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Abstract

In the pairwise weighted spanner problem, the input consists of a weighted directed graph on n

vertices, where each edge is assigned both a cost and a length. Furthermore, we are given k terminal
vertex pairs and a distance constraint for each pair. The goal is to find a minimum-cost subgraph in
which the distance constraints are satisfied. A more restricted variant of this problem was shown to be

O(2log
1−ε n)-hard to approximate under a standard complexity assumption, by Elkin and Peleg (Theory

of Computing Systems, 2007). This general formulation captures many well-studied network connectivity
problems, including spanners, distance preservers, and Steiner forests.

We study the weighted spanner problem, in which the edges have positive integral lengths of magni-
tudes that are polynomial in n, while the costs are arbitrary non-negative rational numbers. Our results
include the following in the classical offline setting:

• An Õ(n4/5+ε)-approximation algorithm for the pairwise weighted spanner problem. When the edges
have unit costs and lengths, the best previous algorithm gives an Õ(n3/5+ε)-approximation, due to
Chlamtáč, Dinitz, Kortsarz, and Laekhanukit (Transactions on Algorithms, 2020).

• An Õ(n1/2+ε)-approximation algorithm for the weighted spanner problem when the terminal pairs
consist of all vertex pairs and the distances must be preserved exactly. When the edges have unit
costs and arbitrary positive lengths, the best previous algorithm gives an Õ(n1/2)-approximation
for the all-pair spanner problem, due to Berman, Bhattacharyya, Makarychev, Raskhodnikova, and
Yaroslavtsev (Information and Computation, 2013).

We also prove the first results for the weighted spanners in the online setting. In the online setting,
the terminal vertex pairs arrive one at a time, in an online fashion, and edges are required to be added
irrevocably to the solution in order to satisfy the distance constraints, while approximately minimizing
the cost. Our results include the following:

• An Õ(k1/2+ε)-competitive algorithm for the online pairwise weighted spanner problem. The state-
of-the-art results are an Õ(n4/5)-competitive algorithm when edges have unit costs and arbitrary
positive lengths, and a min{Õ(k1/2+ε), Õ(n2/3+ε)}-competitive algorithm when edges have unit
costs and lengths, due to Grigorescu, Lin, and Quanrud (APPROX, 2021).

• An Õ(kε)-competitive algorithm for the online single-source (or single-sink) weighted spanner prob-
lem. Without distance constraints, this problem is equivalent to the online directed Steiner tree
problem. The best previous algorithm for online directed Steiner trees is an Õ(kε)-competitive
algorithm, due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018).

Our online results also imply efficient approximation algorithms for the corresponding offline problems.
To the best of our knowledge, these are the first approximation (online) polynomial-time algorithms with
sublinear approximation (competitive) ratios for the weighted spanner problems.
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CCF-2228814.

†Purdue University. E-mail: kumar410@purdue.edu. Supported in part by NSF CCF-1910411, and NSF CCF-2228814.
‡Melbourne Business School. E-mail: y.lin@mbs.edu.
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1 Introduction

We study a multi-commodity problem in directed graphs, which we call the pairwise weighted spanner
problem. In this problem, we are given a directed simple graph G = (V,E) with n vertices, and a set of k
terminal pairs D ⊆ V × V . Furthermore, each edge e ∈ E is associated with a cost given by the function
c : E → R≥0 and a length given by the function ℓ : E → R≥0. We say that the graph has unit lengths
if ℓ(e) = 1 (respectively, the graph has unit costs if c(e) = 1) for all e ∈ E. Each pair (s, t) ∈ D is also
associated with a target distance given by a function Dist : D → R≥0. Let H = (V (H), E(H)) be a subgraph
of G and dH(s, t) denote the distance from s to t in H , i.e., the total length of a shortest s; t path of edges
in E(H). The cost of H is

∑

e∈E(H) c(e). The goal is to find a minimum-cost subgraph H of G such that the

distance from s to t is at most Dist(s, t), namely, dH(s, t) ≤ Dist(s, t) for each (s, t) ∈ D.
The pairwise weighted spanner problem captures many network connectivity problems and is motivated

by common scenarios, such as constructing an electricity or an internet network, which requires not only
cost minimization but also a delivery time tolerance for the demands. Each edge is thus associated with
two “weights” in this setting: the cost and the delivery time. This general formulation has been studied
under many variants: when the edges have general lengths and unit costs, one may ask for sparse subgraphs
that exactly maintain pairwise distances, i.e., distance preservers, or for sparse subgraphs that approximately
maintain pairwise distances, i.e., spanners ; when the edges have general costs and unit lengths, one may
ask for cheap subgraphs that maintain pairwise connectivity, i.e., Steiner forests. Spanners and distance
preservers are well-studied objects, which have found applicability in domains such as distributed compu-
tation [7, 49], data structures [4, 55], routing schemes [20, 47, 50, 52], approximate shorthest paths [8, 24, 25],
distance oracles [8,17,48], and property testing [6,11]. Similarly, Steiner forests have been studied in the con-
text of multicommodity network design [30, 33], mechanism design and games [16, 42, 43, 53], computational
biology [40, 51], and computational geometry [9, 13].

A slightly more special case of the pairwise weighted spanner problem was originally proposed by Kortsarz
[44] and Elkin and Peleg [27], where it was called the weighted s-spanner problem. The precise goal in [27,44]
is to find a minimum-cost subgraph that connects all the pairs of vertices inG, and eachDist(s, t) = s·dG(s, t)
for some integer s called the stretch of the spanner. The work of [27] presents a comprehensive list of
inapproximability results for different variants of sparse s-spanners. Even in the special case where edges
have unit costs (i.e., the directed s-spanner problem defined below), the problem is hard to approximate

within a factor of O(2log
1−ε n) unless NP ⊆ DTIME(npolylogn).

In the case when the edges have unit costs, the weighted s-spanner problem is called the directed s-spanner
problem. For low-stretch spanners, when s = 2, there is a tight Θ(logn)-approximate algorithm [26, 44];
with unit lengths and costs, when s = 3, 4, there are Õ(n1/3)-approximation algorithms [10, 23]. For s > 4
with general lengths, the best known approximation is Õ(n1/2) [10].

The pairwise spanner problem considers graphs with unit edge costs, D can be any subset of V ×V , and
the target distances are general. The state-of-the-art is Õ(n4/5)-approximate for general lengths [32] and
min{Õ(k1/2+ε), Õ(n3/5+ε)}-approximation for unit lengths [19, 32].

When the target distances are infinite and the edges have unit lengths, the pairwise weighted spanner
problem captures the directed Steiner forest problem. For the directed Steiner forest problem, there is an
min{Õ(k1/2+ε), Õ(n2/3+ε)}-approximate algorithm for general costs [10, 18] and an Õ(n4/7)-approximate
algorithm for unit costs [1].

The extreme case when there is only one terminal pair, namely the restricted shortest path problem, is
NP -hard, and it admits a fully polynomial-time approximation scheme (FPTAS)1 [36, 45].

1An FPTAS for a minimization problem minimizes the objective within a factor of 1+ε in polynomial time. The polynomial
is in terms of the input size of the problem and 1/ε.

2



1.1 Our contributions

1.1.1 Pairwise weighted spanners

To the best of our knowledge, none of the variants studied in the literature gives efficient sublinear-factor
approximation algorithms for the pairwise weighted spanner problem, even in the case of unit edge length.
Our main result for pairwise weighted spanners is stated as follows and proved in Section 2.

Definition 1.1. Pairwise Weighted Spanner
Instance: A directed graph G = (V,E) with n vertices and edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ V × V of vertex pairs and their corresponding pairwise distance
bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ D.

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all (s, t) ∈ D.

Theorem 1.2. For any constant ε > 0, there is a polynomial-time randomized algorithm for Pairwise
Weighted Spanner with approximation ratio Õ(n4/5+ε), which succeeds in resolving all pairs in D with
high probability.2

The Pairwise Weighted Spanner problem is equivalent to the problem of finding a minimum-cost
Steiner forest under pairwise distance constraints, and hence our result is the first polynomial-time o(n)-
approximate algorithm for the directed Steiner forests with distance constraints. This problem is hard to
approximate within a factor of O(2log

1−ε n) unless NP ⊆ DTIME(npolylogn) even for the special case when
all vertex pairs are required to be connected and the stretch s ≥ 5 [44].

1.1.2 All-pair weighted distance preservers

When the target distances are the distances in the given graph G, the spanner problem captures the distance
preserver problem. When edges have unit costs, there exists a distance preserver of cost O(n) if the number
of the source vertices is O(n1/3) [12]. When edges have unit costs and lengths, the state-of-the-art result
is Õ(n3/5+ε)-approximate [19]. We consider the case where the terminal set consists of all vertex pairs
and the subgraph is required to preserve the distances of all vertex pairs. This problem is called All-pair
Weighted Distance Preserver. Our result for this problem is stated as follows and proved in Section 3.

Definition 1.3. All-pair Weighted Distance Preserver
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}.
Objective: Find a min-cost subgraph H of G such that dH(s, t) = dG(s, t), for all (s, t) ∈ V × V .

Theorem 1.4. For any constant ε > 0, there is a polynomial-time randomized algorithm for All-pair
Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which succeeds in resolving all pairs
in V × V with high probability.

Beside distance preservers, there are other previous special-case results for the all-pair weighted spanner
problem. When edges have unit costs, the state-of-the-art is an Õ(n1/2)-approximation algorithm [10]. When
there are no distance constraints, this problem is termed the minimum strongly connected subgraph problem
and is equivalent to the all-pair Steiner forest problem. This problem is NP -hard and does not admit a
polynomial-time approximation scheme if NP 6= P [39]. The best algorithm is a 3/2-approximation [54].

1.1.3 Online weighted spanners

Next, we turn to online weighted spanners. In the online problem, the directed graph, the edge lengths, and
the edge costs are given offline. The vertex pairs and the corresponding target distances arrive one at a time,
in an online fashion, at each time stamp. The algorithm must irrevocably select edges at each time stamp

2Throughout our discussion, when we say high probability we mean probability at least 1− 1/n.
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and the goal is to minimize the cost, subject to the target distance constraints. We call this problem the
Online Pairwise Weighted Spanner problem. For notation convenience, the vertex pair (si, ti) denotes
the i-th pair that arrives online.

Definition 1.5. Online Pairwise Weighted Spanner
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}, and vertex pairs D = {(si, ti) ∈ V × V | i ∈ [k]} (k is unknown) with their corre-
sponding pairwise distance bounds Dist(si, ti) ∈ Q≥0 (where Dist(si, ti) ≥ dG(si, ti)) arrive online one at a
time.

Objective: Upon the arrival of (si, ti) with Dist(si, ti), construct a min-cost subgraph H of G such that
dH(si, ti) ≤ Dist(si, ti) by irrevocably adding edges from E.

The performance of an online algorithm is measured by its competitive ratio, namely the ratio between the
cost of the online solution and that of an optimal offline solution. With unit edge costs, the best algorithm
is Õ(n4/5)-competitive; with unit edge costs and lengths, the state-of-the-art is min{Õ(k1/2+ε), Õ(n2/3+ε)}-
competitive [32]. Our result for Online Pairwise Weighted Spanner is stated as follows and proved in
Section 4.

Theorem 1.6. For any constant ε > 0, there is a polynomial-time randomized online algorithm for Online
Pairwise Weighted Spanner with competitive ratio Õ(k1/2+ε), which succeeds in resolving all pairs in D
with high probability.

In a special case of Pairwise Weighted Spanner where the source vertex s ∈ V is fixed, we call this
problem Single-source Weighted Spanner. Without distance constraints, this problem is equivalent
to the directed Steiner tree problem.3 The best algorithm for the directed Steiner tree problem is O(kε)-
approximate [15].

Definition 1.7. Single-source Weighted Spanner
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}, and a set D ⊆ {s}×V of vertex pairs and their corresponding pairwise distance bounds
Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ D).

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all (s, t) ∈ D.

When D ⊆ {s} × V , a single-source weighted spanner connects s to the sinks. We say that s is the root
of the single-source weighted spanner and the single-source weighted spanner is rooted at s. The definition
for a single-sink weighted spanner where the terminal pairs share the same sink is defined similarly.

The online version of Single-source Weighted Spanner is termedOnline Single-source Weighted
Spanner. For notation convenience, the vertex pair (s, ti) denotes the i-th pair that arrives online.

Definition 1.8. Online Single-source Weighted Spanner
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}, and vertex pairs D = {(s, ti) | ti ∈ V, i ∈ [k]} (k is unknown) with their corresponding
pairwise distance bounds Dist(s, ti) ∈ Q≥0 (where Dist(s, ti) ≥ dG(s, ti)) arrive online one at a time.

Objective: Upon the arrival of (s, ti) with Dist(s, ti), construct a min-cost subgraph H of G such that
dH(s, ti) ≤ Dist(s, ti) by irrevocably selecting edges from E.

The state-of-the-art result for online directed Steiner trees is Õ(kε)-competitive implied by a more general
online buy-at-bulk network design framework [14]. Our result is stated as follows and proved in Section 4.

Theorem 1.9. For any constant ε > 0, there is a polynomial-time randomized online algorithm for Online
Single-source Weighted Spanner with approximation ratio Õ(kε), which succeeds in resolving all pairs
in D with high probability.

Our online framework essentially generalizes the online Steiner forest problem by allowing distance con-
straints when edge lengths are positive integers of magnitude poly(n). We note that the online algorithms
also imply efficient algorithms for the corresponding offline problems with the same approximation ratios.

3Throughout the paper, the term without distance constraints means that the target distances are infinity. This is equivalent
to the connectivity problem.
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1.1.4 Summary

We summarize our main results for weighted spanners in Table 1 by listing the approximation (competitive)
ratios and contrast them with the corresponding known approximation (competitive) ratios. We note that of-
fline Õ(k1/2+ε)-approximate Pairwise Weighted Spanner and offline Õ(kε)-approximate Single-source
Weighted Spanner can be obtained by our online algorithms.

Problem Our Results Previous Results

Pairwise

Weighted

Spanner

Õ(n4/5+ε) (Thm 1.2)

Õ(k1/2+ε) (Thm 1.6)

Õ(n4/5) (unit edge costs) [32]

Õ(n3/5+ε) (unit edge costs and lengths) [19]

min{Õ(k1/2+ε), Õ(n2/3+ε)} (without distance constraints) [10, 18]

Õ(n4/7+ε) (unit edge costs and lengths, without distance

constraints) [1]

All-pair

Weighted

Spanner

Õ(n1/2+ε) (distance

preservers, Thm 1.4)

Õ(n1/2) (unit edge costs) [10]

3/2 (without distance constraints) [54]

Online

Pairwise

Weighted

Spanner

Õ(k1/2+ε) (Thm 1.6)

Õ(n4/5) (unit edge costs) [32]

min{Õ(k1/2+ε), Õ(n2/3+ε)} (unit edge costs and lengths) [32]

Õ(k1/2+ε) (without distance constraints) [14]

Single-

Source

Weighted

Spanner

Õ(kε) (also holds

for online, Thm 1.9)

O(kε) (without distance constraints) [15]

Õ(kε) (online, without distance constraints) [14]

Table 1: Summary of the approximation and competitive ratios. Here, n refers to the number of vertices and
k refers to the number of terminal pairs. All edge lengths are positive integers in poly(n) and all edge costs are
non-negative rational numbers. We note that Pairwise Weighted Spanner without distance constraints
is equivalent to the directed Steiner forest problem. The all-pair weighted spanner problem without distance
constraints is equivalent to the all-pair Steiner forest problem or the minimum strongly connected subgraph
problem.

1.2 High-level technical overview

Most of the literature on approximation algorithms for offline spanner problems [10,11,19,21,28,32] partition
the terminal pairs into two types: thin or thick. A pair (s, t) ∈ D is thin if the graph Gs,t induced by feasible
s ; t paths has a small number of vertices, and thick otherwise. To connect each thick terminal pair (s, t),
it is sufficient to sample vertices from the graph G to hit Gs,t, and then add shortest-path in-and-out-
arborescences rooted at the sampled vertices. To connect each thin terminal pair (s, t), one uses a flow-based
linear program (LP) and then rounds the solution.

1.2.1 Pairwise Weighted Spanners

For this problem, the goal is to approximately minimize the total cost while maintaining the required
distances between terminal pairs, so it turns out that the approach for directed Steiner forests [10, 28] is
more amenable to this formulation. The approach for directed Steiner forests [10, 28] is slightly different,
namely, thick pairs are connected by adding cheap paths that contain at least one sampled vertex. In the

5



Steiner forest algorithms, there are usually three cases for the terminal pairs: 1) pairs that are thick and
have low-cost connecting paths, 2) the majority of the remaining pairs have high-cost connecting paths, and
3) the majority of the remaining pairs have low-cost connecting paths.

With distance constraints, we have to modify the analysis for all three cases. The actual implementation
of the strategy requires several new ideas and it significantly departs from the analysis of [10, 28] in several
aspects, as we describe below.

In our first case, we cannot simply add cheap paths because they might violate the distance requirement.
Instead, we add feasible cheap paths that satisfy the distance requirements, in order to connect the terminal
pairs. For this purpose, we use the restricted shortest path FPTAS from [36,45] as our subroutine.

The remaining two cases are resolved by using an iterative greedy algorithm based on a density argument.
In each iteration, the greedy algorithm constructs a partial solution E′ ⊆ E with low density. We define the
density of E′ to be the ratio of the total edge cost of E′ to the number of pairs connected by E′. Iteratively
adding low-density partial solutions leads to a global solution of approximately minimum cost.

In the second case, [10,28] use the low-density junction trees (the union of an in-arboresence and an out-
arboresence rooted at the same vertex) from [18] in order to connect pairs with high-cost paths. However,
the junction tree approximation in [18] cannot handle the distance constraints in our setting. Fortunately,
with slight modifications, the junction tree approximation from [19] can be made to handle our distance
requirements.

In the third case, [10,28] formulate an LP where each edge has an indicator variable, then round the LP
solution, and argue that with high probability, one can obtain a low-density partial solution that connects
the terminal pairs with cheap paths. Two challenges arise in our setting. First, the LP formulation is
different from the one in [10,28] because we have to handle both distance and cost requirements. We resolve
these constraints by using a different separation oracle from the previous literature [36, 45], namely we use
the FPTAS for the resource-constrained shortest path problem from [38] (see Section 1.3.1 for more details).
Secondly, in order to round the LP solution, we can no longer use the analysis in [10]. This is because
the LP rounding scheme uses a union bound that depends on the number of the minimal subset of edges
whose removal disconnects the terminal pairs (i.e., anti-spanners). Since we have to handle both lengths
and costs in the LP constraints, we consider all possible subsets of edges and this is sufficient to achieve the
Õ(n4/5+ε)-approximation.

1.2.2 All-pair Weighted Distance Preservers

For this problem, the solution takes advantage of the requirement that we have to exactly preserve the all-
pair distances. It turns out that the strategy for the spanner problems [10, 11, 19, 21, 32] is more amenable.
Recall that terminal pairs are partitioned into thin or thick.

To settle thick terminal pairs, most of the previous work that considers graphs with unit edge cost samples
vertices from the graph G to hit Gs,t, and then adds shortest-path in-and-out-arborescences rooted at the
sampled vertices. Note that the cost of an in-arborescence or an out-arborescence is always n− 1. However,
with edge costs, it is not clear how the cheapest shortest-path in-and-out arborescences can be obtained.
Instead, we add cheap single-source and single-sink weighted distance preservers rooted at the sampled
vertices. This approach requires using the algorithm for Online Single-source Weighted Spanner
described in details in Section 4. The key observation is that the terminal pairs of any single-source (single-
sink) weighted distance preserver is a subset of all vertex pairs. This implies that any approximately optimal
single-source (single-sink) weighted distance preserver must be cheap compared to the cost of the optimal
all-pair weighted distance preserver.4

The approach that settles the thin pairs closely follows the algorithm in [10], which rounds a fractional
solution of the LP for all-pair spanners. Different from Pairwise Weighted Spanner, we only have to
handle the lengths in the LP constraints, so the analysis follows [10] and we can get a better approximation

4One might ask if the same approach for thick pairs works if we consider all-pair spanners instead of distance preservers.
Unfortunately, for spanners, it is possible that a nice approximate solution connects some thick pairs by a cheap path that is
feasible but not the shortest. Single-source and single-sink weighted distance preservers might be too expensive. This issue
does not arise when edges have unit costs since the cost of any arborescence is always n− 1.
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ratio. Ultimately, the costs for settling thick and thin pairs are both at most an Õ(n1/2+ε) factor of the
optimal solution.

1.2.3 Online Weighted Spanners

The main challenge for the online pairwise weighted spanner problem is that the standard greedy approach,
which iteratively extracts low-density greedy solutions partially connecting terminal pairs, is no longer ap-
plicable. Another challenge is to handle the distance constraints for the terminal pairs that arrive online.
Fortunately, the online spanner framework from [32] already adapts both the approach introduced in [14],
which constructs a collection of junction trees in an online fashion, and the approach of [19], which judiciously
handles distance constraints when edges have unit lengths. Our online results are obtained by extending the
framework of [32] from graphs with unit edge costs to general edge costs.

1.3 Related work

1.3.1 Resource-constrained Shortest Path

In the resource-constrained shortest path problem [38] for directed networks, each edge is associated with r
non-negative weights. Each type of weight i ∈ [r − 1] is associated with a budget. The r-th weight denotes
the cost of the edge. The goal is to find a minimum-cost path that connects the single source to the single
sink without violating the r − 1 budgets. The results of [38] show that when r is a constant, there exists
an FPTAS that finds a path with a cost at most the same as the feasible minimum-cost path by violating
each budget by a factor of 1 + ε. When r = 2, this problem is equivalent to the restricted shortest path
problem [36, 45], which has been used extensively in the LP formulations for spanners and directed Steiner
forests [10, 19, 21, 28, 32]. For our purpose, r = 3 because the LP formulation implicitly considers whether
there exists a feasible path between terminal pairs whose cost exceeds a given threshold.

1.3.2 Undirected Bi-criteria Network Design

A general class of undirected bi-criteria network problems was introduced by [46]. A more related problem
to ours is the undirected Steiner tree problem. The goal is to connect a subset of vertices to a specified
root vertex. In the bi-criteria problem, the distance from the root to a target vertex is required to be
at most the given global threshold. [46] presented a bi-criteria algorithm for undirected Steiner trees that
is O(log n)-approximate and violates the distance constraints by a factor of O(log n). Following [46], [35]
extends this result to a more general buy-at-bulk bi-criteria network design problem, where the objective is
polylog(n)-approximate and violates the distance constraints by a factor of polylog(n).

Recently, [29,34] studied the tree embedding technique used for undirected network connectivity problems
with hop constraints. For a positively weighted graph with a global parameter h ∈ [n], the hop distance
between vertices u and v is the minimum weight among the u-v-paths using at most h edges. Under the
assumption that the ratio between the maximum edge weight and the minimum edge weight is poly(n), the
tree embedding technique allows a polylog(n)-approximation by relaxing the hop distance within a polylog(n)
factor for a rich class of undirected network connectivity problems.

1.3.3 Other related directed network problems

The more related directed network problems are variants of spanners and Steiner problems, including directed
Steiner trees [15, 56], directed Steiner network [18], fault-tolerance spanners [21, 22], and parameterized
complexity analysis for directed s-spanners [31]. For a comprehensive account of the vast literature, we refer
the reader to the excellent survey for spanners [2].

There is an extensive list of other related directed network problems, including distance preservers [12,19],
approximate distance preservers [41], reachability preservers [1], and buy-at-bulk network design [5]. One
direction along this line of research is to study the extremal bounds for the optimal subgraph in terms of
the input parameters, instead of comparing the costs of an approximate and an optimal solution [1, 12, 41].
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Another direction is to consider the online problem where terminal pairs arrive online and the goal is to
irrevocably select edges so that the cost of the network is approximately minimized [3, 14, 32].

1.4 Organization

In Section 2, we present the Õ(n4/5+ε)-approximation algorithm for Pairwise Weighted Spanner. In
Section 3, we present the Õ(n1/2+ε)-approximation algorithm for All-pair Weighted Distance Pre-
server. In Section 4, we present the Õ(k1/2+ε)-competitive algorithm for Online Pairwise Weighted
Spanner and the Õ(kε)-competitive algorithm for Online Single-source Weighted Spanner.

2 Pairwise Weighted Spanners

We recall the definition of the Pairwise Weighted Spanner problem.

Definition 1.1. Pairwise Weighted Spanner
Instance: A directed graph G = (V,E) with n vertices and edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ V × V of vertex pairs and their corresponding pairwise distance
bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ D.

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all (s, t) ∈ D.

In this section, we prove Theorem 1.2.

Theorem 1.2. For any constant ε > 0, there is a polynomial-time randomized algorithm for Pairwise
Weighted Spanner with approximation ratio Õ(n4/5+ε), which succeeds in resolving all pairs in D with
high probability.

For ease of presentation, we assume that we have a guess for the cost of the optimal solution - OPT

for that instance as in [10, 28]. Let τ denote the value of our guess. We set τ0 = mine∈E{c(e) | c(e) >
0}; then we carry out multiple iterations of our overall procedure setting τ to be equal to an element in
{(τ0, 2 · τ0, 4 · τ0, . . . , 2i · τ, . . . ,

∑

e∈E c(e))} for those iterations. Finally, we take the cheapest spanner from
across all these iterations. Thus, it is sufficient to give the approximation guarantee for the iteration when
OPT ≤ τ ≤ 2 · OPT. We can obtain this guess in O(log(

∑

e∈E c(e)/τ0)) iterations, which is polynomial in
the input size.

We next define some notions that are commonly used in the spanner and Steiner forest literature. Let
us fix some useful parameters β = n3/5, and L = τ/n4/5. We say that a path p(s, t) that connects a specific
terminal pair (s, t) is feasible if

∑

e∈p(s,t) ℓ(e) ≤ Dist(s, t). We say that p(s, t) is cheap if the
∑

e∈p(s,t) c(e) ≤ L.
We say that a terminal pair (s, t) ∈ D is thick if the local graph Gs,t = (V s,t, Es,t) induced by the vertices
on feasible s; t paths of cost at most L has at least n/β vertices; we say it is thin otherwise. We note that
the definitions of thick and thin pairs are slightly different from how they are defined in [10,28] (see Remark
2.4 for the precise reason). We say that a set E′ ⊆ E settles (or resolves) a pair (s, t) ∈ D if the subgraph
(V,E′) contains a feasible s; t path.

2.1 Resolving thick pairs

Let S = {s | ∃t : (s, t) ∈ D} and T = {t | ∃s : (s, t) ∈ D}. We first settle the thick pairs with high
probability. We do this by sampling some vertices using Algorithm 1 and then adding some incoming paths
and outgoing paths from the samples to the vertices in S and T respectively using Algorithm 2. We have
to ensure that any path we build is both feasible and cheap and we do that with the help of a black box for
the restricted shortest path problem (see Definition 2.2) which we formally define later.

Claim 2.1. Algorithm 1 selects a set of samples R such that with high probability any given thick pair (s, t)
has at least one vertex from its local graph in R.

Proof. The standard proof is deferred to Appendix A.1.
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Algorithm 1 Sample(G(V,E))

1: R← φ, k ← 3β lnn.
2: Sample k vertices independently and uniformly at random and store them in the set R.
3: return R.

In Algorithm 2, we call Algorithm 1 to get a set of samples R. Then, for each u ∈ R, s ∈ S, t ∈ T , we try
to add a shortest s; u path and a shortest u; v path each of cost at most L, of increasing length.

For this purpose, we use the restricted shortest path (bi-criteria path) problem from [45].

Definition 2.2. Restricted Shortest Path
Instance: A directed graph G = (V,E), edge lengths ℓ : E → R≥0, edge costs c : E → R≥0, a vertex

pair (s, t) ∈ V × V , and a threshold T ∈ R>0.
Objective: Find a minimum cost s; t path P such that

∑

e∈P ℓ(e) ≤ T .

The following lemma from [36,45] gives an FPTAS for Restricted Shortest Path.

Lemma 2.3. ( [36, 45]) There exists an FPTAS for Restricted Shortest Path that gives a (1 + ε, 1)
approximation, i.e., the path ensures that

∑

e∈P ℓ(e) ≤ T and has a cost at most 1 + ε times the optimal.

Using Lemma 2.3 as our black box, we binary search for a path of length between mine∈E{ℓ(e)} and
n ·maxe∈E{ℓ(e)} that will give us a cheap s; u path. Since the edge lengths and thus the path lengths are
all integers, this is possible in O(log(n ·maxe∈E{ℓ(e)})) iterations which is polynomial in the input size. It
is possible that we never find an s; u path of cost less than L, in which case we just ignore this (s, u) pair.
We then do the same for all the (u, t) pairs. See the full details in Algorithm 2.

Remark 2.4. The need to use Lemma 2.3, as opposed to a simple shortest path algorithm, is the main
difference we have from [10] for resolving thick pairs. We have to ensure that any path we add is both cheap
and feasible, unlike [10], which just needs to ensure that the path is cheap. Note that this is the reason
our definition of thick pairs differs from that of [10] which necessitates some more major modifications in
subsequent parts of the algorithm as well.

Algorithm 2 Thick pairs resolver (G(V,E), {ℓ(e), c(e)}e∈E)

1: R← φ, G′ ← φ.
2: R← Sample(G(V,E)).
3: for u ∈ R do

4: for s ∈ S do

5: Use RSP to binary search for the shortest s; u path of cost at most L · (1 + ε) and add it to G′

if it exists.
6: for u ∈ R do

7: for t ∈ T do

8: Use RSP to binary search for the shortest u; t path of cost at most L · (1 + ε) and add it to G′

if it exists.
9: return G′

Lemma 2.5. With high probability, the set of edges returned by Algorithm 2 resolves all thick pairs in D
with a total cost Õ(n4/5 · τ). Moreover, Algorithm 2 runs in polynomial time.

Proof. If some u ∈ R was originally in the local graph Gs,t, then Algorithm 2 would have added at least one
s ; u ; t path from Gs,t that is feasible and has cost less than 2L(1 + ε). This is because if u was in the
local graph of (s, t), then there exists an s; u path of cost less than L of some length ℓ ∈ [n ·maxe∈E{ℓ(e)}].
Since we binary search over the possible values for ℓ and take the lowest possible one, we will find such a
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path with distance at most the minimum length of an s ; t path that is cheap. Note that we could have a
smaller distance because we use a larger bound for cost for our path in comparison to the local graph. Using
Claim 2.1, such a cheap and feasible path will exist with a high probability for all (s, t) ∈ D that are thick
for some samples u ∈ R.

Now we analyze the cost of Algorithm 2. The cost from all the edges we add in Algorithm 2 would be
O(n · k · L). This is because we pick k samples and each of them needs to add an incoming and outgoing
path of cost L(1+ ε) to at most n vertices. Plugging in the values for k and L, we can see that the total cost
would be Õ(n4/5 · τ). In addition, note that Algorithm 2 will run in polynomial time because our binary
search only needs to search the integers in [mine∈E{ℓ(e)}, n ·maxe∈E{ℓ(e)}].5

2.2 Resolving thin pairs

Now we focus on the thin pairs after removing the settled thick pairs from the set D. We define the density
of a set of edges E′ to be the ratio of the total cost of these edges to the number of pairs settled by those
edges. We first describe how to efficiently construct a subset K of edges with density Õ(n4/5+ε)τ/|D|. Then
we iteratively find edge sets with that density, remove the pairs, and repeat until we resolve all thin pairs.
This gives a total cost of Õ(n4/5+ε · τ).

We construct K by building two other sets K1 and K2 and picking the smaller density of them. Let H be
an optimal solution with cost τ . Let C be the set of demand pairs for which the minimum cost of a feasible
s; t path in H is at least L (note that the local graph for these pairs would be empty).

We have two cases:

• |D|/2 ≤ |C| ≤ |D| and

• 0 ≤ |C| < |D|/2.

2.2.1 When |D|/2 ≤ |C| ≤ |D|
We will use the notion of junction tree as a black box for resolving this case. Informally, junction trees are
trees that satisfy significant demand at low cost. They have a root node r, a collection of paths into r, and
paths out of r to satisfy some of this demand. In our case, we also need these paths to be cheap and short.
The following is a formal definition of a junction tree variant that fits the needs of our problem.

Definition 2.6. Distance-preserving Weighted Junction Tree
Let G = (V,E) be a directed graph with edge lengths ℓ : E → R≥0, edge costs c : E → R≥0, and a

set D ⊆ V × V of ordered pairs and their corresponding pairwise distance bounds Dist : D → R (where
Dist(s, t) ≥ dG(s, t) for every terminal pair (s, t) ∈ D), and a root r ∈ V . We define distance-preserving
weighted junction tree to be a subgraph H of G that is a union of an in-arboresences and an out-arboresences
both rooted at r containing an s ; t path going through the root r of length at most Dist(s, t), for one or
more (s, t) ∈ D.

The density of a junction tree is defined as the ratio of the sum of costs of all edges in the junction tree
to the number of pairs settled by the junction tree.

Claim 2.7. If |D|/2 ≤ |C| ≤ |D|, then there exists a distance-preserving weighted junction tree of density
O
(

n4/5 · τ/|D|
)

.

Proof. Let H be an optimal solution subgraph of G that connects all the costly thin pairs. Take the paths
in H connecting the pairs in C. The sum of the costs of all such paths is at least |C|L. Now, let µ be the
maximum number of these paths that any edge in G belongs to. The sum of the costs of the paths is at
most µ · τ and thus there must exist an edge belonging to µ ≥ |C|L/τ paths. Pick such an arbitrary edge
and call it the heavy-enough edge, and call its source as the heavy-enough vertex, denoted hv. Now, consider

5Note that Algorithm 2 will still run in polynomial-time if we use an exhaustive search instead of a binary search since the
edge lengths are in poly(n).
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a tree made by adding feasible paths from s ∈ S to hv and hv to t ∈ T that satisfies at least µ pairs. We
do not add an edge if it is not in H . This ensures that the cost of this tree is less than τ . This tree would
connect at least µ pairs, and thus it would have a density at most τ/µ = τ2/(|C|L).

If L = τ/n4/5, then τ2/(|C|L) = n4/5 ·τ/|C|. If |D| > |C| > |D|/2, we have n4/5 ·τ/|C| = O
(

n4/5 · τ/|D|
)

and thus we have proved the existence of a junction tree of the required density.

Remark 2.8. The analysis so far for this case is quite similar to [10]. The counting argument to establish
the existence of a heavy-enough edge is identical. However, the usage of this counting argument to get a
structure of the required density is slightly different because we need to account for feasibility. The main
difference however is the fact that we need to use distance-preserving weighted junction tree as opposed to
regular junction trees.

The following lemma is essentially from [19] (Theorem 5.1). But the small yet important modifications
that we need are not covered in [19]. We defer the proof to Appendix A.2.

Lemma 2.9. For any constant ε > 0, there is a polynomial-time approximation algorithm for the minimum
density distance-preserving junction tree as long as the edge lengths are integral and polynomial in n. In
other words, there is a polynomial time algorithm which, given a weighted directed n vertex graph G = (V,E)
where each edge e ∈ E has a cost c(e) ∈ R≥0 and integral length ℓ(e) ∈ {1, 2, ..., poly(n)}, terminal pairs
P ⊆ V × V , and distance bounds Dist : P → N (where Dist(s, t) ≥ dG(s, t)) for every terminal pair
(s, t) ∈ P , approximates the following problem to within an O(nε) factor:

• Find a non-empty set of edges F ⊆ E minimizing the ratio:

min
r∈V

∑

e∈F c(e)

|{(s, t) ∈ P |dF,r(s, t) ≤ Dist(s, t)}|
(1)

where dF,r(s, t) is the length of the shortest path using edges in F which connects s to t while going through
r (if such a path exists).

Lemma 2.10. When |D|/2 ≤ |C| ≤ |D|, we can get a set of edges K1 that has density at most Õ(n4/5+ε ·
τ/|D|).

Proof. From Claim 2.7, we can see that there exists a distance-preserving weighted junction tree of density
at most O(n4/5 · τ/|D|). Now, we can just use Lemma 2.9 to get a distance-preserving weighted junction
tree with density at most Õ(n4/5+ε · τ/|D|) and store the edges returned by it in K1.

2.2.2 When 0 ≤ |C| < |D|/2
To handle this case, we build a linear program (LP) that fits our problem’s requirements, solve it ap-
proximately with the help of a separation oracle, and finally round it to get a set of edges with density
Õ(n4/5+ε) · τ/|D|. The linear program is quite similar to the one used in [10,28], but it has a subtle distinc-
tion that significantly changes the tools and proof techniques we have to use. We will be referring to [28]
quite frequently in this section because [10] does not directly present a way to solve the LP (it relies on [28]
for this).

Building and solving the linear program We will need the following definition in order to set up a
relevant LP. For (s, t) ∈ D, let Π(s, t) be the set of all feasible s ; t paths of cost at most L, and let
Π = ∪(s,t)∈DΠ(s, t). Each edge e has a capacity xe, each path p ∈ Π carries fp units of flow, and ys,t is the
total flow through all paths from s to t. Define a linear program as follows:
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min
∑

e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2
,

∑

Π(s,t)∋p∋e

fp ≤ xe ∀(s, t) ∈ D, e ∈ E,

∑

p∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(2)

LP (2) tries to connect at least |D|/2 pairs from D using paths of cost at most L while minimizing the
total cost of the edges that are used. It is almost identical to the corresponding LP in [10, 28] for Steiner
forests, except that we consider only feasible paths that are cheaper than L, while they consider all paths
that are cheaper than L.

Lemma 2.11. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner. Then, the
optimal value of LP (2) corresponding to that instance is at most OPT. In addition, a solution for LP (2)
of value at most (1 + ε) ·OPT can be found in polynomial time.

Proof. Let us consider the dual of LP (2).

max
∑

e∈E

xe +
∑

(s,t)∈D

ys,t −W ·
|D|
2

(3a)

subject to
∑

(s,t)∈D

z(s,t),e + c(e) ≤ xe ∀e ∈ E, (3b)

ys,t + ws,t ≥W ∀(s, t) ∈ D, (3c)

ws,t ≤
∑

e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t), (3d)

W,xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E. (3e)

Our dual is slightly different from the dual in [10, 28]. Constraints in (3b), (3c), and (3e) are identical,
but constraints in (3d) are slightly different because the set of paths Π we consider are different from the set
of paths considered in [28]. As in [28], we could find violating constraints for those constraints in (3b), (3c),
and (3e) in polynomial time. The only constraints that require care are the constraints in (3d), which may
be exponentially many.

When we consider a single (s, t) pair, [28] pointed out that their variant of constraints in (3d) are
equivalent to Restricted Shortest Path which is NP -hard, see [36,45]. [28] then uses an FPTAS [36,45]
for Restricted Shortest Path as an approximate separation oracle for those constraints. But we need
a different separation oracle because the set of paths Π allowed in our LP have two restrictions (as opposed
to [28] which has only one) in addition to an objective. We now define the Resource-constrained
Shortest Path problem that is presented in [38].

Definition 2.12. Resource-constrained Shortest Path (k-RCSP)
Instance: A directed graph G = (V,E), with edge costs c : E → Q≥0, and a pair (s, t). For each edge

e ∈ E, we have a vector re = (r1,e, r2,e, . . . , rk,e) of size k where each ri,e ∈ Q≥0 ∀i ∈ [k].
Objective: Find a minimum cost s; t path P such that

∑

e∈P ri,e ≤ Ri, ∀i ∈ [k].

Claim 2.13. 2-RCSP acts as a separation oracle for those constraints in equation (3d) that correspond to
a specific (s, t) ∈ D.
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Proof. We can use one of the resource constraints in 2-RCSP for ensuring that the distance constraints for
(s, t) are satisfied and use the other resource constraint to ensure that ws,t >

∑

e∈P z(s,t),e. In other words,
we use one resource to model the edge lengths and another to model the dual variable z{s,t},e. We can now
try to find a minimum cost s; t path in this instance of 2-RCSP where costs for 2-RCSP are equivalent to
the costs in our instance of Pairwise Weighted Spanner. If the minimum cost obtained when we meet
these constraints is less than L, then we have a violating constraint and if not we do not have one.

The Resource-constrained shortest path problem is NP -hard [38]. So, we instead get a sepa-
ration oracle for an approximate variant of LP (3). Now, given resource constraints R1, R2, . . . , Rk for the
Resource-constrained shortest path problem, let OPTRCSP be the cost of the minimum cost s; t
path that satisfies the resource constraints. An (1; 1 + ε, . . . , 1 + ε)-approximation scheme finds an s ; t
path whose cost is at most OPTRCSP , but the resource constraints are satisfied up to a factor of 1 + ε for
that path.

Lemma 2.14. (RCSP- [38]) If k is a constant then there exists a fully polynomial time (1; 1+ε, . . . , 1+ε)-
approximation scheme for the k-RCSP that runs in time polynomial in input size and 1/ε.

We have to be careful in our usage of Lemma 2.14. The FPTAS for the Restricted Shortest Path problem
from [45] cleanly serves the requirements of [28] as it is a (1 + ε; 1) approximation and it can strictly satisfy
the constraints. [28] then uses these constraints to ensure that the weight requirements are strictly met. But
the FPTAS given by [38] does not strictly satisfy the constraints since we need both the length and weight
constraints to be satisfied strictly.

We overcome this obstacle by re-purposing the objective to handle the edge weights and by carefully
ensuring that any error in the path length caused by using the 1 + ε approximation from [38] does not
make us use an incorrect path. To ensure that we do not select an incorrect path, it is sufficient to ensure
that the potential error from [38] is less than any error that is possible in our given input graph. Since the
edge lengths are positive integers, observe that for any two s ; t paths with different lengths, the length
difference is at least one. In addition, the path lengths are at most n ·maxe∈E{ℓ(e)}. Since all edge lengths
are integral and of magnitude poly(n), it is sufficient to have ε ≤ 1/(n · maxe∈E{ℓ(e)}). Thus, we can fix
ε such that 1/ε = O(n · poly(n)) to ensure that the running time will remain polynomial in input size and
strictly satisfy the distance constraints.

Now, we take an approximate version of LP (3) which is the following LP

max
∑

e∈E

xe +
∑

s,t

ys,t −W ·
|D|
2

subject to
∑

s,t

z(s,t),e + c(e) ≤ xe ∀e ∈ E,

ys,t + ws,t ≥W ∀(s, t) ∈ D,
(1 + ε) · ws,t ≤

∑

e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t),

W, xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E.

(4)

We can exactly solve LP (4) using [38] and thus we can also exactly solve the dual of LP (4) which would
be:
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min
∑

e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2
,

∑

Π(s,t)∋P∋e

fp ≤ xe · (1 + ε) ∀(s, t) ∈ D, e ∈ E,

∑

P∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(5)

Let OPT(ε) and OPT be the optimal values to (5) and (2), respectively. Observe that OPT(ε) ≤ OPT

because the constraints in LP (5) are slacker than the constraints in (2) and both these LPs are minimization
LPs. Also note that if x̂(ε) is a feasible solution to (5), then by replacing the value of every variable xe in
x̂(ε) by min{1, xe · (1 + ε)}, we get a new solution x̂ which is a feasible solution to (2). The value of the
optimal solution then is at most (1 + ε) ·OPT(ε) ≤ (1 + ε) ·OPT.

Rounding our solution Now we need to round the solution of LP (2) appropriately to decide which
edges we need to include in our final solution. The overall structure of our rounding procedure is similar to
that of [10], but there are some important differences in the proof techniques we use here because the nature
of our problem prevents us from using some of the techniques used by [10]. Let {x̂e} ∪ {ŷs,t} be a feasible
approximate solution to LP (2). Let K2 be the set of edges obtained by running Algorithm 3 on {x̂e}.

Algorithm 3 Thin pair rounding [LP rounding] (xe)

1: E′′ ← φ .
2: for e ∈ E do

3: Add e to K2 with probabilitymin{n4/5 lnn · xe, 1};
4: return E′′

The following lemma is an adaptation of Claim 2.3 from [10].

Claim 2.15. Let A ⊆ E. If Algorithm 3 receives a fractional vector {x̂e} with nonnegative entries satisfying
∑

e∈A x̂e ≥ 2/5, the probability that it outputs a set E′′ disjoint from A is at most exp(−2n4/5 · lnn/5).

Proof. If A contains an edge e which has x̂e ≥ 1/(n4/5 lnn), then e is definitely included in E′′.
Otherwise, the probability that no edge in A is included in E′′ is

∏

e∈A

(1− n4/5 lnn · x̂e) ≤ exp

(

−
∑

e∈A

n4/5 lnn · x̂e
)

≤ exp

(

−2

5
n4/5 lnn

)

.

Let us now define anti-spanners which serve as a useful tool to analyze the rounding algorithm for our
LP. Our definition of anti-spanners is slightly different from Definition 2.4 in [10] to account for the fact we
also have distance constraints.

Definition 2.16. A set A ⊆ E is an anti-spanner for a terminal pair (s, t) ∈ E if (V,E \ A) contains no
feasible path from s to t of cost at most L. If no proper subset of anti-spanner A for (s, t) is an anti-spanner
for (s, t), then A is minimal. The set of all minimal anti-spanners for all thin edges is denoted by A.

The following lemma is an analogue of Claim 2.5 from [10].
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Lemma 2.17. Let A be the set of all minimal anti-spanners for thin pairs. Then |A| is upper-bounded by

|D| · 2(n/β)2/2.

Proof. Let PS(s, t) be the power set of all edges in the local graph for a given thin pair (s, t). Since (s, t) is a

thin pair we have at most n/β vertices and (n/β)2/2 edges in the local graph, therefore |PS(s, t)| ≤ 2(n/β)
2/2

for any (s, t) that is a thin pair. Now, every anti-spanner for a specific demand pair (s, t) ∈ D is a set of
edges and therefore corresponds to an element in PS(s, t). Let PS thin =

⋃

(s,t) PS(s, t) where (s, t) ∈ D
are thin pairs. Every anti-spanner for a thin pair is a set of edges and therefore corresponds to an element
in PS thin. We have |A| ≤ |PS thin | ≤ |D| · 2(n/β)

2/2 which proves the lemma.

Remark 2.18. Our upper bound for the |A| is different from the upper bound in [10] because we cannot
use the techniques used by [10] to give a bound for |A|. They use some arborescences which have a one-to-
one correspondence with the set of anti-spanners and it is hard to get an equivalent structure because we
have both lengths and weights on each edge. This step is responsible for the fact that we do not have the
Õ(n2/3+ε)-approximation as in [10].

The rest of this discussion is quite similar to [10] although the exact constants and the expressions
involved are different because of the result in Lemma 2.17. Lemma 2.19 is similar to Lemma 5.2 from [10].

Lemma 2.19. With high probability set K2 settles every thin pair (s, t) with ŷs,t ≥ 2/5.

Proof. For every thin pair (s, t) ∈ D with ŷs,t ≥ 2/5, if A is an anti-spanner for (s, t) then
∑

e∈A x̂e ≥
∑

P∈Π(s,t) f̂p ≥ 2/5, where f̂p is the value of the variable fp in LP (2) that corresponds to the solution

{x̂e} ∪ {ŷs,t}.
By Claim 2.15, the probability that A is disjoint from K2 is at most exp(−2n4/5 · lnn/5). Further using

Lemma 2.17, we can bound the number of minimal anti-spanners for thin pairs and then if we apply union
bound, we have the probability that K2 is disjoint from any anti spanner for a thin pair is at most

exp

(

−2

5
n4/5 · lnn

)

· |D| · 2(n/β)2/2. (6)

In the worst case, |D| is n2. Recall that β = n3/5, we have (n/β)2 = n4/5 and thus (6) becomes

exp

(

−2

5
· n4/5 · lnn+ ln

(

n2 · 2n4/5/2
)

)

= exp
(

−Θ(n4/5 lnn)
)

.

Thus we have shown that the probability K2 is disjoint from any anti-spanner for a thin pair is exponentially
small when ŷs,t ≥ 2/5.

Lemma 2.20. When 0 ≤ |C| < |D|/2, with high probability, the density of K2 is at most

Õ(n4/5 · τ/|D|).

Proof. Firstly notice that the expected cost of K2 would be at most n4/5 lnn · τ . We also point out that
the number of pairs (s, t) ∈ D for which ŷs,t < 2/5 is at most 5|D|/6 because otherwise the amount of flow
between all pairs is strictly less than |D|/2 which violates a constraint of LP (2). Since with high probability
all pairs for which ŷs,t ≥ 2/5 are satisfied, this means that the expected density of K2 is at most

n4/5 lnn · τ
|D|/6 =

6n4/5 lnn · τ
|D| =

Õ(n4/5 · τ)
|D| .

Now we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Using Lemma 2.5 we can resolve all thick pairs with high probability with cost at
most Õ(n4/5+ε). Then, we can make two sets of edges K1 and K2 using a distance-preserving weighted
junction tree and by rounding the approximate solution to LP (2) respectively. By Lemmas 2.10 and 2.20,
we can see that at least one of them will have a density at most Õ(n4/5 · τ/|D|). If we take the cheaper
among them and keep iterating we can resolve all thin pairs with a high probability and with cost at most
Õ(n4/5+ε).

3 All-pair Weighted Distance Preservers

We recall the definition of the All-pair Weighted Distance Preserver problem.

Definition 1.3. All-pair Weighted Distance Preserver
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}.
Objective: Find a min-cost subgraph H of G such that dH(s, t) = dG(s, t), for all (s, t) ∈ V × V .

In this section, we prove Theorem 1.4.

Theorem 1.4. For any constant ε > 0, there is a polynomial-time randomized algorithm for All-pair
Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which succeeds in resolving all pairs
in V × V with high probability.

Our proof structure for this subsection is very similar to that of [10] except for our use of single sink and
single source spanners.

As in Section 2, we assume that we have a guess for the cost of the optimal solution - OPT for the given
instance of All-pair Weighted Distance Preserver. Let τ denote the value of our guess. Let us set
β = n1/2. We say that a terminal pair (s, t) ∈ D is thick if the local graph Gs,t = (V s,t, Es,t) induced by
the vertices on feasible paths from s to t has at least n/β vertices; we say it is thin otherwise. We note that
the definitions of thick and thin pairs are slightly different from how they are defined in Section 2 as we
only care about the feasibility of a path, not its cost. We say that a set E′ ⊆ E settles (or resolves) a pair
(s, t) ∈ D if the subgraph (V,E′) contains a feasible path from s to t.

3.1 Thick pairs

We first resolve the thick pairs by randomly sampling vertices and building single-source and single-sink
spanners from the samples using Theorem 1.9. We then resolve thin pairs by building a linear program,
solving it, and rounding as in [10]. As mentioned earlier, our definition of thick and thin pairs is different in
this section when compared to Section 2, and this allows us to use a much simpler proof (although one that
will be effective only in the case of weighted distance preservers as opposed to the more general weigthed
spanners).

Algorithm 4 Thick pairs resolver - Distance preserver (G(V,E), {ℓ(e), c(e)}e∈E)

1: R← φ, G′ ← φ.
2: for i = 1 to β lnn do

3: v ← a uniformly random element of V.
4: Ssource

v ← a single-source distance preserver rooted at v with D = {v} × V by using Theorem 1.9.
5: Ssink

v ← a single-sink distance preserver rooted v with D = {v} × V by using Theorem 1.9.
6: G′ ← G′ ∪ Ssource

v ∪ Ssink
v , R← R ∪ {v}.

7: return G′

Lemma 3.1. Algorithm 4 resolves all thick pairs for All-pair Weighted Distance Preserver with
high probability and cost Õ(nε · β · OPT) = Õ(n1/2+ε · OPT).
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Proof. Let OPT(Ssource
v ) be the optimal costs of a single-source distance preserver rooted at v with D =

{v}×V and OPT(Ssink
v ) be the optimal costs of a single-sink distance preserver rooted at v withD = {v}×V .

We recall Theorem 1.9.

Theorem 1.9. For any constant ε > 0, there is a polynomial-time randomized online algorithm for Online
Single-source Weighted Spanner with approximation ratio Õ(kε), which succeeds in resolving all pairs
in D with high probability.

This theorem also gives an Õ(kδ)-approximation for the offline problem Single-source Weighted
Spanner for any constant δ > 0. Single-sink distance preservers can be obtained by simply reversing the
edges. The number of terminal pairs k = Θ(n2). By setting δ = ε/2 and the target distances to the
exact distances in G for all vertex pairs, we observe that the cost due to one sample in Algorithm 4 is
at most Õ(nε(OPT(Ssource

v ) + OPT(Ssink
v ))). Note that a distance preserver for all pairs also serves as a

distance preserver for any subset of the pairs and thus we have for any v ∈ V, OPT(Ssink
v ) ≤ OPT and

OPT(Ssource
v ) ≤ OPT. Thus, using Theorem 1.9, the cost of the G′ returned by Algorithm 4 is at most

|R| · Õ(nε · OPT) ≤ Õ(nε · β ·OPT).
Using a hitting set argument very similar to Claim 2.1, we can see that with high probability, there is at

least one sample v such that there is a s; v ; t path for every (s, t) ∈ V × V where dG′(s, v) + dG′(v, t) =
dG(s, t).

The single-sink distance preserver gives us a s; v path of length dG(s, v) and the single-source distance
preserver gives us a v ; t path of length dG(v, t). Thus, thick pairs are resolved with high probability by
the edges in G′.

3.2 Thin pairs

To resolve thin pairs, we start by redefining anti-spanners by ignoring the path costs in Definition 2.16.

Definition 3.2. A set A ⊆ E is an anti-spanner for a demand pair (s, t) ∈ E if (V,E \ A) contains no
feasible path from s to t. If no proper subset of anti-spanner A for (s, t) is an anti-spanner for (s, t), then A
is minimal. The set of all minimal anti-spanners for all thin edges is denoted by A.

Consider the following LP which is a slightly modified version of a similar LP from [10] (Fig. 1).

min
∑

e∈E

c(e) · xe

subject to
∑

e∈A

xe ≥ 1 ∀A ∈ A,

xe ≥ 0 ∀e ∈ E.

(7)

Let OPT denote the optimal solution to the LP. We can obtain this in a way identical to [10] as we only
change the objective (which does not affect the separation oracle). Now, if {x̂e} denotes the vector of xe’s
in the solution to LP (7), then add every edge e ∈ E to G′ with probability min(

√
n · lnn · x̂e, 1)

We now state the following claim from [10] (Corollary 2.7).

Claim 3.3. Given a feasible solution to LP (7), the rounding procedure produces a set of edges E′′ that
settles all thin pairs with high probability and has size at most 2OPT · √n · lnn.

Theorem 1.4. For any constant ε > 0, there is a polynomial-time randomized algorithm for All-pair
Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which succeeds in resolving all pairs
in V × V with high probability.

Proof of Theorem 1.4. Using Lemma 3.1 we can resolve all thick pairs with high probability with cost at
most Õ(n1/2+ε · OPT) by running Algorithm 4. Then, using Claim 3.3, we can solve and round LP (7) to
resolve the thin pairs with high probability and cost Õ(OPT · √n).
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Remark 3.4. Note that using Algorithm 4 for Pairwise Weighted Spanner (even for all-pair spanners)
would not work because the cost of the single-source (sink) spanners that we need to add cannot be compared
to the overall optimal solution. This is because, such single-source (sink) spanners cannot have a relaxation
on the distances involved, unlike the optimal solution.

4 Online Weighted Spanners

In the online problem, the directed graph, the edge lengths, and the edge costs are given offline. The vertex
pairs and the corresponding target distances arrive one at a time, in an online fashion, at each time stamp.
The algorithm must irrevocably select edges at each time stamp and the goal is to minimize the cost, subject
to the target distance constraints. We recall the definition for Online Pairwise Weighted Spanner. For
notation convenience, the vertex pair (si, ti) denotes the i-th pair that arrives online.

Definition 1.5. Online Pairwise Weighted Spanner
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}, and vertex pairs D = {(si, ti) ∈ V × V | i ∈ [k]} (k is unknown) with their corre-
sponding pairwise distance bounds Dist(si, ti) ∈ Q≥0 (where Dist(si, ti) ≥ dG(si, ti)) arrive online one at a
time.

Objective: Upon the arrival of (si, ti) with Dist(si, ti), construct a min-cost subgraph H of G such that
dH(si, ti) ≤ Dist(si, ti) by irrevocably adding edges from E.

We also consider the single-source online problem.

Definition 1.8. Online Single-source Weighted Spanner
Instance: A directed graph G = (V,E) with edge costs c : E → Q≥0, edge lengths ℓ : E →

{1, 2, 3, ..., poly(n)}, and vertex pairs D = {(s, ti) | ti ∈ V, i ∈ [k]} (k is unknown) with their corresponding
pairwise distance bounds Dist(s, ti) ∈ Q≥0 (where Dist(s, ti) ≥ dG(s, ti)) arrive online one at a time.

Objective: Upon the arrival of (s, ti) with Dist(s, ti), construct a min-cost subgraph H of G such that
dH(s, ti) ≤ Dist(s, ti) by irrevocably selecting edges from E.

This section is dedicated to proving the following theorems.

Theorem 1.6. For any constant ε > 0, there is a polynomial-time randomized online algorithm for Online
Pairwise Weighted Spanner with competitive ratio Õ(k1/2+ε), which succeeds in resolving all pairs in D
with high probability.

Theorem 1.9. For any constant ε > 0, there is a polynomial-time randomized online algorithm for Online
Single-source Weighted Spanner with approximation ratio Õ(kε), which succeeds in resolving all pairs
in D with high probability.

The proof outline for Theorems 1.6 and 1.9 is as follows.

1. We first show that there exists an α-approximate solution consisting of distance-preserving weighted
junction trees (see Definition 2.6). Here, α = O(

√
k) for Pairwise Weighted Spanner and α = 1

for Single-source Weighted Spanner.

2. We slightly modify the online algorithm from [32] to find an online solution consisting of distance-
preserving weighted junction trees by losing a factor of Õ(kε).

The main difference between the online approach and the offline approach in Section 2 is that we cannot
greedily remove partial solutions to settle the terminal pairs in the online setting. Instead, we construct a
distance-preserving weighted junction tree solution in an online fashion.

Definition 4.1. A distance-preserving weighted junction tree solution is a collection of distance-preserving
weighted junction trees rooted at different vertices, that satisfies all the terminal distance constraints.
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We construct a distance-preserving weighted junction tree solution online and compare the online objec-
tive with the optimal distance-preserving weighted junction tree solution with objective value OPTjunc. The
following theorem is essentially from [32] for the case when the edges have unit costs and lengths. However,
the slight yet important modifications that we need when edges have arbitrary positive costs and integral
lengths in poly(n) are not covered in [32]. For completeness, we show the proof in Appendix B.1.

Theorem 4.2. For any constant ε > 0, there exists a polynomial-time randomized online algorithm for
Online Pairwise Weighted Spanner that constructs a distance-preserving weighted junction tree solution
online with a cost at most Õ(kε)OPTjunc with high probability.

With this theorem, we are ready to prove Theorems 1.6 and 1.9.

Proof for Theorems 1.6 and 1.9. Let OPT denote the cost of the optimal solution and α denote the ratio
between OPTjunc and OPT. It suffices to show that α = O(

√
k) for Pairwise Weighted Spanner and

α = 1 for Single-source Weighted Spanner because Theorem 4.2 implies the existence of an Õ(αkε)-
competitive online algorithm.

To show that α = 1 for Single-source Weighted Spanner, let H be an optimal solution. We observe
that H itself is a distance-preserving weighted junction tree rooted at the source s that is connected to all
the k sinks, so α = 1.

To show that α = O(
√
k) for Pairwise Weighted Spanner, we use a density argument via a greedy

procedure which implies an O(
√
k)-approximate distance-preserving weighted junction tree solution. We

recall the density notion in Section 2.2. The density of a distance-preserving weighted junction tree is its
cost divided by the number of terminal pairs that it connects within the required distances.

Intuitively, we are interested in finding low-density distance-preserving weighted junction trees. We show
that there always exists a distance-preserving weighted junction tree with density at most a

√
k factor of the

optimal density. The proof of Lemma 4.3 closely follows the one for the directed Steiner network problem
in [18] and pairwise spanners [32] by considering whether there is a heavy vertex that lies in si ; ti paths
for distinct i or there is a simple path with low density. The case analysis also holds when there is a distance
constraint for each (si, ti). We provide the proof in Appendix B.2 for the sake of completeness.

Lemma 4.3. There exists a distance-preserving weighted junction tree J with density at most OPT/
√
k.

Consider the procedure that finds a minimum density distance-preserving weighted junction tree in each
iteration, and continues on the remaining disconnected terminal pairs. Suppose there are t iterations, and
after iteration j ∈ [t], there are nj disconnected terminal pairs. Let n0 = k and nt = 0. After each iteration,
the minimum cost for connecting the remaining terminal pairs in the remaining graph is at most OPT, so
the total cost of this procedure is upper-bounded by

t
∑

j=1

(nj−1 − nj)OPT√
nj−1

≤
k
∑

i=1

OPT√
i
≤
∫ k+1

1

OPT√
x
dx = 2OPT(

√
k + 1− 1) = O(

√
k)OPT

where the first inequality uses the upper bound by considering the worst case when only one terminal pair
is removed in each iteration of the procedure.

Remark 4.4. The online algorithms imply efficient algorithms for the corresponding offline problems with
the same approximation ratios. For offline algorithms, one can also use a greedy approach by iteratively
removing the connected terminal pairs and extracting low-density distance-preserving weighted junction
trees, with a poly-logarithmic factor improvement. The poly-logarithmic factor naturally appears from the
challenge that the terminal pairs arrive online. This greedy approach is not applicable in the online setting.
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5 Conclusion

In this paper, we presented algorithms for a variant of directed spanners that could also handle costs on
edges, in addition to the more standard setting of edge lengths. The proof strategy for Theorem 1.2 follows
a high-level structure that is similar to other results for directed Steiner forests, but involves significant
obstacles in each part of the proof due to the addition of distance constraints. We overcome these obstacles
by using the proper approaches. For example, the Resource-constrained Shortest Path problem
from [38] is carefully adapted for our specifics. We also needed to carefully adapt many other parts of the
proof, such as the analysis of our junction-tree approximation and our rounding algorithm for the LPs, to
fit the addition of distance constraints.

We also present online algorithms for Online Pairwise Weighted Spanner and Online Single-
source Weighted Spanner. We use our result for Online Single-source Weighted Spanner to solve
a special case of Pairwise Weighted Spanner, namely, All-pair Weighted Distance Preserver,
and obtain a significantly better approximation for that case.

We propose the following directions for future work:

• Is it possible to get a better analysis for the rounding algorithm for Theorem 1.2 as in [10]? This
should improve the overall approximation factor for Pairwise Weighted Spanner in Theorem 1.2.

• Is there a hardness bound for Pairwise Weighted Spanner that is greater than the existing hardness
bounds for Steiner forests and unit-cost spanners?

• Is there a better approximation factor for all-pair weighted spanners, i.e., an instance of Pairwise
Weighted Spanner where D = V × V ?

• Can we get a result for pairwise weighted distance preserver that is better than using the Pairwise
Weighted Spanner results in Theorems 1.2?
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A Missing Proofs in Section 2

A.1 Proof of Claim 2.1

We recall Claim 2.1 and present its proof here.

Claim 2.1. Algorithm 1 selects a set of samples R such that with high probability any given thick pair (s, t)
has at least one vertex from its local graph in R.
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Proof. Because (s, t) is a thick pair, we have at least n/β vertices in its local graph by definition. Let
Event(s, t) be the event that no vertex in the local graph of (s, t) is sampled. We have that

Pr[Event(s, t)] =

(

1− n/β

n

)3β lnn

=

(

1− 1

β

)3β lnn

≤ exp

(

−3β lnn

β

)

=
1

n3
.

Taking the union bound over all demand pairs in D where |D| ≤ n2, the probability that there is one
(s, t) ∈ D whose local graph does not include a sampled vertex is at most 1/n. The probability that any
(s, t) ∈ D has at least one vertex sampled is at least 1− 1/n.

A.2 Weighted junction tree with distance constraints

We recall Lemma 2.9 and present its proof here. But we first prove a result for the same problem of the
junction trees in Lemma 2.9 where we assume all edges have unit lengths (but costs are general) and then
reduce the polynomial integral length version to that problem.

Lemma A.1. For any constant δ > 0, there is a polynomial-time approximation algorithm for the minimum
density distance-preserving weighted junction tree as long as the edge lengths are uniform. In other words,
there is a polynomial-time algorithm which, given a weighted directed n vertex graph G = (V,E) where each
edge e ∈ E has a cost c(e) ∈ R≥0 and unit length ℓ(e) = 1, terminal pairs P ⊆ V × V , and distance bounds
Dist : P → N (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ P , approximates the following
problem to within an O(nδ) factor:

• Find a non-empty set of edges F ⊆ E minimizing the ratio:

min
r∈V

∑

e∈F c(e)

|{(s, t) ∈ P |dF,r(s, t) ≤ Dist(s, t)}|
(8)

where dF,r(s, t) is the length of the shortest path using edges in F which connects s to t while going through
r (if such a path exists).6

Proof. In this proof, we follow the structure for the proof of Theorem 5.1 in [19] very closely. We first define
the Minimum Density Label Cover problem, then we reduce an instance of our problem to an instance
of the Minimum Density Label Cover problem using a graph construction. We also state the height
reduction lemma from [18,19] and use it on our instance of Minimum Density Label Cover. Finally, we
use Lemma (5.4) from [19] to prove our result. We do this procedure with every possible root r ∈ V and
take the distance-preserving weighted junction tree with the minimum density distance-preserving weighted
junction tree among all possible choices of r.

We start by defining theMinimum Density Label Cover problem to which we will reduce our problem.

Definition A.2. In the Minimum Density Label Cover problem, we are given a directed graph G =
(V,E), nonnegative edge costs w : E → R≥0, a collection of set pairs B ⊆ 2V × 2V , and for each pair
(S, T ) ∈ B, a relation R(S, T ) ⊆ S × T . The goal is to find a set of edges F ⊆ E minimizing the ratio

∑

e∈F w(e)

|{(S, T ) ∈ B | ∃(s, t) ∈ R(S, T ) : F contains an s; t path }| .

We also need the height reduction lemma from [18,19].

Lemma A.3. (Height Reduction) Let G = (V,E) be an edge-weighted directed graph with edge weights
w : E → R≥0, let r ∈ V be a source vertex of G, and let σ > 0 be some parameter. Then we can efficiently

construct an edge-weighted undirected tree T̂r rooted at r̂ of height σ and size |V |O(σ) together with edge
weights ŵ : E(T̂r)→ R≥0, and a vertex mapping ψ : V (T̂r)→ V (G), such that

6In [19], the numerator is |F |. The difference occurs because they effectively have c(e) = 1 for all e ∈ E.
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• For any arboresence J ⊆ G rooted at r, and terminal set S ⊆ J, there exists a tree Ĵ ⊆ T̂r rooted at r̂
such that letting L(J) and L(Ĵ) be the set of leaves of J and Ĵ , respectively, we have L(J) = ψ(L(Ĵ)).
Moreover, w(J) ≤ O(σ|L|1/σ · ŵ(Ĵ)).

• Given any tree Ĵ ⊆ T̂r rooted at r̂, we can efficiently find an arboresence J ⊆ G rooted at r such that,
for leaf sets L(J) and L(Ĵ) as above, we have L(J) = ψ(L(Ĵ)), and moreover, w(J) ≤ ŵ(Ĵ).

We do the following procedure using every possible root r ∈ V and then take the minimum density
distance-preserving weighted junction tree.

For a specific r, we turn our distance problem into a connectivity problem using the following reduction
which closely matches [19] except for one change. We construct a layered directed graph with vertices:

Vr = ((V \ r) × {−n+ 1, . . . ,−2,−1, 1, 2, . . . , n− 1}) ∪ {(r, 0)}
and

Er = {((u, i)(v, i+ 1))|(u, i), (v, i + 1) ∈ Vr, (u, v) ∈ E}.
We set the edge weights for e ∈ Er connecting some ((u, i)(v, i+1)) to w(e) = c((u, v)). This is the only

change we make from [19] and it has very little impact on the overall proof.
For every terminal pair (s, t) ∈ P with distance bound Dist(s, t), add new vertices (st,−i) and (ts, j)

for all i, j ≥ 0 such that (s,−i), (t, j) ∈ Vr, and for all such i and j add zero-weight edges ((st,−i)(s,−i))
and ((t, j)(ts, j)). Denote this graph as Gr, now for every terminal pair (s, t) ∈ P define terminal sets
Ss,t = {(st,−i)|i ≥ 0} ∩ V (Gr) and Ts,t = {(ts, j)|j ≥ 0} ∩ V (Gr) and relation Rs,t = {(st,−i), (ts, j) ∈
Ss,t × Ts,t|i + j ≤ Dist(s, t)}.

In this construction, for every terminal pair (s, t) ∈ P and label i, there is a bijection between paths of
length i from s to r in G, and paths from (st,−i) to (r, 0) in Gr, and similarly a bijection between paths of
length i from r to t in G, and paths from (r, 0) to (ts, i) in Gr. Now, to keep track of path lengths in G we
can just connect the appropriate terminal pairs in Gr. This construction also creates disjoint terminal pairs,
by creating a separate copy st of s for every terminal pair (s, t) ∈ P that s participates in (and similarly for
terminals t).

a

c

b

d

r

(a) G

a

b

c

d
(r, 0)

(b) Gr

Figure 1: Construction of Gr given G = (V,E) and r ∈ V . The dotted lines in Gr have zero weight while
the solid lines in Gr have the same weight as the corresponding edges in G. The figure is from [32].

We finally generate a new graph G′ which is made up of two graphs G+ and G− which are copies of Gr

intersecting only in the vertex r. For every node u ∈ V , we use u+, u− to denote the copies of u in G+, G−

respectively.
The following lemma (which is also in [19]) follows from our construction.

Lemma A.4. For any f > 0, and set of terminal pairs P ′ ⊆ P, there exists an edge set F ⊆ E(G′) of
weight

∑

e∈F w(e) ≤ f containing a path of length at most Dist(s, t) from s− to t+ for every (s, t) ∈ P ′ iff
there exists a junction tree J ⊆ E(Gr) of weight w(J) ≤ f such that for every terminal pair (s, t) ∈ P ′, J
contains leaves (st,−i), (ts, j) such that ((st,−i)(ts, j)) ∈ Rs,t. Morever, given such a junction tree J , we
can efficiently find a corresponding edge set F .
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Now, to prove Lemma A.1, we just need to show that we can achieve an O(nε) approximation for
the Minimum Density Label Cover instance (Gr, w, {(Ss,t, Ts,t), Rs,t | (s, t) ∈ P}) obtained from our
reduction. We apply Lemma A.3 to our weighted graph (Gr, w) with constant parameter σ > 1/ε, and
obtain a shallow tree T̂r with weights ŵ, and a mapping ψ : V (T̂r) → V (Gr). All terminals (st,−i), (ts, j)
in Gr are now represented by sets of terminals ψ−1((st,−i)) and ψ−1((ts, j)), respectively in V (T̂r). We can
extend the relation Rs,t in the natural way to

R̂s,t = {(ŝ, t̂) ∈ ψ−1(Ss,t)× ψ−1(Ts,t) | (ψ(ŝ), ψ(t̂)) ∈ Rs,t}.

Thus, using Lemmas A.3 and A.4, it suffices to show the following lemma which is already proved in [19].

Lemma A.5. There exists a polynomial time algorithm which, in the above setting, gives an O(log3 n)
approximation for the following problem:

• Find a tree T ⊆ T̂r minimizing the ratio

ŵ(E(T ))

|{(s, t) ∈ P | ∃(ŝ, t̂) ∈ R̂(S, T ) : T contains an ŝ-t̂ path }|
.

We now adapt the above lemma to have general lengths with a very simple reduction.

Lemma 2.9. For any constant ε > 0, there is a polynomial-time approximation algorithm for the minimum
density distance-preserving junction tree as long as the edge lengths are integral and polynomial in n. In
other words, there is a polynomial time algorithm which, given a weighted directed n vertex graph G = (V,E)
where each edge e ∈ E has a cost c(e) ∈ R≥0 and integral length ℓ(e) ∈ {1, 2, ..., poly(n)}, terminal pairs
P ⊆ V × V , and distance bounds Dist : P → N (where Dist(s, t) ≥ dG(s, t)) for every terminal pair
(s, t) ∈ P , approximates the following problem to within an O(nε) factor:

• Find a non-empty set of edges F ⊆ E minimizing the ratio:

min
r∈V

∑

e∈F c(e)

|{(s, t) ∈ P |dF,r(s, t) ≤ Dist(s, t)}|
(1)

where dF,r(s, t) is the length of the shortest path using edges in F which connects s to t while going through
r (if such a path exists).

Proof. Let the edge lengths in our instance be in O(nλ) for some constant λ > 0. This assumption is valid
because the edge lengths are in {1, 2, ..., poly(n)}. Given any integer and polynomial length instance, we can
reduce it to an instance with unit lengths as follows. For any edge e = (u, v) ∈ E, with length ℓ(e), break it
into ℓ(e) new edges which are connected as a path that starts at u and ends at v. Each of these new edges
will have cost c(e)/ℓ(e) and be of unit length. We observe that solving this new instance of will give us a
solution for our original problem. The whole reduction can be done in polynomial time and size because the
newly created graph will have O(nλ · |V |) vertices and O(nλ · |E|) edges. Thus by setting δ = ε/(λ+ 1) in
Lemma A.1, we prove this lemma.

B Missing Proofs in Section 4

B.1 Missing proof for Theorem 4.2

Theorem 4.2. For any constant ε > 0, there exists a polynomial-time randomized online algorithm for
Online Pairwise Weighted Spanner that constructs a distance-preserving weighted junction tree solution
online with a cost at most Õ(kε)OPTjunc with high probability.
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Proof. It suffices to show that the theorem holds even for Online Pairwise Weighted Spanner when all
the edges have unit lengths. Suppose we have a black-box online algorithm when edges have unit lengths.
We can construct an online algorithm for Online Pairwise Weighted Spanner by using the black box
as follows. We decompose each edge e ∈ E into a path consisting of ℓ(e) edges, each with unit length and
cost c(e)/ℓ(e). The terminal vertices correspond to the endpoint vertices of the paths for the decomposed
edges. The number of vertices in this graph is still polynomial in n because the edge lengths are polynomial
in n. A black-box online algorithm on graphs with unit length edges therefore implies Theorem 4.2.

The proof for Theorem 4.2 on graphs with unit edge lengths is a slight modification from the Õ(k1/2+ε)-
competitive online algorithm on graphs with unit edge lengths and costs in [32]. The outline is as follows.

1. We consider Online Pairwise Weighted Spanner on a graph G′ consisting of disjoint layered
graphs constructed from the original graph G by losing a constant factor. The layers allow us to
capture the distance constraints. This allows us to further reduce the problem to Online Steiner
Label Cover on G′.

2. We further consider Online Steiner Label Cover on an undirected forest H constructed from G′

with a loss of an O(kε) factor via the height reduction technique introduced in [18, 37].

We start with the definition for Steiner Label Cover introduced in [32].

Definition B.1. In the Steiner label cover problem, we are given a (directed or undirected) graph G =
(V,E), non-negative edge costs w : E → R≥0, and a collection of k disjoint vertex subset pairs (Si, Ti) for
i ∈ [k] where Si, Ti ⊆ V and Si ∩ Ti = ∅. Each pair is associated with a relation (set of permissible pairs)
Ri ⊆ Si × Ti. The goal is to find a subgraph F = (V,E′) of G, such that 1) for each i ∈ [k], there exists
(s, t) ∈ Ri such that there is an s; t path in F , and 2) the cost

∑

e∈E′ w(e) is minimized.

In Online Steiner Label Cover, (Si, Ti) and Ri arrive online, and the goal is to irrevocably select
edges to satisfy the first requirement and also approximately minimize the cost.

Given an instance of Online Pairwise Weighted Spanner on a graph with unit edge lengths, we
construct the graph G′ by following the construction of Gr in the proof of Lemma 2.9 in Appendix A.2 and
taking the union of Gr for all r ∈ V . That is, we simultaneously consider all the vertices r ∈ V as a candidate
root for the distance-preserving weighted junction tree solution while constructing the online solution.

Recall that Gr = (Vr , Er) is constructed as follows (see Figure 1 for an example):

Vr = ((V \ r) × {−n+ 1, . . . ,−2,−1, 1, 2, . . . , n− 1}) ∪ {(r, 0)}
and

Er = {((u, i), (v, i+ 1)) | (u, i), (v, i+ 1) ∈ Vr, (u, v) ∈ E}.
For each edge e = ((u, i), (v, i + 1)) ∈ Er, let the edge weight be w(e) = c((u, v)). This is the only change
we make from [32] and it has very little impact on the overall proof. For each vertex (u,−j) (respectively
(u, j)) in Vr where j ∈ [n − 1] ∪ {0}, add a vertex (u−,−j) (respectively (u+, j)), and create an edge
(u−,−j)→ (u,−j) (respectively (u, j)→ (u+, j)) with weight 0. This concludes the construction of Gr.

Let G′ be the disjoint union of Gr for r ∈ V . Given an Online Pairwise Weighted Spanner instance
on G, we can construct an Online Steiner Label Cover instance on G′. For explicitness, we denote
the vertex (u, j) in Vr by (u, j)r. For each (si, ti), let Si = {(s−i ,−j)r | j > 0, r ∈ V \ {si}} ∪ (s−i , 0)si ,
Ti = {(t+i , j)r | j > 0, r ∈ V \ {ti}}∪ (t+i , 0)ti , and Ri = {((s−i ,−js)r, (t+i , jt)r) | r ∈ V, js+ jt ≤ Dist(si, ti)}.
Intuitively, a copy of si and a copy of ti belongs to the relation Ri if 1) they are connected by a distance-
preserving weighted junction tree with the same root r, and 2) the distance between them is at most
Dist(si, ti) in this distance-preserving weighted junction tree.

We can recover a solution for Online Pairwise Weighted Spanner on G with at most the cost of
the corresponding Online Steiner Label Cover solution in G′. Suppose we have the Online Steiner
Label Cover solution in G′, for each selected edge (u, j)→ (v, j+1) in Gr, we select u→ v for the pairwise
spanner solution in G. The optimum of the Steiner label cover solution in G′ is at most 2OPTjunc. In each
distance-preserving weighted, each edge is used at most once in the in-arborescence and at most once in the
out-arborescence. The following claim is from [32].
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Claim B.2. The optimal value of the Steiner Label Cover problem in G′ is at most 2OPTjunc.

The remaining is to show how height reduction is used to find a solution for Online Steiner Label
Cover on G′. We recall Lemma A.3.

Lemma A.3. (Height Reduction) Let G = (V,E) be an edge-weighted directed graph with edge weights
w : E → R≥0, let r ∈ V be a source vertex of G, and let σ > 0 be some parameter. Then we can efficiently

construct an edge-weighted undirected tree T̂r rooted at r̂ of height σ and size |V |O(σ) together with edge
weights ŵ : E(T̂r)→ R≥0, and a vertex mapping ψ : V (T̂r)→ V (G), such that

• For any arboresence J ⊆ G rooted at r, and terminal set S ⊆ J, there exists a tree Ĵ ⊆ T̂r rooted at r̂
such that letting L(J) and L(Ĵ) be the set of leaves of J and Ĵ , respectively, we have L(J) = ψ(L(Ĵ)).
Moreover, w(J) ≤ O(σ|L|1/σ · ŵ(Ĵ)).

• Given any tree Ĵ ⊆ T̂r rooted at r̂, we can efficiently find an arboresence J ⊆ G rooted at r such that,
for leaf sets L(J) and L(Ĵ) as above, we have L(J) = ψ(L(Ĵ)), and moreover, w(J) ≤ ŵ(Ĵ).

We construct a tree Hr from Gr by the height reduction technique. We recall that Gr is a layered graph
with a center vertex (r, 0). Let G−

r denote the subgraph of Gr induced by the vertex set





⋃

v∈V \{r}

{v, v−} × {−j | j ∈ [n− 1]}



 ∪ {(r, 0), (r−, 0)},

and similarly, let G+
r denote the subgraph of Gr induced by the vertex set





⋃

v∈V \{r}

{v, v+} × [n− 1]



 ∪ {(r, 0), (r+, 0)}.

By Lemma A.3, with (r, 0) being the root, we can construct a tree T−
r rooted at r− for G−

r which approxi-
mately preserves the cost of any in-arborescence rooted at (r, 0) in G−

r by a subtree in T−
r , and similarly a

tree T+
r rooted at r+ for G+

r which approximately preserves the cost of any out-arborescence rooted at (r, 0)
in G+

r by a subtree in T+
r . We further add a super root r′ and edges {r′, r−} and {r′, r+} both with weight

0. This concludes the construction of the weighted tree Hr (see Figure 2 for an illustration).

T−
r T+

r

r− r+
r′

Figure 2: Construction of Hr. The figure is from [32].

Let H be the disjoint union of Hr for r ∈ V . We show that we can achieve an Õ(kε)-approximation for
the Steiner label cover problem on graph H in an online manner. We set σ = ⌈1/ε⌉ and apply Lemma A.3
to obtain the weight ŵ : E(H) → R≥0 and the mapping Ψr : V (Hr) → V (Gr) for all r ∈ V . Let Ψ be the
union of the mappings for all r ∈ V . For each pair (si, ti) in the original graph G, we recall that we focus
on the vertex subset pair (Si, Ti) of G

′ and its relation Ri which captures the distance requirement.
To establish the correspondence between the Steiner label cover instances, we clarify the mapping between

the leaves of the arborescences in G′ and H . Given a vertex (s−i ,−j)r in V (G′) with a non-negative j, let
Ψ−1((s−i ,−j)r) denote the set of leaves in T−

r that maps to (s−i ,−j)r by Ψ. Similarly, given a vertex (t+i , j)r
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in V (G′) with a non-negative j, let Ψ−1((t+i , j)r) denote the set of leaves in T+
r that maps to (t+i , j)r by Ψ.

The mapping Ψ−1 naturally defines the terminal sets of interest Ŝi := Ψ−1(Si) = {ŝ ∈ V (H) | Ψ(ŝ) ∈ Si}
and T̂i := Ψ−1(Ti) = {t̂ ∈ V (H) | Ψ(t̂) ∈ Ti}. The relation is also naturally defined: R̂i := {(ŝ, t̂) ∈ Ŝi × T̂i |
(Ψ(ŝ),Ψ(t̂)) ∈ Ri}. We note that for ŝ ∈ Ŝi and t̂ ∈ T̂i, (ŝ, t̂) belongs to R̂i only when ŝ and t̂ belong to the
same tree Hr (see Figure 3 for an illustration).

T−
r T+

r

r− r+
r′

Ŝr
i T̂ r

i

Figure 3: From Online Pairwise Weighted Spanner to Online Steiner Label Cover. In G, consider
connecting si and ti by using a distance-preserving weighted junction tree rooted at r. In Hr, we consider
terminal sets Ŝr

i := Ŝi ∩Hr and T̂ r
i := T̂i ∩Hr. A distance-preserving weighted junction tree in G rooted at

r corresponds to a subtree with leaves that belongs to Ŝr
i ∪ T̂ r

i . The set R̂r
i := R̂i ∩ (Ŝr

i × T̂ r
i ) defines the

admissible pairs, which maintains the distance requirement Dist(si, ti) in the layered graph Gr. The figure
is from [32].

We use the following theorem from [32].

Theorem B.3. For the Online Steiner Label Cover problem on H, Ŝi, T̂i, R̂i, there is a randomized
polynomial-time algorithm with competitive ratio polylog(n).

Combining Theorem B.3, Lemma A.3, and Claim B.2, we can recover a solution of cost at most
Õ(kε)OPTjunc for Online Pairwise Weighted Spanner on G from a solution of Online Steiner
Label Cover on H .

B.2 Missing proof for Lemma 4.3

Lemma 4.3. There exists a distance-preserving weighted junction tree J with density at most OPT/
√
k.

Proof. Let G∗ (a subgraph of G) be the optimal pairwise weighted spanner solution with cost OPT. The
proof proceeds by considering the following two cases: 1) there exists a vertex r ∈ V that belongs to at least√
k si ; ti paths of distance at most Dist(si, ti) in G

∗ for distinct i, and 2) there is no such vertex r ∈ V .
For the first case, we consider the union of the si ; ti paths in G

∗, each of distance at most Dist(si, ti),
that passes through r. This subgraph in G∗ contains an in-arborescence and an out-arborescence both
rooted at r, whose union forms a distance-preserving weighted junction tree. This distance-preserving
weighted junction tree has cost at most OPT and connects at least

√
k terminal pairs, so its density is at

most OPT/
√
k.

For the second case, each vertex r ∈ V appears in at most
√
k si ; ti paths in G∗. More specifically,

each edge e ∈ E also appears in at most
√
k si ; ti paths in G′. By creating

√
k copies of each edge, all

terminal pairs can be connected by edge-disjoint paths. Since the overall duplicate cost is at most
√
k ·OPT,

at least one of these paths has cost at most
√
k ·OPT/k. This path constitutes a distance-preserving weighted

junction tree whose density is at most OPT/
√
k.

29


	Introduction
	Our contributions
	Pairwise weighted spanners
	All-pair weighted distance preservers
	Online weighted spanners
	Summary

	High-level technical overview
	Pairwise Weighted Spanners
	All-pair Weighted Distance Preservers
	Online Weighted Spanners

	Related work
	Resource-constrained Shortest Path
	Undirected Bi-criteria Network Design
	Other related directed network problems

	Organization

	Pairwise Weighted Spanners
	Resolving thick pairs
	Resolving thin pairs
	When |D|/2 |C| |D|
	When 0 |C| < |D|/2


	All-pair Weighted Distance Preservers
	Thick pairs
	Thin pairs

	Online Weighted Spanners
	Conclusion
	Missing Proofs in Section 2
	Proof of Claim 2.1
	Weighted junction tree with distance constraints

	Missing Proofs in Section 4
	Missing proof for Theorem 4.2
	Missing proof for Lemma 4.3


