
ar
X

iv
:2

21
0.

03
83

1v
2

 [c
s.D

S]
 1

1
Se

p
20

23

How to Make Your Approximation Algorithm Private:

A Black-Box Differentially-Private Transformation

for Tunable Approximation Algorithms of Functions with Low Sensitivity

Jeremiah Blocki∗

Purdue University

Elena Grigorescu†

Purdue University

Tamalika Mukherjee‡

Columbia University

Samson Zhou§

UC Berkeley and Rice University

September 12, 2023

Abstract

We develop a framework for efficiently transforming certain approximation algorithms into
differentially-private variants, in a black-box manner. Specifically, our results focus on algo-
rithms A that output an approximation to a function f of the form (1 − α)f(x) − κ ≤ A(x) ≤
(1 + α)f(x) + κ, where κ ∈ R≥0 denotes additive error and α ∈ [0, 1) denotes multiplicative
error can be“tuned” to small-enough values while incurring only a polynomial blowup in the
running time/space. We show that such algorithms can be made differentially private without
sacrificing accuracy, as long as the function f has small “global sensitivity”. We achieve these
results by applying the “smooth sensitivity” framework developed by Nissim, Raskhodnikova,
and Smith (STOC 2007).

Our framework naturally applies to transform non-private FPRAS and FPTAS algorithms
into ε-differentially private approximation algorithms where the former case requires an ad-
ditional postprocessing step. We apply our framework in the context of sublinear-time and
sublinear-space algorithms, while preserving the nature of the algorithm in meaningful ranges of
the parameters. Our results include the first (to the best of our knowledge) ε-edge differentially-
private sublinear-time algorithm for estimating the number of triangles, the number of connected
components, and the weight of a minimum spanning tree of a graph whose accuracy holds with
high probability. In the area of streaming algorithms, our results include ε-DP algorithms for
estimating Lp-norms, distinct elements, and weighted minimum spanning tree for both insertion-
only and turnstile streams. Our transformation also provides a private version of the smooth
histogram framework, which is commonly used for converting streaming algorithms into slid-
ing window variants, and achieves a multiplicative approximation to many problems, such as
estimating Lp-norms, distinct elements, and the length of the longest increasing subsequence.

∗E-mail: jblocki@purdue.edu. Supported in part by NSF CCF-1910659, NSF CNS-1931443. and NSF CAREER
award CNS-2047272

†E-mail: elena-g@purdue.edu. Supported in part by NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-
2228814.

‡E-mail: tm3391@columbia.edu. Most of the work was done as a Ph.D. student at Purdue University. Supported
in part by the Bilsland Dissertation Fellowship, NSF CCF-1910659 and and NSF CCF-2228814.

§E-mail: samsonzhou@gmail.com. Work done in part while at Carnegie Mellon University and supported in part
by a Simons Investigator Award and by NSF CCF-1815840.

1

http://arxiv.org/abs/2210.03831v2
mailto:jblocki@purdue.edu
mailto:elena-g@purdue.edu
mailto:tm3391@columbia.edu
mailto:samsonzhou@gmail.com

1 Introduction

Approximation algorithms are often used to efficiently approximate a function f : D → R
+ in

settings where resource constraints prevent us from computing the function exactly. For example,
problems such as Knapsack are NP-Hard and, unless P = NP, do not admit a polynomial time
solution. However, the Knapsack problem admits a fully polynomial time approximation scheme
(FPTAS) i.e., for any α > 0 there is a deterministic algorithm, running in time poly(n, 1/α), which
outputs a solution that is guaranteed to be be nearly as good (up to multiplicative factor 1 ± α)
as the optimal solution. As a second example, even if the problem is computationally tractable it
may still be the case that the input dataset D ∈ D is extremely large, making it infeasible to load
the entire dataset into RAM, or impractical to execute a linear time algorithm. To remedy such
shortcomings, models such as sublinear-space and sublinear-time algorithms have been proposed.
For example, one may want to estimate frequencies of elements that appear in a stream of n
elements up to a multiplicative 1±α factor, while using only poly

(
log n, 1α

)
memory cells. Or, one

may want to estimate the number of connected components of a dense graph on n vertices up to
(relative) additive error κ by only inspecting poly(log n, 1κ) many edges.

In addition to time and space efficiency, user privacy is another important consideration in
contexts where the input to our function f is sensitive user data. Differential privacy (DP) [Dwo06,
DMNS06] is a rigorous mathematical concept that gives provable guarantees on what it means for
an algorithm to preserve the privacy of individual information in the input dataset. Informally,
a randomized function computed on a dataset D is differentially private if the distribution of the
function’s output does not change significantly with the presence or absence of an individual data
point. Thus, a natural goal is to develop efficient differentially private algorithms to approximate
functions/queries of interest.

One general way to preserve differential privacy is to add noise scaled to the global sensitivity
∆f of our function f , i.e., the maximum amount |f(D)− f(D′)| that the answer could change by
modifying a single record in our dataset D to obtain a new dataset D′. This general approach yields
efficient and accurate approximations for f as long as we have an efficient algorithm to compute f
exactly and the global sensitivity of f is sufficiently small. However, in some resource-constrained
settings, we may need to use an approximation algorithm Af instead of evaluating f exactly.
Unfortunately, the mechanism that computes Af (D) and then adds noise scaled to the global
sensitivity ∆f of our function f is not necessarily differentially private. In particular, even if we are
guaranteed that |Af (D)− f(D)| ≤ αf(D) we might still have |Af (D)−Af (D

′)| ≥ 2αf(D) ≫ ∆f

for neighboring datasets D and D′, e.g., suppose Af (D) = (1 + α)f(D) and Af (D
′) = (1 −

α)f(D′). Thus, the global sensitivity of Af can be quite large and adding noise proportional to ∆Af

would prevent us from providing meaningful accuracy guarantees. This raises a natural question:
Suppose that our function f admits an accurate (but not necessarily resource-efficient) differentially
private approximation algorithm and that f also admits an efficient (but not necessarily private)
approximation algorithm. Is it necessarily the case that there is also an equally efficient differentially
private approximation algorithm?

Unfortunately, a result of [HT10, BUV18] suggests that the answer to the previous ques-
tion may be no. Suppose our dataset D consists of n users x1, . . . , xn with n binary attributes
i.e., xi ∈ {0, 1}n. Consider the function f(D) that computes all of the one-way marginals i.e.,
f(D) = 〈 1n

∑n
i=1 xi[j]〉nj=1 ∈ R

n. In particular, there is a non-private sublinear time algorithm
that samples O (log n) users and (with high probability) outputs a good approximation to all n
one-way marginals. However, if we require that our algorithm satisfy pure, i.e, ε-differential privacy

2

(resp. approximate, i.e., (ε, δ)-differential privacy) then we need to look at at least Ω(n/ε) (resp.
Ω(

√
n log(1/δ))) samples [HT10, BUV18]. In light of this, we pose the following general questions:

What are sufficient conditions for an approximation algorithm to be made differentially private?
Can an approximation algorithm be made differentially private in an efficient black-box manner?

Over the years, many differentially private approximation algorithms have been developed for
problems in optimization, machine learning, and distribution testing (see for e.g., [GLM+10, ASZ18,
GKMN21, GXP+20]), in a somewhat ad-hoc manner. Often, these results give a differentially
private algorithm for that specific problem and do not easily generalize to give differentially private
algorithms for a large class of problems. A general framework for developing differentially private
approximation algorithms for a large class of problems is desirable as this would not only make DP
approximation algorithms more easily accessible to non-DP experts, but more importantly, it would
shed light on what kinds of algorithms are more amenable to differential privacy. Furthermore,
a framework that uses the underlying approximation algorithm as a black-box is desirable as this
avoids the need to (re)design, (re)analyze, and (re)implement the new differentially private versions
of these approximation algorithms. We emphasize that this type of framework has been well-
studied for computing functions privately by calibrating noise proportional to their global or smooth
sensitivity [DMNS16, NRS07] (see Section 1.3 for more discussion).

Our work makes partial progress towards answering these general questions. In particular, we
give an efficient black-box framework for converting a non-private approximation algorithm Af

with tunable accuracy parameters into a differentially private approximation algorithm A′
f with

reasonable accuracy guarantees as long as the global sensitivity ∆f of the function f being approx-
imated is sufficiently low. For the case when Af is deterministic, we achieve a pure ε-differentially
private approximation algorithm via a direct transformation, and when Af is randomized, i.e.,
has a small failure probability, we achieve ε-differential privacy by first applying a transformation
that gives a (ε, δ)-differentially private algorithm and then apply a postprocessing step to achieve
ε-differentially privacy. For example, suppose that for any α > 0 our algorithm Af , taking α and
our dataset D as input, provides the guarantee that |Af (D) − f(D)| ≤ αf(D) e.g., any FPTAS
algorithm would satisfy our tunable accuracy requirement. In such a case, for any α > 0 we can
transform our non-private algorithm Af into a differentially private version with multiplicative
error α and small additive error term which (necessarily) comes from the noise that we added.
Intuitively, we exploit the fact that we can run Af with an even smaller accuracy parameter ρ≪ α
which can be tuned to ensure that the smooth sensitivity of our algorithm is sufficiently small. Our
same general framework still applies if we allow that the approximation algorithm Af has a small
additive error term i.e., |Af (D) − f(D)| ≤ αf(D) + κ. If Af (D) is only guaranteed to output a
good approximation (i.e., |Af (D)− f(D)| ≤ αf(D) + κ) with probability 1− δ/2 (e.g., an FPRAS
algorithm would satisfy this requirement with additive error κ = 0) then our framework achieves
ε-differential privacy by first obtaining an approximate (ε, δ)-differential privacy algorithm and
then a postprocessing step. In cases where the approximation algorithm is not tunably accurate
our black-box framework does not necessarily apply1. For example, the best known approximation
algorithms for vertex cover achieve the guarantee f(G) ≤ Af (G) ≤ 2f(G) i.e., because there is no
way to control the smooth sensitivity of our approximation algorithm.

1One could still apply our black-box transformation. However, the accuracy guarantees would be degraded and we
would only achieve (ε, δ)-differential privacy for sufficiently large values of ε, δ > 0 which depend on the approximation
error parameter α.

3

1.1 Our Contributions

We introduce a generic black-box framework for converting certain approximation algorithms for a
function f : D → R

+ into a differentially private approximation algorithm using smooth sensitiv-
ity [NRS07]. We first introduce a definition for tunable approximation algorithms used throughout
our paper, and then present our main results for the DP framework, and then give new differentially
private algorithms for a variety of approximation algorithms obtained via this unifying framework.

Definition 1.1 ((α, κ, δ)-approximation). An algorithm Af is a (α, κ, δ)-approximation for f if for
every D ∈ D with probability at least 1−δ, we have that (1−α)f(D)−κ ≤ Af (D) ≤ (1+α)f(D)+κ.

We may abuse notation and omit the failure probability δ parameter in the above definition, if it
is clear from the context. Some algorithms Af may take the approximation parameters α, κ, δ ≥ 0
as input2.

Definition 1.2 (tunable approximation). Af (D,α, κ, δ) provides a tunable approximation of f if
for every α, κ, δ ≥ 0 the algorithm Af (·, α, κ, δ) obtained by hardcoding α, κ and δ is a (α, κ, δ)-
approximation for f .
When the parameters α, κ, δ are clear from the context, we may abuse notation and just write
Af (D). For a tunable approximation algorithm we will use R(n, α, κ, δ) to denote the amount of
a particular resource used by the algorithm. The resources we consider in this work include time,
space and query complexity of the algorithm (depending on the model) which we denote by T (·, ·, ·, ·),
S(·, ·, ·, ·) , and Q(·, ·, ·, ·) respectively.

As a concrete example any FPTAS algorithm Af for f would be a tunable approximation for
f with running time T (n, α, κ, δ) = poly(n, 1/α) for any α > 0 and any κ, δ ≥ 0 — an FPTAS has
no additive error (κ = 0) and zero failure probability (δ = 0). Similarly a FPRAS algorithm would
be a tunable approximation with running time T (n, α, κ, δ) = poly(n, α, log(1/δ)) for any α, δ > 0
and any κ ≥ 0 — an FPRAS also has no additive error (κ = 0).

General Framework for Approximation Algorithms. Our main result gives a framework
for converting any existing non-DP algorithm Af that provides an (α, κ, δ)-approximation of f into
an ε-DP algorithm A′′

f in the following manner: (1) Apply Algorithm 1 to obtain an (ε, δ)-DP algo-
rithm A′

f that achieves an (α′, κ′, δ′)-approximation (see Theorem 1.3), (2) Apply a postprocessing
step on the output of A′

f outlined in Theorem 1.5 to achieve an ε-DP algorithm A′′
f with the same

accuracy guarantees as A′
f barring an additive error of o(1). We emphasize that Af is a tunable

approximation, in other words, Af takes the parameters (α, κ, δ) as input.

Theorem 1.3. ((ε, δ)-privacy) Suppose that Af is a tunable approximation of f : D → R
+. Then

for all ε > 0, δ = δ(n) > 03, α ≥ 0 and κ ≥ 0, there is an algorithm A′
f such that

(1) (Privacy) A′
f is (ε, δ′)-differentially private where δ′ = δ(1 + exp(ε/2)).

(2) (Accuracy) For all D ∈ D, and 0 < γ, with probability 1− δ − exp(−γ),

(1− α′)f(D)− κ′ − 2∆f

ε
· γ ≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ +
2∆f

ε
· γ

2We allow that α = κ = δ = 0 in which case Af can simply compute f exactly — whether or not this computation
is efficient.

3typically we set δ = negl(n) or δ = n−c for some constant c > 0. In particular δ(n) may approach zero as n → ∞.

4

where α′ = α(ε+16γ)
12 log(4/δ) , and κ

′ = κ
(

2γα
3 log(4/δ) +

8γ
ε + 1

)
, and ∆f := maxD,D′∈D,D∼D′ ‖f(D) −

f(D′)‖1.

(3) (Resource) A′
f uses R

(
n, εα

log(4/δ) , κ, δ
)
resource, where R(·, ·, ·, ·) is the resource used by Af .

We illustrate the utility of Theorem 1.3 with specific parameters — if we have a non-private al-
gorithm Af that guarantees an (α, 0, δ)-approximation, then for constant ε, δ = 1

nc and γ = c log(n),

we see that the DP algorithm Af achieves an
(
α(1 + o(1)),O

(
∆f log(n)

ε

)
, 1
nc

)
-approximation. We

typically use these parameters for δ, γ in our applications for streaming and sublinear-time algo-
rithms.

Our reduction in Theorem 1.3 is quite simple – we describe the associated Algorithm 1 below.

Algorithm 1 (ε, δ)-differentially private framework A′
f for tunable approximation algorithm Af

Input: Input set D, accuracy parameters α ∈ (0, 1) and κ, DP parameter ε, DP failure probability
δ ∈ (0, 1), approx. algorithm Af .

1: Let xA := Af (D, ρ, τ, δ/2), where ρ :=
(

εα
12 log(4/δ)

)
, and τ := κ.

2: return xA +X where X ∼ Lap
(
2(4ρxA+4τ+∆f)

ε

)

Note that in Algorithm 1, we leave our additive parameter κ as is when running Af , but we still
choose to define τ := κ. This is because depending on the problem, and the accuracy/efficiency
guarantees desired, we can set τ to be a tuned version of κ (for e.g., we set τ := κ/ log(n) for the
problem of estimating the number of connected components).

Remark 1.4. We also note that, even if the failure probability δ > 0 of Af is non-negligible, that
we can always boost the success probability by running Af (D) multiple times and computing the
median over all outputs. Even if the error rate 0 < δ < 1/2 is a constant we can always reduce the
failure probability to a lower target 0 < δ′ ≪ δ while increasing the running time by a multiplicative
factor O (log(1/δ′)). In particular, we can set δ′ to be a negligible function of n such as δ′ = n− logn

whilst only incurring a O
(
log2 n

)
blowup in our running time.

We stress that we can only apply Theorem 1.3 to existing non-DP algorithms Af that give an
approximation guarantee of the form (1 − α)f(D) − κ ≤ Af ≤ (1 + α)f(D) + κ. For example,
we cannot apply Theorem 1.3 to obtain an (ε, δ)-DP algorithm for estimating the minimum vertex
cover size in sublinear time. This is because the non-DP sublinear-time algorithm Avc has an ap-
proximation guarantee of the form 2V C(G)−κn ≤ Avc ≤ 2V C(G)+κn. On the other hand, we can
use our DP framework to obtain an (ε, δ)-DP algorithm for obtaining a (0, κn, δ)-approximation of
the maximum matching size in sublinear time (see Corollary 4.10). Intriguingly, both the minimum
vertex cover size and the maximum matching size algorithms use the same underlying strategy of
estimating a greedy maximal matching in a local fashion, but since they return different estimators
based on the objective and we can only use our framework as a black-box, we cannot apply our
framework to the former while we can still apply it to the latter.

Finally, by applying a post-processing step described below, we show how to obtain an ε-
DP algorithm from the (ε, δ)-DP algorithm obtained in Theorem 1.3. Importantly, the accuracy
guarantee of the resulting ε-DP algorithm only differs by a small additive factor of 1/(KM), where

5

M = maxD f(D) is the maximum possible output value, e.g., M ≤ n3 for triangle counting and
K > 0. Moreover for negligible δ, the accuracy guarantee of the resulting pure DP algorithm still
holds with high probability.

Theorem 1.5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP algorithm

with accuracy guarantee (1−α)f(D)−κ ≤ Af (D) ≤ (1+α)f(D)+κ holding with probability 1− η
then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee (1−α)f(D)−κ− 1
KM ≤

Af (D) ≤ (1 + α)f(D) + κ+ 1
KM with probability at least 1− η − p where p = δK(M+1)

eε−1+δK(M+1) .

Our second result is an analogous framework for converting any existing deterministic non-DP
approximation algorithm Af that provides an (α, κ, 0)-approximation of f into an ε-DP algorithm
A′

f .

Theorem 1.6. (ε-privacy) Suppose that Af is a deterministic tunable approximation of f : D →
R
+.Then for all ε > 0, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that

(1) (Privacy) A′
f is ε-differentially private.

(2) (Accuracy) For all D ∈ D, we have that with probability ≥ 9/10,

(1− α′)f(D)− κ′ − 7∆f

ε
≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ +
7∆f

ε

where α′ := αC1(ε + C2γ), κ
′ := κC3(α + C4

ε) for some constants C1, C2, C3, C4 > 0 and
∆f := maxD,D′∈D,D∼D′ ‖f(D)− f(D′)‖1.

(3) (Resource) A′
f uses R

(
n, εα36 , κ

)
resource, where R(·, ·, ·) is the resource used by Af .

DP Sublinear-time Results. We use Theorem 1.3 in conjunction with Theorem 1.5 in a black-
box manner to obtain pure differentially-private sublinear time algorithms for several problems
(see Table 1 for a summary).

In many models of sublinear-time computation the efficiency of the algorithm is measured in
the number of queries made to the input, rather than the time complexity of the algorithm. It is
often the case that the two are polynomially related, but there are instances in which the actual
time complexity of the algorithm may be exponentially larger than the query complexity, in terms
of the approximation factor. Nevertheless, in these instances too, the literature uses time and
query complexity interchangeably. This is because the sublinear-time model assumes restricted
or expensive access to the input, while further computation on local machines with the answers
obtained from queries is considered to be cheap. We use query complexity for the sake of clarity.

We note that in the sublinear-time literature, the approximation parameters α, κ are usually
considered to be a constant, but the analyses for most of these theorems hold for α = α(n), κ =
κ(n) ∈ (0, 1), where n is the input size.

Here we do not explicitly define the sublinear model (or the queries allowed) for each problem,
see Section 4 for more details. For a graph G we denote the number of vertices as n, the number
of edges as m, and the average degree of the graph as d̄.

Typically, the accuracy guarantees of the non-DP results are presented with probability at least
2/3 — in order to apply our framework, we apply the median trick (see Remark 1.4) to boost the
probability of success to 1− δ. For simplicity of comparing our results, for any constant c > 0, we
set δ := 1/nc in the sequel.

6

Problem Reference Privacy Mult. error Add. error Query Complexity

Number of Triangles
[ELRS17] Non-Private α 0 O

(
(n
t1/3

+ m3/2

t) poly(log(n), 1
α)

)

This Work ε-edge DP α O
(

n log(n)
ε

)
O
(
(n
t1/3

+ m3/2

t) poly(log(n), 1
αε)

)

Connected Components
[BKM14] Non-Private 0 κn O

(
1
κ2 log

(
1
κ

)
log(n)

)

This Work ε-edge DP 0 O (κn) +O
(

log(n)
ε

)
O
(

log3(n)
κ2 log

(
log(n)

κ

))

Weighted MST
[CRT05] Non-Private α 0 O

(
d̄wα−2 log

(
d̄w
α

)
log(n)

)

This Work ε-edge DP α O
(

log(n)
ε

)
O
(
d̄w log2(n)

α2ε2 log
(

d̄w log(n)
αε

)
log(n)

)

Average Degree

[GR04] Non-Private α 0 O
(

n√
m
poly

(
log(n)

α

)
log(n)

)

[BGM22] ε-edge DP α 0
O
(√

n poly
(

log(n)
α

)
poly

(
1
ε

)
log(n)

)

(analysis assumes d̄ ≥ 1)

This Work ε-edge DP α 0
O
(

n√
m
poly

(
log2(n)

αε

)
log(n)

)

for d̄ = Ω(log(n)nε)

Maximum Matching Size
[YYI12] Non-Private 0 κn O

(
dO(1/κ

2) log(n)
)

This Work ε-node DP 0 O
(
κn
ε

)
O
(
dO(1/κ

2) log(n)
)

Distance to Bipartiteness
[GMRS22] Non-Private 0 κn2 O

(
(1/κ3) log(n)

)

This Work ε-edge DP 0 O
(
κn2

)
+O

(
log(n)

ε

)
O
(
(log4(n)/κ3)

)

Table 1: Summary of Sublinear-time DP graph algorithms obtained via our black-box DP transfor-
mation. According to our notation multiplicative error α means a multiplicative factor of (1± α).
See Section 4 for details.

We give the first (to the best of our knowledge) ε-DP sublinear time algorithm for estimating
the number of triangles, connected components, and the weight of a minimum spanning tree whose
accuracy guarantees hold with high probability.

For estimating the average degree of a graph, in recent work, [BGM22] gave a pure ε-DP
algorithm that achieves an (α, 0)-approximation — a crucial observation is that their analysis only
holds under the assumption that the average degree is at least one i.e., d̄ ≥ 1 (see Section 4 for
details). In this work, we remove the need for this assumption in the DP setting, by directly applying
our black-box DP transformation to the original algorithm of [GR04] which works substantially
better whenever we have m = ω(n) edges.

For estimating the maximum matching size in a graph, although [BGM22] gave an ε-DP al-
gorithm for estimating the maximum matching size that achieves a 2-multiplicative factor and κn
additive factor, they left the task of finding an (0, κn)-approximation in the DP setting as an open
problem. In this work, we partially resolve this problem by presenting an ε-DP algorithm that
gives a (0,O

(
κn
ε

)
)-approximation of the maximum matching size. Crucially, our resulting analysis

cannot guarantee that the added Laplace noise will be small with high probability, but only guar-
antees this will be the case with constant probability. This problem highlights a limitation of our
black-box DP framework — if the non-DP algorithm that we want to apply our DP transformation
on has a time/space/query complexity that has an exponential dependence on the approximation
parameters then the resulting DP algorithm that achieves a similar approximation guarantee with
high probability may be highly inefficient in terms of time/space/query complexity.

We also show how to apply our DP framework to an algorithm estimating the distance to
bipartiteness in dense graphs [GMRS22, AdlVKK03], which is accurate with probability 1 − o(1).
The same reduction can be similarly applied to other natural properties that enjoy the feature that
they admit distance-estimation algorithms with poly(1/κ) query complexity, where κ is the additive
(normalized) error. For example, in the fundamental results of [GGR98] an efficient distance

7

approximation algorithm for the maximum k-cut problem, and thus k-colorability is presented.
[FR21], also based on results from [AE02], generalizes these properties to the notion of “semi-
homogeneous partition properties” and show efficient distance estimation algorithms for properties
such as Induced P3-freeness, induced P4-freeness, and chordality.4

DP Streaming Results. We also apply our framework given by Theorem 1.3 and Theorem 1.5
to obtain differentially-private streaming algorithms for many fundamental problems, i.e., see
Table 2 and Table 3. We remark that while the accuracy guarantees of our resulting algorithms may
be surpassed by recent works studying these problems on an individual basis, our applications are
black-box reductions that avoid individual utility and privacy analysis of each non-private streaming
algorithm, which can be heavily involved and quite non-trivial, e.g., [MMNW11, BBDS12, SST20,
BGK+21, WPS22, BMWZ22].

In the streaming model, elements of an underlying dataset arrive one-by-one and the goal is to
compute or approximate some predetermined function on the dataset using space that is sublinear
in the size of the dataset. Our reductions also have wide applications to various archetypes of
data stream models, which we now discuss. In insertion-only streams, the updates of the stream
increment the underlying dataset, such as adding edges to a graph, adding terms to a sequence, or
increasing the coordinates of a frequency vector. In turnstile (or dynamic) streams, the updates of
the stream can both increase and decrease (or insert and delete) elements of the underlying dataset.
Finally, in the sliding window model, only the W most recent updates of the data stream define
the underlying dataset. Both the turnstile streaming model and the sliding window model are
generalizations of insertion-only streams, and our framework has implications in all three models.

We first show that our framework can be applied to existing non-private dynamic algorithms for
weighted minimum spanning tree, Lp norm estimation for p ≥ 1 (and also Fp moment estimation
for 0 < p < 1), and distinct elements estimation. Thus using our framework, we essentially get
private dynamic algorithms for these problems for free (in terms of correctness, not optimality).
Since the dynamic streaming model generalizes the insertion-only streaming model, we also obtain
private streaming algorithms in the insertion-only model as well. We summarize these results in
Table 2.

We then apply our framework in Theorem 1.3 to the sliding window model. To that end, we
first recall that given a (α, 0)-approximation algorithm for the insertion-only streaming model, the
smooth histogram framework [BO10] provides a transformation that obtains a (α, 0)-approximation
algorithm in the sliding window model for a “smooth” function. Although there are problems that
are known to not be smooth, e.g., [BOZ12, BDM+20, BWZ21, EMMZ22, JWZ22], the smooth
histogram framework does provide a (α, 0)-approximation to many important problems, such as
counting, longest increasing subsequence, Lp norm estimation for p ≥ 1 (and also Fp moment
estimation for 0 < p < 1), and distinct elements estimation. We remark that if we tried to apply
the non-private smooth histogram framework to a DP insertion-only streaming algorithm, this
might preserve privacy by post-processing, but may significantly increase the error in terms of
accuracy. On the other hand, our framework avoids these issues and achieves private analogs of
these algorithms in the sliding window model without compromising utility. We summarize our

4In general, distance estimation is closely related to tolerant testing [PRR06], and for dense graph properties it is
known that if a property is testable with a number of queries of the form f(κ), then they admit a distance estimator
[FN07] with an exponential blowup in 1

κ
in the query complexity. Hence, in its general form the query complexity of

estimating the distance to “hereditary” graph properties is a tower of exponential of height poly(1/κ) [AFNS09].

8

Problem Reference Privacy Mult. error Add. error Space Complexity

Weighted Minimum Spanning Tree
[AGM12] Non-Private α 0 O

(
1
αn log

4 n
)

This Work ε-DP α O
(

M logm
ε

)
O
(

1
αεn log

5 n
)

Lp-norm, p > 2
[GW18] Non-Private α 0 O

(
1
α2n

1− 2

p log2 n+ 1
α4/pn

1− 2

p log2/p n log2 n
)

This Work ε-DP α O
(

logm
ε

)
O
(

p
α2ε2n

1−2/p
)
· poly

(
logn, log 1

αε

)

Lp-norm, p = 2
[AMS99] Non-Private α 0 O

(
1
α2 log

2 n
)

This Work ε-DP α O
(

logm
ε

)
O
(

1
α2ε2 log

4 n
)

Lp-norm, p ∈ (0, 2)
[KNPW11] Non-Private α 0 O

(
1
α2 log

2 n
)

This Work ε-DP α O
(

logm
ε

)
O
(

1
α2ε2 log

4 n
)

Lp-norm, p = 0
[KNW10] Non-Private α 0 O

(
1
α2 log

2 n log 1
α

)

This Work ε-DP α O
(

logm
ε

)
Õ
(

1
α2ε2 log

4 n
)

Table 2: Summary of DP algorithms in the dynamic/turnstile model obtained via our black-box
DP transformation. According to our notation multiplicative error α means a multiplicative factor
of (1± α). See Section 5.1 for details.

results for the sliding window model in Table 3. We note that in recent work, [EMM+23] give a
generalized smooth histogram approach to convert a DP continual release streaming algorithm into
a sliding window algorithm in the continual release setting. We focus on the one-shot streaming
setting in our work.

Problem Reference Privacy Mult. error Add. error Space Complexity

Longest Increasing Subsequence
[SW07] Non-Private α 0 O

(
k2

α log2 n
)

This Work ε-DP α O
(

logm
ε

)
O
(

k2

αε log
4 n

)

Distinct Elements
[Bla20] Non-Private α 0 O

(
1
α3 log

2 n
)

This Work ε-DP α O
(

logm
ε

)
O
(

1
α3ε3 log

5 n
)

Lp-norm, p = 2
[WZ21] Non-Private α 0 O

(
1
α2 log

3 n log3 1
α

)

This Work ε-DP α O
(

logm
ε

)
Õ
(

1
α2ε2 log

5 n log3 1
αε

)

Lp-norm, p ∈ (0, 2)
[WZ21] Non-Private α 0 O

(
1
α2 log

3 n(log logn)2 log3 1
α

)

This Work ε-DP α O
(

logm
ε

)
Õ
(

1
α2ε2 log

5 n
)

Table 3: Summary of DP algorithms in the sliding window model obtained via our black-box DP
transformation. According to our notation multiplicative error α means a multiplicative factor of
(1± α). See Section 5.2 for details.

1.2 Our Techniques

Given a tunable (α, κ, δ)-approximation algorithm Af for the function f : D → R
+, our goal is to ob-

tain a differentially private approximation algorithm that achieves a target (α′, κ′, δ′)-approximation
of f where α′, κ′ are in terms of α, κ.

Warm-up: When Af is deterministic and only has multiplicative error. For simplicity,
let us first consider an (α, 0, 0)-approximation algorithm Af , in other words, Af always outputs a
value such that (1 − α)f(D) ≤ Af (D) ≤ (1 + α)f(D). Since we want to make Af differentially
private, intuitively, we need to add noise to the output of Af . The local sensitivity of Af at D
(i.e., LSAf

(D) = maxD′∼D |Af (D) − Af (D
′)|) is upper bounded by 2αf(D) + ∆f . Since ∆f is

9

small and we can tune α to be arbitrarily small, it is tempting to think that we can just add noise
proportional to 2αf(D) + ∆f . Unfortunately, scaling noise proportional to local sensitivity is not
necessarily private. On the other hand we could ensure privacy by scaling noise proportional to the
global sensitivity (i.e., maxD∈D LSAf

(D) ≤ maxD∈D 2αf(D)+∆f) but noise will likely be too large
to obtain meaningful accuracy guarantees. We adopt the strategy of adding noise proportional to
the smooth sensitivity [NRS07] of Af instead. In particular, [NRS07] observed that if we can find a
“sufficiently smooth” function Sf (D) ≥ LSAf

(D) upper bounding the local sensitivity of Af then
we can preserve privacy by computing Af (D) and adding noise scaled according to Sf (D).

We can show that the function Sf (D) = 4αAf (D)+∆f is a β-smooth upper bound on the local
sensitivity of Af for β = 6α where Sf is β-smooth if Sf (D) ≤ eβSf (D

′) for all pairs of neighboring
datasets D ∼ D′. To achieve privacy using the smooth sensitivity framework we need to ensure
that β is sufficiently small relative to our privacy parameters ε and δ (if applicable). For example,

we can achieve
(
ε, δ

(
1 + exp

(
ε
2

)))
-differential privacy by adding Laplace Noise scaled by

2Sf (D)
ε ,

but only if Sf is β-smooth for β ≤ ε
2 ln(2/δ) . For pure differential privacy we require that β < ε

2(λ+1)
where λ is a parameter of the noise distribution — smaller λ implies higher variance.

If we want to ensure that the output is accurate, we also need to ensure that the calibrated noise
with Sf (D) is small e.g., o(f(D))+O (∆f). Note that by definition since Sf (D) = 4αAf (D)+∆f ,
and we add noise proportional Sf (D), we expect that the noise added may be > αf(D). Thus, in
order to address this challenge, our basic strategy is to run the original (non-private) approximation
algorithm Af with tuned error factors e.g., we decrease α by a multiplicative factor of ε

ln(n) , let ρ :=
εα

ln(n) . Since we are now running Af (D, ρ, 0, 0), we have that the function Sf (D) = 4ρAf (D)+∆f is

a β-smooth upper bound on the local sensitivity of the algorithm Af (·, ρ, 0, 0). Assuming the global
sensitivity ∆f is small, we can now show that w.h.p. the noise sampled proportional to Sf (D) is
at most αf(D) + O (∆f/ε) thus resulting in an ε-differentially private algorithm with reasonable
accuracy.

By tuning the parameter α we actually accomplish two useful properties (1. accuracy) we
decrease both the local sensitivity and our smooth upper bound Sf (D) which reduces the magnitude
of the noise that we add, and (2. privacy) we achieve β-smoothness for increasingly small values
of β so that the required condition β ≤ ε

2 ln(2/δ) (or β < ε
2(λ+1)) can be satisfied if we want to scale

noise according to Sf (D).

Extending to deterministic Af with multiplicative and additive error. More generally, if
we have an (α, κ, 0)-approximation algorithmAf then we can show that Sf (D) = 4αAf (D)+∆f+4τ
is a β-smooth upper bound on the local sensitivity of Af with β = 6α (see Lemma 3.8). In
particular, note that the additive error term κ does not adversely impact smoothness. Thus, we
can achieve pure differentially privacy by tuning α such that 6α < β < ε

2(λ+1) and scaling our noise

according to Sf (D) (see Lemma 3.9). We can also obtain stronger accuracy guarantees by relaxing
the requirement for pure DP and tuning α such that 6α ≤ β ≤ ε

2 ln(2/δ) so that we can sample our
noise from the Laplace distribution which has strong concentration guarantees.

When Af is randomized. The remaining challenge is to handle randomized approximation
algorithms Af which are only guaranteed to output a good approximation with high probabil-
ity i.e., with non-zero probability δ > 0 the algorithm is allowed to output an arbitrarily bad
approximation. In particular, let us consider an (α, κ, δ)-approximation algorithm Af . For any
possible input D we are always guaranteed that with probability ≥ 1 − δ the algorithm Af (D)

10

outputs a good approximation (1 − α)f(D) ≤ Af (D) ≤ (1 + α)f(D). Unfortunately, the function
Sf (D) = 4αAf (D) + ∆f + 4κ is no longer guaranteed to be a β-smooth upper bound on the lo-
cal sensitivity of Af since Af may sometimes output a value outside the specified approximation
bounds.

In order to address this challenge, we define a function gf (D) that matches Af(D) with prob-
ability at least 1 − δ/2 and is always guaranteed to output a good approximation. We emphasize
that gf (D) may not be efficiently computable, but it is well-defined and only used for the purpose
of analysis. More specifically, we set gf (D) = Af (D) as long as (1 − α)f(D) − κ ≤ Af (D) ≤
(1 + α)f(D) + κ. If Af (D) > (1 + α)f(D), then we define gf (D) := (1 + α)f(D), similarly, if
Af (D) < (1 − α)f(D), then we define gf (D) := (1 − α)f(D) + κ. Observe that we are always
guaranteed that (1− α)f(D)− κ ≤ gf (D) ≤ (1 + α)f(D) + κ. Thus, Sf (D) = 4αgf (D) +∆f + 4τ
is a β = 6α-smooth upper bound on the local sensitivity of gf (see Lemma 3.2). As long as
6α ≤ β ≤ ε

2 ln(2/δ) we could preserve
(
ε, δ

(
1 + exp

(
ε
2

)))
-differential privacy by outputting gf (D)

plus Laplace Noise scaled by
8αgf (D)+∆f+8τ

ε i.e., scaled according to our β-smooth upper bound
on the local sensitivity of gf . Unfortunately, the function gf may not be efficiently computable.
Thus, we substitute gf for Af and instead output Af (D) plus Laplace noise scaled according to
8αAf (D)+∆f+8τ

ε . While 4αAf (D)+∆f +4τ is not necessarily a β-smooth upper bound on the local
sensitivity of A, the key point is that the latter (efficiently computable) procedure is equivalent to
the former (differentially private) procedure as long as gf (D) = Af (D) which happens as long as Af

outputs a good approximation i.e., except with probability δ/2. Thus, we can apply a hybrid argu-
ment to argue that the final efficiently computable algorithm is

(
ε, δ2 + δ

(
1 + exp

(
ε
2

)))
-differential

privacy (see Lemma 3.4). In order to ensure accuracy, we use the same strategy as before, i.e., we
run Af (D, ρ, τ, δ/2), where ρ ≤ εα

log(1/δ) . Sampling noise proportional to Sf (D) (where Sf (D) is now

defined in terms of ρ), and absorbing the failure probability of algorithm Af into the DP failure
probability term δ, results in an approximate differentially private algorithm. Finally applying the
postprocessing step results in a pure differentially private algorithm. We refer to the full proofs
(Section 3) for additional details.

Applications. We give some intuition on how we apply Theorem 1.3 to various applications
by choosing appropriate parameters. Recall that with probability 1 − δ − exp(−γ), A′

f outputs

(1 − α′)f(D) − κ′ − 2∆f

ε · γ ≤ A′
f (D) ≤ (1 + α′)f(D) + κ′ +

2∆f

ε · γ, where α′ = α(ε+16γ)
12 log(4/δ) , and

κ′ = κ
(

2γα
3 log(4/δ) +

8γ
ε + 1

)
with a time/space/query complexity blow-up incurred by running the

original algorithm Af with multiplicative accuracy parameter ρ = εα
log(4/δ) . First, observe that if

the original algorithm Af has time/space/query complexity with a dependence on poly(1α), then
the resulting time/space/query complexities for A′

f will still have a polynomial dependence, i.e.,

poly(log(4/δ)α) — this naturally leads to FPRAS or FPTAS applications, as well as other classes of
approximation algorithms like sublinear time or space. On the otherhand, if the time/space/query
complexity of Af has a non-polynomial dependence on 1/α, e.g., exp(1α), then since δ is typically
negl(n) or 1

nc for c > 0, the resulting DP algorithm A′
f could have much worse time/space/query-

guarantees with respect to n, e.g., in an extreme case if we set δ = 2− poly(n) then ρ = Ω(poly(n)/α)

and we could incur a exp(poly(n)α) multiplicative overhead in the running time. It is worth noting
that one could optionally reduce the additive error term κ′ for A′

f by reducing the error term κ for
A.

11

We further emphasize this trade-off between obtaining small failure probability bounds and the
accuracy or resource guarantees. Consider the following two examples— (Example 1) if we set
the probability of failure, i.e., exp(−γ) = δ = 1

nc for any c > 0, then the resulting approximation

parameters are roughly α′ = α(1+ o(1)), and κ′ = κ(α+ log(n)
ε +1)5, and the additional error term

depending on global sensitivity is roughly
∆f log(n)

ε . We incur a time/space overhead by running
Af with multiplicative accuracy parameter ρ = Ω(εα/ log n) instead of α. (Example 2) if we set
the probability of failure, i.e., exp(−γ) = δ = 1

nlog log(n) − negl(n), then α′ remains the same as

before, and now κ′ = κ(α + log(n) log log(n)
ε + 1), but the additional error term depending on global

sensitivity becomes
∆f log(n) log log(n)

ε . In this latter case we incur time or space overhead by running

Af with multiplicative accuracy parameter ρ = Ω
(

εα
logn log logn

)
— to reduce the κ′ log n log log n

error term it could be useful to run Af with additive error parameter κ
logn log logn which may incur

additional time or space overhead. Thus these two examples illustrate how, as we decrease the
failure probability, the accuracy and resource (time/space in this case) guarantees become worse.
See Section 4, and Section 5 for applications to sublinear time and streaming algorithms.

1.3 Related Work

One of the first differentially private frameworks for computing general functions was introduced
by [DMNS16] which released functions with additive noise, where the noise is calibrated according
to the global sensitivity of the function f . This framework was generalized by [NRS07], to handle
functions which might have a high global sensitivity but are usually less sensitive in practice. The
framework allows the release of functions with instance-specific noise, where the noise that is added
is not just determined by f but by the input dataset as well. The noise magnitude calibrated is
according to the smooth sensitivity of f on the input dataset which is a smooth upper bound on
the local sensitivity of f on an input dataset. The smooth sensitivity of a function may be hard to
compute, therefore in the same work, [NRS07] give a generic method called the sample and aggregate
method that bypasses the explicit computation of the smooth sensitivity of the function and works
even when the function is given as a black-box. [DL09] suggested a framework called Propose-Test-
Release to release statistical estimators with additive noise where the noise is calibrated according
to the local sensitivity of the estimator. Note that adding noise proportional to the local sensitivity
of a function with respect to an input set usually does not preserve privacy, but their approach
first proposes a bound on the local sensitivity and privately tests whether this bound holds for the
specific input set, and then releases the noisy response to the query.

In the context of developing differentially private frameworks for approximation algorithms,
[BGM22] formally introduced the notion of coupled global sensitivity of a randomized algorithm,
which gives an analogous framework as that of the global sensitivity framework [DMNS16], but for
randomized approximation algorithms instead of deterministic functions. In this framework, one
can run a non-private randomized approximation algorithm Af (D) on the dataset, and privacy is
obtained by adding noise proportional to the coupled global sensitivity of Af . More formally, the
coupled global sensitivity measures the worst-case L1-sensitivity of the outputs of a randomized

5In the applications we consider the original (non-private) approximation algorithm typically has only multiplica-
tive or only additive error and not both. In particular, we typically either have α > 0 and κ = 0 or κ > 0 and
α = 0, but not the case where α > 0 and κ > 0. Considering the case when κ 6= 0, and α = 0, we (roughly) have

κ′ = κ(log(n)
ε

+ 1).

12

algorithm Af on neighboring inputs over a minimum coupling of the internal coin tosses of Af .
In independent work, Tetek [Tet22] also explores the problem of transforming randomized ap-

proximation algorithms into (pure) differentially private approximation algorithms. In contrast to
our results Tetek’s transformation [Tet22] assumes that the error of the original approximation algo-
rithm either has small subexponential diameter or bounded mean error — assumptions that would
not apply generically to every (tunable) approximation algorithm. Assuming subexponential error
their work shows that it is possible to achieve ε-DP by adding Laplace Noise yielding accuracy guar-
antees that hold with high probability. However, the assumption of the error being subexponential
is quite strong and does not often hold for many randomized approximation algorithms. While
assuming bounded mean error is a weaker assumption on the error of the non-private randomized
algorithm, however the DP noise is sampled from the Pareto distribution, which has polynomial
tail bounds. This leads to accuracy guarantees which only hold with constant probability. Note
that applying the median trick commonly used to amplify success probability in the non-private
literature adversely affects the privacy budget and is thus not desirable. In contrast, our trans-
formation applies generically to any (tunably) accurate approximation algorithm and we achieve
accuracy guarantees that hold with high probability for the same problems studied in their paper.
Finally, we correct an outdated claim6 from the comparison to our work detailed in [Tet22] that
says that we only achieve approximate privacy. We can achieve pure DP algorithms by applying a
postprocessing step to the output of our transformation as outlined in Theorem 1.5.

2 Preliminaries

We use the notation Õ (f(n)) to mean f(n) · polylog(f(n)). We define datasets D and D′ as
neighboring, denoted as D ∼ D′, if removing or adding one point in D results in D′; alternatively,
if changing one data point in D results in D′.

Definition 2.1 (Differential privacy). [DMNS06] An algorithm A is (ε, δ)-DP if for every pair of
neighboring datasets D ∼ D′, and for all sets S of possible outputs, we have that Pr[A(D) ∈ S] ≤
eε Pr[A(D′) ∈ S] + δ. When δ = 0 we simply say that the algorithm is ε-DP.

Given an (ε, δ)-DP algorithm, one can obtain an ε-DP algorithm under certain conditions
outlined below. We include the proof for completeness in Appendix A.

Theorem 2.2. [Approximate DP to Pure DP] Let A : D → R. If A is an (ε, δ)-DP algorithm

such that δ ≤ (eε−1)p
|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the following

manner.

A′(D) =

{
A(D) with probability 1− p

random(R) with probability p

where R is the range of Af .

We define the distributions we will use to sample additive noise from below.

6A prior version of the paper achieved pure DP, but that transformation (Theorem 1.5) only applied to determin-
istic tunable approximation algorithms

13

Definition 2.3 (Laplace distribution). We say a random variable X is drawn from a Laplace distri-

bution with mean µ and scale b > 0 if the probability density function of X at x is 1
2b exp

(
− |x−µ|

b

)
.

We use the notation X ∼ Lap(b) to denote that X is drawn from the Laplace distribution with scale
b and mean µ = 0.

Definition 2.4 (Cauchy distribution). We say a random variable X is drawn from a Cauchy
distribution with location parameter x0 and scale b > 0 if the probability density function of X at

x is 1
πb

(
b2

(x−x0)2+b2

)
. We use the notation X ∼ C(b) to denote that X is drawn from the Cauchy

distribution with scale b and location parameter x0 = 0.

We formally define the concept of global sensitivity which is a worst-case notion of sensitivity
for deterministic functions below.

Definition 2.5 (Global sensitivity). The global sensitivity of a function f : D → R
d is defined by

∆f = max
D,D′∈D,D∼D′

‖f(D)− f(D′)‖1.

We define the notion of local sensitivity for a fixed input, which can be much smaller than the
global sensitivity, but in general, adding noise calibrated according to the local sensitivity does not
preserve DP.

Definition 2.6 (Local sensitivity). For f : D → R and D ∈ D, the local sensitivity of f at D is
defined as

LSf (D) = max
D′:D∼D′

‖f(D)− f(D′)‖1.

Note: if f : D × R → R is a randomized function which, in addition to a dataset D ∈ D takes
random coins r ∈ R as input we simply define LSf (D) = maxr∈R LSfr where fr(D)

.
= f(D; r).

In order to add instance-specific noise, we define the notions of β-smooth upper bound which
is a smooth upper bound on the local sensitivity.

Definition 2.7 (Smooth upper bound on local sensitivity). For β > 0, a function S : D → R is a
β-smooth upper bound on the local sensitivity of f : D → R if

(1) For all D ∈ D, we have S(D) ≥ LSf (D).

(2) For all D,D′ ∈ D with ‖D −D′‖1 = 1, we have S(D) ≤ eβ · S(D′).

Finally, although one cannot add noise calibrated with local sensitivity, one can add noise
proportional to a β-smooth upper bound on the local sensitivity as follows.

Theorem 2.8 (Corollary 2.4 in [NRS07]). Let f : D → R and S : D → R be a β-smooth upper
bound on the local sensitivity of f .

(1) If β ≤ ε
2(λ+1) and λ > 1, the algorithm D → f(D) + 2(λ+1)S(D)

ε · η, where η is sampled from

the distribution with density h(z) ∝ 1
1+|z|λ , is ε-differentially private.

(2) If β ≤ ε
2 ln(2/δ) and δ ∈ (0, 1), then the algorithm D → f(D) + 2S(D)

ε · η where η ∼ Lap(1) is

(ε, δ′)-differentially private for δ′ = δ
(
1 + exp

(
ε
2

))
7.

7These bounds differ slightly from those listed in the original paper (Corollary 2.4 in [NRS07]). We confirmed
with the authors in private communication that δ should be multiplied by (1 + exp(ε/2)).

14

3 General Transformation for Approximation Algorithms

In this section, we formally define our black-box differentially private transformation for (random-
ized) approximation algorithms. Given a tunable approximation (see Definition 1.2) algorithm of
f , call it Af , that outputs an (α, κ, δ)-approximation, our framework for randomized algorithms
involves two steps — (1) Apply Algorithm 1 to Af to obtain an (ε, δ)-DP algorithm A′

f with ac-
curacy guarantees outlined in Theorem 1.3 (2) Apply postprocessing step to the output of A′

f to
obtain an ε-DP algorithm (see Theorem 1.5).

We first prove Theorem 1.3 that provides theoretical guarantees for algorithm A′
f (Algorithm 1).

This is our main contribution as the postprocessing step to obtain pure DP applies a folkore result.
Observe that even for the case when the original algorithm Af gives an (α, 0, δ)-approximation

of f (i.e., κ = 0), the resulting DP algorithm A′
f will still have an additive error, this additive error

is inherent due to the requirement of adding Laplace noise to preserve DP. We emphasize that the
Laplace noise added to the output of algorithm Af depends on the global sensitivity of the function
f , therefore, we can only get meaningful DP approximation algorithms using this transformation
for functions with low global sensitivity.

Theorem 1.3. ((ε, δ)-privacy) Suppose that Af is a tunable approximation of f : D → R
+. Then

for all ε > 0, δ = δ(n) > 08, α ≥ 0 and κ ≥ 0, there is an algorithm A′
f such that

(1) (Privacy) A′
f is (ε, δ′)-differentially private where δ′ = δ(1 + exp(ε/2)).

(2) (Accuracy) For all D ∈ D, and 0 < γ, with probability 1− δ − exp(−γ),

(1− α′)f(D)− κ′ − 2∆f

ε
· γ ≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ +
2∆f

ε
· γ

where α′ = α(ε+16γ)
12 log(4/δ) , and κ

′ = κ
(

2γα
3 log(4/δ) +

8γ
ε + 1

)
, and ∆f := maxD,D′∈D,D∼D′ ‖f(D) −

f(D′)‖1.

(3) (Resource) A′
f uses R

(
n, εα

log(4/δ) , κ, δ
)
resource, where R(·, ·, ·, ·) is the resource used by Af .

Proof. A′
f is defined in Algorithm 1 — it first runs Af (D, ρ, κ, δ/2) where ρ := εα

12 log(4/δ) and then

adds Laplace Noise. Thus, the resource used by A′
f is R (n, ρ, κ, δ). The privacy guarantee follows

from Lemma 3.4, and the accuracy guarantee follows from Lemma 3.6.

Remark 3.1. When Af is a PRAS, by definition, the output of Af is an (α, 0, δ)-approximation of
f running in time T (n, α, 0, δ) = poly(n, 1/α, log(1/δ)). Applying Theorem 1.3 with negligible δ =

n− logn and γ = log2 n for any α′ > 0 we obtain a private
(
α′, O

(
∆f

ε log2 n

)
, 2n− logn

)
-approximation

with polynomial running time poly(n, 1/ε, 1/α′).

Lemma 3.2. Let 0 < ρ < 1/2. Suppose that Af outputs a (ρ, τ, δ)-approximation of a function
f : D → R

+ with global sensitivity ∆f . Let Af,R denote a deterministic run of A using a fixed set
of random coins R. Define function gf,R by

gf,R(D) =





Af,R(D) if (1− ρ)f(D)− τ ≤ Af,R(D) ≤ (1 + ρ)f(D) + τ

(1− ρ)f(D)− τ if Af,R(D) < (1− ρ)f(D)− τ

(1 + ρ)f(D) + τ if Af,R(D) > (1 + ρ)f(D) + τ

8typically we set δ = negl(n) or δ = n−c for some constant c > 0. In particular δ(n) may approach zero as n → ∞.

15

Then the function Sf (D) = 4ρgf,R(D)+4τ +∆f is a β-smooth upper bound for gf,R where β ≥ 6ρ.

Proof. Fix an arbitrary set of random coin tosses R. We frequently use the fact that (1−ρ)f(D)−
τ ≤ gf,R(D) ≤ (1 + ρ)f(D) + τ . We also note that since 0 ≤ ρ < 1/2, we have that 1

2f(D)− τ ≤
gf,R(D) ≤ 2f(D) + τ .

First, we show that Condition 1 of Definition 2.7 holds. Without loss of generality, we assume
f(D) ≥ f(D′), where D′ is any neighboring input. Then:

LSgf,R(D) = max
D′:D∼D′

‖gf,R(D)− gf,R(D
′)‖

≤ ‖(1 + ρ)f(D) + τ − (1− ρ)f(D′) + τ‖
≤ ρ‖f(D) + f(D′)‖+ 2τ +∆f

≤ 2ρf(D) + 2τ +∆f

≤ 4ρgf,R(D) + 2ρτ + 2τ +∆f as
1

2
f(D)− τ ≤ gf,R(D)

≤ 4ρgf,R(D) + 4τ +∆f

= Sf (D)

Next, we show that Condition 2 of Definition 2.7 holds below. We have:

Sf (D) = 4ρgf,R(D) + 4τ +∆f

≤ 4ρ (1 + ρ) f(D) + 4ρτ + 4τ +∆f by def of gf,R

≤ 4ρ (1 + ρ) (∆f + f(D′)) + 4ρτ + 4τ +∆f since D ∼ D′

≤ 4ρ(1 + ρ)f(D′) + (4ρ(1 + ρ) + 1)∆f + 4ρτ + 4τ

≤ 4ρ
(1 + ρ)

1− ρ
(gf,R(D

′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ by def of gf,R

≤ 4ρ(1 + ρ)(1 + 2ρ)(gf,R(D
′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D
′) + 12ρτ + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D
′) + (1 + 6ρ)(∆f + 4τ)

≤ 4ρ(1 + 4ρ)gf,R(D
′) + (1 + 6ρ)(∆f + 4τ)

≤ (1 + 6ρ)(4ρgf,R(D
′) + ∆f + 4τ)

≤ e6ρ · (4ρgf,R(D′) + ∆f + 4τ) = eβSf (D
′),

where β ≥ 6ρ.

Remark 3.3. As a special case if we have a (0, κ, 0)-approximation algorithm Af (i.e., no mul-
tiplicative error, zero failure probability) then applying Lemma 3.2 yields the smooth upper bound
Sf (D) = 4τ + ∆f . We observe that this smooth upper bound is independent of D and, therefore,
Sf is just an upper bound on the global sensitivity of gf . Furthermore, in this special case we are
guaranteed that Af (D) = gf (D) with probability 1. Thus, in this special case, we can achieve pure
ε-DP by computing Af (D) and adding Laplace noise proportional to Sf .
If we have a (0, κ, δ)-approximation algorithm for δ 6= 0 then we still have Sf (D) = 4τ +∆f which

16

means that Sf (D) is an upper bound on the global sensitivity of gf . However, computing Af (D)
and adding Laplace noise proportional to Sf does not necessarily yield a pure DP algorithm since
we may have ∆f (D) 6= Af (D) with non-zero probability δ. If we have (α, κ, 0)-approximation algo-
rithm Af , and α 6= 0, since Sf (D) = 4ρAf (D) + 4τ +∆f still depends on the input D. However,
we can still achieve DP using Theorem 1.6.

Applying Lemma 3.2 to the theorem calibrating noise to smooth bounds on the smooth sensi-
tivity [NRS07] we show that the Algorithm 1 preserves privacy below.

Lemma 3.4 (Privacy). Algorithm 1 is (ε, δ′)-differentially private where δ′ = δ(1 + exp(ε/2)).

Proof. Consider a modification of Algorithm 1, call it Algorithm 1’ where instead of computing
Af (D, ρ, τ, δ/2) we instead sample the random coins R that Af would have used and replace the
value Af (D, ρ, τ, δ/2;R) (which we denote as Af,R(D) in the sequel) with gf,R(D).The function gf,R
may not be efficiently computable, but we only use Algorithm 1’ for the purpose of analysis. We first
observe that by Lemma 3.2, for any β ≥ 6ρ the function Sf (D) = 4ρgf,R(D)+4τ+∆f is a β-smooth
upper bound on the sensitivity of gf,R. Thus, by Theorem 2.8, it is sufficient to set ρ := εα

12 log(4/δ)

for 6ρ ≤ β ≤ ε
2 ln(4

δ)
and add noise proportional to Lap

(
2Sf (D)

ε

)
= Lap

(
2(4ρgf,R(D)+4τ+∆f)

ε

)
to

preserve (ε, δ/2)-privacy of Algorithm 1’.
Since gf,R(D) is Af,R(D) except with probability δ/2, Algorithm 1 is identical to Algorithm 1’

except with probability δ/2. Thus, this shows that Algorithm 1 is (ε, δ)-private.

Fact 3.5. If Y ∼ Lap(b), then Pr[|Y | ≥ ℓ · b] = exp(−ℓ).

Lemma 3.6 (Accuracy). For all γ > 0, with probability 1− exp(−γ)− δ,

(
1− ρ(1 +

16γ

ε
)
)
f(D)− τ

(8γρ
ε

+
8γ

ε
+ 1

)
− 2∆fγ

ε
≤ A′(D) ≤

(
1 + ρ(1 +

16γ

ε
)
)
f(D)

+ τ
(8γρ
ε

+
8γ

ε
+ 1

)
+

2∆fγ

ε
.

Proof. First, using Fact 3.5, for any γ > 0, we have that,

Pr

[
|X| ≥ 2(4ρA(D) + 4τ +∆f)

ε
· γ

]
= exp(−γ)

Af is a (ρ, τ, δ/2)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1 + ρ)f(D) + τ
with probability 1 − δ/2. Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ . Therefore, by
a union bound,

Pr
[(
Af (D) > (1 + ρ)f(D) + τ

)
∨
(
Af (D) < (1− ρ)f(D)− τ

)
∨
(
|X|

≥ 2(4ρAf (D) + 4τ +∆f)

ε
· γ

)]
≤ δ/2 + exp(−γ)

Thus, with probability 1− exp(−γ)− δ/2, we have that

(1− ρ)f(D)− τ ≤ Af (D) ≤ (1 + ρ)f(D) + τ ≤ 2f(D) + τ (1)

17

and

|X| < 2(4ρAf (D) + 4τ +∆f)

ε
· γ (2)

By plugging in Eq. 1 into Eq. 2, we have that with probability 1− exp(−γ)− δ/2,

|X| < 2(4ρ(2f(D) + τ) + 4τ +∆f)

ε
· γ

Overall, this means that with probability 1− exp(−γ)− δ/2,

(1− ρ)f(D)− τ − 2(4ρ(2f(D) + τ) + 4τ +∆f)

ε
· γ ≤ A′

f (D)

≤ (1 + ρ)f(D) + τ +
2(4ρ(2f(D) + τ) + 4τ +∆f)

ε
· γ

Grouping the like terms together gives the theorem statement.

Theorem 1.5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP algorithm

with accuracy guarantee (1−α)f(D)−κ ≤ Af (D) ≤ (1+α)f(D)+κ holding with probability 1− η
then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee (1−α)f(D)−κ− 1
KM ≤

Af (D) ≤ (1 + α)f(D) + κ+ 1
KM with probability at least 1− η − p where p = δK(M+1)

eε−1+δK(M+1) .

The proof of Theorem 1.5 is in Appendix A. At a high level our idea is to define A′
f (D) =

⌈KAf (D)⌉
KM . The rounding step introduces a small additive error term ≤ 1

KM and ensures that
A′

f (D) now has bounded range |R| ≤ (M + 1)K. Since A′
f has bounded range we can apply a

folklore result (see Theorem 2.2) to transform this (ε, δ)-DP algorithm into an ε-DP algorithm.

3.1 Achieving Pure DP for Approximation Algorithms with Zero Failure Prob-
ability

In this section we show how one can achieve pure differential privacy (δ = 0) when we have a
tunable (α, κ, 0)-approximation algorithm. The basic framework is the same except that we use
the Cauchy distribution instead of Laplace when applying the Smooth Sensitivity framework — see
Theorem 2.8. Since we assume δ = 0 in this section we will sometimes simplify notation and write
T (n, α, κ) (resp. S(n, α, κ)) instead of T (n, α, κ, 0) (resp. S(n, α, κ, 0)).

Algorithm 2 ε-differentially private framework for tunable deterministic approximation algorithms

Input: Input set D, accuracy parameter α ∈ (0, 1), differential privacy parameter ε, approx.
algorithm Af .

1: Let xA := Af (D, ρ, τ, 0) where ρ := εα
36 and τ := κ.

2: return xA +X where X ∼ C
(
6(4ρxA+∆f)

ε

)

Remark 3.7. When Af is a PTAS, by definition, the output of Af is an (α, 0, 0)-approximation of
f running in time T (n, α, 0) = poly(n, 1/α). Applying Theorem 1.6 with for any α > 0 we obtain

a private
(
α,O

(
∆f

ε

)
, 9/10

)
-approximation with polynomial running time poly(n, 1/ε, 1/α).

18

Theorem 1.6. (ε-privacy) Suppose that Af is a deterministic tunable approximation of f : D →
R
+.Then for all ε > 0, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that

(1) (Privacy) A′
f is ε-differentially private.

(2) (Accuracy) For all D ∈ D, we have that with probability ≥ 9/10,

(1− α′)f(D)− κ′ − 7∆f

ε
≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ +
7∆f

ε

where α′ := αC1(ε + C2γ), κ
′ := κC3(α + C4

ε) for some constants C1, C2, C3, C4 > 0 and
∆f := maxD,D′∈D,D∼D′ ‖f(D)− f(D′)‖1.

(3) (Resource) A′
f uses R

(
n, εα36 , κ

)
resource, where R(·, ·, ·) is the resource used by Af .

Proof. A′
f is defined in Algorithm 2 — we first run Af (D, ρ, κ) where ρ := εα

36 and then we add
noise proportional to the standard Cauchy distribution. Thus, the resource used will be R(n, ρ, κ).

The privacy guarantee follows from Lemma 3.9, and the accuracy guarantee follows from Lemma 3.11.

Lemma 3.8. Suppose that Af outputs a (ρ, τ, 0)-approximation where 0 < ρ < 1/2 of a function
f : D → R

+ with global sensitivity ∆f . Then the function Sf (D) = 4ρAf (D) + 4τ + ∆f is a
β-smooth upper bound for Af where β ≥ 6ρ.

The proof remains the same as in Lemma 3.2. Applying Lemma 3.8 to the theorem calibrating
noise to smooth bounds on the smooth sensitivity [NRS07] we show that the Algorithm 2 preserves
privacy below.

Lemma 3.9. Algorithm 2 is ε-differentially private.

Proof. We first observe that by Lemma 3.8, Sf (D) = 4Af (D)+4τ+∆f is a β-smooth upper bound
for Af . Recall that ρ := εα

36 , thus we can apply Theorem 2.8 (with λ = 2) where 6ρ ≤ β ≤ ε
6 and

conclude that it is sufficient to add noise proportional to C
(
2(2+1)Sf (x)

ε

)
= C

(
6(4ρAf (D)+4τ+∆f)

ε

)

to preserve ε-privacy.

Fact 3.10. If Y ∼ C(x; 0, b), then Pr[|Y | ≥ ℓb] = 1− 2 tan−1(ℓ)
π .

Lemma 3.11. For all γ > 6.5, with probability at least 9/10,

(
1− ρ

(
1 +

48γ

ε

))
f(D)− 24(ρ+ 1)γτ

ε
− 6∆f

ε
· γ ≤ A′

f (D)

≤
(
1 + ρ

(
1 +

48γ

ε

))
f(D) +

24(ρ+ 1)γτ

ε
+

6∆f

ε
· γ

Proof. First, we invoke Fact 3.10 below,

Pr

[
|X| ≥ 6(4ρAf (D) + 4τ +∆f)

ε
· γ

]
= 1− 2 tan−1(γ)

π
≤ 1

10

19

where the final inequality comes from using the fact that γ > 6.5. In other words, with probability
≥ 9/10,

|X| ≤ 6(4ρAf (D) + 4τ +∆f)

ε
· γ (3)

Af is a (ρ, τ, 0)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1 + ρ)f(D) + τ .
Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ .

By plugging in the relation Af (D) ≤ 2f(D) + τ into Eq. 3, we have that with probability at
least 9/10,

|X| ≤ 6(8ρf(D) + 4ρτ + 4τ +∆f)

ε
· γ

Thus with probability at least 9/10,

(1− ρ)f(D)− τ − 6(8ρf(D) + 4ρτ + 4τ +∆f)

ε
· γ ≤ A′

f (D)

≤ (1 + ρ)f(D) + τ +
6(8ρf(D) + 4ρτ + 4τ +∆f)

ε
· γ

Rearranging the like terms together in the above expression completes the proof.

Remark 3.12. For simplicity, we have chosen to sample from the standard cauchy distribution
λ = 2, more generally, if we sample noise with density h(z) ∝ 1

1+|z|λ , where λ = c, then with

probability 1− δ, γ = 1
δ1/c

in Lemma 3.11.

Application to the Knapsack Problem As a fun example we consider the knapsack problem.
The knapsack problem is well known to be NP-Hard, but also admits an FPTAS. To define an
instance of the knapsack problem we have a maximum weight capacity W for the knapsack and n
items each with a value vmax ≥ vi ≥ 0 and a weight wi ≥ 0. The goal is to find a subset S ⊆ [n] of
items to put in the knapsack maximizing the total value v(S) =

∑
i∈S vi subject to the constraint

that the total weight w(S) =
∑

i∈S wi does not exceed our capacity i.e., w(S) ≤W .
For the purpose of this illustration let’s fix the capacity W and weights w1, . . . , wn and let

f(v1, . . . , vn) denote the value of the optimal knapsack solution given values v1, . . . , vn. Let’s say
that two knapsack instances (W,v1, . . . , vn, w1, . . . , wn) and (W,v′1, . . . , v

′
n, w1, . . . , wn) are neighbors

if
∑

i ‖vi − v′i| ≤ 1. Thus, we are viewing the exact value of each item as sensitive and the goal of
differential privacy is to prevent an attacker from inferring these sensitive values exactly. Observe
that the global sensitivity of f is upper bounded by ∆f ≤ maxv∼v′ maxS⊆[n] |v(S) − v′(S)| ≤ 19.

Since there is an FPTAS algorithm for Knapsack we can find a non-private approximation
algorithm Af (~v, α, κ = 0) running in time T (n, α) = poly(n, 1/α). If we apply Theorem 1.6 then
for any target α′ our ε-DP algorithm A′

f runs in time poly(n, 1/ε, 1/α) and solves Knapsack with
additive error O (1/ε) and multiplicative error α′ with probability at least 9/10. If we don’t require
pure DP then we can also apply Theorem 1.3 then for any target α′ our algorithm A′

f runs in
time poly(n, 1/ε, 1/α, log(1/δ)) and solves Knapsack with probability at least 1− δ− exp(−γ) with
additive error at most O (γ/ε) and multiplicative error α′.

9We could also define neighboring knapsack instances such that we can completely replace the value of any item
i.e., v and v′ are neighbors if there exists some index i ∈ [n] such that vi 6= v′i and vj = v′j for all j 6= i. However,
in this case we can we would have large global sensitivity ∆f = vmax. Thus, we won’t be able to design an accurate
differentially private approximation even if we are willing to solve the NP-Hard knapsack problem exactly.

20

4 Private Sublinear-time Algorithms

We present a variety of DP results for sublinear-time graph algorithms by directly applying our
DP black-box transformation (see Theorem 1.3 and Theorem 1.5). Let Gn denote the set of all
n-node graphs. For a graph G ∈ Gn on m edges, we denote d̄ as the average degree of G. Graphs
G1 = (V,E1), G2 = (V,E2) are node-neighboring, denoted by G1 ∼v G2, if there exists a vertex
v ∈ V such that E1(V \{v}) = E2(V \{v}). Graphs G1 and G2 are edge-neighboring i.e., G1 ∼e G2

if there exists an edge e such that E1 \ {e} = E2 \ {e}.
We first define the sublinear models that we will be working with in the following problems. In

the adjacency list query model the following queries can be answered in constant time — (1) degree
queries: given v ∈ V , output deg(v). (2) neighbor queries: given v ∈ V , and i ∈ [n], output the
i-th neighbor of v or ⊥ if i > deg(v). In the adjacency matrix query model the following queries
can be answering in constant time— pair queries: given u, v ∈ V , output whether (u, v) is an edge
in G or not. The general query model allows for degree queries, neighbor queries, and pair queries.

Typically the success probability for non-DP sublinear-time algorithms is stated in terms of
constants (i.e., ≥ 2/3). We implicitly apply the standard median trick to boost the probability of
success to 1 − δ through O

(
log 1

δ

)
parallel iterations, and state the non-DP results with success

probability 1− δ in the following exposition.

Estimating the number of Triangles. Given a graph G, we study the problem of estimating
the number of triangles in the general query model. [ELRS17] gave an approximation algorithm for

this problem with an expected query complexity of O
(
(n
t1/3

+ m3/2

t) poly(log(n), 1/α) log(1/δ)
)
. In

order to achieve a high probability bound on the query-complexity, we run Θ(log(1/δ)) instances
of the algorithm in parallel and return the output of the instance that terminates first.

Theorem 4.1. [ELRS17] Let t be the number of triangles in graph G. For any 0 < α < 1,

there is an algorithm that makes O
(
(n
t1/3

+ m3/2

t) poly(log(n), 1/α) log(1/δ)
)

queries and outputs

an estimate t̂ such that with probability at least 1− δ,

(1− α) · t ≤ t̂ ≤ (1 + α) · t

Observe that the global sensitivity (under edge-DP) of the function that computes the number
of triangles is n− 2, since each edge in an n node graph is incident to at most n− 2 triangles.

We first show that any ε-edge DP algorithm for estimating the number of triangles in an
arbitrary graph must have an Ω(n) additive error. Consider graphs G1 and G2 such that G1 :=
K2,n−2 (the complete bipartite graph where the left partite set contains 2 vertices and the right
partite set contains n− 2 vertices), and G2 is K2,n−2 with an edge between the two vertices in the
left partite set. Clearly, G1 ∼e G2, and G1 has zero triangles, while G2 has n − 2 triangles. A
non-DP sublinear-time algorithm with multiplicative error may output 0 for G1 and a value in the
range (1±α)(n− 2) for G2, but any ε-DP algorithm must output an answer with an Ω(n) additive
error. We also note that when the number of triangles in the graph is Ω(n), this additive error may
be absorbed into the multiplicative error.

We apply our black-box transformation (Theorem 1.3 and Theorem 1.5) to the result of [ELRS17]
to get the following ε-DP algorithm.

Corollary 4.2. Let t denote the number of triangles in a graph. Then for any integer K > 0 and
for all c > 0, ε > 0, there exists an algorithm A′ such that

21

(1) (Privacy) A′ is ε-edge differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− 1
nc − 1

nc−3(eε−1)/K+1
,

(1− α′)t− 2c

ε
· n log(n)− 1

Kn3
≤ A′(G) ≤ (1 + α′)t+

2c

ε
· n log(n) + 1

Kn3

where α′ = α
(
1 + ε

C′ log(n)

)
for some constant C ′ > 0.

(3) (Query) A′ makes O
(
(n
t1/3

+ m3/2

t) poly(log(n), 1
αε)

)
queries.

Estimating the number of Connected Components. Given a graph G, we study the
problem of estimating the number of connected components in a graph in the adjacency query list
model. We recall the result by [CRT05], whose query complexity was later improved by [BKM14].

Theorem 4.3. [CRT05, BKM14] Let C be the number of connected components in a graph with
n vertices. Then for κ > 0, there is an algorithm that makes O

(
1
κ2 log(

1
κ) log(

1
δ)
)
queries and with

probability at least 1− δ,
C− κn ≤ C̃ ≤ C+ κn ,

where C̃ denotes the output of the algorithm.

Observe that the global sensitivity of the function computing the number of connected com-
ponents under edge-DP is 2, since the removal or addition of an edge can increase the number
of connected components by at most 2. We apply our blackbox transformation to the result
of [BKM14] to obtain an ε-DP approximation algorithm with the following guarantees.

Corollary 4.4. Let the number of connected components of a graph G be denoted as C(G). Then
for any integer K > 0 and for all c > 0, ε > 0, κ > 0, there is an algorithm A′ such that

(1) (Privacy) A′ is ε-differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− 1
nc − 1

nc−1(eε−1)/K+1
,

C(G)− κn

(
8c

ε
+

1

log(n)

)
− 2c log(n)

ε
− 1

Kn
≤ A′(G)

≤ C(G) + κn

(
8c

ε
+

1

log(n)

)
+

2c log(n)

ε
+

1

Kn

(3) (Query) A′ makes O
(
log3(n)

κ2 log
(
log(n)

κ

))
queries.

We note that [Tet22] give a pure DP algorithm for this problem as well, however their accuracy
guarantee holds with constant probability.

22

Estimating the weight of the MST. Given a (connected) graph G = (V,E), with an associ-
ated weight function wt : E(G) → {1, . . . , w}, the problem is to estimate the weight of a minimum
spanning tree in sublinear time. [CRT05] reduce the problem of computing the weight of the
minimum spanning tree to counting the number of connected components in various subgraphs of
G.

Theorem 4.5. [CRT05] Let G be a graph on n vertices, with an associated weight function
wt : E(G) → {1, . . . , w}, and w < n/2. Let M be the weight of the MST of G. Then for any

0 < α < 1, there is an algorithm that makes O
(
d̄wα−2 log d̄w

ε log(1/δ)
)

queries and outputs a

value M̃ such that with probability at least 1− δ,

|M− M̃| ≤ αM .

where M̃ denotes the output of the algorithm.

We first observe that the global sensitivity of the weight of the MST under edge-DP is w where
w is the maximum weight of an edge, since the addition or deletion of an edge can change the
total weight by at most w. By applying Theorem 1.3 and Theorem 1.5 to the result of [CRT05],
we obtain the following DP result for integral weights.

Corollary 4.6. Let M(G) be the weight of the MST of G. Then for all integers K > 0 and all
c > 0, ε > 0, there exists an algorithm A′ such that

(1) (Privacy) A′ is ε-edge differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− 1
nc − 1

nc−3(eε−1)/K+1 ,

(1− α′)M(G) − 2cw log(n)

ε
− 1

Kn3
≤ A′(G) ≤ (1 + α′)M(G) +

2cw log(n)

ε
+

1

Kn3

where α′ = α
(
1 + ε

C′ log(n)

)
for some constant C ′ > 0.

(3) (Query) A′ makes O
(
d̄w log3(n)

α2ε2
log

(
d̄w log(n)

αε

))
queries.

Estimating the average degree. Recall that d̄ denotes the average degree of a graph. We
study the problem of estimating the average degree of the graph in the adjacency query list model.
We first recall the result of [GR04] below,

Theorem 4.7. [GR04] For every α ∈ (0, 1), there is an algorithm that makes O
(

n√
m
poly

(
log(n)

α

)
log(1/δ)

)

queries and outputs d̃ such that with probability at least 1− δ,

|d̄− d̃| ≤ αd̄ .

where d̃ denotes the output of the algorithm.

We will first present our result using our DP framework and then compare this result to existing
DP results. In particular, by applying our blackbox transformation (Theorem 1.3 and Theorem 1.5)
directly to the result of [GR04], and observing that the global sensitivity of the average degree under
edge-DP is 2/n (since the addition or deletion of an edge affects two vertices in the sum), we obtain
the following.

23

Corollary 4.8. Let d̄ denote the average degree of a graph. Then for any integer K > 0 and for
all c > 0, ε > 0, there exists an algorithm A′ such that

(1) (Privacy) A′ is ε-edge differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− 1
nc − 1

nc−1(eε−1)/K+1
,

(1− α′)d̄− 4c

ε
· log(n)

n
− 1

Kn
≤ A′(G) ≤ (1 + α′)d̄+

4c

ε
· log(n)

n
+

1

Kn

where α′ = α
(
1 + ε

C′ log(n)

)
for some constant C ′ > 0.

(3) (Query) A′ makes O
(

n√
m
poly

(
log2(n)

εα

)
log(n)

)
queries.

In recent work, [BGM22] adapted the algorithm by [GR04] to obtain an ε-DP (α, 0, δ)-approximation

of d̄ in O
(√

n poly
(
log(n)

α

)
poly

(
1
ε

)
log(1/δ)

)
for d̄ ≥ 1 queries. First observe that, [BGM22]

achieves a multiplicative approximation, whereas Corollary 4.8 has an additive error (along with
the multiplicative error). Thus, it may seem that the algorithm given by [BGM22] is a better
algorithm overall. But the algorithm in Corollary 4.8 has a few advantages. The first advantage is
that unlike [BGM22], the algorithm works for all values d̄ ≥ 0, whereas [BGM22] only works for the
(albeit natural) assumption that d̄ ≥ 1. Also for reasonable values of d̄, i.e., for d̄ ≥ Ω(lognn), the
additive error above is absorbed into the multiplicative error thus resulting in a pure DP algorithm
with multiplicative error and no prior assumptions on the average degree d̄. The query complexity
achieved in Corollary 4.8 can also be much better than [BGM22]. For example, if m = Ω(n2)

then our algorithm runs in poly
(
log(n)
αε

)
queries. In general if the graph has m = ω(n) edges then

the query complexity of the original non-DP algorithm [GR04] is superior to [BGM22], and the
query complexity of our algorithm is comparable to [GR04] — only incurs a multiplicative factor of

poly
(
log(n)
αε

)
overhead. Lastly, due to its black-box nature, the algorithm in Corollary 4.8 is much

simpler in nature. The algorithm of [BGM22] is more complex due to its careful addition of noise
in a way that results in (essentially) the same approximation guarantees as the non-DP algorithm.

We note that [GR04] avoided assuming any lowerbound on the average degree by first designing
a sublinear-time algorithm that estimates the average degree by taking a degree lower bound ℓ
as an input parameter and then removing this lower bound parameter via a geometric search.
Implementing this type of geometric-search procedure in the DP setting would result in a privacy
loss of log(n), and thus [BGM22] avoided this step by apriori assuming d̄ ≥ 1. In recent work [Tet22]
gives a general technique of making this procedure DP and thus achieves a pure DP algorithm for
the average degree problem with (essentially) the same guarantees as the non-DP algorithm and
no prior assumption on d̄. However, their accuracy guarantees only hold with constant probability,
whereas the accuracy guarantees achieved by applying our DP framework hold with high probability.

Estimating the maximum matching size. We study the problem of estimating the maximum
matching size in a graph of maximum degree d in the adjacency query list model. [YYI12] gave

an (0, κn)-approximation for this problem with an expected query complexity of dO(1/κ
2). In order

to achieve a high probability bound on the query-complexity, we run Θ(log(1/δ)) instances of the
algorithm in parallel and return the output of the instance that terminates first.

24

Theorem 4.9. [YYI12] For all κ > 0, there is a (0, κn, δ)-approximation algorithm for the maxi-

mum matching problem that uses O
(
dO(1/κ

2) log(1/δ)
)
queries with probability at least 1− δ.

We observe that the global sensitivity of the size of a maximum matching of a graph under node
(and edge-DP) is at most one, since the node that is added/removed could have only contributed
to at most one edge in the matching. By applying our black-box DP transformation to the results
of [YYI12], we get the following guarantees.

Corollary 4.10. Let the size of the maximum matching of a graph G be denoted as MM(G). Then
for any integer K > 0 and for all c > 0, ε > 0, there is an algorithm A′ such that

(1) (Privacy) A′ is ε-node (and edge) differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− (1
nc +

1
nc−1(eε−1)/K+1 + 1

10),

MM(G) − κn

(
8 log 10

ε
+ 1

)
− 2 log 10

ε
− 1

Kn
≤ A′(G)

≤ MM(G) + κn

(
8 log 10

ε
+ 1

)
+

2 log 10

ε
+

1

Kn

(3) (Query) A′ makes O
(
dO(1/κ

2) log(n)
)
queries.

In recent work, [BGM22] obtains an approximation for the maximum matching size with a
multiplicative factor of 2 and additive factor of κn in time Õ

(
(d̄+ 1)/κ2

)
. They left the prob-

lem of designing a DP algorithm that achieves a (0, κn, δ)-approximation as an open problem.
Corollary 4.10 partially resolves this open problem. We note that [Tet22] fully resolves this prob-
lem by giving a pure DP algorithm whose accuracy guarantee holds with high probability.

One disadvantage of our framework is that if the resource (e.g., time, query or space) com-
plexity of the non-DP approximation algorithm depends on the approximation parameter in a
non-polynomial way (e.g., exponentially), then the resulting DP algorithm that achieves an accu-
racy of similar magnitude with high probability may be inefficient. This is the case for the algorithm

of [YYI12] — the non-DP approximation algorithm has a query complexity of O
(
dO(1/κ

2) log(1/δ)
)

(which is exponential in the approximation parameter κ). If we wanted to guarantee that the ad-
ditive error due to sampling from the Laplace distribution is small with high probability (e.g., with
probability ≥ 1 − 1

n), then we would need to set γ = log(n) in Theorem 1.3. Without tuning
κ, the resulting accuracy would have an error of O (n log n), which would render the output of
the algorithm meaningless (since the matching size ≤ n). On the otherhand, if we tune κ to
τ := κ/ log(n) in Algorithm 1, the approximation achieved would be meaningful, i.e., the additive
error would be small enough, but the query complexity of the resulting DP algorithm would be-

come O
(
dO(log

2(n)/κ2) log(1/δ)
)
. Thus in order to achieve the guarantees in Corollary 4.10, we

need to relax the guarantee that the additive error due to sampling from the Laplace distribution
is small with high probability, and ensure this is true with constant probability instead (for e.g., with
probability ≥ 9/10).

25

Estimating the distance to bipartiteness. We study the problem of estimating the distance
to bipartiteness in the adjacency list query model. The distance to the graph property of bipar-
titeness is said to be ψ if ψn2 edges need to be added or removed from the graph on n vertices in
order to obtain a bipartite graph. We first recall the result by [GMRS22] as follows.

Theorem 4.11. [GMRS22] For every κ > 0, there exists an algorithm that given input graph G
inspects a random subgraph of G on Õ

(
(1/κ3) log(1/δ)

)
vertices and estimates the distance from

G to bipartiteness to within an additive error of κn2 with probability ≥ 1− δ.

We observe that the global sensitivity (under edge-DP) of the distance to bipartiteness function
is 1/n2 (or 1 without the normalization factor), since by adding an edge one can introduce an odd
cycle, making a previously bipartite graph into a non-bipartite graph, and conversely, by removing
an edge, one can remove the existence of an odd cycle thus making a previously non-bipartite graph
into a bipartite graph. By applying Theorem 1.3 to the results of [GMRS22], we get the following
guarantees.

Corollary 4.12. Let the distance from a graph G to bipartiteness be denoted as dB(G). For any
integer K > 0 and for all c > 0, ε > 0, there is an algorithm A′ such that

(1) (Privacy) A′ is ε-differentially private where ε is constant.

(2) (Accuracy) For all graphs G on n vertices, with probability 1− 1
nc − 1

nc−2(eε−1)/K+1 ,

dB(G) − κn2
(
8c

ε
+

1

log(n)

)
− 2c log(n)

ε
− 1

Kn2
≤ A′(G)

≤ dB(G) + κn2
(
8c

ε
+

1

log(n)

)
+

2c log(n)

ε
+

1

Kn2

(3) (Query) A′ inspects Õ
(
log4(n)

κ3

)
vertices.

5 Private Streaming Algorithms

In this section, we apply our general framework to achieve private algorithms on data streams, where
updates to an underlying dataset arrive sequentially and the goal is to output or approximate some
predetermined function using space sublinear in the size of the input. In Section 5.1, we consider
applications to dynamic/turnstile streams, where updates of the stream can be both insertions and
deletions. In Section 5.2, we consider applications to the sliding window model, where all updates
of the stream are insertions, but elements are also implicitly deleted by the sliding window once
they are past their expiration, i.e., when W subsequent updates arrive in the stream, for a fixed
window parameter W > 0.

5.1 Dynamic/Turnstile Streams

In this section, we first apply our general framework to problems in the dynamic/turnstile streaming
model. We remark that since this model generalizes the insertion-only model, our results also
automatically apply to the insertion-only model. We say that streams S and S

′ are neighboring
if there exists a single update i ∈ [m] such that ui 6= u′i, where u1, . . . , um are the updates of S
and u′1, . . . , u

′
m are the updates of S′. The DP streaming algorithms we present here are in the

one-shot model, i.e., the algorithm outputs at the end of the stream.

26

Weighted minimum spanning tree. We first study the problem of estimating the weighted
minimum spanning tree of a graph implicitly defined in a data stream. Given a set of vertices
V , each update in the stream has the form [−M,M] × (u, v) for some u, v ∈ V , which changes
the weight of edge (u, v) by some amount between −M and M . We recall the following turnstile
streaming algorithm for estimating the weighted minimum spanning tree by [AGM12].

Theorem 5.1. [AGM12] For any α ∈ (0, 1], there exists a single-pass algorithm that outputs a
(α, 0)-approximation to the weight of the minimum spanning tree of a dynamic graph with probability
at least 2

3 , using O
(
1
αn log

3 n
)
bits of space.

Lemma 5.2. Suppose a graph is implicitly defined by a dynamic stream that changes the weight of
each edge between [−M,M]. Then the global sensitivity of the weighted minimum spanning tree is
at most 2M .

Proof. Let G,G′ be two connected graphs so that some edge (u, v) has weight W in G and W ′ in
G′ and suppose without loss of generality that W < W ′. Let T be the minimum weighted spanning
tree of G and T ′ be the minimum weighted spanning tree of G′. Note that since W ′ > W , then T
is also a valid tree in G, so that the minimum weighted spanning tree of G′ has at most the weight
of T in G′. Since the weight of (u, v) changed by at most M , then the weight of T in G′ is at most
M more than the weight of T in G. Hence, the minimum weighted spanning tree of G′ has weight
at most M more than that of the minimum weighted spanning tree of G. Moreover, the weight of
each edge in G′ is at least the weight of each edge in G, so the minimum weighted spanning tree
of G′ has weight at least that of the minimum weighted spanning tree of G. Thus the minimum
weighted spanning trees of G and G′ differ by at most M . By the triangle inequality, it follows
that the global sensitivity of the weighted minimum spanning tree of a dynamic graph is at most
2M .

Therefore, by first applying the median trick (see Remark 1.4) to Theorem 5.1 to boost the
success probability and then applying our main framework, and noting the global sensitivity bounds
in Lemma 5.2, we have the following guarantee:

Corollary 5.3. For any integer K > 0 and for all α ∈ (0, 1), c > 0, ε > 0, and ρ := O
(

αη
logm

)
on

a turnstile stream S of length m = poly(n), where η = min(ε, 1), there exists a turnstile streaming
algorithm A algorithm that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs Ŵ (S) such that with probability at least 1 − 1
mc −

1
mc−1(eε−1)/(KMm)+1

,

(1− α)W (S)− 12cM logm

ε
− 1

KMm
≤ Ŵ (S) ≤ (1 + α)W (S) +

12cM logm

ε
+

1

KMm
,

where W (S) denotes the minimum weighted spanning tree in the graph induced by the stream
S.

(3) (Space) The algorithm A uses space O
(

1
αηn log

5 n
)
bits.

27

Lp norm and Fp moment estimation. We next study the related problems of Lp norm and Fp

moment estimation, where a frequency vector x ∈ R
n is implicitly defined by updates of the stream

and the goal is to approximate the the Fp moment of x, i.e., xp1+ . . .+x
p
n, or the Lp norm of x, i.e.,

(xp1 + . . .+ xpn)
1/p

. Each update of the stream has the form {−1,+1} × [n], indicating whether the
update implicitly decrements or increments the corresponding coordinate of the frequency vector
x. Finally, the L0 norm of x is defined as ‖x‖0 = |{i ∈ [n] |xi 6= 0}|, or the number of nonzero
coordinates of x. We assume the data stream has length m.

We first upper bound the global sensitivity of the Lp norm for p ≥ 1 and the Fp moment for
p ∈ [0, 1].

Lemma 5.4. For p ≥ 1, the global sensitivity of the Lp norm is at most 2. For p ∈ [0, 1], the global
sensitivity of the Fp moment is at most 2.

Proof. Let x, x′ ∈ R
n be two vectors defined by neighboring streams, so that ‖x− x′‖1 ≤ 2. Then

for p ≥ 1, we have ‖x−x′‖p ≤ ‖x−x′‖1 ≤ 2. For p ∈ (0, 1], it suffices to note that |yp−(y−1)p| ≤ 1
and at most two coordinates differ between x and x′, each by at most one. Finally, for p = 0, note
that since at most two coordinates differ between x and x′, then |x− x′|0 ≤ 2.

For p > 2, we use the following turnstile streaming algorithm of [GW18]:

Theorem 5.5. [GW18] For p > 2, and accuracy parameter α > 0 there is a turnstile
streaming algorithm for (α, 0)-approximation of Lp with probability at least 1 − δ that uses

O
(

1
α2n

1− 2
p log 1

δ log n+ 1
α4/pn

1− 2
p log2/p 1

δ log
2 n

)
bits of space.

Thus by applying our main framework from Theorem 1.3 and Theorem 1.5 to Theorem 5.5 and
noting the global sensitivity bounds in Lemma 5.4, we have the following guarantee:

Corollary 5.6. For any integer K > 0, and for all p > 2, α > 0, c > 0, ε > 0, and ρ := O
(

αη
logm

)

on a stream S of length m = poly(n), where η = min(ε, 1), there exists a turnstile streaming
algorithm A algorithm that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs L̂p(S) such that with probability at least 1 − 1
mc −

1
poly(m)(eε−1)/K+1 ,

(1− α)Lp(S)− 12c logm

ε
− 1

K poly(m)
≤ L̂p(S) ≤ (1 + α)Lp(S) +

12c logm

ε
+

1

K poly(m)
,

where Lp(S) denotes the Lp norm of the frequency vector induced by the stream S.

(3) (Space) The algorithm A uses space O
(

p
α2η2

n1−2/p
)
· poly

(
log n, log 1

αη

)
bits.

When p = 2, we use the following well-known AMS algorithm [AMS99]:

Theorem 5.7. [AMS99] For an accuracy parameter α > 0 there is a turnstile streaming algorithm
for (α, 0)-approximation of L2 with probability at least 1−δ that uses O

(
1
α2 logm log 1

δ

)
bits of space,

for a stream of length m.

28

We note that [Tet22] give an ε-DP algorithm using the AMS algorithm as well, but the accuracy
guarantee only holds with constant probability. By applying our main framework from Theorem 1.3
and Theorem 1.5 to the AMS algorithm in Theorem 5.7 and noting the global sensitivity bounds
in Lemma 5.4, we have the following guarantee:

Corollary 5.8. For any integer K > 0 and for any α > 0, c > 0, ε > 0, and ρ := O
(

αη
logm

)
on a

stream S of length m = poly(n), where η = min(ε, 1), there exists a turnstile streaming algorithm
A algorithm that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs L̂2(S) such that with probability at least 1 − 1
mc −

1
poly(m)(eε−1)/K+1 ,

(1− α)L2(S)− 12c logm

ε
− 1

K poly(m)
≤ L̂2(S) ≤ (1 + α)L2(S) +

12c logm

ε
+

1

K poly(m)
,

where L2(S) is the L2-norm of the stream S.

(3) (Space) The algorithm A uses space O
(

1
α2η2

log4 n
)
bits.

For p ∈ (0, 2), we use the following turnstile streaming algorithm of [KNPW11]:

Theorem 5.9. [KNPW11] For p ∈ (0, 2), and accuracy parameter α > 0 there is a turnstile
streaming algorithm for (α, 0)-approximation of Lp with probability at least 2

3 that uses O
(

1
α2 logm+ log log n

)

bits of space.

Hence by applying the median trick to Theorem 5.9 to boost the success probability, and then
applying our main framework from Theorem 1.3, and finally noting the global sensitivity bounds
in Lemma 5.4, we have the following guarantee:

Corollary 5.10. For any integer K > 0, p ∈ (0, 2), and for any α > 0, c > 0, ε > 0, and

ρ := O
(

αη
logm

)
on a stream S of length m = poly(n), where η = min(ε, 1), there exists a turnstile

streaming algorithm A algorithm that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs X̂ such that with probability at least 1− 1
mc− 1

poly(m)(eε−1)/K+1 ,

(1− α)X − 12c logm

ε
− 1

K poly(m)
≤ X̂ ≤ (1 + α)X +

12c logm

ε
+

1

K poly(m)
,

where X is the Lp norm of the stream S for p ∈ [1, 2) and X is the Fp moment of the stream
S for p ∈ (0, 1).

(3) (Space) The algorithm A uses space O
(

1
α2η2 log

4 n
)
bits.

For p = 0, we use the following turnstile streaming algorithm of [KNW10]:

29

Theorem 5.11. [KNW10] For any accuracy parameter α > 0 there is a turnstile streaming algo-
rithm for (α, 0)-approximation of L0 with probability at least 2

3 that uses O
(

1
α2 log n log

1
α + log logm

)

bits of space.

Then by applying the median trick to Theorem 5.9 to boost the probability of success to 1− δ,
and then applying our main framework from Theorem 1.3, and finally noting the global sensitivity
bounds in Lemma 5.4, we have the following guarantee:

Corollary 5.12. For any integer K > 0, and for any α > 0, c > 0, ε > 0, and ρ := O
(

αη
logm

)
on a

stream S of length m = poly(n), where η = min(ε, 1), there exists a turnstile streaming algorithm
A algorithm that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs L̂0(S) such that with probability at least 1 − 1
mc −

1
poly(m)(eε−1)/K+1 ,

(1− α)L0(S)− 12c logm

ε
− 1

K poly(m)
≤ L̂0(S) ≤ (1 + α)L0(S) +

12c logm

ε
+

1

K poly(m)
,

where L0(S) is the number of distinct elements in the stream S.

(3) (Space) The algorithm A uses space Õ
(

1
α2η2

log4 n
)
bits.

5.2 Sliding Windows

In this section, we introduce the sliding window model and apply our DP framework to ensure
privacy for many sliding window algorithms.

Definition 5.13 (Sliding window model). In the sliding window model, there exists a data stream
of length m and a window parameter W > 0. The underlying dataset is then implicitly defined by
only the W most recent updates in the stream.

The sliding window model is a generalization of the insertion-only streaming model that captures
the prioritization of recent data over outdated or expired data and thus there are a number of time
sensitive applications applications [BBD+02, DM07, MM12, PGD15, ELVZ17], such as network
monitoring [CM05, CG08] or event detection on social media [OMM+14], for which the sliding
window model has better performance than the insertion-only streaming model. The sliding window
model is especially appropriate for time-sensitive applications such as network monitoring [CM05,
CG08] and has been subsequently studied in a number of additional settings [DM07, BOZ12,
ELVZ17, BGL+18, BDM+20, BWZ21, EMMZ22, JWZ22].

For the purposes of differential privacy, we permit two neighboring streams to differ by a single
update over the entire data stream. Observe that this notion includes the setting where two
neighboring streams differ by a single update in the dataset induced by the sliding window, i.e.,
the last W updates of the data stream.

[BO10] presented the smooth histogram framework [BO10], which converts an existing insertion-
only streaming algorithm into a sliding window algorithm. We remark that unfortunately, due to
standard nomenclature in previously non-intersecting literature, the notion of smooth histogram
does not use the same notion of smooth as smooth sensitivity. Hence, we first define the following
notion of a smooth function:

30

Definition 5.14. A function f ≥ 1 is (ρ, ξ)-smooth if it has the following properties:

Monotonicity f(A) ≥ f(B) for B ⊆ A (B is a suffix of A)

Polynomial boundedness There exists c > 0 such that f(A) ≤ nc.

Smoothness For any ρ ∈ (0, 1), there exists ξ ∈ (0, ρ] so that if B ⊆ A and (1 − ξ)f(A) ≤ f(B),
then (1− ρ)f(A ∪ C) ≤ f(B ∪ C) for any adjacent C.

The smooth histogram framework has the following guarantees:

Theorem 5.15 (Smooth Histogram Framework, [BO10]). Let f : Um → R be a (ρ, β(ρ))-smooth
function for any ρ ∈ (0, 1) on a stream S of length m = poly(n), and suppose there exists
an insertion-only streaming algorithm A that outputs a (α, 0)-approximation of f using space
S(α, δ,m, n) and update time T (α, δ,m, n), for any approximation parameter α ∈ (0, 1) and failure
probability δ. Then for any constant c > 0 and window parameter W > 0, there exists a sliding
window algorithm A′ such that for the dataset W induced by the last min(m,W) updates of the
stream:

(1) (Accuracy) The algorithm A′ outputs f̂(W) such that with probability at least 1− 1
mc ,

(1− α)f(W) ≤ f̂(W) ≤ (1 + α)f(W).

(2) (Time/Space) The algorithm A′ uses space O
(

1
β(α)(S(β(α), δ

poly(m,n) ,m, n) + logm) logm
)

and update time O
(

1
β(α)(T (β(α), δ

poly(m,n) ,m, n)) logm
)
.

The main takeaway for the smooth histogram framework is that it essentially provides a means
to achieve a (ρ, 0)-approximation algorithm in the sliding window model for a smooth function for
which there already exists a (ρ, 0)-approximation algorithm in the insertion-only streaming model.
For many additional problems, either there are no known (ρ, 0)-approximation algorithms for all
ρ > 0, e.g., [ELVZ17] or the output is not a scalar quantity, e.g., [BOZ12, BDM+20, BWZ21,
EMMZ22, JWZ22].

By Theorem 5.15 and Theorem 1.3, we have the following guarantee:

Theorem 5.16 (DP Smooth Histogram Framework). Let α > 0, c > 0, ε > 0 and a (ρ, β(ρ))-

smooth function f : Um → R for ρ := O
(

αη
logm

)
on a stream S of length m = poly(n), where

η = min(ε, 1) and suppose there exists an insertion-only streaming algorithm A that outputs a (α, 0)-
approximation of f using space S(α, δ,m, n) and update time T (α, δ,m, n), and failure probability
δ. Then there exists a sliding window algorithm A′ such that for the dataset W induced by the last
min(m,W) updates of the stream:

(1) (Privacy) The algorithm A′ is (ε, δ)-differentially private where ε is constant and δ = 1
mc .

(2) (Accuracy) The algorithm A′ outputs f̂(W) such that with probability at least 1− 1
mc ,

(1− α)f(W)− 6c∆f logm

ε
≤ f̂(W) ≤ (1 + α)f(W) +

6c∆f logm

ε
.

31

(3) (Time/Space) The algorithm A′ uses space O
(

1
β(ρ)(S(β(ρ), δ

poly(m,n) ,m, n) + logm) logm
)

and update time O
(

1
β(ρ)(T (β(ρ), δ

poly(m,n) ,m, n)) logm
)
.

Observe that if we tried to apply the non-private smooth histogram framework to a DP insertion-
only streaming algorithm, this might preserve privacy (by post-processing), but may significantly
increase the error (in terms of accuracy).

Length of the longest increasing sub-sequence. The longest increasing subsequence problem
LIS is to find an increasing subsequence of maximum length of a sequence whose elements are from
the universe [n] and sequentially defined by the stream. The LIS-length problem is to output the
length of such a subsequence. [BO07] showed that the LIS-length function is (ρ, ρ)-smooth.

Theorem 5.17. [BO07] For any ρ ∈ (0, 1), LIS-length is a (ρ, ρ)-smooth function.

We now recall the following insertion-only streaming algorithm for estimating the length of the
longest increasing subsequence

Theorem 5.18. [SW07] Let S be a stream u1, u2, . . . such that ui ∈ [n] and let k be an upper
bound on the LIS-length in the stream, then there exists a 1-pass streaming algorithm that computes
LIS-length with probability at least 2

3 , using space O
(
k2 log n

k

)
.

We can therefore apply Theorem 5.16 and Theorem 1.5 to the algorithm of [SW07] to obtain
Corollary 5.20. We note that while the longest increasing subsequence may have large global
sensitivity, the length of the longest increasing subsequence only has global sensitivity 1, i.e.,
∆LIS-length = 1.

Lemma 5.19. For the length of the longest increasing subsequence, the global sensitivity is at most
1.

Proof. Let S, S′ be two sequences so that S′ is formed by deleting a term of S. Since any subsequence
of S′ is a subsequence of S and any subsequence of S can be transformed into a subsequence of
S′ by deleting at most one term, then the lengths of the longest subsequences in S and S′ differ
by at most 1. Hence by the triangle inequality, the global sensitivity of the length of the longest
increasing subsequence is at most 2.

Corollary 5.20. Let S be a stream u1, u2, . . . such that ui ∈ [n] of length m = poly(n) and let k
be an upper bound on the LIS-length in the stream. For some K > 0, and for any α > 0, c > 0,

ε > 0, and ρ := O
(

αη
logm

)
on a stream of length m, where η = min(ε, 1), there exists a sliding

window algorithm A such that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs L̂IS(W) such that with probability at least 1 − 1
mc −

1
mc(eε−1)/(Kk)+1 ,

(1− α)LIS(W) − 12c logm

ε
− 1

Kk
≤ L̂IS(W) ≤ (1 + α)LIS(W) +

12c logm

ε
+

1

Kk
,

where LIS(W) denotes the length of the longest increasing subsequence of the last min(m,W)
updates of S, for a window parameter W > 0.

(3) (Time/Space) The algorithm A uses an O
(

k2

αη log
4 n

)
space.

32

Distinct elements. We first give a simple proof to show that the function computing the number
of distinct elements is (ρ, ρ)-smooth below.

Lemma 5.21. For any ρ ∈ (0, 1), the number of distinct elements is (ρ, ρ)-smooth.

Proof. Let f be the number of distinct elements on an input stream. Given a stream A, it is easy
to see that f preserves the following properties of smoothness: (1) f(A) ≥ 0, (2) f(A) ≥ f(B)
where B ⊆ A, (3) f(A) ≤ poly(n).

It remains to show that if B ⊆ A and (1− ρ)f(A) ≤ f(B) then (1− ρ)f(A∪C) ≤ f(B ∪C) for
any adjacent C. Note that (1−ρ)f(A∪C) ≤ (1−ρ)(f(A)+f(C)) ≤ f(B)+f(C) ≤ f(B∪C), where
the first step is true because A and C are adjacent streams and the number of distinct elements in
their union is therefore at most the sum of distinct elements in both.

We apply our general framework to the following insertion-only streaming algorithm given by
[Bla20]:

Theorem 5.22. [Bla20] Given an accuracy parameter α > 0 and a failure probability δ ∈ (0, 1),
there exists a streaming algorithm that outputs a (α, 0)-approximation to the number of distinct
elements with probability 1− δ using O

(
1
α2 log

1
δ + log n

)
bits.

Corollary 5.23. For any integer K > 0 and for any α > 0, c > 0, ε > 0, and ρ := O
(

αη
logm

)
on

a stream S of length m = poly(n), where η = min(ε, 1), there exists a sliding window algorithm A
such that for the dataset W induced by the stream:

(1) (Privacy) The algorithm A is (ε, δ)-differentially private where ε is constant and δ = 1
mc .

(2) (Accuracy) The algorithm A outputs d̂ist(W) such that with probability at least 1 − 1
mc −

1
mc−1(eε−1)/K+1

,

(1− α)dist(W)− 12c logm

ε
− 1

Km
≤ d̂ist(W) ≤ (1 + α)dist(W) +

12c logm

ε
+

1

Km
,

where dist(W) denotes the number of distinct elements in the last min(m,W) updates of the
stream S, for a window parameter W > 0.

(3) (Time/Space) The algorithm A uses O
(

1
α3η3 log

5 n
)
bits.

We remark that the dependency on α and η can be improved to 1
αη with a worse dependency

on log n by using an algorithm of [BGL+18] that achieves a (α, 0)-approximation to the number of
distinct elements in the sliding window model, without using the smooth histogram framework.

Lp norm and Fp moment estimation. We remark that [BO10] showed that the Lp norm and
Fp moment estimation problems are (α,αp/p)-smooth for p ≥ 1 and (α,α)-smooth for 0 < p ≤ 1.
Therefore, we can apply the smooth histogram framework to the Lp norm and Fp moment estima-
tion problem and then further apply our general framework to the smooth histogram framework.
However, it turns out this approach gives a sub-optimal result, since there exist the following more
efficient algorithms for Lp norm estimation in the sliding window model:

33

Lemma 5.24. [WZ21] Given α and p ∈ (0, 2], there exists a one-pass algorithm in the sliding win-
dow model that outputs a (α, 0)-approximation to the Lp norm/Fp moment with probability at least
1− 1

poly(n) . The algorithm uses O
(

1
α2 log

3 n log3 1
α

)
space for p = 2 and O

(
1
α2 log

3 n(log log n)2 log3 1
α

)

space for p ∈ (0, 2).

Corollary 5.25. For any integer K > 0, p ∈ (0, 2], and for any α > 0, c > 0, ε > 0, and

ρ := O
(

αη
logm

)
on a stream S of length m = poly(n), where η = min(ε, 1). Then there exists a

sliding window algorithm A such that:

(1) (Privacy) The algorithm A is ε-differentially private where ε is constant.

(2) (Accuracy) The algorithm A outputs X̂ such that with probability at least 1− 1
mc− 1

poly(m)(eε−1)/K+1 ,

(1− α)X − 12c logm

ε
− 1

K poly(m)
≤ X̂ ≤ (1 + α)X +

12c logm

ε
+

1

K poly(m)
,

where X is the Lp norm of the frequency vector induced by the most recent min(m,W) updates
of the stream for p ∈ (1, 2] and X is the Fp frequency moment of the same frequency vector
for p ∈ (0, 1).

(3) (Time/Space) The algorithm uses Õ
(

1
α2η2

log5 n log3 1
αη

)
space for p = 2 and Õ

(
1

α2η2
log5 n

)

space for p ∈ (0, 2).

6 Conclusion and Open Questions

In this work, we introduce a general framework for transforming a non-private approximation
algorithm into a differentially private approximation algorithm. We show specific applications of
our framework for sublinear time and sublinear space algorithms. Although our framework applies
to a large variety of problems and settings, it does incur a small penalty in both runtime and space
for achieving differential privacy. A natural question is whether these losses are necessary for a
general black-box framework and what are sufficient conditions for achieving a black-box reduction.

It also seems possible that our framework could provide a method for achieving differentially
private algorithms when the important resource is not runtime, number of queries, or space. For
example, in distributed algorithms, it is often desired to achieve sublinear communication while in
learning/testing, it is often desired to achieve sublinear query complexity. We believe that exploring
the limits and capabilities of our framework in those settings would be a natural future direction
of work.

References

[AdlVKK03] Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski.
Random sampling and approximation of max-csps. J. Comput. Syst. Sci., 67(2):212–
243, 2003.

[AE02] Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint sat-
isfaction programs on finite domains. Random Struct. Algorithms, 21(1):14–32, 2002.

34

[AFNS09] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial charac-
terization of the testable graph properties: It’s all about regularity. SIAM J. Comput.,
39(1):143–167, 2009.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 459–467, 2012.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[ASZ18] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private testing of
identity and closeness of discrete distributions. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 6879–6891, 2018.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and issues in data stream systems. In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
1–16, 2002.

[BBDS12] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-
lindenstrauss transform itself preserves differential privacy. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS, pages 410–419, 2012.

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj
Upadhyay, David P. Woodruff, and Samson Zhou. Near optimal linear algebra in
the online and sliding window models. In 61st IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS, pages 517–528, 2020.

[BGK+21] Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Judy Hanwen Shen, and
Uthaipon Tantipongpipat. Fast and memory efficient differentially private-sgd via JL
projections. CoRR, abs/2102.03013, 2021.

[BGL+18] Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Sam-
son Zhou. Nearly optimal distinct elements and heavy hitters on sliding windows.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, pages 7:1–7:22, 2018.

[BGM22] Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee. Privately estimating
graph parameters in sublinear time. In 49th International Colloquium on Automata,
Languages, and Programming, ICALP, pages 26:1–26:19, 2022.

[BKM14] Petra Berenbrink, Bruce Krayenhoff, and Frederik Mallmann-Trenn. Estimating the
number of connected components in sublinear time. Inf. Process. Lett., 114(11):639–
642, 2014.

35

[Bla20] Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high prob-
ability. ACM Trans. Algorithms, 16(1):3:1–3:28, 2020.

[BMWZ22] Vladimir Braverman, Joel Manning, Zhiwei Steven Wu, and Samson Zhou. Private
data stream analysis for universal symmetric norm estimation. In 3rd Annual Sym-
posium on Foundations of Responsible Computing FORC, 2022.

[BO07] Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows.
In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Pro-
ceedings, pages 283–293, 2007.

[BO10] Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding win-
dows. SIAM J. Comput., 39(6):2113–2131, 2010.

[BOZ12] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from
sliding windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

[BUV18] Mark Bun, Jonathan R. Ullman, and Salil P. Vadhan. Fingerprinting codes and the
price of approximate differential privacy. SIAM J. Comput., 47(5):1888–1938, 2018.

[BWZ21] Vladimir Braverman, Viska Wei, and Samson Zhou. Symmetric norm estimation and
regression on sliding windows. In Computing and Combinatorics - 27th International
Conference, COCOON, Proceedings, pages 528–539, 2021.

[CG08] Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: query-
ing and tracking distributed data streams. In EDBT 2008, 11th International Con-
ference on Extending Database Technology, Proceedings, page 745, 2008.

[CM05] Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences
in network data streams. IEEE/ACM Transactions on Networking, 13(6):1219–1232,
2005.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC, pages 371–380.
ACM, 2009.

[DM07] Mayur Datar and Rajeev Motwani. The sliding-window computation model and
results. In Data Streams - Models and Algorithms, pages 149–167. Springer, 2007.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC, Proceed-
ings, pages 265–284, 2006.

[DMNS16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. J. Priv. Confidentiality, 7(3):17–51, 2016.

36

[Dwo06] Cynthia Dwork. Differential privacy. In Automata, Languages and Programming,
33rd International Colloquium, ICALP, Proceedings, Part II, pages 1–12, 2006.

[ELRS17] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting trian-
gles in sublinear time. SIAM J. Comput., 46(5):1603–1646, 2017.

[ELVZ17] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-
dam. Submodular optimization over sliding windows. In Proceedings of the 26th
International Conference on World Wide Web, WWW, pages 421–430, 2017.

[EMM+23] Alessandro Epasto, Jieming Mao, Andres Muñoz Medina, Vahab Mirrokni, Sergei
Vassilvitskii, and Peilin Zhong. Differentially private continual releases of streaming
frequency moment estimations. In 14th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts,
USA, volume 251 of LIPIcs, pages 48:1–48:24. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

[EMMZ22] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Im-
proved sliding window algorithms for clustering and coverage via bucketing-based
sketches. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 3005–3042, 2022.

[FN07] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM
J. Comput., 37(2):482–501, 2007.

[FR21] Nimrod Fiat and Dana Ron. On efficient distance approximation for graph properties.
In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1618–
1637. SIAM, 2021.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45(4):653–750, 1998.

[GKMN21] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Thao Nguyen. Robust and private
learning of halfspaces. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021,
April 13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning
Research, pages 1603–1611. PMLR, 2021.

[GLM+10] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.
Differentially private combinatorial optimization. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1106–1125,
2010.

[GMRS22] Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen. Tolerant
bipartiteness testing in dense graphs. In 49th International Colloquium on Automata,
Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume
229 of LIPIcs, pages 69:1–69:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

37

[GR04] Oded Goldreich and Dana Ron. On estimating the average degree of a graph. Electron.
Colloquium Comput. Complex., 2004.

[GW18] Sumit Ganguly and David P. Woodruff. High probability frequency moment
sketches. In 45th International Colloquium on Automata, Languages, and Program-
ming, ICALP, pages 58:1–58:15, 2018.

[GXP+20] Maoguo Gong, Yu Xie, Ke Pan, Kaiyuan Feng, and Alex Kai Qin. A survey on
differentially private machine learning [review article]. IEEE Comput. Intell. Mag.,
15(2):49–64, 2020.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Leonard J.
Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 705–714. ACM,
2010.

[JWZ22] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers for
data streams and sliding windows. In PODS: International Conference on Manage-
ment of Data, pages 29–40, 2022.

[KNPW11] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment esti-
mation in data streams in optimal space. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC, pages 745–754, 2011.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS, pages 41–
52, 2010.

[MM12] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. PVLDB, 5(12):1699, 2012.

[MMNW11] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright.
Pan-private algorithms via statistics on sketches. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS,
pages 37–48, 2011.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, pages 75–84, 2007.

[OMM+14] Miles Osborne, Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin
Sykora, Elizabeth Cano, Neil Ireson, Craig MacDonald, Iadh Ounis, Yulan He, Tom
Jackson, Fabio Ciravegna, and Ann O’Brien. Real-time detection, tracking and mon-
itoring of automatically discovered events in social media. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, 2014.

[PGD15] Odysseas Papapetrou, Minos N. Garofalakis, and Antonios Deligiannakis. Sketching
distributed sliding-window data streams. VLDB J., 24(3):345–368, 2015.

38

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and
distance approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.

[SST20] Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The flajolet-martin sketch
itself preserves differential privacy: Private counting with minimal space. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems, NeurIPS, 2020.

[SW07] Xiaoming Sun and David P. Woodruff. The communication and streaming complexity
of computing the longest common and increasing subsequences. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
336–345, 2007.

[Tet22] Jakub Tetek. Additive noise mechanisms for making randomized approximation al-
gorithms differentially private. CoRR, abs/2211.03695, 2022.

[WPS22] Lun Wang, Iosif Pinelis, and Dawn Song. Differentially private fractional frequency
moments estimation with polylogarithmic space. In The Tenth International Confer-
ence on Learning Representations, ICLR, 2022.

[WZ21] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams
and sliding windows via difference estimators. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 1183–1196. IEEE, 2021.

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approxi-
mation algorithms for maximum matchings and other optimization problems. SIAM
J. Comput., 41(4):1074–1093, 2012.

A Proof of Approximate DP to Pure DP transformation

Theorem 1.5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP algorithm

with accuracy guarantee (1−α)f(D)−κ ≤ Af (D) ≤ (1+α)f(D)+κ holding with probability 1− η
then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee (1−α)f(D)−κ− 1
KM ≤

Af (D) ≤ (1 + α)f(D) + κ+ 1
KM with probability at least 1− η − p where p = δK(M+1)

eε−1+δK(M+1) .

Proof. Note that WLOG we can assume that Af (D) outputs a value between 0 and M since we
can always truncate the output to this range — this operation preserves privacy by postprocessing
and does not adversely affect accuracy. For some K > 0, define algorithm A′′

f (D) as outputting
⌈KAf (D)⌉

KM . Observe that A′′
f is (ε, δ)-DP by postprocessing and the accuracy guarantee of A′′

f is

almost identical to that of Af since by definition |A′′
f (D)−Af (D)| < 1

KM . By post-processing we

can ensure that the range R of A′′
f (D) is small |R| = (M + 1)K since R = { i

KM : 0 ≤ i ≤ KM}.
Thus, we can pick p such that δ ≤ (eε−1)p

|R|(1−p) and apply a folklore theorem (see Theorem 2.2) to

transform our (ε, δ)-DP algorithm A′′
f (D) to an ε-DP algorithm A′

f (D) in the following manner:

A′
f (D) =

{
A′′

f (D) with probability 1− p

random(R) with probability p

39

By combining the accuracy guarantees of Af and A′′
f we see that with probability 1 − η − p, we

have that (1 − α)f(D) − κ− 1
KM ≤ Af (D) ≤ (1 + α)f(D) + κ+ 1

KM where p = δK(M+1)
eε−1+δK(M+1) as

claimed.

Theorem 2.2. [Approximate DP to Pure DP] Let A : D → R. If A is an (ε, δ)-DP algorithm

such that δ ≤ (eε−1)p
|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the following

manner.

A′(D) =

{
A(D) with probability 1− p

random(R) with probability p

where R is the range of Af .

Proof. Recall that we define A′ as follows:

A′(D) =

{
A(D) with probability 1− p

random(R) with probability p

Let D,D′ ∈ D be neighboring databases and fix output y ∈ R. We first give a general claim
regarding the probability of A′(D) = y in terms of the Pr[A(D) = y].

Claim A.1. For D ∈ D,

Pr[A′(D) = y] = Pr[A(D) = y] (1− p) +
p

|R|

Now we need to show that Pr[A′(D) = y] ≤ eε Pr[A′(D′) = y].

Pr[A′(D) = y]

= Pr[A(D) = y] (1− p) +
p

|R|
≤ (1− p) (eε Pr[A(D′) = y] + δ) +

p

|R|
≤ eε Pr[A(D′) = y] (1− p) + δ (1− p) +

p

|R| (4)

= eε(Pr[A′(D′) = y]− p

|R|) + δ (1− p) +
p

|R| (5)

≤ eε Pr[A′(D′) = y] + δ (1− p) +
p

|R| (1− eε)

≤ eε Pr[A′(D′) = y] (6)

The transition 4 to 5 follows from the observation that Pr[A′(D′) = y] = (1−p) Pr[A(D′) = y]+ p
|R|

and therefore, (1 − p) Pr[A(D′) = y] = Pr[A′(D′) = y] − p
|R| . The last equation 6 follows because

δ ≤ (eε−1)p
|R|(1−p) and thus

δ (1− p) +
p

|R|(1− eε) ≤ 0 .

40

	Introduction
	Our Contributions
	Our Techniques
	Related Work

	Preliminaries
	General Transformation for Approximation Algorithms
	Achieving Pure DP for Approximation Algorithms with Zero Failure Probability

	Private Sublinear-time Algorithms
	Private Streaming Algorithms
	Dynamic/Turnstile Streams
	Sliding Windows

	Conclusion and Open Questions
	Proof of Approximate DP to Pure DP transformation

