However, if it submits a false flag ([0]), it does not need to know
the associated key. Anyone can serve as a dummy hedgehog by
submitting a full set of false flags. To enforce these constraints, the
hedgehog must construct a ZK proof to prove that: [for each flag,
(it is an encryption of 0) or (it is an encryption of 1 and I know skne
corresponding to this pk, ,)]. We will describe the NIZK proof for
the above statement in Section 5.2.

Once a hedgehog computes and submits a set of flags (along
with the NIZK proof II), Protocol 3 simplifies the description by
having the EA wait to perform Steps 1-2 after the nullification
period. In practice, it should not wait—the process is quadratic
work (number of hedgehogs times number of voters) and subject to
“board-flooding” attacks [29]. The EA must process the nullifications
as they arrive; that is, use “concurrent authorization” [16]. Doing
so is possible. When a new set of flags arrives, the EA checks each
proof and computes the XOR between the submitted flag. The EA
also computes the accumulation of previous flags—each of these two

CCS *23, November 26-30, 2023, Copenhagen, Denmark

Registration is an in-person ceremony between the voter, using a voting client device, and an officer for the EA. At completion, the voter registers two public keys
<pkye5, pkn0>, which are not learned by the EA officer and will be used to vote YES and NO, respectively. The keys are for a digital signature. They are based on a passphrase

that can be regenerated from any voting client. The EA additionally does not learn the passphrase but has high assurance through the protocol that the human voter knows
the passphrase.
Registration Set-up.

Registration uses a trapdoor commitment scheme. The commitment aspect allows the voter to present her passphrase in a hidden form to the EA and answer queries about
specific characters within it. The trapdoor is revealed after registration closes and allows each voter to convert the format of their commitments into the format of a public key.

(1) The generator g is a parameter of the election.

(2) The EA computes a generator g; as follows: each trustee T, T’, T”, .. . privately chooses one random value aj, reveals ggl, and proves knowledge of a; with a

(ay+a’ +al +...)
Schnorr —Protocol. Theng; =g, ' ' .

This process is repeated, with new random a; values, to complete a set of N generators: base < (go, g1, g2, - -
registration period.
Call the set of all a values (split across the trustees): trapdoor.

3

=

.,gN-1). The same base is used for all voters in a

(4

=

Registration.
(1) Each voter generates two N-character passphrases (for YES and NO). Steps 2—-4 describe the process for the first passphrase and are repeated for the second.
(2) The voting client parses the passphrase as a sequence of Base64 characters (co, ¢1, 2, . . ., cN') and computes its deterministic commitment using base:
. C C C9 CN —
passCommit « (gOU -_ql1 -gzz ot gNAill .

(3) The voting client sends [passCommit] to the EA, which is an encryption of passCommit under the EA’s threshold encryption scheme.

(4) The EA officer issues a challenge like: “Reveal Character 4.” The voter responds “F.” The EA client computes disclosedChar « ([passCommit]/g}). The voting
client proves knowledge of a representation of disclosedChar using a X —Protocol. This step is repeated to build confidence that the voter knows the passphrase, but
bounded in repetitions to protect the passphrase.

(5) The EA client posts <VoterID, [passCommit,,], [[passCommitno]]> to the BB.

Registration Finalization.

(1) After the registration period, the EA takes the list of <VoterID, [passCommit,], [[passCommitno]]> entries, removes the VoterID component, and verifiably
shuffles, threshold-decrypts, and posts
<passCommityes, passCommitn0> for each (now anonymous) voter.

(2) Each trustee T, T’,T”, ... reveals their values producing trapdoor.

(3) Each voter uses trapdoor to reformat their two passCommit values into key pairs (sk, pk) such that pk = passCommit = ggk as follows. Consider generator g; and
let a; = a; + @ + With this notation, sk =cy+a; - c1 +az - ¢z

(4) Given that <passC0mmitye5, passCommitno> = <pkyes, pkno>, the EA holds an anonymized list, which we call the Roster, of <pkyes, pkn0> keys for each registered
voter.

Protocol 1: Registration Protocol.

Voting.
Each voter completes voting online. At completion, each voter will have submitted their ballot using a passphrase from registration.
(1) The value nonce is a parameter of the election.
(2) To mark a ballot for YES, the voter uses their YES passphrase to generate skyes and uses this key to sign no: oyes < Sign(nonce). Corresponding values are used to
vote NO.
(3) The voter uses the EA’s threshold encryption scheme to compute ballot «— ([[pkyesﬂ, [oyes]. n'ppk>, where each group element of ¢ is individually encrypted and
Tppk is a proof of plaintext knowledge using the Chaum-Pedersen X —Protocol.
(4) The voter submits ballot over the ACS to the BB. The EA marks it as invalid if it is an exact duplicate or if the proofs are invalid.

Protocol 2: Voting Protocol.

Chaum et al.

steps is parallelizable for each flag. Thus, when nullification closes,
the only remaining task is to threshold decrypt the accumulation
of flags, which process is linear in the number of votes.

5.2 The Nullification ZKP

We provide a formal description of the nullification ZK proof. It is
well known that X—Protocols can be stacked through conjunction
and disjunction (CDS)[13, 18]. We first present the CDS-composition
ZKP and then propose a novel succinct ZKP.

The CDS-composition ZKP. The CDS-composition ZKP takes
a voter’s public key pk and makes a disjunctive proof that either
Case 1 OR Case 2 is true: In Case 1, the hedgehog proves (flag = [0]).
For exponential ElGamal, assume {c1, cz) = Enc(m) = (9", g™y")

for generator g, public key y, and message m. A proof it encrypts
is equivalent to proving < g,¢1, Y, C2 rh_1> is a DDH tuple, which can
be done with the Chaum-Pedersen X—Protocol. Call this subproof A.
In X—Protocol format, its transcript is (a4, e4, z4)-

In Case 2, the hedgehog proves a conjunctive statement: (flag =
[1]) and it knows sk, which corresponds to pk for the associated
voter’s public key. Call the subproof that (flag = [1]) B. It is imple-
mented the same as in subproof A, with transcript {(ap, ep, zg). Call
the proof of knowledge of sk subproof C, which can be implemented
with a X—Protocol due to Schnorr: {ac, ec, zc). To summarize, the
hedgehog proves: IT := [A OR (B AND C)] for each flag.

Further, the resulting proof can be made non-interactive (typi-
cally in the random oracle model with the Fiat-Shamir heuristic [17],

VoteXX: Extreme Coercion Resistance

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

pkip, is in the provisional tally.

this process for the remaining pk,, keys.

(3) The EA repeats Steps 1-2 for each pk, . key in noVotes.

yes

Provisional Tally.
After the voting period ends, the EA produces a verifiable provisional tally.
(1) The EA takes the list of ([pk], [o]), then threshold-decrypts them: (pk, o).
(2) For each ballot, the ballot is marked invalid if o does not verify under its corresponding pk.
(3) For each valid signature, pk is matched to its entry on the Roster. The EA determines if it is a YES or NO key, and counts the vote only if it is the only ballot cast that
corresponds to that roster entry. (Since ballots are not shuffled, other policies are feasible such as counting the most recent vote.)
Nullification.

The goal of nullification is to allow voters to modify their cast ballots, particularly in the case of coercion. Unlike other protocols, voters can enlist the help of others parties,
called hedgehogs. The nullification period runs after the provisional tallying. If the provisional tally contains pk,,, it can be nullified using skyes (the “opposite” key). In other
words, casting a YES and nullifying a NO vote use the same key, as these two actions are aligned in their intention.

(1) At any convenient time, before or after voting, the voter covertly communicates with a hedgehog to develop a coercion-resistant strategy. For example, assume the

following strategy: the voter wants to vote YES and reveals skyes to the hedgehog, along with (pkyes, pkn0>. They request the hedgehog engage in nullification if

(2) Using the Roster and set of valid signatures from the provisional tally, the EA reformats the election data into two lists. The first list establishes, in arbitrary order,
the set of pk,, keys from voters who cast valid votes for YES (call it yesVotes). The second list contains pk, ., from voters who voted NO.

(3) For example, assume YES received six votes in the provisional tally. yesVotes consists of six pk,, keys. If the hedgehog wants to nullify the fourth key, it prepares a
list of encrypted “flags” marking the ballot it wants to nullify: ([0], [0], [0], [1], [o], [0])-

(4) The first encrypted flag corresponds to the first pk,, in yesVotes. The hedgehog adds a proof to this list using the nullification ZK protocol. Concisely, the proof
statement is: [for each flag, (it is an encryption of 0) or (it is an encryption of 1 and I know skp, corresponding to this pk,)].

Final Tally.
After the nullification period ends, the EA produces a verifiable final tally.
(1) The EA takes all the encrypted flags for the first pk, , key in yesVotes and computes its xor under encryption using the mix and match SFE protocol [26]. It repeats

(2) The EA takes the list of encrypted xored flags, sums them under encryption, and verifiabily threshold-decrypts the result. The EA subtracts this value from the
number of YES votes in the provisional tally to produce the final tally for YES votes.

yes

Protocol 3: Tallying Protocol (including nullification).

in its strong form [6], but other heuristics exist [23]). Specifically,
the prover generates a single challenge ¢é for II. To handle the con-
junction within Case 2, eg = ec; for the disjunction across the cases,
é = e4 + ep. In Case 1, the prover computes (a4, e4, z4) and simu-
lates (ap, ep, zg) and (ac, ep, zc). In Case 2, the prover simulates
(aa, ea, z4) and computes (ap, eg, zg) and {ac, ep, z¢).
A new succinct ZKP. We propose a novel succinct nullification
ZKP with O(log N) proof size, where N is the number of total
ballots. Assuming that in the nullification phase, each nullification
request nullifies only one ballot. To nullify a ballot, the hedgehog
will form a list of encrypted “flags,” where there is one encryption
of 1 and the other flags are encryptions of 0. The hedgehog needs
to prove in ZK that (i) there is one encrypted flag containing [1]
and the others are [0], and (ii) I know the corresponding sk.
Formally, let & denote the ElGamal public key, and let [[x;] de-
note exponential ElGamal encryption with explicit randomness, i.e.,
[x;r] = (g",g*h"). Let ck denote the Pedersen commitment key,
and let Com denote Pedersen commitment, i.e., Com(x;r) := g*¥ck’.
Denote the public keys in yesVotes as pky, ..., pky_;. Denote the
encrypted flags as E, ..., EN—1. Let n := [logN]. We will give a
ZK protocol for the relation

R = {((pkg,....pky_1-E0,..-.EN=1),70, ..., TN—1, £ 5k) |
ZE{O,...,N—I}/\pk[:gSk/\E[:[[l;r[]]/\ 1)
E; =[0;r:],i # £}.

Following the idea of [21, 47], the prover first commits bit-wise
to the binary representation of ¢. The key observation is that there

exists a data-oblivious algorithm that takes as input the binary rep-
resentation of £ and generates a unit vector where the fth element
is 1.

Concretely, the protocol can be split into two parts: The first
part proves that there is one encrypted flag containing [1] and
the others are [0], which is actually a unit vector proof [47]. The
second part proves that the prover knows the corresponding sk,
which can be proven by modifying the one-out-of-many proof [21].
The modification works as follows. The prover first computes the
commitment of sk, denoted as c. Then, the verifier can compute
c; == pk;/c. Now {c;} is a vector satisfying ¢, = Com(0) so that the
one-out-of-many proof [21] can be applied. The prover needs to
additionally prove that he knows the opening of c.

We specify the polynomial p;(x) used in the protocol. Follow-
ing [21], we write i = ij...ip and £ = #; ... ¢, in binary, and we
let ;; be Kronecker’s delta, i.e., 6y = 1 and 6;p = 0 for i # ¢.
We let fj = fjx +aj, let fj1 = fj = tjx+aj = 814;x + aj and
f:,"() = x—fj =(1 —fj)x—aj = 50[jx—aj. Then, p;i(x) = H;-lzl f},ij
has the form:

n n-—1 n-—1
pix) = [[Gi%) + > pigx® = Guex™ + 3 piax. ()
Jj=1 k=0 k=0

Fig. 3 shows the ZK protocol for relation R. By the Fiat-Shamir
heuristic [17], it can be transformed into a NIZK proof.

THEOREM 5.1. Assume that the DDH problem is hard. The protocol
in Fig. 3 for relation R is a 4-move public coin ZK protocol with
completeness, soundness, and special honest verifier ZK.

Proor. For completeness, it is easy to see that cj cq;
J

Com(fj;za;) and cz_fjcbj = Com(O;zbj) hold for j € {1,...,n}

CCS *23, November 26-30, 2023, Copenhagen, Denmark

,—(ZK protocol for relation R) N\

CRS: the ElGamal public key h, the Pedersen commitment key ck;
Statement: pk,...,pkx_q, Eo, ..., En—1;
Witness: rg,...,rn-1, ¢, sk such that £ € {0,...,N
g A Ep=[1;r] A Ei=[0;ri],i#¢.
Verifier:

e V — P: Random y « Zg.

-1} A pk, =

Prover:
e Randomly pick t « Z,, compute ¢ := Com(sk;?);
e Fori=0,..., N -1, compute c; := pk;/c.
e For j=1,...,n

- Randomly pick 7}, a;,sj,tj, pk < Zgs

- Compute ce = Com(t;7;); Caj 1= Com(aj;s;);
cp; = Com(¢jaj;t));

- Compute cq, = Y, cplkCom(O pr) (using k=j—1
and p; from Eq. 2);

- Pick random Rk « Zq and compute

[[Z =0 (sz y)Rk]] (usmgk]7Iandptk

from Eq 2);
o Randomly pick s’,¢" « Z4, compute m := Com(s’,t');
e P> V:
(¢, cep5Cays€hysCdy> Dos - -+ Coys Cap» Chys €dpy_ g s D1, m).

Verifier:

e V — P: Random x « Zg.
Prover:

e For j=1,...,n

- Compute fj :=£jx +aj; za; = T;X +5;
zp; = 7i(x = fj) + tj;
e Compute z4 = (— t)x - Z",O prexk;
e Compute R := Z Y x™ - yh) + TRy - xF);
Compute v := s +x sk v =t Xt
® P> V: (fi,2a1:2b,>- - > fns Zap > Zby» Zd> R, 01, 02).
Verifier:
e For i =0,...,N — 1, compute c¢; = pk;/c.
e For all j € {1,...,n}, check c;fjcaj = Com(fj;zaj) and

*fi . _ . .
ij cy; = Com(O,zbj),

%, fii
e Check [‘[Ni1 c; JE

fia=fj and fjo=x - f;
. Chec
o (B - [-T1 Sy 0]])
using fj1 = f; and fm =x - fj.
o Check g”1ck® =m - c¥;
e Output 1 iff all the checks pass.

T172 01 ;x = Com(0;z4), using

175 (D)< = [0:R],

Figure 3: ZK protocol for relation R .

and g”'h% = m - ¢* holds. Then, observe that [—[;.’ 1fjijisa poly-

nomial in the challenge x of the form p;(x) = §;px" + Z" o i, kx
By the additive homomorphlsm of Pedersen commitment,

HN 1 Uf iy Hk 0 d = Com(0; z4) always holds since ¢,
is a commitment to 0. Similarly, denote E; = [ej; ri]), we have
HN o (B - =TT f00)Y - TR (D0 = (25 e
- pi(x) + Zk o i, kxk) -y*;R] = [0;R]. Thus, the protocol is
perfectly complete.
To prove that the protocol is sound, suppose the adversary creates

Lol

n + 1 accepting responses fl(o), . ton+

1 different challenges %@, x(" on the same imtlal message

Cyuvry .

Chaum et al.

We first show that ¢; € {0, 1} for j € [1, n]. Pick two responses
fj(o) z‘(l(j)), ;9) and fj(l) z((li), M to challenges x(x(1) on the
J J

commitments cg;, ¢p .. By combining the verification equations we

©) _x(1) 0 _ (1), 0 _ (1)
obtain c? x Com(fj f iZq; —Zq;) and
O f»(o) x(1)+f.<1) ((0) (1)
_ L0 (1) - -fi
¢ J = Com(o’zbj -7,). Defining ¢; = (0)7)((1)
20—z
and y; = m we extract an opening of c,;, = Com(£j;y;).

% f(m x(1>+f()

1-£;) (x(© —x(®
Furthermore, since ¢ (Y=

[]
Com(;(1-6;) (x() —x(D);y;(1-;) (x(=x(1)) = Com(0: 2y (0)

2)) either £;(1 — £;) = 0 or the binding property of Pedersen

commltment is broken. Thus, we have ¢; € {0, 1} and extract £ =
... 0.

Then, the soundness is two-fold. In the first part, we prove ¢ =
Com(sk) A pky = g°* and extract sk. In the second part, we prove
that Ep = [1;r¢] A E;j = [0;ri],i # ¢.

Let a; be the number committed in ¢, > from the verification
equation cifjcaj = Com(fj; zq;) we conclude that fj(O) = t’jx(o) +

aj, ... ,fj(") = t’jx(") +ajforall j =1,...,n unless the adversary
breaks the binding property of Pedersen commitment.

From the form of f;’s we have f;1 = ¢jx +a; and fjo = (1 -
tj)x—aj.Fori # {,it follows that p; (x) = I_I;.Izl fj.i; is a polynomial

of degree at most n — 1, and for i = ¢ it is a polynomial of the

H i
form pg (x) = x™ +.... Therefore we can rewrite HN 1 ; jafi
Hk 0 d = Com(O zg) as

n n—1 ok
- Ko ¢, = Com(0;zg), (3)

for some fixed cx, . . ., c«,_,, which can be computed from commit-
ments in {c;};c[o,n-1] and the initial message.

Observe that the vectors (1,x#), ..., (x(#))") can be viewed
as rows in a Vandermonde matrix because x(9, ..., x(®) are all
different. The matrix is invertible and we can therefore find a lin-
ear combination (ay, ..., an) of the rows that give us the vector
(0,...,0,1). Combining the n + 1 accepting verification equations,
it follows that

o (xByn o)
co=[e]_[D5 yas ~ Com(o; Zaﬂz(ﬁ)) @)
=0

=0

This equation gives us an extracted opening of ¢, to 0. Since ¢; =

pk;/c, and denoting pk, = g%, we have ¢ = gck!, where t =
n (B)

- =0 %B%q -

Then, by g**ck® = m - ¢¥ we have that

(U(U) (1))(x(0) _x(l))71ck(02(0)_Uél))(x(O)_x(l))71. (5)
This equation extracts sk = (uio) - vfl))(x(o) —x()-1,

Next, we start to prove that E; = [1;re] A E; = [0;ri],i # ¢.
Denote E; = [e;j; ri]). Since x is randomly chosen after the Dy ’s are
committed, by the verification equation

MG (B [- 1T, fiys of)¥ TIE2, (Dg)** = [0; R], we have

VoteXX: Extreme Coercion Resistance

that [[N5? ((B)™" - [~ 11, £150))¥ - T1222(DR)* encrypts
a zero polynimial w.r.t x with overwhelming probability (by the
Schwartz-Zippel Lemma). Therefore, by denoting i;1 = ¢j,ij,0 =
1 — ¢;, we obtain Q(y) = Zﬁo_l(ei -]_[;.’:1 iji;) - y' = 0. Since
y is randomly chosen after the E;’s are encrypted, Q(y) is a zero
polynomial w.r.t y with overwhelming probability (by the Schwartz-
Zippel Lemma). Hence, we have e; = H;'l:l iji; fori e [0,N —1].
To prove that the protocol is special honest verifier SK, we build a
simulator that is given x, y < Zg. It first randomly picks fi, . .
Zg. It then picks ¢ <~ G at random and ¢y, ..., ¢z, €4, - -+ Cd,,_,
Com(0) as random commitments to 0. Next, it picks Uj, R; « Zgq at
random and computes D; := [U;; R;]| for i € [1,n—1]. After the ran-
dom selection, it computes c; := pk;/c; Ca; = c;j"Com(fj; zaj),

., 09

fi—-x _
Cp; = cf,]’_ Com(O;zbj), m = g“ h®c¢™* and

N-1 T17 fig; -1
Cdy = l_[C!_[k1 By . " —xk Com(0; —zy4) 6)

i=0 i k=1 “di
and
0;R
Do = N-1 n n [[ﬂ Yy n—1 K @
Hi:o ((Ei)x [[_ Hj:l fj,iji 0]]) ' Hk:1 (D)*
The simulator outputs the transcript (y,c,...,mx, fi,...,02).

We argue that the adversary cannot distinguish the simulation
from a real argument. First, in both real proofs and simulated proofs,
fi,- .., vz are uniformly random in Zg; c is uniformly random in G.
Furthermore, by the verification equations, cq,, Chys - -5 Caps Chyy> M
¢d,» Do are determined by fi,...,v2 and c,cp,, ..., s Cdy> -+ Cdyy g
Dj,...,Dp—1 both in real and in simulated proofs. The adversary’s
advantage must come from being able to distinguish ¢, cg,, . . ., cg,, Cdy>
.eos€d, »D1,...,Dp—1 in real and simulated proofs. To do so, the
adversary must either break the binding property of Pedersen com-
mitment or break the IND-CPA property of ElGamal encryption by
a standard hybrid argument. O

6 DESIGN AND CLIENT INTERFACES

Building on our system architecture (Section 3.4), we now explain
our design and client interfaces. Section 7 describes our implemen-
tation.

Design elements. VoteXX differs from other election systems in
that the BB is at the center. The BB receives all posts through an
ACS; all other communication is directly peer-to-peer, or in person.
The BB, via the ACS, is part of a public, preexisting decentralized
infrastructure. The BB uses a multicast feature of the ACS, allowing
all BB instances, auditors, and other observers to record the same
data sent through the network at the same time.

Client interfaces. There are 4 clients, a voter client, a hedgehog
client, an EA client, and an Auditor client. Each voter client operates
like a calculator, without state or persistent storage. The voter can
enter their YES or NO passphrase on another voter client device at
any time to regenerate their ballot, and the voter client will verify
that the ballot is properly posted to the BB.

The hedgehog client is integrated into the same mobile phone
app as the voter client. Any voter can be a hedgehog for themselves

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

or other voters. Voters and hedgehogs can send and receive ballot
secrets directly between each other using their ACS identities.

The EA client posts data associated with EA operations, such as
starting an election by posting a signed election parameters file.

Any client can read and write messages to the BB. Messages are
ignored unless they are signed by eligible clients. Auditor clients
read data posted directly from the ACS to the BB; they verify sig-
natures and validate posted data.

7 IMPLEMENTATION

We built proof-of-concept implementations for all components of
VoteXX, included as an artifact in our submission. We wrote the EA
and auditor in Java with the BouncyCastle [31] library. We wrote
the nullification and proofs in C++ with the cryptopp [12] library.
Both implementations use the secp256k1 group. We can send inputs
and outputs through ACS clients written in Golang using the native
cryptographic libraries to interact with the BB, which currently is
a simple file store utility.

We benchmarked specific operations on a PC using a AMD Ryzen
5 5600X 6-Core Processor with 2 16 GiB DIMMs at 2133 MT/s. The
most expensive voting operation, tallying, took 15.34 seconds for
a simulated 22° (1 million) voters. Assuming that a very high 27
(25%) of voters nullify, it would take 9.21 minutes to verify the
proofs. Each proof was 5.93 KB in size. See Section 8.4 for more
general performance analysis.

8 DISCUSSION

We now discuss our major design decisions, nullification options
(cancel or flip), not revealing nullifications, performance analysis,
extensions, and open problems.

8.1 Major Design Decisions

Toward our goal of addressing improper influence and supporting
online verifiable elections, we made three major design decisions:
(1) Nullification achieves the theoretically optimal coercion resis-
tance, and using hedgehogs depends on a more realistic assumption
than that assumed in previous work. (2) Our decentralized archi-
tecture provides availability and malware resistance. (3) In-person
registration involving passphrases enhances voter authentication
and supports key functionality for malware resistance.

Nullification and hedgehogs. Nullification allows the voter to
share a passphrase anytime after they conceive of it. In-person
registration ensures the voter knows their passphrases, providing
ample opportunity even for captive voters (e.g., a spouse or child)
to signal a hedgehog. Because each passphrase can nullify a ballot
only in one direction (the NO key can only vote NO or nullify YES;
the YES key can only vote YES or nullify NO), voter intent matters
and a signal to coordinate with a hedgehog can be optional. For
example, a candidate who is a hedgehog might always nullify a
ballot cast against them if possible.

Decentralized architecture. Routing all audit data through the
ACS creates a special challenge to the adversary not present in
traditional election systems: Any attack on the infrastructure must
disable a much larger system, where there is an independent fi-
nancial incentive for it to remain online. The BB, decentralized
through the ACS, is not vulnerable to denial-of-service. Flooding

CCS *23, November 26-30, 2023, Copenhagen, Denmark

the BB with data [29] is limited as adversaries must pay for ACS
bandwidth. Because all BB data are public and we use known E2E-
voting constructions, the system meets the requirements for voter
verifiable ballots, contestability, and auditability Park et al. [36].

In-Person registration. Our registration design roots trust into
passphrases known to the voter and written on physical paper
associated with a specific person. This design provides a critical
feature for the system’s malware resistance: passphrases make it
possible to detect and prove misbehavior by the software because
all data posted to the BB can be regenerated with the passphrases
on any device.

VoteXX greatly complicates undetectable wholesale attacks: the
adversary must deploy malicious software across all devices con-
trolled by checking with a passphrase. The deployment must go
undetected forever, or at least until the election completes. If the
attack is detected after the election, the adversary risks loss of
confidence from a provably improper election outcome. It would
be intractable for an adversary to remain undetected for a useful
period of time. Our design decisions allow VoteXX to prevent un-
detectable wholesale attacks at scale and provide detection and
mitigation against retail attacks.

8.2 Cancel or Flip

Our design supports a variety of options for implementing the
semantics of nullification, including what we call “cancel” or “flip.”
We recommend flip, which is the default. Consider a vote that might
have been nullified by one or more entities. We will describe the
case for when there are two ballot choices (See Section 8.5 for the
general case of k ballot choices). Assume that this vote selects from
one of two ballot choices numbered 0, 1. With cancel, the vote is
cancelled if and only if at least one entity nullified it (and this idea
can be generalized to at least ¢ entities for some threshold t). With
flip, the vote becomes x +y mod 2, where x is the ballot choice
of the vote, and y is the number of times the vote was nullified.
Intuitively, cancel gives the voter the ability to cancel the vote,
whereas flip gives the voter the ability to randomize the vote.

Each of these options can be implemented using different alge-
braic operations during Step 1 of the third phase (Final Tally) of
Protocol 3: AND for cancel (realized with a homomorphic addition of
the encrypted flags for each ballot followed by a plaintext equality
test with [0]), and ADDITION modulo 2 for flip (realized with mix
and match. Step 2 replaces the final summation with a verifiable
shuffle and threshold decryption of the flag set for each key).

We view flip not as re-voting, but as “randomizing” the vote,
which is a form of nullification. As we point out below, under
stronger assumptions there are some use cases in which flip can
be used to re-vote. Also, nullification can be used as an overlay in
conjunction with re-voting strategies.

A useful application of flip arises for a common form of low-
intensity coercion. Suppose during remote voting at home, a coercer
tells their spouse to vote for Alice and watches them comply, but
the coercer does not collect the spouse’s keys. Without any advance
planning, the spouse can later flip their vote to Bob without the
coercer knowing,.

10

Chaum et al.

8.3 Not Revealing Which Ballots are Nullified

Our base proposal irrevocably hides whether any particular ballot
was nullified. This action provides absolute protection of voters
from coercers. If a voter’s keys are exposed (e.g., malware or sharing
a password), it puts the voter in the same position as a potential
coercer: they cannot know if the ballot was nullified, because they
do not know what the other parties with access to their keys might
have done with respect to nullification.

A facility that could be helpful in this situation would let a voter
view any nullification of their vote but only in a special booth at
a controlled location. An extension to our current protocol could
allow for such a change, and can be designed so that the total
number of voters for which such viewings can be arranged is at
least public. Any public process creates a cost asymmetry for an
attacker to force each voter through the process to complete their
coercion. Assuming a legal and policy framework that provides
protection for voters is in place, such solutions achieve our stated
goals.

8.4 Performance Analysis

We analyze the running time of VoteXX for elections with T trustees,
V voters, and H hedgehogs. If a passphrase is £ characters long with
a possible characters, registration setup takes ©(£aT) work (com-
prised of modular exponentiations and X—Protocols). The proof
size and verification time for the auditor is also ®(¢aT). Example
parameters might be a = 64 characters of length £ = 20 and T = 10
trustees. The shuffle proof dominates registration, generally tak-
ing ©(VTlog V). Each vote has a constant amount of signatures,
encryptions, and X—Protocols for the voter. Proof size and verifi-
cation time for the auditor is ©(V). The provisional tally consists
of another shuffle, ®(VT log V), and decryption (subsumed in the
shuffle), with the proof size and verification time of the same order
for the auditor.

Nullification is an involved protocol. As mentioned in Section 4,
to avoid a quadratic bottleneck during the final tally, it is essential
to process hedgehog flags as they arrive. Each hedgehog performs
©(V) work (encryptions and X—Protocols) that an auditor must
fetch and validate (space and time of ®(V)). For each of the V
flags from one hedgehog, the trustees can precompute a logic gate
(two-input gates are effectively constant time). Applying the gate
to the inputs is ©(T) (plaintext equality tests and X—Protocols). In
total, nullification is @ (HVT) work for the EA and auditors, with
same order proof size on the BB. The final tally is fast: ©(VT) work
(consisting of decryption and X—Protocols) for the trustees and
auditors, with same order proof size.

8.5 Extensions

We briefly describe several possible extensions of VoteXX.
Multiple candidates. VoteXX can be easily extended to support an
election with multiple candidates. For example, for a k-candidate
race, the voter can register k key pairs and then vote using the
desired key. Without any major changes, nullification still operates
as before. For example, to perform a flip, the system can use an
addition modulo k to determine what flip to apply to the initially
cast vote. Since the nullification protocol scales linearly in the

VoteXX: Extreme Coercion Resistance

number of voters and hedgehogs, introducing multiple candidates
does not affect the overall performance of the nullification process.

Voting in person or by mail. To support the existing voting in-
frastructure, VoteXX can allow for a setting where the voting is
accomplished by mail or in precincts using paper ballots. This ca-
pability can be achieved by incorporating a code-voting protocol,
such as that used in Remotegrity [46].

Malware protection. To enhance protection against malware,
where the voting device is running malicious software and can
alter the operations performed by the voter, VoteXX allows for a
two-phase voting process. In Phase 1, the user submits a vote or
a vote commitment. In Phase 2, using a different device, the voter
checks if the submission is correctly posted on the BB. Optionally,
this extension can include an additional set of keys, where the user
submits a payload signed with the additional keys and thereby
“locks in” their submission.

Roster changes. If detected early in the election, it is possible to
contest and remove a compromised passphrase. Providing proper
documentation, the affected voter would rerun the in-person regis-
tration process.

Online registration. For lower-security elections, it is possible to
replace the in-person registration with an online registration that
follows appropriate identification mechanisms or uses an identity
verification service [44].

8.6 Open Problems and Future work

Open problems include:

(1) Explore how the number of nullifications might provide a
measure of coercion [20]. This measure might even be used to
reject an election outcome, if there were too many nullifications.
A danger is that such a mechanism might be abused to discredit a
valid outcome.

(2) Investigate how our technical machinery of nullification
might be used in non-voting applications, such as contract signing.

Next steps for VoteXX include the following. Building on our UC
proofs (Appendix C), we plan to carry out a formal-methods analysis
of selected VoteXX protocols using protocol-analysis tools and build
a formally verified implementation of key system elements. We also
plan to conduct a pilot election and user study to assess the overall
usability and how well VoteXX achieved its design goal of providing
a voting experience that is intuitive with few steps. Results can
help us improve the system and facilitate widespread adoption. To
enhance the availability of VoteXX, we plan to decentralize the
protocol further, enabling a subset of the EA to perform certain
election steps.

9 CONCLUSION

Leveraging hedgehogs, an ACS, BBs, and user-generated passphrases,
VoteXX provides a new, practical, and versatile solution to improper
influence in elections against strong adversaries who learn the
voter’s voting keys. VoteXX works through the use of nullifica-
tion supported by voter associates whom we call hedgehogs. In
comparison with previous approaches, our solution makes fewer
assumptions and protects against stronger adversaries. By sepa-
rating our mechanism for mitigating improper influence from the
mechanisms of ballot marking and collection, our technique works

11

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

with a wide range of voting systems, including precinct voting with
paper ballots, voting by mail, and Internet voting. For example, our
mechanism works harmoniously with techniques for mitigating
malware attacks, including allowing voters to check across multiple
systems and devices. Also, our nullification mechanism can be used
in addition to other mechanisms for mitigating improper influence.

Currently, election systems without voting booths are vulnerable
to potential improper influence attacks. For example, a nation state,
terrorist organization, billionaire, or anonymous hackers might
offer significant amounts of money to vote for certain candidates.
It could likely be impossible to know the extent to which such
attacks succeeded. Such attacks would discredit the election, and
re-running the election with the same technology would not resolve
the issue. Our paper offers a solution to this threat that achieves
the theoretically best possible result. Having demonstrated that
extreme coercion resistance is possible, even in Internet voting,
democratic societies should insist that, as a matter of due diligence,
all voting systems should provide coercion resistance. Our work
protects voting beyond the booth, and such voting is an essential
enabler for the advance of democracy.

ACKNOWLEDGMENTS

This project was supported in part by xx network. Clark was sup-
ported in part by NSERC and Raymond Chabot Grant Thornton
under grants IRCP]/545498-2018 and RGPIN/04019-2021. Preneel
was supported in part by CyberSecurity Research Flanders with
reference number VR20192203. Sherman was supported in part by
the National Science Foundation under SFS grants DGE-1241576,
1753681, and 1819521, and by the U.S. Department of Defense under
CySP grants H98230-17-1-0387, H98230-18-1-0321, H98230-19-1-
0308, and H98230-20-1-0384.

REFERENCES

[1] 2022. REDACTED (extended abstract) for anonymous submission.

[2] Ben Adida. 2008. Helios: Web-Based open-audit voting. In USENIX Security
Symposium. 335-348.

[3] Joél Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. 2015. Inco-
ercible multi-party computation and universally composable receipt-free voting.
In Annual Cryptology Conference. Springer, 763-780.

[4] Roberto Araujo, Sebastien Foulle, and Jacques Traoré. 2010. A practical and secure

coercion-resistant scheme for Internet voting. Toward Trustworthy Elections LNCS

6000 (2010).

Roberto Araujo, Narjes Ben Rajeb, Riadh Robbana, Jacques Traoré, and Souheib

Yousfi. 2010. Towards Practical and Secure Coercion-Resistant Electronic Elec-

tions. In CANS.

[6] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove

Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In

ASIACRYPT.

Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of

Computer Science. IEEE, 136—145.

David Chaum. 2012. Random-Sample Voting. (2012). Online.

David Chaum and Torben Pryds Pedersen. 1992. Wallet Databases with Observers.

In CRYPTO.

Jeremy Clark and Urs Hengartner. 2011. Selections: Internet Voting with Over-

the-Shoulder Coercion-Resistance. In Financial Cryptography.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. 2008. Civitas:

Toward a Secure Voting System. In IEEE Symposium on Security and Privacy.

354-368.

Community Maintained, Originally written by Wei Dai. 1995. Crypto++ Library

8.7. https://www.cryptopp.com/ Accessed: 2023-03-08.

Ronald Cramer, Ivan Damgéard, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A secure and

optimally efficient multi-authority election scheme. In EUROCRYPT.

[5

7

I8
[o

[10

[11

https://www.cryptopp.com/

CCS *23, November 26-30, 2023, Copenhagen, Denmark Chaum et al.

[15] Stéphanie Delaune, Steve Kremer, and Mark Ryan. 2006. Coercion-Resistance and A ACRONYMS AND ABBREVIATIONS
receipt-freeness in electronic voting. In 19th IEEE Computer Security Foundations A nonvm mmunication m
Workshop (CSFW"06). IEEE, 12+. CS ano ymous commu cation syste
[16] Aleksander Essex, Jeremy Clark, and Urs Hengartner. 2012. Cobra: Toward BB bulletin board
Concurrent Ballot Authorization for Internet Voting. In EVI/WOTE. CDS stacked through conjunction and disjunction
[17] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to DDH decisional Diffie-Hellman
identification and signature problems. In CRYPTO. 186-194. ec S ona e-te a
[18] Amos Fiat and Adi Shamir. 1990. Witness Indistinguishable and Witness Hiding DKG distributed key generation
Protocols. In ACM STOC. A EA Election Authority
[19] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. 1992. A practical secret d d
voting scheme for large scale elections. In International Workshop on the Theory E2E end-to-en
and Application of Cryptographic Techniques. Springer, 244-251. NIZK non-interactive zero knowledge
[20] Gurchetan S Grewal, Mark D Ryan, Sergiu Bursuc, and Peter YA Ryan. 2013. :
Caveat Coercitor: Coercion-evidence in electronic voting. In 2013 IEEE Symposium TA Tal.ly Authorlty .
on Security and Privacy. IEEE, 367-381. ucC universal COmPOSablhty
[21] Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: Or how to VA Voting Authorjty
leak a secret and spend a coin. In Advances in Cryptology-EUROCRYPT 2015: 34th 7K Kk led
Annual International Conference on the Theory and Applications of Cryptographic zero knowledge
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Springer, 253~ ZKP Zero—knowledge proof
280.
[22] Thomas Haines, Johannes Miiller, and Ifiigo Querejeta-Azurmendi. 2023. Scalable
Coercion-Resistant E-Voting under Weaker Trust Assumptions. In ACM SAC.
[23] Carmit Hazay and Yehuda Lindell. 2010. Efficient Secure Two-Party Protocols. B EXPLANATION OF PROPERTIES IN TABLE 1
Springer.))) (0) System resists coercion when the influencer: acts before/during
[24] Martin Hirt and Kazue Sako. 2000. Efficient Receipt-Free Voting Based on Homo- . . i . .
morphic Encryption. In EUROCRYPT, registration. In a number of coercion resistance mechanisms,
[25] I2P. 2003. Invisible Internet Project. https://www.geti2p.net. Accessed on the voter is expected to register a user-chosen key, pass-
01-05-2022.
[26] Markus Jakobsson and Ari Juels. 2000. Mix and Match: Secure function evaluation word, or be aSSIgned a key' If reg%Stra.tlon can be d'one in the
via ciphertexts. In ASIACRYPT. presence of the adversary or using inputs supplied by the
[27] Ari Juels, Dario Catalano, and Markus Jacobsson. 2005. Coercion-Resistant adversary (and compliance can be checked by the adversary)’
electronic elections. In ACM WPES. ithout i ti . ist de. Oth
[28] Mahimna Kelkar, Kushal Babel, Philip Daian, James Austgen, Vitalik Buterin, and without impacting coercion resistance, we awar . er-
Ari Juels. 2023. Complete Knowledge: Preventing Encumbrance of Cryptographic wise if the system assumes the adversary cannot be active
Secrets. Cryptology ePrint Archive, Paper 2023/044. https://eprint.iacr.org/2023/ during this process or places limitations on their actions in
044 https://eprint.iacr.org/2023/044. . K
[29] Reto Koenig, Rolf Haenni, and Stephan Fischli. 2011. Preventing Board Flooding corrupting the registrants, we award O.
Attacks in Coercion-Resistant Electronic Voting Schemes. In SEC. (1) System resists coercion when the inﬂuencer: colludes with
[30] Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. 2010. Accountability: Defi- : : el
nition and Relationship to Verifiability. In ACM CCS. the EA. A system sf.lould maintain coercion reflstance even
[31] Legion of the Bouncy Castle. 2000. Bouncy Castle crypto APIs. https://www. when the coercer is able to corrupt a minority of the EA
bouncycastle.org/java.html Accessed: 2022-05-05. (®). Limitations on this assumption might result in ©: for
[32] Wouter Lueks, Ifiigo Querejeta-Azurmendi, and Carmela Troncoso. 2020. VoteA-

gain: A scalable coercion-resistant voting system. In USENIX Security. example, in fake credentials, it is assumed the coercer can
[33] Tal Moran and Moni Naor. 2006. Receipt-Free Universally-Verifiable Voting With corrupt any member of the EA but the voter must know

Everlasting Privacy. In CRYPTO. o which EA member has not been corrupted. Other systems
[34] T Okamoto. 1992. Provably secure and practical identification schemes and
corresponding signature schemes. In CRYPTO. fail to provide coercion resistance (O) under this assumption.

[35] Oxen. 2020. Privacy made simple. https://www.oxen.io. Accessed on 01-05-2022. (2) System resists coercion when the influencer: colludes with hard-

[36] Sunoo Park, Michael Specter, Neha Narula, and Ronald L. Rivest. 2020. Going
from Bad to Worse: From Internet Voting to Blockchain Voting. (2020). Online. ware manufactures. A system that does not rely on trusted

Torben Pryds Pedersen. 1991. A threshold cryptosystem without a trusted party. hardware to prOVide coercion-resistance is awarded @. By
In EUROCRYPT. contrast, as system that makes hardware assumptions be-

38] C P Schnorr. 1991. Efficient Signature Generation by Smart Cards. ! . . .
(32] Cryp;gf;;;y 4(1991) iléeln_ 1714gna ure Generation by Smart Cards. Journal of yond typical computational equipment, such as a trusted

~

[37

[39] Ben Smyth. 2019. Surveying definitions of coercion resistance. Cryptology ePrint execution environment [3], is awarded O (along with sys-
Archive, Report 2019/822.))))) tems that do not provide coercion resistance).

[40] Oliver Spycher, Rolf Haenni, and Eric Dubuis. 2010. Coercion-Resistant Hybrid .)) X
Voting Systems. In EVOTE. (3) System resists coercion when the influencer: acts at any time.

[41] TOR. 2002. The TOR Project. https://www.torproject.org. Accessed on 01-05- Assumming an influencer cannot act at all times (see Prop-
2022. s c e

[42] M. Volkamer and R. Grimm. 2006. Multiple Casts in Online Voting: Analyzing erty 5)’ are there addltlonal' reStr%Ctlons on when they can
Chances. In EVOTE. act? If not: @. Systems receive O include ones that assume

[43] R Wen and R Buckland. 2009. Masked Ballot Voting for Receipt-Free Online the influencer does not act before or during registration’ and
Elections. In VOTE-ID. t lik ting that th d t act

[44] Wikipedia. 2022. Identity Verification Service. https://en.wikipedia.org/wiki/ systems like re-voling that assume the coercer does not ac
Identity_verification_service Accessed: 2022-05-07. at the very end of the voting period (blocking a re-vote).

[45] xxne(;wor(l)(i 20(;220;; Quantum Leap in privacy. https://www.xx.network. Ac- (4) System resists coercion when the inﬂuencer: learns all infor—
cessed on 01-05-2022. . . .)

[46] Filip Zagorski, Richard T. Carback III, David Chaum, Jeremy Clark, Aleksander mation stored by the voter, mdudmg all keys requlred by the
Essex, and Poorvi L. Vora. 2013. Remotegrity: Design and Use of an End-to-End protocol. Our main contribution is that VoteXX achieves co-
Verifiable Remote Voting System. In ACNS. . . . 5

[47] Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. 2019. A Treasury ercion resistance even if al'l the V(?ter s Storeq keys/secrer
System for Cryptocurrencies: Enabling Better Collaborative Intelligence. In The are leaked—extreme coercion resistance. This property 1is
Network and Distributed System Security Symposium 2019. stronger than the literature, which generally assumes voters

can establish and maintain secret keys or passwords (and lie
convincingly about them as necessary) that will need to be
12

https://www.geti2p.net
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://eprint.iacr.org/2023/044
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://www.oxen.io
https://www.torproject.org
https://en.wikipedia.org/wiki/Identity_verification_service
https://en.wikipedia.org/wiki/Identity_verification_service
https://www.xx.network

VoteXX: Extreme Coercion Resistance

G

G

(7

@®

©

)

~

)

~

~

recalled to cast a vote: O. While non-verifiable re-voting does
not require voter secrets or private keys, end-to-end verifi-
able systems do as a way to cryptographically link ballots
and prevent multiple votes from the same voter. VoteAgain
is designed as an exception to this rules; in it, such keys exist
but are maintained by a special election trustee so voters
do not need to. However it must be completely trusted for
coercion resistance (and in fact, must be trusted for ballot
privacy and election integrity as well [22]). Use of a trusted
third party also receives O. Trusting a hardware enclave to
maintain keys is awarded ©. Systems that assume the influ-
encer cannot impersonate the voter but do not provide a
specific mechanism for online settings are also awarded O.

System resists coercion when the influencer: learns every action
taken by the voter. With reasonable assumptions on how
voting works, this property is in fact shown to be impossible
to achieve, as the voter can never act independently [24].
We include it to highlight this fact and as an open problem:
perhaps some other trust model or assumptions on the voter
would enable this property.

Voter can undo coercion undetectably. Coercion needs to be
corrected when the voter’s intent is different than the in-
fluencer’s. Assuming the coercion resistance mechanism is
allowed to work, if the voter is always able to vote their
true intent, the mechanism is awarded @. By contrast, sys-
tems are awarded O when voters cannot reliably vote their
true intent. These systems, however, can still be considered
coercion resistant if they do allow the voter to cancel the
coercer’s intent by spoiling, nullifying, or randomizing their
ballot. In VoteXX, voters can vote their true intent if they
can predict the influencer’s actions and respond strategi-
cally. However, we cannot assume this ability will always
be the case, and so, at best, voters can cancel or randomize
their ballots. In VoteXX this choice depends on a system
configuration discussed in Section 8.2.

System is inexpensive. A system that does not introduce new
expenses beyond the EA running a server and voters hav-
ing access to standard computational devices is awarded @.
A system that requires special equipment or hardware for
either the EA or for the voters is awarded O (e.g., special
hardware for digital signatures [3]).

System has low cognitive burden. If the human voters strat-
egy for evading coercion is automated or does not require
any cognitive effort, it is awarded @. If the voter needs to
remember passwords, it is awarded ©. Any strenuous mental
effort (e.g., remembering an integer offset and performing
mental arithmetic [43]) is awarded O.

System has security proof. A universal composability proof
is awarded @, a game-based security definition and proof is
awarded ©, while informal security arguments and sketches
are awarded O.

13

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

CCS *23, November 26-30, 2023, Copenhagen, Denmark

C SECURITY ANALYSIS

We formally state and prove properties of VoteXX in the Universal
Composability (UC) framework [7]. To begin, we define types of
coercion and state the security of VoteXX. Next, we give a UC speci-
fication of VoteXX and state and prove a theorem that characterizes
its security properties, using “cancel” nullification (see Section 8.2).
We model our proofs in part from those of Alwen, Ostrovsky, Zhou,
and Zikas [3].

C.1 Preliminaries

In this section, we formally define the cryptographic primitives in
VoteXX and their properties.

NIZK. A non-interactive zero-knowledge proof (NIZK) for relation
R consists of four probabilistic polynomial algorithms
(Setup, Prove, Verify, Sim) such that

(0,7) < Setup(R): The setup algorithm outputs a common
reference string o and a simulation trapdoor 7 for relation R.

7 < Prove(R, 0, ¢, w): the prover algorithm takes as input a
common reference string o and (¢, w) € R and outputs a proof 7.

0/1 « Verify(R, o, ¢,): the verification algorithm takes as
input a common reference string o, a statement ¢ and a proof 7,
and it returns 0 OR 1 for rejection OR acceptance, respectively.

7 « Sim(R, 7, ¢): the simulation algorithm takes as input a
simulation trapdoor 7 and a statement ¢, and it outputs a proof 7.

Completeness. Completeness says that an honest prover can al-
ways convince an honest verifier. Formally, for all (¢, w) € R,

Pr[(o, 7) « Setup(R);
7« Prove(R, o, ¢, w) : Verify(R, 0, ¢, 1) = 1] = 1.
Zero-Knowledge. A proof is zero-knowledge if it does not leak
any information except that the statement is true. Consider the

following experiment:

Experiment EXPTZ;‘L Nz (D

(1) For a relation R, (0,7) < Setup(R), (¢, w) € R, the chal-

lenger computes 7y < Prove(R, o, $, w) and 11 « Sim(R, 7, §).

(2) The challenger picks a random bit b € {0, 1}.
(3) A is given (o, 1p) as input, and it outputs a guess bit b’ €
{o,1}.

(4) If b = b’, output 1; otherwise, output 0.

A NIZK is zero-knowledge if the adversary A’s advantage
AdVES S (A =2 Pr[EXPTZ&,"f’NIZK()I) = 1] — 1| is negligible in
A.

Soundness. Soundness says that a prover cannot prove a false
statement. Consider the following experiment:

Experiment EXPT}OC‘['\]1 IdZ ()

(1) For arelation R, (o, 7) < Setup(R).
(2) Given o as input, A outputs (¢, 7).
(3) If Verify(R,0,¢,m) = 1 and ¢ ¢ Lg, output 1; otherwise,
output 0.
A NIZK is sound if the adversary A’s advantage Advf'\ﬂ%';f (AN =
Pr[ExpT;fgﬁZK(A) = 1] is negligible in 1.

Encryption scheme. An encryption scheme consists of three
probabilistic polynomial algorithms (Keygen, Enc, Dec). We require
the underlying encryption scheme to be indistinguishable under

Chaum et al.

chosen-plaintext attack (IND-CPA). Consider the following experi-
ment:
: IND-CPA .
Experiment EXPT A Ene (A):

(1) The challenger performs the key generation algorithm
(pk, sk) « Keygen(4) and sends pk to the adversary A.

(2) A sends mg, m; to the challenger.

(3) The challenger picks a random bit b € {0,1} and sends
¢ « Encp(my) to A.

(4) A outputs a guess bit b’ € {0,1}. If b = b’, output 1; other-
wise, output 0.

An encryption scheme is IND-CPA secure if the adversary A’s
advantage AdvIND-CPA(A, 1) = |2+ Pr[EXPTND CPAQ2) = 1] - 1]
is negligible in A.

Signature. A signature scheme consists of three probabilistic
polynomial algorithms (Keygen, Sign, Verify). We require the un-
derlying signature scheme to be existentially unforgeable under
chosen-message attack (EUF-CMA). Consider the following experi-
ment:

Experiment EXPTF;[J’Ei'gCMA (A):

(1) The challenger performs the key generation algorithm
(pk, sk) « Keygen(4) and sends pk to the adversary A.

(2) A canrepeatedly request for signatures on chosen messages
(mo, ..., mq), and receives the valid signatures (oo, . . ., oq)
in response.

(3) A outputs a message and signature (m*, o).

(4) If m* is not one of the messages requested in Step 2, and
Verifypk(m*, ") = 1, output 1; otherwise, output 0.

A signature scheme is EUF-CMA if the adversary A’s advantage

Advg}éF’CMA(ﬂ, A) = Pr[EXPTgl{J;gCMA(A) = 1] is negligible in 1.

Bulletin Board. A bulletin board is required for any voting
scheme to record ballots and other related information. We model
the bulletin board as a UC global functionality Ggg, which is de-
picted in Fig. 4. It has two interfaces: READ and WRITE, and records
all the valid messages. Gpp ensures that all the communication
with the bulletin board is anonymous.

,—‘ Functionality Ggp N

The ideal functionality Ggg is globally available to all participants. It
is parameterized with a predicate Validate.
Upon initialization, set Storage := 0.
Upon receiving (READ, sid) from P:
e Let val := Storage[sid];
e Return (READ,sid,val) to the requestor.
Upon receiving (WRITE, sid, inp) from P, do the following:

e Let val := Storage[sid];

o If Validate(val,inp) = 1, then set Storage[sid] := val||inp,
return (RECEIPT, sid) to the requestor;

o Otherwise, return (REJECT, sid) to the requestor.

Figure 4: Functionality Ggp

VoteXX: Extreme Coercion Resistance

C.2 Types of Coercion

To articulate the capability of the coercer in VoteXX, we define a
new type of coercion: extreme coercion, which differs from previous
notions of semi-honest coercion (receipt-freeness) and active coercion.

Semi-Honest coercion. This type of coercion is most common
in the literature; resistance against semi-honest coercion is called
receipt-freeness. In this case, the coercer provides an input to the
coerced party and expects evidence that such input was used, which
evidence is called a “receipt” For example, the receipt can be the
entire view of the protocol execution.

Active coercion. Moran and Naor [33] proposed this stronger
type of coercion. Instead of merely requiring a receipt, the coercer
can query the current view interactively and send commands to
the coerced party during the protocol execution.

Extreme coercion. We define this new stronger type of coer-
cion, called “extreme coercion,” which captures the real world more
accurately. The coercer can obtain all the secret keys and passwords
of the coerced party, and can perform operations in substitution
for the coerced party. The coerced party, however, can secretly
communicate with other people via some untappable channel.

Extreme coercion captures real world coercion more realistically
because the coercer may ask the coerced party to hand over their
device to extract the secret keys and monitor the coerced party’s
action. Because we consider it impossible to coerce a target through-
out their entire life, they can recruit a hedgehog and agree on some
secret action in advance.

C.3 Ballot privacy, coercion resistance and
verifiability.

In this section, we give (informal) definitions of ballot privacy,

coercion resistance, and verifiability. Then, we give intuition why

VoteXX satisfies these properties. We formalize the secure definition

in Section C.4 under the UC framework and argue that the UC

definition implies these properties.

Ballot privacy [19]. All votes must be secret.

The link between the voter and the corresponding public key
in the roster is hidden by the verifiable shuffle in the registration
phase. In addition, all the ballots are encrypted under the EA’s
threshold encryption scheme in the voting phase. Thus, VoteXX
ensures ballot privacy assuming that the majority of EA trustees
are honest.

Coercion resistance. No coercer can tell if the coerced party is
trying to deceive.

The ballots and nullification requests are posted on the BB via
an ACS to avoid identity leakage. In the nullification phase, the
flags marking which ballots are to be nullified are encrypted and
a ZKP establishes knowledge of the corresponding secret key. In
addition, we assume that there is an untappable channel between
the voter and his hedgehog(s) that cannot be blocked by the coercer.
Therefore, the coercer cannot stop a coerced party from nullifying
his vote and cannot know if the ballot is nullified.

Verifiability [19]. No one can falsify the result of the voting.

We assume an honest BB and the messages posted on the BB
cannot be deleted OR changed. In the provisional and final tallies,
VoteXX uses ZKPs to ensure that the shuffle and decryption are

15

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

performed correctly. The max-and-match SFE protocol [26] in the
final tally is publicly verifiable.

C.4 Security Definition.

We define the security of VoteXX in the UC framework [7]. A pro-
tocol is represented as a set of interactive Turing machines (ITMs),
where each ITM represents the program to be run by a participant.
There are two additional entities: the environment Z and the adver-
sary A. The environment Z can communicate with A and provides
inputs to the parties. We assume that each I'TM is a probabilistic
polynomial-time (PPT) machine.

Security is based on the indistinguishability between real/hybrid
world executions and ideal world executions. Specifically, in the ideal
world, all the participants are dummy parties and there is an ideal
functionality ¥ that serves as a trusted third party. We say that a
protocol & UC-realizes ¥ if and only if, for any PPT adversary A,
there exists a PPT simulator S such that no PPT environment Z
can distinguish between the real/hybrid world and the ideal world.

Our protocol contains pre-tally and nullification phases. There-
fore, by comparing the final tally with the pre-tally, the coercer can
discern the amount by which nullification altered the results. The
coercer, however, cannot attribute such difference to the voter. To
capture this feature, we model the ideal world as follows.

Ideal deception. Our treatment of incoercibility in the ideal
world is inspired by Alwen, Ostrovsky, Zhou, and Zikas [3]. Alwen
et al. define an ideal deception strategy DI as a mapping applied
on the message given by the coercer to an intended choice, and
they realize this ideal deception with the assumption of trusted
hardware. In our system, since we make the minimal assumption of
an untappable channel between the voter and their hedgehog(s), we
cannot realize such a strong DI. Alternatively, we define a weaker
DI: If DI chooses to obey, it forwards the coercer’s input to the ideal
functionality. If DI chooses to deceive, it forwards the coercer’s
input to the ideal functionality but sends a nullification request at
the end of voting phase. Meanwhile, the ideal functionality accepts
a special command—"“nullify”—and leaks the provisional tally to the
simulator S, which captures the features of VoteXX. In this type of
weaker ideal deception, the coercer may know that there are people
deceiving him, but he cannot attribute such deception to the voter.

Definition C.1. Let 7 be any protocol and let ¥ be any ideal func-
tionality. Let A be the adversary who has the power of corruption
and coercion. We say that & IUC realizes ¥ if, for every i € [n] and
for every ideal deception strategy DI;, there exists a real deception
strategy DR; such that, for every PPT adversary (A, there exist a
simulator S such that, for any set DI 4 = {Dl; : i € J} and any
environment Z,

®)

TaeoreM C.2. (Universal composition) Let ir, p be any polynomial-
time protocols, and let F be any ideal functionality. If = IUC realizes
F, then p™ IUC realizes p” .

EXEC#pi,,8,.z ® EXEC DRy, Z-

Following Alwen et al,, it is easy to see that our framework
remains universally composable with the same type of DI.

The ideal functionality. The voting ideal functionality (f’;/';’ﬁ;t

has four phases: preparation, registration, voting, and tally. In the

CCS *23, November 26-30, 2023, Copenhagen, Denmark

voting phase, 7_-\2),5: receives ballots from the voters and records
k.t
t

them. In particular, 7"\2’ o accepts a special type of request: “nullify”
Upon receiving a nullify request, the former choice of the voter will

not be counted in the final tally. Fig. 5 is a formal description of

7_~n,k,t
Vote * A
Extreme coercion. In our UC model, the adversary has the
power of extreme coercion. It is modeled as follows. When the ad-
versary A sends a “extreme coercion” request to a voter, V;, V; will
hand his state to A and follow A’s instructions, but V; can still com-
municate with his hedgehog(s) H; secretly, i.e., the communication

between V; and H; is not controlled by the adversary.

r—(Functionality 7‘}2’&1‘} N\

The functionality 7:\',70{1[interacts with a set of voters V :=
{Vi,..., V,}, a set of hedgehogs H := {Hy,..., Hp,}, a set of
trustees 7 := {T1,...,Tx}, the Election Authority (EA), and the ad-
versary S. Internally it keeps variables status, ballots, 7, and J. Let
Peor be the set of corrupted parties.

Initially, set status := 0, ballots := 7 := J := 0.

Preparation:

e Upon receiving (START, sid) from the trustee T; € 7, set
J = JU{T;}, and send a notification (START,sid,T;) to the
adversary S. (If status # 0, then ignore the request.)

e Upon receiving (BeGIN, sid) from the EA, if | J| < k ignore
the request. Otherwise, send a notification (BEGIN,sid) to the
adversary S, and set status := 1. (If status # 0, then ignore
the request.)

Registration:

e Upon receiving (REGISTER, sid) from the voter V;, send
(REGISTER, sid, V;) to the adversary S. (If status # 1, then
ignore the request.)

e Upon receiving (ENDREG, sid) from EA, send (ENDREG,sid)
to the adversary S and set status := 2. (If status # 1, then
ignore the request.)

Voting:

e Upon receiving (VOTE, sid, x) from a voter V; € V, set
ballots[i] := x (x=YES/NO), and send (VoTENoOTIFY,sid,V;)
to the adversary S. (If status # 2, then ignore the request.)

e Upon receiving (ENDVOTE, sid) from EA, compute
8 « TallyAlg(ballots) (Cf Fig. 6). Send (PReTALLY, sid,§) to
the adversary S. Set status := 3. (If status # 2, then ignore
the request.)

e Upon receiving (NULLIFY, sid) from a voter V; € V OR V;’s
hedgehog H;, set ballots[i] := nullify. Send
(NuLLIFYNOTIFY, sid) to the adversary S. (If status # 3, then
ignore the request.)

Tally:

e Upon receiving (TALLy,sid) from EA, compute
7 « TallyAlg(ballots) (Cf Fig. 6). Send (TaLLy,sid, 7) to the
adversary S. (If status # 3, then ignore the request.)

e Upon receiving (REsuLT, sid) from any party P, if 7:= 0,
then ignore the request, otherwise return (ResuLt,sid, 7) to
the requester.

Figure 5: Functionality Tv'gi:t

Connection with the properties. It is easy to see that our UC

definition implies the basic properties of a secure voting scheme.
First, ,};Z),ﬁ;t does not leak the ballot of a voter to anyone else, so it
implies ballot privacy. Second, as mentioned above, the ideal decep-

tion is able to nullify the ballot and the coercer cannot know if the

16

Chaum et al.

,—(Tally Algorithm Tal lyAlg) \

Input: a table ballots consisting of all the ballots.
Output: tally result o.
The algorithm performs as follows:
® Set nryes 1= 0,nryo == 0.
e For i:=1 to n, if ballots[i] = YES then nryes := nryes + 1; if
ballots[i] = NO then nry, = nrpo + 1.
® Return o := (Nryes, Nrno)

Figure 6: Tally Algorithm TallyAlg

coercion was successful, so our definition implies coercion resis-
tance. Third, T\ZJ’Q’[ensures that the tally procedure is performed
correctly, so it implies verifiability.

C.5 UC Specification of VoteXX

Before we give a UC proof for VoteXX, we give a UC description
of the VoteXX protocol. We assume that the protocol uses “cancel”
nullification (Cf. 8.2). We will discuss the security of “flip” variant
nullification in Section C.7.

ket
VoteXX protocol H\r;oteXX

Denote the voters as V := {V1,...,Vy}, the hedgehogs as H :=
{H1,...,Hp}, the trustees as 7 := {Ti,..., T}, and the Election
Authority as EA. We assume that EA cannot be corrupted.

Preparation phase:
Upon receiving (START, sid) from the environment Z, the trustee
T; performs the following:

e Privately choose one random values {a; i} icn—17, reveal
y JjIje[N-1]
ggi’j ,and prove knowledge of a; ; with a Schnorr X—Protocol.

Upon receiving (BEGIN, sid) from the environment Z, the EA
performs the following:
e Compute g; = H?:l ggi'j,j e [N-1].
e Setbase < (g0,91,92, - -.,gn—1) and send (WRITE, sid, base)
to Ggg.

Registration phase:
Upon receiving (REGISTER, sid) from the environment Z, the
voter V; performs the following:

e Send (READ, sid) to Gpp and get base.

o Generate two N-character passphrases (for YES and NO).

e Parse the passphrase as a sequence of Base64 characters
(co,c1,¢2,...,cN) and compute its deterministic commit-
ment using

base: passCommit « <g§° -gi‘ gy N1,

N
e Send (PASSCOMMIT,Sid,<paSSCOmmit passCommitno>)
to the EA.

Upon receiving (PAssCoMMIT, sid, <passCommit

yes’

yes’ passCommitno>)

from the voter V;, the EA performs the following:

o Send (WRITE, sid, (VoterID, [passCommit,], [passCommit,,]))

to Gpp, where [passCommit] is an encryption of passCommit
under the EA’s threshold encryption scheme.

VoteXX: Extreme Coercion Resistance

e Prove to the voter client the correctness of the encryptions
using the Chaum-Pedersen £—Protocol.

Upon receiving (ENDREG, sid) from the environment Z, the EA
performs the following:

e Take the list of <VoterID, [passCommit,], [[passCommitno]]>

entries, remove the VoterID component, and verifiably shuf-
fle, threshold-decrypt, and send

(WRITE, sid, <passCommityeS, passCommitn0>) to Ggg-
e Send (REVEAL, sid) to each trustee T;.

Upon receiving (REVEAL, sid) from EA, trustee T; sends
(WRITE, sid, {ai j} je[N-1]) to GBB-

Upon receiving (ENDREG, sid) from the environment Z, the EA
sends (STARTVOTE, sid) to each voter.

Voting phase:
Upon receiving (STARTVOTE, sid) from EA, voter V; performs
the following:
e Send (Reap, sid) to Gpp and get {ai j}ie[k], je[N-1]-
e Compute sk := co+aq-ci+az-cz ..., where a; := ayj+azi+.. ..
e Send (SECRETKEY, sid, <skyes, skn0>) to his hedgehog H;.
Upon receiving (VOTE, sid, x) from the environment Z, voter V;
performs the following:
o If x = YES, generate oyes < Sign(nonce) and use EA’s
threshold encryption scheme to compute
ballot « <[[pkyes]], [oyes]. ﬂppk>, where each group element
of ¢ is individually encrypted and
Tppk < NIZKpaiior-prove([pkyes], [oyes]) is a proof of plain-
text knowledge using the Chaum-Pedersen £—Protocol.
e If x = NO, generate o, < Sign(nonce) and use EA’s thresh-

old encryption scheme to compute ballot « ([pkno]], [onols 7Tppk>s

where each group element of o is individually encrypted and
Tppk < NIZKpqji0t-prove([pkp,], [ono]) is a proof of plain-
text knowledge using the Chaum-Pedersen —Protocol.

e Send (WRITE, sid, ballot) to Ggg.

Upon receiving (ENDVOTE, sid) from the environment Z, the
EA performs the following:

e Send (READ, sid) to Ggp and get the list of ([pk], [o]), then
threshold-decrypt them: (pk, o). Send (WRITE, sid, {pk, o) ,)
to Gpp, where 7 « NIZKpec.prove([pk], [o], pk, o) is the
decryption NIZK.

e For each ballot, the ballot is marked invalid if o does not
verify under its corresponding pk.

e For each valid signature, determine if it is a YES OR NO
key, and count the vote only if it is the only ballot cast that
corresponds to that roster entry.

e Use the Roster and set of valid signatures from the provi-
sional tally to reformat the election data into two lists. The
first list establishes, in arbitrary order, the set of pk,, keys
from voters who cast valid votes for YES (call it yesVotes).
The second list contains pkys from voters who voted NO
(call it noVotes).

e Send (WRITE, sid, (yesVotes, noVotes)) to Gpg.

e Send (ENDVOTE, sid) to every voter.

17

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Upon receiving (NULLIFY, sid, 1) from the voter V;, the hedgehog
H; does the following:

o Send (READ, sid) to Ggp and find the key to be nullified in
yesVotes OR noVotes. Denote the index of the key as ¢.

e Prepare a list of encrypted “flags” L marking the ballot it
wants to nullify, i.e., the i’th element is [1] and the other
elements are [0].

e Add a proof to this list using the nullification ¥—Protocol.
Concisely, the proof statement is: [(this flag is an encryption
of 0) OR (this flag is an encryption of 1 and I know skno
corresponding to this pk,,)]. Denote the nullification proof
as 1 < NIZK,,.prove(yesVotes/noVotes, L).

e Send (WRITE, sid, (L, 7)) to Ggg.

Upon receiving (NULLIFY, sid, 0) from the voter V;, the hedgehog
H; does the following:

e Prepare a list of encrypted “flags” L where all the elements
are [0].

e Add a proof to this list using the nullification ¥—Protocol.
Concisely, the proof statement is: [(this flag is an encryption
of 0) OR (this flag is an encryption of 1 and I know skno
corresponding to this pk,,)]. Denote the nullification proof
as 7 < NIZK,,.prove(yesVotes/noVotes, L).

e Send (WRITE, sid, (L, 7)) to Ggg.

Tally phase:
Upon receiving (TALLY, sid) from the environment Z, EA per-
forms the following:

e Send (READ, sid) to Ggp and collect all encrypted flags.

e For each pk,, in yesVotes, take all encrypted flags and com-
pute their OR under encryption using the max-and-match
SEE protocol [26].

o Take the list of encrypted ORed flags, sum them under en-
cryption (denote it as c), and verifiably threshold-decrypt
the result (denote it as x).

e Subtract this value from the number of YES votes in the
provisional tally to produce the final tally for YES votes.

e Repeat the above three steps for each pkyes key in noVotes.

e Denote the final tally result as 7. Send (WRITE, sid, (z, 7))
to Gep, where 7 «— NIZKpec.prove(c, x) is the decryption
proof.

Upon receiving (RESULT, sid) from the environment Z, the party
P returns (RESULT, sid, 7).

C.6 UC Proof for VoteXX
We have the following theorem.

THEOREM C.3. Assume that NIZKp,ji0t, NIZKpy and NIZKpec
are complete, sound and zero-knowledge; the encryption scheme is
IND-CPA secure; and the signature scheme is existentially unforgeable

n,k,t
VoteXX e

realizes ?:Z)fet against static corruption and mobile extreme coercion
in the Gpp-hybrid model.

against chosen-message attack. The VoteXX protocol I1

Proor. To prove the theorem, we need to construct the real de-
ception strategies DR and a simulator S such that no non-uniform

CCS *23, November 26-30, 2023, Copenhagen, Denmark

PPT environment Z can distinguish (i) the real execution

EXEC g iy from the (ii) the ideal execution EXECYB®

VoteXX’DR"ﬂ’Z

Vote

Real Deception Strategy. The real deception strategy DR; inter-
nally runs Dl;, forwarding messages to and from the environment
Z. DR; works as follows:

DR; follows the coercer’s instructions. Upon receiving (ENDVOTE, sid)

from the EA:

o If DI; does not send a nullification request to Tv'z;fe’t, then
DR; sends (NULLIFY, sid, 0) to the hedgehog H; via the un-
tappable channel.

e If DI; sends (NULLIFY, sid) to ﬁ;ﬁ;t, then DR; sends
(NULLIFY, sid, 1) to the hedgehog H; via the untappable chan-
nel.

Simulator. The simulator § internally runs A, forwarding mes-
sages to and from the environment Z. The simulator S works as
follows:

In the preparation phase:

o Upon receiving (START, sid, T;) from the functionality ﬁ;ﬁ;t,

S simulates the trustee T; following the protocol HC’k’t as
oteXX
if T; received (START, sid) from the environment Z.

e Upon receiving (BEGIN, sid) from the functionality 7:\;:)’5:,

S simulates the EA following the protocol Hf/’k’t as if EA
oteXX
received (BEGIN, sid) from the environment Z.

In the registration phase:
e Upon receiving (REGISTER, sid, V;) from the functionality

77\/’:){?, the simulator S simulates V; following the protocol

H(‘,ftgxx as if V; received
(REGISTER, sid) from the environment Z.
e Upon receiving (ENDREG, sid) from the functionality 7—’\2)’56’[,
the simulator S simulates EA following the protocol H\';’cﬁ’efxx
as if the EA received (ENDREG, sid) from the environment
Z.
In the voting phase:
o Upon receiving (VOTENOTIFY, sid, V;) from the functionality

k. .

ﬁ:;tét, send an encryption of 0 <[[0] [o], ﬂ'ppk> to Gpg-

e Ifa corrupted party V; casts a valid ballot for an honest voter
on Gpp, S will abort.

e When a corrupted party V; casts a ballot on Ggp, decrypt the

ballot to get the choice x = YES/NO and send (VOTE, sid, x)

to (f\z)’fe’t on behalf of V; in the ideal world.

o Uponreceiving (PRETALLY, sid, §) from the functionality Tvrz;fe’t,
the simulator S simulates the pre-tally result by simulating
the NIZK for decryption based on §.

e Upon receiving (NULLIFYNOTIFY, sid) from the functionality

?%fét, the simulator sends a dummy nullification request (a

nullification request where the encrypted flags are all [0])
to G-

o If a corrupted party V; sends a valid nullification request for
an honest voter on Ggg, S will abort.

e When a corrupted party V; sends a nullification request on
GgB, decrypt the nullification request. Otherwise, if it is not

18

Frkt pLS,Z’

Chaum et al.

a dummy nullification request, send (NULLIFY, sid) to 7_-\2),5:
on behalf of V; in the ideal world.

In the tally phase:

e Upon receiving (TALLY, sid, 7) from the functionality 7‘"\/':)’fe’t,

S simulates EA doing the following:

— For each pk in yesVotes and noVotes, take all the encrypted
flags, compute its OR under encryption. Sum them under
encryption for yesVotes and noVotes, respectively.

- Simulate the decryption of the summed encrypted flags
and the corresponding NIZK proof 7 based on 7.

- Send (WRITE, sid, 7, 7) to Ggp.-

Indistinguishability.

We prove indistinguishability through a series of hybrid worlds
(]’{0, N (}‘(9.

Hybrid Hj: This object is the real world execution

EXECY®® .
nyet . ,DRA,Z

VoteXX

Hybrid H;: H; is the same as Hj except the followings. Dur-
ing the pre-tally phase (upon receiving (ENDVOTE, sid) from the
environment Z) and tally phase, the EA’s decryption proofs are
generated by NIZK simulator.

Claim 1: If the decryption NIZK is zero-knowledge with adver-
sary advantage Advf\IkIZKDec (A, A), then H; and Hj are indistin-
guishable with distinguishing advantage at most
(2n+2) - Advili g (AN

Proof: Each ballot has two ciphertexts and there are n voters in
total, so there are 2n ciphertexts to decrypt in pre-tally. In tally
phase, there are 2 ciphertexts to decrypt. Therefore, the overall
advantage is at most (2n + 2) - Advf\jklZKDec(?[,)L) by a standard
hybrid argument.

Hybrid Hy: H, is the same as H; except the followings. During
the pre-tally phase (upon receiving (ENDVOTE, sid) from the envi-
ronment Z) and tally phase, the honest EA members’ decryption
shares are backward calculated from the pre-tally result and the
tally result, respectively.

Claim 2: If the encryption scheme is backward calculatable, then
H, and H; are perfectly indistinguishable.

Proof: The backward calculated decryption shares in Hy and the
decryption shares in H; have the same distribution .

Hybrid H3: Hs is the same as Hy except the followings. Dur-
ing the voting phase, the honest voters’ ballot NIZK proofs are
generated by the NIZK simulator.

Claim 3: If the ballot NIZK proof is zero-knowledge with adver-

sary advantage Adv?\IkIZKba”m (A, A), then H3 and H, are indistin-

guishable with distinguishing advantage at most n-Advf\JkI ZKpatlo (A, 1).
Proof: There are at most n honest voters, so the overall advantage

is at most n - AdvZK (A, 1) by a standard hybrid argument.

NIZKpalot

Hybrid Hj: Hy is the same as Hs except the followings. Dur-
ing the voting phase, the honest voters’ ballots are replaced with
([o]. [oD)-

Claim 4:If the encryption scheme is IND-CPA secure with ad-
vantage AdvIE':I1 CD‘CPA (A, A), then Hy and H3 are indistinguishable
with distinguishing advantage at most 2n - Adv'E':cD'CPA(ﬂ, A).

VoteXX: Extreme Coercion Resistance

Proof: There are at most 2n ciphertexts in total. Thus, the overall
advantage is at most 2n - Adv:E[\r‘]CD’CPA(ﬂ, A) by a standard hybrid
argument.

Hybrid Hs: Hs is the same as Hy except the followings. During
the voting phase, honest parties’ nullification NIZKs are generated
by the NIZK simulator.

Claim 5: If the nullification NIZK proof is zero-knowledge with

adversary advantage Advf\IkIZKmlI (A, A), then Hs and Hy are indis-

tinguishable with distinguishing advantage at most n-AdvZ¥ (AN).

NIZK a1
Proof: There are at most n honest voters, so the overall advantage

is at most n - Advf\IkIZKnu] (A, A) by a standard hybrid argument.

Hybrid Hs: Hs is the same as Hs except the followings. During
the voting phase, honest parties’ nullification requests are replaced
with ([0], ..., [0]).

Claim 6: If the encryption scheme is IND-CPA secure with ad-
vantage Adv'E':Ic)'CPA(.?{, 1), then Hg and Hs are indistinguishable
with distinguishing advantage at most n - Adv'E’\r‘]cD’CPA(ﬂ, A).

Proof: For each nullification request, there is an encryption of
1 replaced with encryption of 0, and there are at most n honest
voters. Thus, the overall advantage is at most n - Adv'E':IC)'CPA(ﬂ, A)
by a standard hybrid argument.

Hybrid H;: H; is the same as Hg except that, if a corrupted
voter generates a valid nullification request for an honest voter, the
execution will abort.

Claim 7: If the nullification NIZK is sound with soundness er-
ror Advf\f’luzr;gnul (A, A), then H;7 and H, are indistinguishable with

distinguishing advantage at most n - Adv?\loluznléjnu[(AN).

Proof: There are at most n honest voters, so the probability of
aborting is no more than n - Advf\]"&”lgnul (A, A) by a standard hybrid
argument.

Hybrid Hs: Hs is the same as Hy except that, if a corrupted
voter generates a valid ballot for an honest voter, the execution will
abort.

Claim 8: If the signature scheme is existentially unforgeable
against chosen-message attack with adversary advantage
Advgilé F-CMA (4, 1), then Hg and H; are indistinguishable with
distinguishing advantage at most Advgilé F-CMA (A, 2).

Proof: Same as the previous proof, the probability of aborting is

no more than n- Ad"gilé F-CMA (4, 1) by a standard hybrid argument.

Hybrid Ho: This object is the ideal execution EXEC%(EZI,DLS,Z'
Claim 9: If the decryption NIZK is sound with soundness error

Advsound (7 1), the shuffle NIZK is sound with soundness error

NIZKpe,
Advsound (1 1) and the max-and-match SFE protocol is robust

NIZKshuffle
with adversary advantage AdvgoFbE“St(ﬂ, 1), then Hy and Hg are
indistinguishable with distinguishing advantage at most (n + 2) -
AV (A +n - Advg™ (A) + AdvS (A2

Proof: To prove Claim 9, we will show that the real tally (pre-tally)
and ideal tally (pre-tally) are indistinguishable.

We first show that the real pre-tally and ideal pre-tally are in-
distinguishable. If decryption correctness of honest voters’ ballots

19

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

holds, the number of yesVotes and noVotes are identical in both real
GeB
e DLS.Z°
the corrupted parties’ ballots are honestly tallied, while honest and
coerced parties’ pre-tally are simulated by randomly choosing cor-
rect number of public keys. They are indistinguishable by the veri-
fiable shuffle in registration phase. Thus, the overall advantage in
iﬂ‘lzr?goec (A, 4) +Adv?\10|uZanshufﬂe (A, A).

We then show that the real tally and ideal tally are indistinguish-
able. If the max-and-match SFE protocol is sound and decryption
correctness holds, the number of nullified ballots are identical in
both real tally and ideal tally. The max-and-match protocol is per-
formed for n times. Thus, the overall advantage in tally is no more
than n - AdvgRist (A, 2) +2 - Adviisid (A, 2).

In summary, the distinguishing advantage of Hy and Hj is at

pre-tally and ideal pre-tally. In the ideal execution EXEC

pre-tally is no more than n-Adv

most (n+2)-Adv{SKL (A A)+n-AdVERES (A D+AdVGE (A D).
Consequently, the real execution EXECYee and ideal

Ioe DRAZ
execution EXECY B,
Foot DILS,Z

Vote
ing advantage no more than

are indistinguishable with distinguish-

(2n+2) - Adviliz, (AL +n- Adviiz (A D)+

3n - AdvinD PAAL) +n - AdVz (LA +n- AdVE (A, 2)+
n- Advgm MAAL) + (n+2) - AV (AL D)+

n - AdVERUS (A, A) + AdVSE (AN

This argument concludes the proof. O

C.7 Security of “Flip” Variant

In this section, we will illustrate that the above UC proof can be
adapted to “flip” nullification. To prove security of “flip” nullifi-
cation, the ideal functionality Tv'gfet has interface FL1p instead of
NutLiry. Upon receiving (Frip, sid) from a voter V; OR V;’s hedge-
hog, 7"\2)’1? flips V;’s vote and sends the notification to S. The ideal
deception strategy DI also needs to be modified accordingly: If DI
chooses to deceive, it forwards the coercer’s input to the ideal func-
tionality and has 50% probability sending a flip request to the ideal
functionality.

The construction of the real deception strategy DR; is straightfor-
ward. If DI; sends a flip request to the ideal functionality, DR; will
follow the protocol to flip the vote. Otherwise, DR; sends a dummy
flip request to BB. The construction of simulator S is completely
the same except that “cancel” request is replaced by “flip” request.
Then, through a series of same hybrid worlds, we can prove that

wpps» . n,k,t
flip” protocol UC realizes 7, "

D VOTEXX WITH DECOY

In this section, we will show that we can achieve better coercion
resistance by adding decoy ballots to VoteXX.

D.1 Intuition

A decoy ballot is a ballot that will not be counted in the final tally,
but is indistinguishable from a real ballot in the coercer’s view. In

CCS *23, November 26-30, 2023, Copenhagen, Denmark

the registration phase, if the voter knows that he will be coerced,
he will register two (or more) public keys to the distributed EA and
only one of them is real, while the others are decoys. In the voting
phase, the voter can use the decoy secret key to submit a ballot
that will not be counted in the final tally, and use the real secret
key to vote as he wants. However, if the voter cannot hide the real
secret key from the coercer, he can still use VoteXX’s nullification
to nullify the vote. In conclusion, adding decoy allows a voter
to vote as he wants, if he can keep the real secret key from
the coercer, and to nullify if he cannot hold the secret.

To add decoy ballots into VoteXX protocol, we modify the regis-
tration phase and the final tally phase while keep the other parts
same as VoteXX. We assume that the VoteXX protocol uses “cancel”
nullification.

We assume that there is a public roster consisting of commit-
ments of voters’ credentials, and each voter holds his credential o.
In the registration phase, if a voter knows that he will be coerced,
he (and his hedgehog) sends two (or more) (pkyes, pkpo> p) tuples
to the distributed EA, where p « Sign (pkcsllpky,). At the end
of the registration phase, the distributed EA will a perform secure
multi-party computation (MPC) to generate the table of public keys,
which is of the form (pkyes, pkpo, i), where i € {[0], [1]} is called
a “decoy flag”. If i = [1], it means that the corresponding public
key is decoy. For the public keys signed by the same credential, the
distributed EA uses a public function to determine which public
key is real. The secure MPC ensures that none of the EA trustees
know which of the public keys are decoys.

In the final tally phase, for each key in yesVotes OR noVotes, the
EA takes all the encrypted flags and the corresponding “decoy flags”
to compute them OR under encryption using the max-and-match
SEE protocol [26]. In this way, if the ballot is a decoy ballot, it will
be nullified automatically since the “decoy flag” is an encryption of
1; if the ballot is a real ballot, it can be nullified the same way as in
VoteXX.

D.2 Security Definition

We analyze security of VoteXX with decoy under the UC frame-
work [7]. Comparing with VoteXX, the only difference is the ideal
deception strategy.

Ideal deception. VoteXX with decoy realizes a stronger DI,
which performs as follows: when DI receives an input x from the
simulator (ideal coercer) S, it maps x to x” and sends (VOTE, sid, x”)
to the ideal functionality ¥. (x” can be equal OR not equal to x,
representing obeying and deceiving, respectively.)

D.3 UC Specification of VoteXX with Decoy

nk,t
VoteXX—decoy

Denote the voters as V := {V1,..., Vy}, the hedgehogs as H :=
{H1,...,Hp}, the trustees as 7 := {T1,..., T}, and the Election
Authority as EA. We assume that EA cannot be corrupted. At the
beginning of the protocol, each voter holds his credential ¢ and
Gpp contains commitments of o.

VoteXX with decoy protocol IT

Preparation phase:

20

Chaum et al.

Upon receiving (BEGIN, sid) from the environment Z, the EA
performs the initialization procedure of the secure multi-party
computation.

Registration phase:

Upon receiving (REGISTER, sid) from the environment Z, the

voter V; performs the following:

* Send (pkyeg, Pkno, p) to the EA, where p Sign ; (pkyesllpkn,).
and hold the corresponding <skyes, sk.-.0>.

e (If V; will be coerced, he sends (pkyes, pk,o, p) and
(Pkes: Pkpos p7) to the EA, where p < Sign(pkyes, Pkno)

and p” « Sign,, (pkjes||pkr,). He holds the corresponding

(skyes, skno) and <sk;,es, skﬁ,0>. Let (skyes, skno) be the real
key and <sk;,es, skf]0> be the decoy key.)

Upon receiving (ENDREG, sid) from the environment Z, the EA
performs the following:

e Perform secure multi-party computation to generate a list of
the form (pkyes, pkno, i), where i € {[0], [1]}. For the public
keys signed by the same credential, the EA uses a public
function h to determine which public key is real. The real
keys have i = [0] while the decoy keys have i = [1].

e Send (WRITE, sid, {(pkyes, pknos i)}) to GBB.

Hn,k,t

Voting phase is completely the same as I\, "

Tally phase:
Upon receiving (TaLLy, sid) from the environment Z, EA per-
forms the following:

e Send (READ, sid) to Gpp and collect all encrypted flags and
decoy flags.

e For each pk,, in yesVotes, take all encrypted flags along
with the decoy flag and compute their OR under encryption
using the max-and-match SFE protocol [26].

o Take the list of encrypted ORed flags, sum them under en-
cryption, and verifiably threshold-decrypt the result.

o Subtract this value from the number of YES votes in the
provisional tally to produce the final tally for YES votes.

e Repeat the above three steps for each PKyes key in noVotes.

e Denote the final tally result as 7. Send (WRITE, sid, 7,) to
GBB, where 7 is the NIZK for SFE and decryption.

Upon receiving (RESULT, sid) from the environment Z, the party
P returns (RESULT, sid, 7).

D.4 UC Proof for VoteXX with Decoy

By constructing a similar simulator, we have the following theorem.
Since we need to assume the voter knows he will be coerced in
the registration phase, the VoteXX with decoy protocol is secure
against static active coercion.

THEOREM D.1. Assume that the NIZKs are complete, sound and
zero-knowledge; the encryption scheme is IND-CPA secure; and the

signature scheme is secure against existential forgery. The “VoteXX
nk,t

VoteXX-decoy
corruption and static active coercion in the Ggg-hybrid model.

with decoy” protocol I1 IUC realizes 7"\2)’{? against static

VoteXX: Extreme Coercion Resistance

Proof sketch. To prove the theorem, we need to construct
the real deception strategies DR and a simulator S such that no
non-uniform PPT environment Z can distinguish (i) the real ex-

ecution EXEngit
.k D

VoteXX-decoy’

from the (ii) the ideal execution

Gsp
EXEC .
FrhtplS,Z

Vote

Real Deception Strategy. The real deception strategy DR; inter-
nally runs Dl;, forwarding messages to and from the outside. DR;
works as follows:

In the registration phase, upon receiving (REGISTER, sid) from
the environment Z, V; sends (pky.s, pkno, p) and (pkies, pkyg, p*)

to the EA, where p < Sign (pk, s, pkpo) and

yes>

p’ — Sign, (pkcsllpky,), and holds the corresponding (skyes, skno)

(real key) and <sk;,es, sk;0> (decoy key).
In the voting phase:
e When coerced, DR; provides the decoy key sk, sk}, to the

es>

coercer and simulates the transcript of usingy skess Skno to

register. DR; follows the coercer’s instructions.
e If DI; sends (VOTE, sid, x”) to the ideal functionality, DR; per-
forms as if V; receives (VOTE, sid, x”) from the environment

Z.

Simulator. The simulator S is almost the same as the simulator
for %ML since we only modified the registration phase and tally

VoteXX
phase.

21

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

In the registration phase, the simulator S simulates the parties
following the protocol:

e Upon receiving (REGISTER, sid, V;) from the functionality

7’},’2’22 the simulator S simulates V; following the protocol

nk,t a
VoteXX-decoy
(REGISTER, sid) from the environment Z.

s if V; received

e Upon receiving (ENDREG, sid) from the functionality 7:\/'2:(:,
the simulator S simulates EA following the protocol

n,k,t . . .
I v decoy 35 if the EA received (ENDREG, sid) from the

environment Z.
In the tally phase, the simulator S simulates the EA to perform
the tally procedure, but uses the NIZK simulator to generate the
NIZK proof:

e Upon receiving (TALLY, sid, 7) from the functionality Tv';’ﬁ;t,

S simulates EA doing the following:

— For each pk in yesVotes and noVotes, take all the encrypted
flags along with the decoy flag, compute its OR under
encryption. Sum them under encryption for yesVotes and
noVotes, respectively.

- Simulate the decryption of the summed encrypted flags
and the corresponding NIZK 7 based on 7.

- Send (WRITE, sid, 7,) to Ggg.-

Same as the proof of Theorem A.2, through a series of hybrid
worlds, the real world and ideal world are indistinguishable.

	Abstract
	1 Introduction
	2 Comparison to Previous Work
	3 System Overview
	3.1 Adversarial Model
	3.2 Ideal Functionality
	3.3 Problem Specification
	3.4 System Architecture

	4 Protocols
	5 Nullification
	5.1 Overview
	5.2 The Nullification ZKP

	6 Design and Client Interfaces
	7 Implementation
	8 Discussion
	8.1 Major Design Decisions
	8.2 Cancel or Flip
	8.3 Not Revealing Which Ballots are Nullified
	8.4 Performance Analysis
	8.5 Extensions
	8.6 Open Problems and Future work

	9 Conclusion
	Acknowledgments
	References
	A Acronyms and Abbreviations
	B Explanation of Properties in Table 1
	C Security Analysis
	C.1 Preliminaries
	C.2 Types of Coercion
	C.3 Ballot privacy, coercion resistance and verifiability.
	C.4 Security Definition.
	C.5 UC Specification of VoteXX
	C.6 UC Proof for VoteXX
	C.7 Security of ``Flip'' Variant

	D VoteXX with Decoy
	D.1 Intuition
	D.2 Security Definition
	D.3 UC Specification of VoteXX with Decoy
	D.4 UC Proof for VoteXX with Decoy

