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Abstract. As a case study in cryptographic binding, we present a formal-
methods analysis of the Fast IDentity Online (FIDO) Universal Authen-
tication Framework (UAF) authentication protocol’s cryptographic chan-
nel binding mechanisms. First, we show that UAF’s channel bindings fail
to mitigate protocol interaction by a Dolev-Yao (DY) adversary, enabling
the adversary to transfer the server’s authentication challenge to alter-
nate sessions of the protocol. As a result, in some contexts, the adversary
can masquerade as a client and establish an authenticated session with
a server, which might be a bank server. Second, we implement a proof-
of-concept man-in-the-middle attack against eBay’s open source FIDO
UAF implementation. Third, we propose and verify an improvement of
UAF channel binding that better resists protocol interaction, in which
the client and the server, rather than the client alone, bind the server’s
challenge to the session. The weakness we analyze is similar to the vul-
nerability discovered in the Needham-Schroeder protocol over 25 years
ago. That this vulnerability appears in FIDO UAF highlights the strong
need for protocol designers to bind messages properly and to analyze
their designs with formal-methods tools. Our case study illustrates the
importance of cryptographically binding context to protocol messages to
prevent an adversary from misusing messages out of context.

Keywords: Authentication · Cryptographic binding · Cryptographic
protocols · Cryptographic Protocol Shapes Analyzer (CPSA) · Cryptog-
raphy · Cybersecurity · Fast Identity Online (FIDO) · Formal-methods
analysis of protocols · Universal Authentication Framework (UAF).

1 Introduction

42 years apart, the 1978 Needham-Schroeder (NS) public-key protocol [34] and
the 2020 Fast IDentity Online (FIDO) Universal Authentication Framework
(UAF) 1.2 specification [5] share a common flaw: they both fail to crypto-
graphically bind a sensitive value to its source. To protect against a Dolev-Yao
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(DY) network intruder [16], appropriate cryptographic binding is not optional.
A DY intruder can potentially exploit inadequate binding to discover protocol
interactions and launch man-in-the-middle (MitM) attacks, which may compro-
mise authentication, integrity, or other security goals. Protocol interactions are
widespread and often challenging to discover without the aid of formal-methods
protocol analysis tools. Due diligence requires a formal-methods analysis of cryp-
tographic binding in emerging standards to identify and mitigate harmful pro-
tocol interaction.

We present a formal-methods analysis of UAF authentication as an instruc-
tive case study on cryptographic binding, emphasizing the protocol’s optional
and deficient binding of an important cryptographic challenge. Using the Cryp-
tographic Protocol Shapes Analyzer (CPSA) [28], we enumerate all essentially
different protocol interactions as “shapes,” comprising message sequence charts
that reflect the flow of messages across a network under the control of a DY
network intruder. To our knowledge, our work is the first to perform a formal-
methods analysis of UAF’s channel bindings.

The standard refers to “channel binding,” but this phrase is a misnomer
because UAF binds to the endpoints of the channel and not to the session. This
inadequate binding creates a vulnerability in which an adversary can transplant
messages among different instances of the protocol between the same endpoints.
For simplicity, we will nevertheless continue to use this phrase.

Our analysis reveals a MitM attack on UAF authentication that enables an
adversary to masquerade as a client, for example, when establishing a session
with a bank server. This attack results from the following weaknesses in UAF:
(1) Even when performing channel binding, the server does not cryptographically
bind the challenge adequately, preventing the client from authenticating the chal-
lenge. (2) The standard makes channel bindings optional, creating circumstances
in which there is no cryptographic binding between the client’s attestation and
the server’s protocol session. (3) The server selectively accepts incorrect chan-
nel bindings, potentially accepting attestations from malicious protocol sessions.
Exploiting these weaknesses, an adversary can trick a legitimate client into act-
ing as a confused deputy [21], producing attestations for a legitimate server’s
challenge that the legitimate server accepts. To our knowledge, we are first to
provide details of a MitM attack against UAF authentication that exploits these
weaknesses, and first to identify the structural weakness that results as a conse-
quence of binding the challenge inadequately.

As a proof of concept, we implement and demonstrate our MitM attack
against eBay’s open-source UAF server [17], which does not implement channel
binding (see Section 10). To carry out this attack, an adversary exploits inade-
quate binding of the server’s challenge to specific sessions of the UAF authen-
tication protocol, producing a protocol interaction in which the honest client-
authenticator pair generates attestations for the adversary’s malicious sessions.
This attack demonstrates an example of a harmful protocol interaction resulting
from inadequate cryptographic binding.
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UAF is an attractive emerging standard and the subject of a growing number
of studies, including formal-methods studies (see Section 6). The FIDO Alliance
counts among its members many recognizable technology giants, financial insti-
tutions, retailers, government institutes, and standards bodies from nations all
over the world [2], including Google, Apple, Microsoft, and Amazon, coming to-
gether in broad push to eliminate traditional password-based authentication. As
of April 2023, there are 472 FIDO-certified deployed implementations of UAF [3].
With UAF replacing many traditional password-based systems, it is vital that
we analyze and improve the standard’s deficient cryptographic bindings.

Vulnerabilities we identify in UAF authentication highlight two serious de-
ficiencies in how the FIDO Alliance developed the standard: (1) The FIDO
Alliance did not systematically adopt an appropriate adversarial model, but in-
stead considered only separate adversarial capabilities in response to various ad
hoc threats, and (2) the FIDO Alliance did not perform formal-methods analyses
of their proposals. Two vital lessons for protocol designers from our case study
are not to repeat these errors.

UAF and studies of it reflect a broader failure to consider cryptographic
binding carefully. In this paper we identify failure of UAF to bind the server’s
challenge properly. Existing studies of UAF incorporate UAF’s channel bindings
inconsistently and fail to consider weaknesses of the standard’s available channel
bindings. UAF attempts to mitigate protocol interaction by incorporating an
optional channel binding from one of several existing and draft TLS channel-
binding standards. To analyze these bindings, we specify several formal models
of UAF authentication, omitting or including variations of channel binding, and
interpret the resulting CPSA shapes to identify potentially harmful protocol
interactions.

We present our analysis by (1) explaining a major structural flaw in FIDO
UAF and giving three examples of resulting possible attacks, (2) conceptually
introducing cryptographic binding and related background, (3) introducing the
FIDO UAF protocol and its channel binding mechanisms, (4) modeling varia-
tions of the protocol in CPSA, (5) analyzing the resulting shapes for significant
protocol interactions, (6) implementing an attack on UAF channel binding, and
(7) recommending improvements to UAF’s channel binding.

Our contributions include: (1) a formal-methods analysis of UAF 1.2 au-
thentication’s optional channel bindings, (2) a structural weakness and resulting
attack against FIDO UAF authentication with channel binding, exploiting inad-
equate binding of the server’s challenge, (3) details of a MitM attack in which an
adversary, exploiting inadequate binding of an honest server’s challenge, tricks
a client and authenticator pair to act as confused deputies to authenticate the
adversary, (4) a demonstration of the attack against eBay’s open-source UAF
server, and (5) an improvement to the UAF standard in which both the client
and server bind the challenge. We include artifacts of our work, including all of
our CPSA and attack sourcecode (available on GitHub [26]) and selected CPSA
sourcecode (Appendix B).
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2 A Structural Weakness of FIDO UAF

FIDO UAF has a fundamental structural flaw: with, or without channel binding,
the client cannot verify if the server-generated challenge originated from the
current session between the client and server. This flaw results from inadequate
binding of the challenge to the session context.

As a result, in certain situations, a DY adversary is able to carry significant
malicious actions by manipulating and transplanting parts of messages (e.g., con-
taining the challenge) between different protocol sessions. We summarize three
examples.

Example 1. when channel binding is not used, the adversary masquerades as a
legitimate bank server. When the client initiates a session with the adversary, the
adversary launches a parallel session with the legitimate server. The adversary
obtains a challenge from the legitimate server and sends it to the client. Unable
to verify the context of the challenge, the client returns a signed attestation
of the challenge to the adversary, who passes it along to the server, thereby
authenticating to the server as the client. In Section 10 we implement this MitM
attack against eBay’s open-source FIDO UAF server.

Example 2. Many organizations install a perimeter TLS proxy for the purpose
of monitoring traffic flows across their perimeters [35]. To support this practice,
when channel binding is used, FIDO UAF permits the server to accept channel
bindings to the proxy rather than to the server. In the DY model, however, the
proxy might be malicious. Because the client cannot verify the source of the
challenge, the client cannot distinguish whether the challenge is from a session
with the server, a legitimate proxy, or a malicious proxy. In this sense, FIDO
UAF supports an adversary to carry out a MitM attack between the client and
the server.

Example 3. When channel binding is used with or without perimeter TLS
proxies, a potential subtle vulnerability arises when the client carries out multi-
ple sessions with the same server. Because “channel binding” in FIDO UAF binds
only to the endpoints of a channel, and not to the session, potential threats arise
in which the adversary manipulates messages among the multiple sessions. For
example, suppose a client establishes two concurrent sessions with an investment
bank for the purpose of making a stock transaction in each session. Although the
server generates a different challenge for each session, the adversary might be
able to manipulate the challenges, and the client’s signed attestations of them,
to change the order of the transactions. Changing the order of transactions can
have significant consequences. Carrying out this attack would require dealing
with other complexities, including the authenticator’s signature counter, if the
authenticator has a signature counter. Even if the authenticator has a signa-
ture counter, it might be possible for the adversary to send the client a policy
that states that the adversary will accept only authenticators that do not use
signature counters.

Another serious issue with FIDO UAF is that it fails to articulate a clear
and well-defined security goal. The FIDO UAF specification [5, p.4–5] vaguely
states: “The goal of this Universal Authentication Framework is to provide a
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unified and extensible authentication mechanism that supplants passwords while
avoiding the shortcomings of current alternative authentication approaches.”

What FIDO UAF does is for the server to send a challenge to the client, the
client to return a signed attestation of this challenge, and the server to verify
signature and the contents of the attestation, including the channel binding
if present. These actions, however, have serious limitations. The client cannot
verify from what session the challenge originates; the client can choose not to use
channel binding; the server may accept incorrect bindings; and channel binding
binds only the endpoints of the channel and not the session. These limitations
exist whether the authenticator is based on passwords or biometrics.

Although we point out vulnerabilities of and attacks against FIDO UAF, this
paper is not intended narrowly as an analysis of FIDO UAF. Instead, our work
is a case study in the crucial concept of cryptographic bindings in protocols.
The vulnerabilities and resulting attacks we uncover stem from deficiencies in
cryptographic bindings. These binding issues in FIDO UAF are the tip of a much
larger serious pervasive problem that plagues many modern protocols.

Furthermore, our case study reveals disturbing underlying causes that gave
rise to the binding issues: the FIDO UAF specification does not clearly and pre-
cisely state its security objectives; the specification does not define and follow
an appropriate consistent adversarial model, such as the DY network adver-
sary model; and the designers did not perform formal-methods analyses. This
confused thinking, in combination with a desire to encourage adoption through
permissive policies, resulted in a complex protocol for which its security implica-
tions are difficult to analyze, a protocol that is difficult to correct, and a protocol
that is vulnerable to attack. Using CPSA, we provide a formal-methods analysis
of FIDO UAF with and without channel binding.

3 Cryptographic Binding

In 1996, Abadi and Needham [1] presented informal guidelines for designing
sound cryptographic protocols, including the need for explicit context and cryp-
tographic binding. Cryptographic binding associates sensitive data with a specific
context, complicating the malicious act of transplanting data from one protocol
context to another. Digital certificates are a well-known example of binding: the
certificate associates an entity’s identifier with the entity’s public key, bound by
the digital signature of a trusted issuer.

Network protocols that fail to bind messages to a context are vulnerable to
protocol interaction [25], in which an adversary uses messages between different
protocols, or different sessions of the same protocol, to produce undesirable out-
comes. Often, an adversary will produce interactions between two sessions of the
same protocol, as in a man-in-the-middle attack. For example, Gavin Lowe’s [30]
1995 famous attack on the NS public-key protocol [34] exploits a lack of binding
between a random nonce and its owner, enabling an adversary to misrepresent
another communicant’s nonce as their own. A protocol that fails to bind mes-
sages may also permit an adversary to transplant data or entire messages to
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attack a separate protocol. Protocol interaction can be mitigated by binding
cryptographic values to a specific protocol session.

4 Background

We now present brief background for CPSA and formal-methods analysis of
protocols, which we use in subsequent sections to perform a formal-methods
analysis of FIDO UAF authentication.

4.1 Formal Methods for Protocol Analysis

Current tools for formal-methods analysis of cryptographic protocols include
ProVerif [9], Tamarin Prover [32], Maude-NPA [18], and CPSA [28]. These
tools build on ideas of legacy tools, including NPA [31], Interrogator [33], and
Scyther [13], and efforts such as Lowe’s analysis of NS using FDR, a refinement
checker for formal Communicating Sequential Processes models [30].

ProVerif proves properties of Horn clauses modeling a protocol. Tamarin
Prover proves properties about multiset rewriting rules. Maude-NPA searches
backwards from attack states through unification. By contrast, CPSA searches
for protocol interactions, and upon termination, provably enumerates all essen-
tially different protocol interactions for a protocol model [15, 27].

It is possible to carry out inductive security analysis of protocols using high-
order logic theorem provers such as Isabelle [37]. This approach uses general
interactive theorem provers, rather than specialized tools for protocol analysis.

We chose CPSA for our analysis because the tool is ideal for discovering
protocol interactions, including those resulting from inadequate binding, and
we are familiar with CPSA. Because CPSA enumerates all essentially different
possible protocol executions, CPSA will find all essentially different protocol
interactions possible given the input models. To our knowledge, no other tool has
this characteristic. By contrast, many other tools (e.g., Tamarin) require the user
to state properties to be verified, creating a risk that a protocol interaction might
be overlooked because the user did not explicitly state an important property.

4.2 CPSA

CPSA is an open-source tool that analyzes cryptographic network protocols
for protocol interactions. In contrast to many formal-methods tools, CPSA is
not a theorem-prover but a model-finder. For an input model, which comprises
roles, messages, variables, and assumptions regarding those variables, CPSA
outputs trees of graphical shapes that illustrate possible protocol executions.
When CPSA terminates, it provably discovers all essentially different shapes for
the input model, enabling users to inspect these shapes and identify all protocol
interactions possible for the input model. Additionally, a model may specify
goals, not unlike theorems, which each of the output shapes must satisfy.
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Users define CPSA models using LISP-like s-expressions that implement a
custom language. In these models, which superficially resemble (but are not)
executable source code, users specify one or more roles, associated variables and
messages, and skeletons. Skeletons specify one or more initial roles and impose
assumptions on the role variables, such as forcing a value to originate uniquely
each session or being unavailable to the adversary. When CPSA executes, it
attempts to satisfy skeletons into shapes by repeatedly applying actions available
to a DY intruder in strand space theory [19].

Shapes, which CPSA represents graphically, consist of strands that each rep-
resent a legitimate protocol role or an adversary’s listener for key values. Each
strand consists of sequential nodes that specify message transmission or recep-
tion events. Connecting these nodes between different strands are two types of
arrows: solid arrows indicate a pair of message events, transmission and recep-
tion, for which CPSA can prove a casual relationship. Dashed arrows indicate a
pair of message events for which CPSA, acting as a DY adversary, manipulates
available information to satisfy each event. When analyzing CPSA shapes, users
take special note of dashed arrows as these often suggest undesirable protocol
interactions.

To analyze protocols using CPSA, users often follow a common workflow:
(1) extract messages and variables from a protocol specification and define these
in a model as roles, (2) specify security assumptions for key variables that each
role creates, or originates—often, these assumptions are specific to certain pro-
tocol perspectives and ultimately reside in skeletons, (3) specify skeletons for
different role perspectives or special scenarios, (4) execute CPSA to produce
output shapes, (5) manually analyze the output shapes to identify protocol in-
teractions. In this paper, we follow this workflow to analyze FIDO UAF.

5 FIDO

We now introduce the FIDO UAF protocol and discuss the protocol’s crypto-
graphic channel binding. As we will show in Section 9, the specification has a
structural weakness resulting from the server’s inadequate binding of the chal-
lenge. Additional vulnerabilities result because channel binding is optional and
the server may accept incorrect channel bindings.

5.1 FIDO UAF

In 2013, the FIDO Alliance proposed the UAF [5], an open standard forgoing
passwords in favor of devices (e.g., cell phones) with local authentication mech-
anisms (e.g., biometric, PIN). There are many protocols and variations thereof
within the UAF standard described in at least 11 documents. Initially, a client
registers one or more of these devices, known as authenticators, with a server. To
authenticate itself to a server, the client (1) receives a unique random challenge
from the server, (2) for each authenticator, forwards a hash of the challenge pa-
rameters and satisfies each of their local authentication mechanisms, (3) receives
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a signed attestation from each authenticator, and (4) sends the attestations to
the server. Using knowledge of the authenticators and their public keys, the
server verifies the signatures and authenticates the client.

UAF’s design seeks to reduce the use of traditional passwords, which FIDO
indicates as problematic due to common issues: weak password choices, password
reuse, management of many passwords, and phishing attacks. FIDO identifies
passwords as responsible for over 80% of all data breaches, and promotes UAF as
a potential mitigation. To encourage adoption of UAF and maximize compati-
bility with existing systems, FIDO makes several features optional, most notably
the protocol’s cryptographic channel binding.

Authenticator Client Server

policy, appID, challenge

fcp = (appID, challenge, facetID, tlsData)

handle, accessKey, fc = hash(fcp)

fc, n, ctr, s = sign(fc, n, ctr)

fcp, n, ctr, s

Fig. 1. Idealized message sequence diagram of UAF authentication cryptographic flow
featuring a single authenticator. Vertical lines correspond to protocol roles; arrows
indicate sending or receiving a message; and arrow labels specify message content. The
boxed note on the client role specifies how the client generates fcp (final challenge
parameters), which it sends to the authenticator. When generating fcp, the client has
the option of including zero or more channel bindings in the tlsData.

Figure 1 illustrates a simplified example of UAF authentication with a single
authenticator based on the cryptographic data flow in the UAF specification. The
server initiates the protocol by generating a unique, random challenge, which it
sends to the client together with a policy dictionary, specifying a list of acceptable
authenticators, and the service’s application identifier (appID). Upon receiving
the challenge, the client generates final challenge parameters (fcp) that comprise
four values: (1) the appID, (2) the challenge, (3) the facetID, which is a URL of
the request triggering the protocol, and (4) an optional Transport Layer Security
(TLS) channel binding [8, 39, 4]. The client then sends a hash of the fcp to the
authenticator, including a lookup handle and access key corresponding to the
server. Using the handle, the authenticator verifies the access key, increments a
counter, generates a nonce, and signs a concatenation of the nonce, counter, and
the hash of fcp to produce an attestation s. From the authenticator, the client
receives the nonce, counter, and s, and sends these values to the server, including
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the original fcp, which the server verifies to authenticate the client and complete
the protocol.

5.2 Channel Binding

UAF specifies four channel binding mechanisms: (1) server endpoint, (2) server
certificate, (3) channel ID, and (4) token binding. In (1) and (2), the client binds
the challenge to a hash of the server’s certificate and to the server’s certificate,
respectively. In (3) and (4), the client binds the challenge to a public key corre-
sponding to a private key the client holds—through the use of extensions, this
public key associates itself with the TLS channel between the client and the
server.

The FIDO Alliance purposefully specifies these bindings as an optional fea-
ture of UAF, citing inadequate support for channel bindings and challenges
facing perimeter proxies in 2018 [7]: “. . . the addition of channel-binding infor-
mation in FIDO assertions is optional: not all client platforms support Channel
ID or Token Binding, and even if a client has all the necessary support for
channel-binding, it might make sense not to enforce channel-binding.”

Notably, even when the server requires channel binding, the specification [5,
p. 52] allows for a circumstance in which the server has discretion whether to
accept a certificate-based channel binding from the client (e.g., when the client
communicates to the server through a perimeter proxy, as some organizations
deploy to monitor communications passing through their firewall). This policy
creates a potential vulnerability and single point of failure (only the server verifies
the client’s channel binding), since the server might accept a channel binding
to the adversary’s certificate. Because the client depends on the server to verify
the channel binding, and cannot verify the origin of a challenge, the client might
be tricked into generating a channel binding for an adversary. Our improved
binding enhances the client’s assurance of the challenge’s legitimacy by enabling
the client to authenticate the server’s challenge (see Section 11).

The specification hints that a MitM attack may be possible when omitting
channel bindings [7]: “. . . to deny man-in-the-middle attackers the ability to
re-play credentials obtained from eavesdropping on their victims, sites on the
internet should use FIDO . . . and channel-binding techniques such as Token
Binding (to eliminate the risk of stolen cookies).” We confirm the presence of
such an attack in Section 9 and implement it against an open-source server in
Section 10.

In their threat analysis [6], the FIDO Alliance does not carefully define an
adversarial model and does not consider a DY adversary. Instead, they informally
consider various adversarial capabilities separately for each threat, including
MitM. As a result, they overstate the protections provided by their channel
bindings. The protections do not enable a client to verify a challenge in a DY
network (in which the client may communicate with a malicious server), allowing
the adversary to invoke the client as a confused deputy. In the DY model, it is
a realistic threat that the adversary operates a legitimate server. Additionally,
FIDO’s threat model does not address the circumstance in which a server accepts
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a channel binding from a client’s TLS session with a separate entity (e.g., a
proxy).

6 Previous Work

In contrast with our work, existing formal-methods studies of the FIDO UAF
protocol do not explicitly address cryptographic binding, and channel binding
in particular, possibly because channel binding is optional.

In 2016, Feng et al. [24] presented a formal-methods analysis of the UAF reg-
istration and authentication protocols using ProVerif. Formalizing and analyzing
the standard’s security goals, they describe four attacks: (1) an authenticator re-
binding attack, including implementations against real finance applications, (2) a
parallel session attack, (3) a privacy disclosure attack, and (4) a denial-of-service
attack. Their work grants additional capabilities to the adversary beyond DY
and does not address security implications of the standard’s optional binding,
nor the weaknesses of the standard’s specific binding mechanisms and client-side
binding strategy.

Pereira et al. [38] also present a formal-methods analysis of UAF using
ProVerif, concluding that if the client correctly verifies the appId it receives
from the server, the protocol resists a DY-style network adversary. Notably,
their analysis completely omits channel binding, focusing exclusively on the ap-
pId ’s role in helping the client authenticate the server’s challenge, and they do
not present any analysis of UAF with channel binding. We consider the appId
a poor value to bind because it is a public, not a cryptographic, value, and it is
not unique to a specific protocol session.

Hu and Zhang [24] present an informal analysis of the UAF protocols, iden-
tifying three attacks: (1) a misbinding attack, (2) a parallel session attack, and
(3) a multi-user attack. These attacks do not consider the impact of channel
binding and require a stronger adversarial model than DY: the adversary cor-
rupts the client, corrupts the authenticator, or exploits multiple users sharing
an authenticator.

Panos et al. [36] perform an informal analysis of UAF, presenting several
high-level attack vectors. Büttner and Gruschka [10] present MitM attacks on
FIDO extensions, design a protocol to protect the extensions, and analyze the
protocol using ProVerif. Neither of these works considers channel binding.

Additional studies of FIDO UAF assess social-engineering attacks [40], bio-
metric authenticators [12], informal trust requirements [29], and feasibility [11].

Building on our initial work, Fuchs et al. [20] perform a formal-methods
analysis of FIDO UAF registration.

7 Adversarial Model

We analyze the FIDO UAF authentication protocol in the DY adversarial model [16],
a well known formal model which CPSA incorporates. DY specifies a network
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intruder that carries all messages on the network, capable of arbitrarily manipu-
lating messages across any number of protocol instances. This network intruder
cannot perform any cryptanalysis, but will apply knowledge of secret keys to
encrypt and decrypt messages and is capable of generating new keys. A DY
adversary hunts for protocol interaction, exploiting the lack of cryptographic
binding to exploit structural flaws in protocols.

In our analysis, we assume that the adversary is unable to compromise the
private keys of any legitimate entities, including the authenticator and TLS
certificate authority (CA). As a result, the adversary is unable to sign their
own attestations or forge valid TLS certificates for honest entities. However, we
assume the adversary is in possession of their own valid certificate and capable
of appearing as a legitimate client or server, consistent with the DY model.
Additionally, we assume that the adversary is unable to manipulate messages on
the secure channel between the authenticator and the client.

8 CPSA Model

As detailed in Appendix B and GitHub [26], we specify protocol roles, includ-
ing messages and variables, and assumptions to model five variations of UAF
authentication’s cryptographic message flow in CPSA: (1) unbound, (2) server
endpoint binding, (3) server certificate binding, (4) channel ID binding, and
(5) token binding. Each model derives from a common base model, which we
illustrate in Figure 2. To authenticate the server to the client and establish an
encrypted channel, the base model incorporates an existing model of TLS 1.2.

Our model specifies three roles: client, server, and authenticator. Prior to the
start of the protocol, the client and the server complete an instance of TLS [14].
We encrypt communication between the client and the authenticator using a
long-term key, modeling a secure channel. The server initiates the protocol,
sending to the client a freshly generated challenge that it encrypts using the
TLS serverWriteKey. The client receives this challenge, computes the final chal-
lenge fc = hash(challenge, tlsData), where tlsData contains an optional chan-
nel binding, and transmits it to the authenticator. The authenticator now signs
fc using its private key and sends the resulting attestation (fc, s = sign(fc))
to the client. Finally, the client transmits the attestation (fc, s) to the server,
encrypting it using the TLS clientWriteKey.

For simplicity, we omit the appID, facetID, policy, and handle from our mes-
sages. The appID identifies the server endpoint. The facetID identifies the ad-
dress of the web page or application triggering the FIDO UAF protocol. The
policy specifies a list of authenticators that the server accepts. The handle noti-
fies the authenticator which key pair to use for the session.

We assume the adversary has knowledge of the appID, facetID, and policy
because the honest server shares these values in any session. Because we model
the protocol with one authenticator that registers with a single server, it is
unnecessary to model the handle, which enables an authenticator to identify the
private key with which to sign its attestation.
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Authenticator Client Server

TLS 1.2

Client: ClientWriteKey

Server: ServerWriteKey

(enc challenge ServerWriteKey)

fcp = (cat challenge tlsData)

(enc (hash fcp) KeyClient-Auth)

s = (enc (hash fcp) Priv-KeyAuth)

(enc (hash fcp) s KeyClient-Auth)

(enc fcp s ClientWriteKey)

Fig. 2. Base CPSA model for FIDO UAF authentication that represents messages as
s-expressions consistent with CPSA’s modeling language. This model incorporates an
existing CPSA model of TLS 1.2 to negotiate the server and client write keys. The
client incorporates channel bindings into the tuple tlsData, if available. The client and
authenticator encrypt using a long-term, symmetric key unavailable to the adversary.

We also omit the nonce n and the signature counter ctr from the authentica-
tor’s attestation. If the authenticator does not support a signature counter, the
authenticator sets the counter to zero. The standard specifies these values for
mitigating authenticator cloning, in which the adversary steals the authentica-
tor’s private key to sign their own attestations, and attestation replay attacks,
in which the adversary replays old attestations. Our adversarial model does not
permit the adversary to compromise the authenticator’s private key and assumes
a secure channel between the client and the authenticator. We assume that the
server will never generate the same challenge twice, thereby enabling it to detect
any replayed attestation from the authenticator. In light of these assumptions,
omitting the nonce and signature counter does not permit any attacks within
our scope. Additionally, the specification provides insufficient details about the
many difficult issues, including synchronization, that can arise with counters.

9 CPSA Analysis

We now analyze significant CPSA shapes resulting from our models, evaluat-
ing each of UAF’s four channel bindings and identifying a potential attack when
omitting channel binding. Our analysis considers three honest viewpoints (client,
server, authenticator) and discusses channel binding from each of these perspec-
tives. It is essential to consider these different perspectives because each role
is restricted in what it can verify or deduce based the cryptographic values it
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knows. For example, the server does not know whether the client’s TLS pre-
master secret is fresh.

9.1 Server’s Perspective

Authenticator Network Server

TLS 1.2

Server: ServerWriteKey

Network: NetworkWriteKey

(enc challenge ServerWriteKey)

(enc (hash challenge tlsData)

(ltk client auth))

s = (enc (hash challenge tlsData)

Priv-KeyAuth)

(enc (hash challenge tlsData) s

(ltk client auth))

(enc (cat challenge tlsData) s

NetworkWriteKey)

Fig. 3. CPSA shape capturing the server’s perspective, including an optional channel
binding as part of tlsData. The server does not authenticate the client and does not
know the status of the client-authenticator access key, and subsequently receives an
attestation from an unknown session involving the honest authenticator via the net-
work (adversary). When channel binding is present, the server can verify the binding
present in the attestation and terminate the protocol if this binding specifies incorrect
endpoints. Even when binding is present, the server cannot identify to which specific
protocol session the attestation corresponds.

For each variation of channel binding, from the server’s perspective, CPSA
produces a single shape (see Figure 3). In this shape, the protocol completes
without involving an honest client, suggesting two potential issues: (1) due to the
limitations of most common applications of TLS, the server does not authenticate
the client and does not know with whom it is communicating, and (2) in the
absence of channel binding, the server does not know if an attestation results
from its UAF authentication session or protocol interaction with a potentially
malicious session.

Because the server does not authenticate the client when establishing the
TLS channel, and does not provide the client with any means to authenticate
the challenge, we are unable to verify that the authenticator’s assertion originates
from the legitimate server’s session. In subsequent perspectives, we observe that
the client and authenticator must act as a pair to attest a challenge. Without
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Client Network Server

TLS 1.2

Server: ServerWriteKey

Network: NetworkWriteKey

TLS 1.2

Network: NetworkWriteKey'

Client: ClientWriteKey

(enc challenge ServerWriteKey)

(enc challenge NetworkWriteKey')

s = (enc (hash challenge tlsData)

Priv-KeyAuth)

(enc (cat challenge tlsData) s

ClientWriteKey)

(enc (cat challenge tlsData) s

NetworkWriteKey)

Fig. 4. CPSA shape capturing the server’s perspective, where for clarity, we integrate
the client and authenticator into one client role. Whether or not the client includes
channel bindings in the tlsData, the client acts as a confused deputy and produces an
attestation for the adversary. This shape reveals the following structural weakness: in
three scenarios, the adversary can masquerade as the client to the server, or transplant
messages from one session to another between the same endpoints. In particular, the
adversary can masquerade as the client when the client omits channel binding in the
tlsData, or the server fails to verify this binding. The adversary can transplant messages
between such sessions because the client binds only to the endpoints of the channel
and not to the session.
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channel binding, an adversary that masquerades as a client to the honest server,
and as a server to the honest client-authenticator pair, potentially exploits the
client’s inability to authenticate the challenge. Thereby, the adversary tricks the
pair to act as confused deputies to attest a challenge on the adversary’s behalf.
Figure 3 illustrates this attack when channel binding is not present. For clarity,
we also show this attack when the client and authenticator are integrated into
one role, as allowed by the specification—e.g., a client might run the protocol
on their laptop which also serves as the authenticator (see Figure 4).

When one of the channel bindings is present, we verify that the authentica-
tor’s attestation must include the appropriate binding parameters. Consequently,
an adversary that tricks a client-authenticator pair into generating an attestation
will receive an attestation that binds to the incorrect communication channel,
enabling the legitimate server to identify this discrepancy and terminate the
protocol. Under some circumstances, the standard permits a server to accept
an incorrect channel binding, for example, when communicating with a client
through a proxy. If the server accepts such a binding, it enables a similar attack
to the one that exists when the protocol does not channel bind.

Even when the protocol channel binds, the server is unable to verify to which
session of the protocol an attestation binds. This weakness results from TLS
channel binding only to the communication endpoints rather than to the session.
Consequently, the server may accept a channel-bound attestation from a client
that corresponds to another session with the same client. In Figure 4, the server
cannot determine to which session an attestation binds.

From the server’s perspective, we note the following weaknesses of channel
binding in UAF: (1) the client cannot authenticate the challenge prior to binding
it, nor identify from what session the challenge originated; (2) the authenticator
does not possess information to verify a binding that the client applies, producing
an attestation regardless of the binding’s legitimacy; (3) the channel bindings
bind only to the endpoints, not to the protocol session; and (4) the server is the
sole entity, and thus a single point of failure, that verifies the channel binding.

9.2 Client’s Perspective

From the client’s perspective, CPSA produces several shapes from which we ob-
serve that the client, following the TLS handshake, is certain it is communicat-
ing with a legitimate server, assuming (1) the adversary does not compromise
the TLS CA or possess a legitimate certificate, and (2) there is a legitimate,
registered authenticator to complete the protocol. Because many of the shapes
feature the client communicating with different instances of the legitimate server
concurrently, we assume correct behavior from this server and consolidate these
shapes into a single shape.

Despite authenticating the server via the certificate, the client cannot au-
thenticate the challenge directly, potentially acting on a challenge resulting from
protocol interaction. This issue remains when applying one of the four channel-
binding mechanisms, because the client is solely responsible for applying these
bindings.
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9.3 Authenticator’s Perspective

In the absence of channel binding, the authenticator’s perspective comprises a
single shape: the authenticator receives a challenge from the honest client and
replies with an attestation. This shape confirms that, when the adversary lacks
knowledge of the access key, only the legitimate client can issue a challenge for
the authenticator to attest. Due to a lack of information, the authenticator relies
on the client to authenticate the challenge and the server’s appID, potentially
enabling the authenticator to attest malicious challenges that the client fails
to authenticate—the server’s perspective illustrates one such scenario when the
client fails to bind the challenge.

With channel binding, CPSA generates an additional shape in which an
authenticator acts as the TLS CA, signing an attestation comprising a server’s
certificate with the CA’s secret key. We do not consider this scenario plausible
because our threat model does not consider a compromised CA.

10 Attack Implementation

We exploit missing channel binding to carry out a MitM attack against eBay’s
popular open-source UAF server [17], which implements a subset of UAF 1.2,
enabling us to authenticate as an honest user without access to the user’s au-
thenticators.

To carry out the protocol, we implement a basic client in the Python pro-
gramming language. Our client registers dummy authenticators with the server
and responds to authentication requests with valid assertions from these au-
thenticators. We implement a malicious server as a process that passes messages
between the client and the UAF server. Our attack sourcecode is available on
GitHub [26].

We assume: (1) an honest user wishes to communicate with a DY adver-
sary acting as a server; (2) there is a legitimate server on the network; (3) the
adversary controls a subdomain under the server’s URL (e.g., the adversary
compromises one of the server’s trusted facets [22]); and (4) the client does not
implement channel binding. The adversary wishes to masquerade as the honest
client to a legitimate server.

In addition to not supporting channel binding, the eBay FIDO UAF imple-
mentation fails to inspect the contents of an assertion’s final challenge parame-
ters, verifying only an authenticator’s signature. This egregious omission likely
results in additional potential vulnerabilities beyond the scope of our work: an
adversary can freely substitute challenge parameters without the server’s knowl-
edge. For our attack, we assume only that the server does not enforce any channel
binding.

The attack proceeds in two steps, registration and authentication, which both
exploit lack of binding of the UAF challenge.
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10.1 Step 1: Registration

In our attack’s first phase, the adversary exploits missing binding to register the
honest user’s authenticators with the legitimate server, claiming to own these
authenticators.

First, the honest user intentionally attempts to registers this authentica-
tor with the adversary, who masquerades as an honest server on the network.
The adversary now engages in two concurrent UAF registration protocols: one
between itself and the user, and one between itself and an honest server, present-
ing the user with the honest server’s challenge. Subsequently, the user issues the
challenge to their authenticator, which generates a key registration data (KRD)
object, including an authenticator attestation ID (AAID), a new public-private
key pair, an attestation certificate, a pair of counters (registration and signa-
ture), and a hash of these parameters including the malicious challenge. Using
the private key, the authenticator signs the KRD and returns an assertion to the
user, who forwards it to the adversary. The adversary now claims the assertion to
the legitimate server, thereby registering the user’s authenticator without their
knowledge.

10.2 Step 2: Authentication

The adversary engages in parallel UAF authentication protocols, transplanting
the legitimate server’s challenge and policy, which includes the user’s authenti-
cator maliciously registered by the adversary, into the session between the ad-
versary and the user. The user issues the challenge to the authenticator, which
builds an authentication assertion that the adversary presents to the legitimate
server as their own to complete the protocol and authenticate. Claiming the
user’s identity, the adversary is now free to engage in malicious behaviors under
the user’s name.

11 Dual Channel Binding: Client and Server

We propose a variation of UAF authentication, which we call “dual channel
binding,” in which both the server and the client bind the challenge, rather
than channel binding solely at the client. As discussed in Section 9, even when
we incorporate the optional channel binding present in UAF, the client cannot
authenticate the challenge and therefore must rely on the server to verify the
client’s channel binding correctly. The client’s inability to authenticate the chal-
lenge puts them at risk to act as a confused deputy and generate attestations for
malicious challenges. There is no guarantee that an implementation of the FIDO
server verifies the client’s attestation correctly, and the standard permits a server
to accept incorrect channel bindings. See Section 10 for examples of implemen-
tations that fail to perform this step. In this section, we present a meaningful
improvement of UAF that expands channel binding to both the client and the
server, enabling the client to identify which server generated a challenge.
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Authenticator Client Server

TLS 1.2

Client: ClientWriteKey

Server: ServerWriteKey

challenge = (hash nonce serverCertificate)

(enc nonce challenge serverWriteKey)

fcp = (cat challenge serverCertificate)

enc((hash fcp) KeyClient-Auth)

s = (enc (hash fcp) Priv-KeyAuth)

(enc (hash fcp) s KeyClient-Auth)

(enc fcp s clientWriteKey)

Fig. 5. Idealized message sequence diagram of a CPSA model for our proposed UAF
dual binding, in which both the client and the server apply cryptographic channel
binding to the challenge. In UAF dual binding, the server’s challenge comprises a hash
of (a) a random, fresh nonce that the server chooses, and (b) the server’s certificate.
The client hashes the nonce together with the server’s certificate to authenticate the
challenge, enabling the client to terminate the protocol when receiving a challenge
bound to an incorrect certificate.

Figure 5 illustrates our idealized message sequence for UAF dual binding, in
which both the client and the server apply channel binding to the challenge. In
our analysis of this model, we again consider three perspectives: client, server,
and authenticator.

From the client’s perspective, we produce shapes representing the ideal exe-
cution of the protocol, varying only to illustrate that we cannot establish that
a certificate-based binding binds to a specific TLS session between an honest
client and honest server.

The authenticator’s perspective yields a single shape in which the authenti-
cator is certain they are attesting a challenge from the legitimate client.

From the server’s perspective, because most applications of TLS authenticate
only the server to the client, we observe several points of interest: (1) the server
is unable to authenticate the client, because the client produces no certificate;
(2) due to the inability of the server to determine the freshness of the client’s
TLS 1.2 pre-master secret, it cannot assume a confidential TLS channel between
itself and a client; and (3) because the TLS channel bindings do not incorpo-
rate session-specific data, the client cannot verify from which server session a
challenge originates.

For simplicity, our dual binding proposal also binds to the endpoints, not
to the channel. We conjecture that dual binding could be further improved by
binding also to the TLS channel’s master secret.
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We note three limitations of our proposal: (1) As is true for UAF channel
binding, as a result of a limitation of the most common form of TLS, the server
cannot authenticate the client. (2) To verify the server’s binding, the client must
support certificate channel binding. (3) When communicating through a perime-
ter proxy, communicants cannot verify the binding of the challenge.

From the shapes we analyzed, we conclude that dual-binding UAF authen-
tication enables the client to verify the origin, but not the specific session, of
the challenge while mitigating the man-in-the-middle attack (when binding is
absent) discussed in Section 9. With dual binding the client can terminate the
session if their verification of the challenge fails. For these reasons, our pro-
posal presents an improvement over the standard’s existing client-only channel
binding.

12 Discussion

We now discuss several issues that arose in our work: (1) the necessity of binding
cryptographic values at their origin, (2) implications of making channel binding
optional in UAF, and (3) open problems.

12.1 Binding Values at their Origin

In a prudent protocol design, every protocol role must bind cryptographic values
to a session’s context explicitly. Binding session data as early as possible—ideally
at the origin of the data—reduces an adversary’s opportunities to produce pro-
tocol interactions. To build a session context, we suggest incorporating an un-
derlying cryptographic session, incorporating additional attributes such as the
protocol’s name, message sequence numbers, unique session identifiers, commu-
nicant identifiers, and any other values unique to the session. Many protocol
interactions result from an inability to authenticate sensitive cryptographic val-
ues, resulting from a lack of binding. Often, the vulnerability can be mitigated
by binding to a context appropriately.

12.2 UAF’s Optional Channel Binding

,
To promote adoption of the UAF standard, FIDO specified channel binding

as an optional feature. It is possible that requiring this binding would result in
developers preferring older, password-based solutions over UAF, due to the chal-
lenge of implementing the channel-binding requirement. When both the client
and the server support channel binding, the client applies this binding to the
challenge parameters prior to forwarding them to their authenticators. We now
discuss UAF’s optional channel binding from a technical and a policy perspec-
tive.

From a cryptographer’s perspective, without channel binding, the UAF au-
thentication protocol is vulnerable to a DY adversary: the adversary can exploit
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the lack of channel binding to launch a MitM attack, masquerading as an honest
client to a server, without access to the client’s authenticator. To mitigate this
attack, the protocol must require the client, and potentially the server, to bind
the challenge (see Section 11).

From a policy perspective, requiring channel binding in the UAF standard
presents practical problems: entities unable to support the channel binding stan-
dard may favor a different system over UAF, and some of the TLS channel
bindings are still in draft form. Optional channel binding is a conscious trade-
off between security and ease of adoption, which supports the goal of reducing
and eliminating traditional, password-based security. Policy makers, adopters,
and users, however, should be aware that optional channel binding enables an
adversary to create potentially serious protocol-interactions in FIDO UAF au-
thentication.

Additionally, the specification permits a server to disregard incorrect bind-
ings to facilitate clients that bind to other channels (e.g., when communicating
through a perimeter proxy, as explained in Section 5.2). From a cryptographer’s
perspective, a server that fails to verify a binding enables harmful protocol inter-
actions. From a policy perspective, supporting clients that communicate through
proxies facilitates the adoption of UAF but potentially enables hostile proxies
(adversaries) to attack the protocol. Developing a mechanism for the server to
verify proxy bindings, such as cryptographically binding the client’s channel
with the proxy to the server’s session, may mitigate the weakness enabled by
this policy.

12.3 Open Problems and Future Work

Our work on FIDO UAF authentication raises four open problems: (1) Further
analyze the UAF registration protocol, which similarly binds server-generated
challenges at the client. (2) Search for potential protocol interactions between the
authentication and registration protocols, exploiting similarities between these
two protocols. (3) Develop channel bindings that bind to protocol endpoints and
sessions, and encapsulate additional bindings to address cases where the client
or server communicate with a proxy. (4) Explore channel binding in FIDO2 [23],
a new version of FIDO building on UAF that expands the available types of
authenticators and improves interoperability with existing standards.

As future work, we are developing automatic tools for cryptographically bind-
ing protocol messages to their context in a manner that provably eliminates the
possibility of any protocol interaction in the DY model.

13 Recommendations

We recommend: (1) For applications where it is critical to mitigate protocol
interactions, the standard require both the server and the client to apply channel
bindings to the challenge, as we explain in Section 11. (2) The server should not
accept attestations that bind to channels it cannot verify. (3) Applications should
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consider limitations of TLS channel bindings in UAF: these bindings bind only
to endpoints of the session; they do not bind to specific protocol sessions. (4) The
FIDO Alliance should adopt a more formal adversarial model, including a DY
adversary, and perform formal-methods analysis of the UAF specification.

14 Conclusion

Using CPSA, we performed a formal-methods analysis of FIDO UAF authenti-
cation channel bindings. From this analysis, we: (1) showed that FIDO UAF’s
channel bindings fail to mitigate protocol interaction, resulting in a MitM attack
from the server’s failure to bind its challenge adequately. (2) implemented the
attack against eBay’s open-source FIDO UAF server, allowing an adversary to
masquerade as a legitimate client. (3) proposed and verified an improved ver-
sion in which both the client and server perform channel binding, allowing the
client and server each to verify the binding, providing some protection even if
the server fails to verify the binding correctly, and performing the binding at the
server where the challenge is created.

Our attack exploits four limitations of channel binding in FIDO UAF: (1) chan-
nel binding is optional; (2) the server may accept attestations that bind to incor-
rect channels; (3) the client cannot verify the origin of the server’s challenge; and
(4) UAF binds only to the protocol’s endpoints, not to the session. In addition,
the most common application of TLS performs only one-way authentication,
preventing the server from authenticating the client.

Although the FIDO UAF specification suggests that omitting channel bind-
ing may create a vulnerability (see Section 5), to our knowledge, we are first to
carry out a formal-methods analysis of channel binding in FIDO UAF and first
to exhibit details of an attack on FIDO UAF that exploits the weaknesses of
UAF’s channel binding. Previous studies of FIDO UAF inadequately analyzed
the role of channel binding. The problems we uncover with FIDO UAF result
significantly from the failure of FIDO designers to adopt an appropriate adver-
sarial model. Policy makers should be aware that omitting channel binding, or
accepting attestations that bind to the incorrect channel, creates a serious vul-
nerability in which the adversary can trick the client and authenticator to act
as confused deputies to sign an authentication challenge for the adversary.

Despite decades of progress in protocol design, many current protocols—
including FIDO UAF—fail to apply cryptographic binding consistently and cor-
rectly, allowing potential harmful protocol interactions. Our case study of FIDO
UAF illustrates the value of adopting a well-defined adversarial model and using
formal-methods tools, such as CPSA, in protocol analysis—including analysis in
the design process—and the need to develop and apply rigorous techniques to
ensure that all protocol messages are always properly cryptographically bound
to their context.
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A Acronyms and Abbreviations

AAID Authenticator Attestation ID
CA Certificate Authority
CPSA Cryptographic Protocol Shapes Analyzer
DY Dolev-Yao
FIDO Fast Identity Online
KRD Key Registration Data
MitM Man-in-the-middle
NS Needham-Schroeder
TLS Transport Layer Security
UAF Universal Authentication Framework

B CPSA Model Code (Selected Examples)

We provide key CPSA model code snippets from our FIDO CPSA models, or-
ganized as roles and skeletons. For complete models, see Github [26].
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(defrole client

(vars

(auth client server ca name)

(n1 n2 pms challenge text)

(pks akey)

)

(trace

(TLSclient_nocerts n1 n2 pms server pks ca)

(recv (enc challenge (ServerWriteKey (MasterSecret pms n1 n2))))

(send (enc (hash challenge <tlsData>) (ltk client auth)))

(recv (enc (signed (hash challenge <tlsData>) auth) (ltk client auth)))

(send (enc (signed (hash challenge <tlsData>) auth)

(ClientWriteKey (MasterSecret pms n1 n2))))

)

)

Fig. 6. CPSA specification of a client in UAF authentication. The TLSclient nocerts
macro generates client messages to establish a TLS session with the server, reflecting
the common case of omitting a client certificate. When hashing the challenge, the client
has the option of incorporating one of several channel bindings via macros to substitute
¡tlsData¿, or can leave this value blank to model unbound UAF authentication. The
value pks represents the server’s public key.

(defrole server

(vars

(auth server ca name)

(n1 n2 pms challenge text)

(pks akey)

)

(trace

(TLSserver_nocertreq n1 n2 pms server pks ca)

(send (enc challenge (ServerWriteKey (MasterSecret pms n1 n2))))

(recv (enc (signed (hash challenge <tlsData>) auth)

(ClientWriteKey (MasterSecret pms n1 n2))))

)

)

Fig. 7. CPSA specification of a server in UAF authentication The TLSserver nocertreq
macro generates server messages to establish a TLS session with the client without
requiring a client certificate. In our model, the server must reflect the client’s choice
for the ¡tlsData¿ channel binding by incorporating the appropriate macro (see Figure 9).
The server specifies the challenge as uniquely originating for each session and assumes
that the adversary does not possess the legitimate CA’s private key.
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;;; Sign a message and append the signature.

(defmacro (signed m i)

(cat m (enc m (privk i)))

)

(defrole auth

(vars

(auth client name)

(fcp mesg)

)

(trace

(recv (enc fcp (ltk client auth)))

(send (enc (signed fcp auth) (ltk client auth)))

)

)

Fig. 8. CPSA specification of an authenticator in UAF authentication. Relying on a
long-term key with the client, the authenticator receives the final challenge parameters
fcp, which may incorporate the client’s optional channel binding, and generates a signed
attestation using its private key.

(defmacro (channel_binding_endpoint challenge server pks ca)

(hash challenge (hash (Certificate server pks ca)))

)

(defmacro (channel_binding_servercert challenge server pks ca)

(hash challenge (Certificate server pks ca))

)

(defmacro (channel_binding_channel_id challenge client)

(hash challenge (pubk client) (enc (pubk client) (privk client)))

)

(defmacro (channel_binding_token challenge client)

(hash challenge (cat (pubk client) (enc (pubk client) (privk client))))

)

Fig. 9. CPSA macros for incorporating different channel bindings in tlsData. Each
macro, which we name after the corresponding channel binding in the UAF standard,
implements a cryptographic abstraction of that binding in CPSA.
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;;; Client perspective

(defskeleton fido

(vars (auth client server ca name) (n1 pms text) (pks akey))

(defstrandmax client

(auth auth)

(client client)

(server server)

(ca ca)

(n1 n1)

(pms pms)

(pks pks))

(non-orig

(privk auth)

(privk ca)

(ltk client auth)

(invk pks))

(uniq-orig n1 pms)

)

Fig. 10. CPSA skeleton specifying a client’s perspective. In CPSA, we state assump-
tions that it is impossible for the adversary to obtain the private keys of the legitimate
authenticator, server, or certificate authority. We also assume that the adversary cannot
compromise the channel between the authenticator and the client. The client gener-
ates fresh values for the TLS session with the server and the server generates a fresh
challenge for each session.
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;;; Server perspective

(defskeleton fido

(vars (auth server ca name) (n2 challenge text) (pks akey))

(defstrandmax server

(auth auth)

(server server)

(ca ca)

(n2 n2)

(challenge challenge)

(pks pks))

(non-orig

(privk auth)

(privk server)

(privk ca)

(invk pks))

(uniq-orig n2 challenge)

)

Fig. 11. CPSA skeleton specifying a server’s perspective. Similarly with the client,
the server assumes that the adversary cannot access the server nor the authenticator’s
private keys, and the server generates a fresh nonce for each TLS session.

;;; Authenticator’s perspective

(defskeleton fido

(vars (auth client name))

(defstrand auth 2

(auth auth)

(client client))

(non-orig

(privk auth)

(ltk client auth))

)

Fig. 12. CPSA skeleton specifying an authenticator’s perspective. The authenticator
assumes confidentiality of its own key and of the long-term key by which it communi-
cates with the client.


