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Abstract

Semidefinite programming (SDP) is a unifying framework that generalizes both linear programming
and quadratically-constrained quadratic programming, while also yielding efficient solvers, both in theory
and in practice. However, there exist known impossibility results for approximating the optimal solution
when constraints for covering SDPs arrive in an online fashion. In this paper, we study online covering
linear and semidefinite programs in which the algorithm is augmented with advice from a possibly
erroneous predictor. We show that if the predictor is accurate, we can efficiently bypass these impossibility
results and achieve a constant-factor approximation to the optimal solution, i.e., consistency. On the
other hand, if the predictor is inaccurate, under some technical conditions, we achieve results that
match both the classical optimal upper bounds and the tight lower bounds up to constant factors, i.e.,
robustness.

More broadly, we introduce a framework that extends both (1) the online set cover problem augmented
with machine-learning predictors, studied by Bamas, Maggiori, and Svensson (NeurIPS 2020), and (2)
the online covering SDP problem, initiated by Elad, Kale, and Naor (ICALP 2016). Specifically, we
obtain general online learning-augmented algorithms for covering linear programs with fractional advice
and constraints, and initiate the study of learning-augmented algorithms for covering SDP problems.

Our techniques are based on the primal-dual framework of Buchbinder and Naor (Mathematics of
Operations Research, 34, 2009) and can be further adjusted to handle constraints where the variables lie
in a bounded region, i.e., box constraints.

1 Introduction

In the classical online model, an input is iteratively given to an algorithm that must make irrevocable decisions
at each point in time, while satisfying a number of changing constraints and optimizing a fixed predetermined
objective. A common metric for evaluating the quality of an online algorithm is the competitive ratio, which
is the ratio between the “cost” of the algorithm and the best cost in hindsight, i.e., an optimal offline
algorithm given the entire input sequence in advance. In the context of the minimization problems we study
in this paper, an online algorithm is c-competitive if its cost is at most a multiplicative c factor more than

∗Purdue University. Supported in part by NSF CCF-1910659, NSF CCF-1910411 and NSF CCF-2228814. E-mail: elena-g@
purdue.edu

†University of Melbourne. Work done while at Purdue University. Supported in part by NSF CCF-1910659, NSF CCF-
1910411 and NSF CCF-2228814. E-mail: nilnamuh@gmail.com

‡Massachusetts Institute of Technology. Supported by an NSF Graduate Research Fellowship under Grant No. 1745302,
NSF TRIPODS program (award DMS-2022448), and Simons Investigator Award. E-mail: silwal@mit.edu

§Purdue University. Supported in part by NSF CCF-1910659, NSF CCF-1910411, NSF CCF-2127806, NSF CCF-2228814
and a Ross-Lynn Award. E-mail: song683@purdue.edu

OUC Berkeley and Rice University. Work supported by a Simons Investigator Award and by NSF CCF-1815840, and done
in part while at Carnegie Mellon University, USA. E-mail: samsonzhou@gmail.com

1

a
rX

iv
:2

2
0
9
.1

0
6
1
4
v
2
  
[c

s.
D

S
] 

 2
1
 O

c
t 

2
0
2
2



the cost of the optimal solution. Due to the irrevocable decisions, the changing constraints, or the number
of possible different worst-case inputs, many online algorithms have undesirable competitive ratios that are
impossible to improve upon without additional assumptions, e.g., [AAA+09].

Due to advances in the predictive ability of machine learning models, a natural approach to overcome
these computational barriers is to incorporate models with predictions, e.g. models that predict outcomes
based on historical data. Unfortunately, due to the lack of provable guarantees on worst-case input, these
predictions can be embarrassingly inaccurate when attempting to generalize to unfamiliar inputs, as shown
in [SZS+14], or simply not even satisfy the given constraints [BMS20]. Thus, rather than blindly following
an erroneous machine learning predictor, recent focus has shifted to studying algorithms that use the output
of these models as advice, and guarantee good competitive ratios both when the predictions are accurate,
i.e., consistency, and when the predictions are poor, i.e., robustness.

Recently, [BMS20] studied the learning-augmented online set cover problem and related problems, using
their linear programming (LP) formulation to incorporate additional advice through a primal-dual approach.
One drawback of their seminal work however, is that they assume both integral constraints, as well as integral
advice, which restricts the modeling capabilities of the framework; it is natural to ask how an online algorithm
can be improved when the advice is given in terms of probability distribution or some other meaningful
fractional values. For example, for the online set cover problem, fractional advice can indicate how likely
a set should be chosen instead of the binary decision of whether a set should be chosen or not; for the ski
rental problem, the advice can be presented as a probability distribution over the total number of vacation
days; in online network connectivity problems, the advice can indicate how likely an edge should be chosen.

In addition, linear programs cannot handle quadratic constraints and thus often fail to capture important
aspects of fundamental optimization problems, which motivates the study of more general programs, such as
semidefinite programming (SDP). SDP is a unifying framework that generalizes both linear programs and
quadratically constrained quadratic programming (QCQP), while also yielding very efficient solvers, both in
theory and in practice [VB96].

Preliminaries. For a learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1], where
lower values of λ denote higher confidence in the advice, and higher values denote lower confidence. An
advice is a suggested solution for the online problem that is given. In the content of optimization problems
including linear and semidefinite programming, a solution is a vector consisting of real numbers. We denote
APX as the objective value of the online solution obtained by an online algorithm, and compare it with (1)
the objective value of the advice, denoted as ADV, and (2) the objective value of the offline optimal solution,
denoted as OPT. The consistency and robustness of an online algorithm or solution for a minimization
optimization problem are defined as follows.

Definition 1.1. An online solution with objective value APX is C(λ)-consistent if APX ≤ C(λ)ADV. An
online algorithm is C(λ)-consistent if it generates a C(λ)-consistent solution. Here, C : [0, 1]→ R≥1.

Definition 1.2. An online solution with objective value APX is R(λ)-robust if APX ≤ R(λ)OPT. An online
algorithm is R(λ)-robust if it generates a R(λ)-robust solution. Here, R : [0, 1]→ R≥1.

Learning-augmented algorithms for minimization problems consider the advice while approximately min-
imizing the objective value when the input arrives online. Intuitively, if an advice is accurate and we trust
the advice, then we would like the solution to be close to the optimal, so ideally C(λ) should approach 1 as
λ approaches 0. On the other hand, having λ being close to 1 denotes no trust in the advice, so R(1) should
be close to the optimal competitive ratio of the best pure online algorithm.

1.1 Our Contributions

We give a general paradigm for designing learning-augmented algorithms for online covering linear program-
ming [BN09b], which generalizes the set cover problem [BMS20], as well as online covering semidefinite
programming [EKN16], with possibly non-integral constraints and advice. Specifically, we present primal-
dual learning-augmented (PDLA) algorithms for these problems, whose performance is close to the optimal
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offline solution when the advice is accurate, and also whose performance is asymptotically close to the optimal
oblivious algorithm, if the advice is inaccurate.

Our PDLA algorithms consider the advice while approximately minimizing the objective value when the
input arrives online. Our unifying paradigm applies to both online covering linear programs (LP) and online
covering semidefinite programs (SDP) described below.

Online covering linear programs. A covering LP is defined as follows:

minimize cTx over x ∈ Rn
≥0 subject to Ax ≥ 1. (1)

Here, A ∈ Rm×n
≥0 consists of m covering constraints, 1 is a vector of all ones, and c ∈ Rn

>0 denotes the positive
coefficients of the linear cost function. We use aij to denote the i-th row j-th column entry of A and cj to
denote the j-th coordinate of c.

In the online covering problem, the cost vector c is given offline, and each of these covering constraints
(rows) is presented one by one in an online fashion, that is, m can be unknown. The goal is to update x in
a non-decreasing manner such that all the covering constraints are satisfied and the objective value cTx is
approximately minimized.

A classical example captured by the covering LP (1) is the set cover problem. In this problem, we have a
universe [m] and n sets S1, S2, ..., Sn which are subsets of [m]. Each set Sj where j ∈ [n] is associated with a
cost cj . The goal is to find a subset of set indices C ⊆ [n], such that (1) the universe is covered by the union
of the sets whose corresponding indices are in C, i.e., ∪j∈CSj = [m] and (2) the cost

∑

j∈C cj is minimized.
An LP relaxation can be formulated by having x encoding the indicator vector for the set selection, the
columns representing the sets, and the rows representing the universe. In the constraint matrix A, aij = 1
if element i is contained in set Sj , otherwise aij = 0.

The online set cover problem can be naturally captured by the online covering LP (1). We have the sets
given offline and the elements arriving online. Upon the arrival of an element, the information that which
sets contain the arriving element is revealed (as a row of A), and we have to irrevocably pick the sets to
cover the universe. The O(logm log n)-competitive online algorithm introduced in [AAA+09,BN09a] solves
the online set cover problem by incrementing the indicator vector x in the covering LP and rounding the
fractional solution online by a threshold-based approach. The O(logm) factor is from the integrality gap of
the covering LP while the O(log n) factor is from the competitiveness of the online algorithm.

An O(log n)-competitive algorithm for online covering LPs was presented in [BN09b], which simultane-
ously solves both the primal covering LP (1) and the dual packing LP (2), defined as follows:

maximize 1T y over y ∈ Rm
≥0 subject to AT y ≤ c. (2)

The analysis in [BN09b] crucially uses LP-duality and strong connections between the two solutions to
argue that they are both nearly optimal. The covering solution x is an exponential function of the packing
solution y and both x and y are monotonically increasing. The problem naturally extends to the setting that
relies on a separation oracle to retrieve an unsatisfied covering constraint where the number of constraints
can be unbounded. However, as the framework in [BN09b] fixes all violating constraints, each arriving
constraint might be slightly violated so that each individual fix may require a diminishingly small adjustment.
Consequently the algorithm may have to address exponentially many constraints. The framework was later
modified in [GLQ21] which guarantees that addressing polynomially many constraints suffices.

In the learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1] and x′ ∈ Rn
≥0 served as

a fractional advice for LP (1). However, we do not have the guarantees about the advice x′. More specifically,
the objective value of the advice cTx′ could be a horrendous approximation to the optimal objective value
of LP (1) or x′ might not even satisfy the constraints.

We first show an efficient, consistent, and robust PDLA algorithm for the online covering LP (1). We
use the condition number κ to denote the upper bound for the ratio between the maximum positive entry
and the minimum positive entry for each fixed column of A. For ease of presentation, we assume that x′ is
feasible, i.e., there are no violating constraints caused by the advice x′.
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Theorem 1.3 (Informal). Given a feasible advice x′ ∈ Rn
≥0 for LP (1) with confidence parameter λ ∈ [0, 1],

there exists an O
(

1
1−λ

)

-consistent and O
(

log κn
λ

)

-robust online algorithm for the online covering LP problem

that encounters polynomially many violating constraints.

The formal version of Theorem 1.3 (Theorem 2.1), which addresses the case when x′ is infeasible for LP
(1), is presented in Section 2. We remark that Theorem 1.3 implies that when κ = poly(n), the algorithm is
log(n/λ)-robust.

Online covering semidefinite programs. We generalize our approach for learning-augmented covering
LPs to handle a more expressive family of optimization problems, namely, covering semidefinite programs.

First, we introduce some standard notation. A matrix A ∈ Rd×d is said to be positive semidefinite (PSD),
i.e., A � 0, if vTAv ≥ 0 for every vector v ∈ Rd, or equivalently, all the eigenvalues of A are non-negative.
If A is PSD and symmetric, then it is called symmetric positive semidefinite (SPSD). A partial order over
SPSD matrices in Rd×d can be induced such that A � B if and only if A−B � 0.

The setting of a covering SDP problem is as follows.

minimize cTx over x ∈ Rn
≥0 subject to

n
∑

j=1

Ajxj � B (3)

where A1, . . . , An ∈ Rd×d and B ∈ Rd×d are SPSD matrices and c ∈ Rn
>0.

In the online covering SDP problem introduced in [EKN16], we have the matrices A1, ..., An and the cost
vector c given offline. In each round i ∈ [m] where m can be unknown, we are given a new SPSD matrix
B(i) satisfying B(i) � B(i−1). The goal is to cover B(i) using a linear combination x1, . . . , xn of the matrices
A1, . . . , An, so that

∑n
j=1 xjAj � B(i), while minimizing the cost cTx. Moreover, we must update x in a

non-decreasing manner, so that once some amount of the matrix Aj is used in the covering at a round i,
then it must be used in all subsequent coverings in later rounds. The online covering SDP problem and its
dual in round i are as follows:

minimize cTx over x ∈ Rn
≥0 subject to

n
∑

j=1

Ajxj � B(i) (4)

maximize B(i) ⊗ Y over Y � 0 subject to Aj ⊗ Y ≤ cj∀j ∈ [n] (5)

where we use A⊗B to denote the Frobenius product of A and B, i.e., A⊗B =
∑

i,j Ai,jBi,j = trace(ATB).
We remark that the formulation of online covering SDP (4) generalizes online covering LP (1) when the

constraint matrix is known offline but there is no guarantee which covering constraint (row) will arrive. In
particular, the SDP formulation for online set cover with n sets and d elements all given offline (but without
the knowledge of which elements arrive and their order) is the following: we define matrices A1, . . . , An ∈
{0, 1}d×d where Aj is a diagonal matrix whose diagonal is simply the indicator vector for the j-th set across
the d elements, i.e., entry (k, k) of Aj is 1 if and only if set j contains element k. The matrices B(i) encode
the variables that must be covered in round i, so that B(0) is the all zeros matrix and B(i) − B(i−1) is the
all-zeros matrix except with a single one in entry (k, k) for the variable k that must be newly covered in
round i. No online SDP algorithm can achieve competitive ratio o(log n) because even if fractional sets
are allowed, no online algorithm can achieve competitive ratio better than O(log n) for the online set cover
problem [BN09a].

An optimal O(log n)-competitive online algorithm was presented in [EKN16]. Similar to online covering
LPs, an important idea in this line of work is to use weak duality and the strong connections between the
primal and the dual solutions. Observe that if x and Y are feasible solutions for the primal and the dual,
then

cTx ≥
n
∑

j=1

(Aj ⊗ Y )xj =





n
∑

j=1

(Ajxj)



⊗ Y ≥ B(i) ⊗ Y, (6)
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and hence the primal and the dual satisfy weak duality.
In the learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1] and a vector x′ ∈ Rn

≥0

that serves as advice for the linear combination x1, . . . , xn that the algorithm should use for the optimal
solution. We have no guarantees about the advice. More specifically, the objective value of the advice cTx′

could be a terrible approximation to the optimal objective value of SDP (4) or x′ might not even be feasible.
We use κ to denote the ratio of the largest positive eigenvalue to the smallest positive eigenvalue of the

matrices A1, . . . , An, B
(1), . . . , B(m) and achieve the following.

Theorem 1.4 (Informal). Given a feasible advice x′ ∈ Rn
≥0 for SDP (4) with confidence parameter λ ∈ [0, 1],

there exists a polynomial time, O
(

1
1−λ

)

-consistent, and O
(

log κn
λ

)

-robust online algorithm for the online

covering SDP problem.

The formal version of Theorem 1.4 (namely, Theorem 3.1), which addresses the case when x′ is infeasible
for SDP (4), is presented in Section 3. We remark that Theorem 1.4 implies that we can achieve a constant
factor approximation to the optimal solution when the advice is accurate (O(1)-competitive), which breaks
the known Ω(log n) competitive ratio obtained by the oblivious online algorithm for covering SDP in [EKN16].
Moreover, for κ = poly(n), we match the optimal approximation ratio of O(log n) up to constants when the
advice is arbitrarily bad.

Adding box constraints. In both the LP and SDP case, it is natural to have the requirement that the
variables must lie in a bounded region. Defining the bounded region can be done using “box constraints”.
The setting for the covering LP with box constraints is in the following form.

minimize cTx over x ∈ [0, 1]n subject to Ax ≥ 1. (7)

We note that this problem might not have any feasible solution. The upper bound is set to one without loss
of generality. Suppose xj ∈ [0, uj ], then we can scale cj and the entries in column j by dividing uj . Again, in
the online problem, the covering constraints arrive one at a time. The goal is to update x in a non-decreasing
manner subject to each coordinate of x being capped at 1, and approximately minimize the objective cTx.
An O(log n)-competitive algorithm for online covering with box constraints was obtained in [BN09b].

For the learning-augmented variant, we assume that the advice x′ ∈ [0, 1]n. Our bound is in terms of a
notion of sparsity s of matrix A, which we define formally in Theorem 2.4.

Theorem 1.5 (Informal). Given a feasible advice x′ ∈ [0, 1]n for LP (7) with confidence parameter λ ∈ [0, 1],

there exists an O
(

1
1−λ

)

-consistent and O
(

log s
λ

)

-robust online algorithm for the online covering LP problem

with box constraints that encounters polynomially many violating constraints.

The formal version of Theorem 1.5 (namely, Theorem 2.4), which addresses the case when x′ is infeasible
for LP (7), is presented in Section 2.1. This result recovers the bound of the learning-augmented algorithm
for the more restricted online set cover problem in [BMS20], where A ∈ {0, 1}m×n, and the value of s there
is the same as row sparsity (i.e., the maximum number of non-zero entries of any row). We emphasize that
our algorithm also considers fractional advice, even for the online set cover problem.

Similarly, the setting for online covering SDP with box constraints is in the following form.

minimize cTx over x ∈ [0, 1]n subject to

n
∑

j=1

Ajxj � B(i). (8)

Again, we assume without loss of generality that the upper bound of xj is one and our goal is to update
x in a non-decreasing manner such that cTx is approximately minimized. An O(s)-competitive algorithm
for online covering SDP with box constraints was presented in [EKN16] where s is the sparsity of the SDP
problem depending on the Aj ’s and B(i)’s. The sparsity notion coincides with the maximum row sparsity
when the SDP is used for capturing covering LPs. We use the same sparsity notion as [EKN16] and show
the following theorem for the learning-augmented problem when the advice x′ ∈ [0, 1]n is given.
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Theorem 1.6 (Informal). Given a feasible advice x′ ∈ [0, 1]n for SDP (8) with confidence parameter λ ∈

[0, 1], there exists a polynomial time, O
(

1
1−λ

)

-consistent, and O
(

log s
λ

)

-robust online algorithm for the

online covering SDP problem with box constraints.

The formal version of Theorem 1.6 (namely, Theorem 3.2), which addresses the case when x′ is infeasible
for SDP (8), is presented in Section 3.1. In Table 1, we summarize the state-of-the-art by comparing the
most related results from the literature to our framework. We further refer the reader to the high-level
technical approach in Section 1.2.

Paper Problem Approximation Guarantee Approach

[BN09a] online covering LP

with and without

box constraints:

O(logn)-competitive

continuous

guess-and-double

[EKN16] online covering SDP

without box constraints:

O(logn)-competitive

with box constraints:

O(log s)-competitive

continuous

guess-and-double

efficient updating

[BMS20]
learning-augmented

online set cover

without box constraints:

O(1/(1− λ))-consistent

O(log(d/λ))-robust

discretized

[GLQ21] online covering LP
without box constraints:

O(logn)-competitive

continuous

guess-and-double

efficient updating

This Work

learning-augmented online

covering LP and SDP

with fractional advice

without box constraints:

O(1/(1− λ))-consistent

O(log(κn/λ))-robust

with box constraints:

O(1/(1− λ))-consistent

O(log(s/λ))-robust

continuous

guess-and-double

efficient updating

Table 1: Summary of the competitive, consistency, and robustness ratios. We assume that the advice is
feasible for the learning-augmented problems. Here, n refers to the number of sets or variables, λ ∈ [0, 1]
refers to the confidence parameter, κ refers to the condition number, d refers to row sparsity, and s refers
to sparsity. We note that online covering LP with box constraints generalizes online set cover with s = d.
In [EKN16], the guess-and-double scheme is not used for online SDP covering with box constraints.

Applications. We emphasize that our framework uses a continuous approach that is amenable to other
learning-augmented optimization problems, and supports fractional advice, which may be interpreted as
probabilities. For example, as in [EKN16,AW02,WX06], our framework for covering SDPs may be applied
to the quantum hypergraph covering problem. We apply our PDLA algorithm for covering LPs with box
constraints in order to obtain online algorithms for: (1) the fractional online set cover problem with fractional
advice, and for (2) the online group Steiner tree problem on trees, where a min-cut algorithm is used as
a separation oracle to retrieve violating constraints. Our learning-augmented solver for the group Steiner
problem on trees can be employed as a black-box for other related problems, including group Steiner tree on
general graphs, multicast problem on trees, and the non-metric facility location problem [AAA+06].

1.2 Overview of Our Techniques

We now give a technical overview of our algorithms and describe how both our algorithms for covering LPs
and SDPs are guided by several common underlying principles.
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For each update, while there exists a violating constraint:

1. Determine a violating constraint.

2. Acquire a “growth rate” for each variable depending on its coefficient in the violating constraint,
the corresponding cost, and the advice.

3. Use a guess-and-double approach to determine how fast each of the variables are increased by
their growth rates.

4. Increase the variables continuously until the constraint is satisfied.

Figure 1: Summary of our framework

Previous approaches. A natural starting point would be the PDLA algorithm for online set cover by
[BMS20], who adopted the primal-dual approach in [BN09a] to incorporate external advice. We recall that
in the covering LP formulation of the online set cover problem, each row denotes an element and each
column denotes a set. The constraint matrix has entries that are either zero or one. An entry is one if
and only if the element (row) belongs to the set (column). Additionally, for the online set cover problem
considered in [BMS20], each set is either included in the advice or not, i.e., each coordinate of the suggested
indicator vector for the set selection is either one or zero. While it seems plausible that one could extend
the discretized approach of [BMS20] to handle general coefficients in the constraint matrix, i.e., the online
covering LP problem, it is unclear how the growth rates of the variables can be adjusted to guarantee
dual feasibility. This is because the positive coefficients in every covering constraint (all with value one) are
balanced in the online set cover problem, which turns out to be a crucial ingredient to argue dual feasibility by
the discretized approach, but we do not have this guarantee for general covering LPs with arbitrary positive
coefficients. Instead, we use a different framework inspired by the classical online algorithm literature,
e.g., [BN09b,EKN16]. We present a short summary of our framework in Figure 1 and describe it in more
details below.

Continuous updates. Each time a new constraint arrives, we continuously increase the variables until
the constraint is satisfied. We adjust this growth rate of each variable based on its cost in the objective linear
function, its coefficient in the arriving constraint, and the advice: a variable is increased at a slower rate if its
cost is more expensive, its coefficient in the constraint has a smaller value, or it is less recommended by the
predictor. The introduction of fractional values in the advice is the main technical obstacle of our setting.
In particular, our algorithm must behave differently in the case where a primal variable has not reached the
fractional value recommended by the advice compared to the case where it has reached the recommended
value, but the solution does not satisfy all constraints. By contrast, in the integral advice setting of [BMS20],
the recommendation value always coincides with the limit at one. To this end, once the variable reaches the
recommended value, our algorithms judiciously decelerate the growth of the variable.

Guess-and-double. However, by allowing the coefficients of the constraint matrix to be arbitrary, the
optimal objective value OPT can be arbitrary and we need a nice estimate for this. Thus, we adopt the
guess-and-double technique, e.g., [BN09b, EKN16, GLQ21], where the algorithm is executed in phases, so
that in each phase we propose a lower-bound estimate of OPT, and the algorithm enters the next phase
when the value exceeds our estimate. Note that such techniques are not necessary for [BMS20], as their
assumption of coefficients in {0, 1} implicitly provided bounds on OPT.

Efficient updating. In more general applications, each arriving update may induce a large or even infinite
number of constraints, such as an infinite number of directions induced by an SDP constraint. But now if
we sequentially choose a violating constraint and satisfy the constraint exactly as in [BMS20], then there is
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no guarantee that we will satisfy all the constraints in a small number of iterations. Thus another technique
we adopt to ensure efficiency in conjunction with the guess-and-double technique is to satisfy each arriving
constraint by a factor of 2. That is, we instead continue to increment the primal variables until the violating
constraint is satisfied by a factor of 2, which ensures that at least one primal variable is doubled, which also
implies an upper-bound on the number of violating constraints that must be considered.

Showing robustness and consistency. With the introduction of general coefficients within many com-
ponents of our LP formulation, the robustness analysis in [BMS20] is no longer applicable, so instead we
adapt the primal-dual analysis in [BN09b] for general covering LP problems. In particular, we deal with
the general coefficients via a delicate telescoping argument for dual feasibility, since we tune and change the
growth rates multiple times even within the same phase.

Towards obtaining the consistency bound, we partition the growth rate based on whether the variable
has exceeded the value in the advice, and argue that the growth rate not credited to the advice is at most
a certain factor of the growth rate credited to the advice, similar to the line of the argument presented
in [BMS20].

Extending to online covering SDPs with advice. In the SDP case, we have arriving matrices rather
than arriving elements so that at each time, we need to cover a new PSD matrix B(i) that can be larger than
the previous PSD matrix B(i−1) in an infinite number of directions. We repeatedly look at the direction
with the largest mass that needs to be covered, i.e., the largest eigenvector v of B(i) −

∑n
j=1 Ajxj . Then to

cover the direction v, we set the growth rate of the coefficient of each matrix Aj proportional to the amount
that the matrix aligns with v, i.e., proportional to vTAjv = Aj ⊗ V , where V = vvT and ⊗ is the Frobenius
product. Unfortunately, it does not suffice to cover v alone – there may be many other directions for which
B(i) −

∑n
j=1 Ajxj is not covered. However, as we satisfy the implicit linear violating constraint by a factor

of 2, the amount of vectors we have to cover is similarly upper-bounded as in the aforementioned approach
for the online covering LP problem.

Lastly, we remark that our unifying framework can be naturally adopted to any online problem that has
a covering LP or SDP formulation, equipped with a fractional advice and a confidence parameter.

1.3 Additional Background and Related Work

Learning-augmented algorithms. There has been extensive work in incorporating machine-learned pre-
dictions in algorithmic design. Machine-learned predictions to enhance the performance of online algorithms
were studied in learning-augmented set cover [BMS20], ski rental [PSK18], and caching [LV18, AGKP22].
[LV18, Roh20] showed that an accurate predictor could be leveraged to provide competitive ratios bet-
ter than the limits of classical online algorithms for online caching, while subsequent learning-augmented
algorithms studied scheduling [LLMV20], ski rental [PSK18,GP19], nearest neighbor search [DIRW20], clus-
tering [EFS+22], triangle counting [CEI+22], frequency estimation [HIKV19], and other algorithmic and
data structural problems [Mit18, BMS20, BMRS20,WZ20, JLL+20, DKT+21, EIN+21, ACE+20, AGKK20,
AGKP22,ND21].

Another direction on this line of research is the stochastic setting, where the input is drawn from a
known distribution. This includes online stochastic matching [FMMM09], online graph optimization [APT22,
KDZ+17], and other online problems [Mit18,MNS12]. These models differ from ours since we solely consider
a given fractional advice (that might have a distribution interpretation) as a solution of the optimization
problem instead of making assumptions on the input distribution.

More recently, [AGKP22] presented a model for solving online covering LPs with multiple predictions,
but their model assumes that, unlike the model used in this work and [BMS20], the prediction(s) is not
given upfront, and instead upon the arrival of each constraint, a feasible way of satisfying that constraint is
presented. Additionally, their analysis compares the solution presented by the learning-augmented algorithm
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with benchmark solutions that are consistent with the predictions, and guarantees robustness independently,
in contrast to our definition of a confidence parameter to parameterize both confidence and robustness.

[ND21] followed the framework presented in [BMS20] and presented a solution to online packing LPs, in
complement to our contributions on online covering LPs. Their methods closely resemble that of [BMS20]
and this paper, but requires the advice to be integral, while we extend the framework and generalize to
allow for fractional advice. Their work also generalizes online packing LPs to allow non-linear objective
functions, which leaves room for potentially more optimal algorithms tailored to linear objectives, avoiding
loss in generality.

Classical online algorithms with covering LP formulations. One of the most classical online prob-
lems is the online set cover problem, solved in the seminal work of [AAA+09] by implicitly using the primal-
dual technique of Goemans [GW95]. The approach was extended to network optimization problems in
undirected graphs in [AAA+06], ski rental [KMMO94], and paging [BBN12], then abstracted and general-
ized to a broad LP-based primal-dual framework for online covering and packing LPs in [BN09b]. We refer
the reader to the excellent survey by Buchbinder and Naor [BN09a].

Other variants of online covering and packing LP problems. The main focus of our framework is
on solving fundamental optimization problems in the online setting with advice. There are other variants of
online covering and packing LP problems without advice, including optimizing convex objectives [ABC+16],
optimizing `q-norm objectives [SN20], mixed covering and packing LPs [ABFP13], and sparse integer pro-
grams [GN14]. All these frameworks employ the powerful primal-dual technique to ensure the competitiveness
of the online algorithm.

Alternative learning augmented algorithms in the online model. Subsequent to our work, a sig-
nificantly simpler algorithm with tighter qualitative guarantees was brought to our attention by Roie Levin.
For completeness, we describe the algorithm in Appendix B, but we emphasize that the algorithm is due
to Roie Levin and is included here with his permission. Nevertheless, we expect that the techniques and
analysis that we introduce in this paper may be of independent interest for other related problems or settings,
such as the advice being adaptive, or in settings of multiple experts. We believe that understanding the full
power of the techniques developed in this paper is an intriguing direction for further research in the still
emerging area of learning-augmented algorithms.

1.4 Organization

In Section 2, we present the PDLA algorithms for online covering LPs, prove Theorems 1.3 and 1.5, and
show the applications on fractional online set cover with fractional advice and group Steiner tree on trees.
In Section 3, we present the PDLA algorithms for online covering SDP and prove Theorems 1.4 and 1.6. We
show our experimental evaluations in Section 4. In Appendix A, we show the learnability of the covering SDP
problem when the input is drawn from a particular distribution, which might be of independent interest.

2 PDLA Algorithms for Online Covering Linear Programs

In this section, we prove Theorems 1.3 and 1.5. Namely, we present efficient, consistent, and robust PDLA
algorithms for online covering LPs. We recall that the covering LP (1) is the following.

minimize cTx over x ∈ Rn
≥0 subject to Ax ≥ 1.

Here, A ∈ Rm×n
≥0 consists of m covering constraints, 1 is a vector of all ones, and c ∈ Rn

>0 denotes the positive
coefficients of the linear cost function.

In the online problem, the covering constraints (rows) are presented one at a time, so m can be unknown.
The cost c is given offline. We say that a new round starts when a new covering constraint arrives. The goal
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is to update x in a non-decreasing manner such that x is feasible and the objective cTx is approximately
minimized. In the learning-augmented problem, we are also given an advice x′ ∈ Rn

≥0. The goal is to further
consider the advice x′ to obtain a consistent (compared to the advice) and robust (compared to the optimal)
solution x.

Recall that an important idea is to simultaneously consider the dual packing LP (2):

maximize 1T y over y ∈ Rm
≥0 subject to AT y ≤ c

where AT consists of n packing constraints with an upper bound c given offline.
We use a guess-and-double approach. Let aij denote the i-th row j-th column entry of A. The algorithm

works in phases. We estimate a lower bound α(r) for OPT in phase r. In phase 1, let α(1)← minj∈[n]{cj/a1j}
be a proper lower bound for OPT. Once the online objective exceeds α(r), we start the new phase r+1 from
the current violating constraint (let us call it constraint ir+1, in particular, i1 = 1 since in the first phase
the first constraint arrives first), and double the estimated lower bound, i.e. α(r + 1)← 2α(r).

In the beginning of phase r, x
(r)
j ← min{x′

j , α(r)/(2ncj)}. If x′
j ≤ α(r)/(2ncj), then it is possible that

α(r)/(2ncj) is large, so we have to set x
(r)
j = x′

j to ensure consistency. On the other hand, if x′
j ≥ α(r)/(2ncj),

then it is possible that x′
j is large and the advice is bad, so we have to set x

(r)
j = α(r)/(2ncj) to ensure

robustness.1

As x must be updated in a non-decreasing manner, the algorithm maintains {x
(`)
j }`∈[r], which denotes

the value of each variable xj from phase 1 to phase r, and the value of each variable xj is actually set to

max`∈[r]{x
(`)
j }.

Let Ai denote the i-th row of A. In phase r, upon the arrival of constraint i, if the advice adequately

covers constraint i, i.e., Aix
′ ≥ 1, then we increase the variables x

(r)
j with growth rate

aij
cj

(

x
(r)
j +

λ

Ai1
+

(1− λ)x′
j1x

(r)
j <x′

j

Aix′
c

)

where x′
c is the advice restricted to entries in which the corresponding variable has not reached the advice

yet, or equivalently, x
(r)
j < x′

j . More formally, the j-th coordinate of x′
c is equal to the j-th coordinate of

x′ if x
(r)
j < x′

j and 0 otherwise. 1
x
(r)
j <x′

j

is an indicator variable with value 1 if x
(r)
j < x′

j and 0 otherwise.

Intuitively, the additive term λ/(Ai1) is the contribution credited to the online algorithm while the additive
term (1− λ)x′

j1x
(r)
j <x′

j

/(Aix
′
c) is the contribution credited to the advice x′. We note that

n
∑

j=1

aij
Ai1

= 1 and

n
∑

j=1

aijx
′
j1x

(r)
j <x′

j

Aix′
c

= 1 (9)

so the contributions credited to the online algorithm and the advice are normalized and scaled by a factor
of λ and (1− λ), respectively.

Alternatively if the advice does not cover the constraint enough, i.e., Aix
′ < 1, we increase x

(r)
j with

growth rate
aij
cj

(

x
(r)
j +

1

Ai1

)

.

Namely, since the advice x′ is not feasible, we only consider the contribution from the online algorithm.
In order to implement with the proper growth rate, the dual variable yi initialized as 0 is used as a

proxy in round i. We increment x(r) until the arriving violating constraint i is satisfied by a factor of 2.

This guarantees that at least one variable x
(r)
j is doubled thus ensures that the algorithm only encounters

polynomially many violating constraints.

1The same initialization is used for the same reason for online covering LPs with box constraints and online covering SDPs
with and without box constraints.
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In each phase r, each iteration ends in one of the following three cases: (1) the arriving constraint i is

satisfied by a factor of 2, (2) there exists a variable x
(r)
j that reaches the advice value x′

j , or (3) the objective

cTx(r) reaches α(r). The coefficients Dj and Bj for fitting boundary conditions are defined based on the

value of x
(r)
j in the end of the previous iteration, stored as x̄j . The indicator 1

x
(r)
j <x′

j

used for the growth

rate, has the same value as 1x̄j<x′
j
during an iteration.

The main algorithm that uses the phase scheme is presented in Algorithm 1. The continuous primal-dual
approach in phase r and round i, used as a subroutine, is presented in Algorithm 2.

Algorithm 1 Phase Scheme for Algorithm 2

1: r ← 1, α(1)← minj∈[n]{cj/a1j}, i1 ← 1. . initialization for round 1
2: for each j ∈ [n] do

3: x
(r)
j ← min{x′

j , α(r)/(2ncj)}.

4: for arriving covering constraint Aix ≥ 1 do . i = 1, 2, ...,m for an unknown m
5: Run Algorithm 2.
6: if cTx(r) ≥ α(r) then . start a new phase
7: r ← r + 1, α(r)← 2α(r − 1), ir ← i.
8: for each j ∈ [n] do

9: x
(r)
j ← min{x′

j , α(r)/(2ncj)}.

10: Go to line 5.
11: for each j ∈ [n] do

12: xj ← max`∈[r]{x
(`)
j }. . this is the solution returned in each round i

We note that when we start a new phase r from the violating constraint ir, yir is set to zero. In phase r
and round i, we are actually considering the following covering and packing LPs:

minimize cTx(r) over x(r) ∈ Rn
≥0 subject to Akx

(r) ≥ 1 for k = ir, ..., i (10)

and

maximize 1T y over yk ≥ 0 for k = ir, ..., i subject to
i
∑

k=ir

akjyk ≤ cj for j ∈ [n]. (11)

Although the augmentation is in a continuous fashion, it is not hard to implement it in a discrete way
for any desired precision by binary search. The approach of satisfying each arriving violating constraint by
a factor of 2 guarantees that the number of iterations is polynomially upper-bounded. This implies efficient
applications on problems that generate covering LPs with exponentially many or unbounded number of
constraints, where violating constraints are retrieved by a separation oracle. The performance of Algorithm
1 is stated in Theorem 2.1, the formal version of Theorem 1.3.

Theorem 2.1. For the learning-augmented online covering LP problem, there exists an online algorithm
that generates x such that

cTx ≤ min

{

O

(

1

1− λ

)

cTx′ +O(log(κn))OPT, O
(

log
κn

λ

)

OPT

}

and encounters O(n(log cT x
α(1) )(log n+ log cTx+ log β)) violating constraints. If x′ is feasible for LP (1), then

cTx ≤ O
(

1
1−λ

)

cTx′. Here, κ := maxj∈[n]{a
max
j /amin

j }, β = maxj∈[n]{a
max
j /cj}, amax

j := maxi∈[m]{aij |

aij > 0}, and amin
j := mini∈[m]{aij | aij > 0}.
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Algorithm 2 PDLA Online Covering in Phase r and Round i

Input: x(r): current solution, α(r): estimate for OPT, Ai: current row, ir: starting round of phase r, yk for
k = ir, ..., i− 1, λ: the confidence parameter, and x′: the advice for x.
Output: Updated x(r) and yi.

1: yi ← 0. . the packing variable yi is used for the analysis
2: x̄← x(r). . x̄ is the value of x(r) at the end of the previous iteration
3: for j ∈ [n] do

4: if Aix
′ ≥ 1 then

5: Dj ←
λ

Ai1
+

(1−λ)x′
j1x̄j<x′

j

Aix′
c

,

6: else

7: Dj ←
1

Ai1
.

8: Y
(i−1)
j ←

∑i−1
k=ir

akjyk. . if phase r just started, then i = ir, so Y
(i−1)
j ← 0

9: Bj ←
x̄j+Dj

exp
((

Y
(i−1)
j +aijyi

)

/cj
) .

10: if Aix
(r) < 1 then

11: while Aix
(r) < 2 do

12: Increase yi continuously.
13: for each j ∈ [n] do

14: Increase x
(r)
j simultaneously by

x
(r)
j ← Bj exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj .

15: if any x
(r)
j reaches x′

j then

16: Break and go to line 2.

17: if cTx(r) ≥ α(r) then
18: Break and return.

Proof. Let P (r) = cTx(r) and D(r) = 1T y be the objective value of the primal and the dual in phase
r, respectively. We use Algorithm 1 and first show robustness, i.e., cTx ≤ O

(

log κn
λ

)

OPT, then show

consistency, i.e., cTx ≤ O
(

1
1−λ

)

cTx′ + O(log(κn))OPT. Finally, we show that only O(n(log cT x
α(1) )(log n +

log cTx+ log β)) violating constraints are encountered.

Robustness. To show that cTx ≤ O
(

log κn
λ

)

OPT, we prove the following five claims:

(i) x is feasible for LP (1).

(ii) For each finished phase r, α(r) ≤ 6D(r).

(iii) y/Θ
(

log κn
λ

)

is feasible for LP (11) in each phase.

(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective cTx ≤ 2α(r′).

Equipped with these claims and weak duality, we have that

cTx ≤ Θ(1)α(r′) ≤ Θ(1)D(r′) = O
(

log
κn

λ

)

OPT.
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Proof of (i). We prove that x(r) is feasible in phase r by showing that the growing function in Algorithm 2
line 14 increments x(r) in a continuous manner. In the beginning of an iteration in round i, we have that

x
(r)
j = Bj exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj =
x̄j +Dj

exp
((

Y
(i−1)
j + aijyi

)

/cj

) exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj = x̄j .

By following Algorithm 2, we have that x(r) is feasible for LP (10) since we terminate the while loop at line
11 when Aix

(r) = 2 > 1. Then, as x is the coordinate-wise maximum of {x(r)}, x must be feasible for LP
(1).

Proof of (ii). In the beginning of phase r, x
(r)
j = min{x′

j , α(r)/(2ncj)}, so P (r) is initially at most α(r)/2.
The total increase of P (r) is at least α(r)/2 as P (r) ≥ α(r) when phase r ends. Therefore, it suffices to show
that in round i,

∂P (r)

∂yi
≤ 3

∂D(r)

∂yi
.

By considering the partial derivative of P (r) with respect to yi, when Aix
′ ≥ 1, we have that

∂P (r)

∂yi
=

n
∑

j=1

cj
∂x

(r)
j

∂yi

=
n
∑

j=1

aijcj

(

Bj

cj
exp

(

Y
(i−1)
j + aijyi

cj

))

=
n
∑

j=1

aij

(

Bj exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj +Dj

)

=

n
∑

j=1

aij

(

x
(r)
j +

λ

Ai1
+

(1− λ)x′
j1x

(r)
j <x′

j

Aix′
c

)

≤ 2 + λ+ (1− λ) = 3 = 3
∂D(r)

∂yi

where the last inequality is due to the fact that
∑n

j=1 aijx
(r)
j < 2 and (9). The same result can be obtained

when Aix
′ < 1 by regarding λ as 1.

Proof of (iii). We show that y/Θ
(

log κn
λ

)

is feasible for LP (11) in the last round `r of phase r. The
argument applies to any round prior to `r. We recall that within a phase r, each iteration ends in one of the
following two cases: (1) the arriving constraint i is satisfied by a factor of 2, or (2) there exists a variable

x
(r)
j that reaches the advice value x′

j . Suppose there are t ≤ `r − ir + 1+ n iterations in phase r since there

are `r − ir + 1 covering constraints and n variables advised. In iteration p ≤ t, let x
(r,p)
j , B

(p)
j , and D

(p)
j

be the value of x
(r)
j , Bj , and Dj in the end of iteration p, respectively. Additionally, let i(p) denote the

corresponding round in which iteration p occurs and Ŷ
(p)
j =

∑i(p)

k=ir
akjyk be the accumulative weighted dual

variable sum in the end of iteration p with respect to coordinate j in the primal. Note that we are only
incrementing yi(p) in iteration p. In the beginning of phase r, Y (ir) = Ŷ (0) is a zero vector; in the end of the
last round `r, Ŷ

(t) = Y (`r). We have that

x
(r,t)
j = B

(t)
j exp

(

Ŷ
(t)
j

cj

)

−D
(t)
j =⇒

Ŷ
(t)
j

cj
= ln

x
(r,t)
j +D

(t)
j

B
(t)
j

.
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Then,

Ŷ
(t)
j

cj
= ln

x
(r,t)
j +D

(t)
j

B
(t)
j

= ln

(

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

exp

(

Ŷ
(t−1)
j

cj

))

=
Ŷ

(t−1)
j

cj
+ ln

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

= ...

=
Ŷ

(0)
j

cj
+

t
∑

p=1

ln
x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

= ln

t
∏

p=1

x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

.

From here, we use the following claims.

Claim 2.2. For all scalars a ≥ b > 0 and c1 ≥ c2 ≥ 0,

a+ c1
b+ c1

≤
a+ c2
b+ c2

.

Claim 2.3. x
(r)
j ≤ 2/amin

j .

Proof. Suppose x
(r)
j > 2/amin

j , then by definition of amin
j , if x

(r)
j > 2/amin

j in the current round, then it

contradicts to the terminating condition in Algorithm 2 line 11 since Aix
(r) ≥ amin

j x
(r)
j > 2; if x

(r)
j > 2/amin

j

in an earlier round of phase r, then it contradicts to the condition that the current round is violated since

Aix
(r) ≥ amin

j x
(r)
j > 2.

Recall that κ := maxj∈[n]{a
max
j /amin

j }, amax
j := maxi∈[m]{aij | aij > 0}, and amin

j := mini∈[m]{aij | aij >

0}. Notice that D
(p)
j ≥ λ

amax
j n for all p ≤ t. Let Dmin

j := minp∈[t]{D
(p)
j } ≥

λ
amax
j n . By Claim 2.2, we have

that

Ŷ
(t)
j

cj
= ln

t
∏

p=1

x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

≤ ln

t
∏

p=1

x
(r,p)
j +Dmin

j

x
(r,p−1)
j +Dmin

j

= ln
x
(r,t)
j +Dmin

j

x
(r,0)
j +Dmin

j

≤ ln

(

1 +
2

amin
j Dmin

j

)

= O
(

log
κn

λ

)

where the last inequality is by Claim 2.3 which implies that x
(r,t)
j ≤ 2/amin

j .

Proof of (iv). The sum of the covering objective generated from phase 1 to r is at most

r
∑

k=1

α(k) =

r
∑

k=1

α(r)

2k−r
≤ 2α(r).

Proof of (v). In the last phase r′, x is feasible because it is the coordinate-wise maximum of {x(r)}r∈[r′]. We
have

cTx =

n
∑

j=1

cjxj ≤
n
∑

j=1

r′
∑

r=1

cjx
(r)
j =

r′
∑

r=1





n
∑

j=1

cjx
(r)
j



 ≤
r′
∑

r=1

α(r) ≤ 2α(r′)
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where the first inequality holds because xj = maxr{x
(r)
j } ≤

∑

r x
(r)
j , the second inequality is by the fact that

the covering objective
∑

j cjx
(r)
j cannot exceed the estimated lower bound α(r), while the last inequality is

by (iv).

Consistency. We then show that cTx ≤ O
(

1
1−λ

)

cTx′+O(log(κn))OPT. Suppose Algorithm 2 is in phase

r with constraint i arriving. If Aix
′ < 1, then the change of cTx simply follows (ii) and (iii) by regarding λ as

1, so cTx ≤ O(log(κn))OPT. For the more interesting case when Aix
′ ≥ 1, we decompose ∂P (r)

∂yi
= ∂Pc

∂yi
+ ∂Pu

∂yi
,

where Pc is the component of the primal objective due to the advice and Pu is the component of the primal

objective due to the online algorithm. We have that the rate of change is credited to ∂Pc if x
(r)
j < x′

j and

the rate of change is credited to ∂Pu otherwise, if x
(r)
j ≥ x′

j . It suffices to check the rate of change since x
(r)
j

is initialized to min{x′
j , α(r)/(2ncj)}, i.e., Pc is non-negative and Pu = 0 in the beginning of phase r.2 In

particular, in round i,

∂Pc

∂yi
=

∑

j∈[n]:x
(r)
j <x′

j

aij

(

x
(r)
j +

λ

Ai1
+

(1− λ)x′
j1x

(r)
j <x′

j

Aix′
c

)

≥ 0 +
amin
j λ

amax
j n

+ (1− λ),

∂Pu

∂yi
=

∑

j∈[n]:x
(r)
j ≥x′

j

aij

(

x
(r)
j +

λ

Ai1
+

(1− λ)x′
j1x

(r)
j <x′

j

Aix′
c

)

≤ 2 + λ+ 0.

Thus we have ∂Pu

∂yi
≤ 2+λ

amin
j λ/(amax

j n)+1−λ
· ∂Pc

∂yi
, so that

∂P (r)

∂yi
≤






1 +

2 + λ
amin
j λ

amax
j n + 1− λ







∂Pc

∂yi
= O

(

1

1− λ

)

∂Pc

∂yi
.

We note that if x′ is feasible, then Aix
′ ≥ 1 for all i ∈ [m], so cTx ≤ O

(

1
1−λ

)

cTx′.

Bounding the number of violating constraints. Finally, we show that Algorithm 1 encounters

O(n(log cT x
α(1) )(log n+ log cTx+ log β)) violating constraints. We first show that there are O(log(cTx/α(1)))

phases. The estimated lower bound α doubles when we start a new phase. Suppose there are r′ phases, then
α(1) · 2r

′−1 = O(cTx). This implies that r′ = O(log(cTx/α(1))).
In each phase r, when a violating constraint i just arrived, we increment x(r) until the constraint is

satisfied by a factor of 2. One of the following two cases must hold after updating x(r): (1) there exists

a large variable x
(r)
j ≥ 1/(2namax

j ) that is updated to at least 3x
(r)
j /2, or (2) there exists a small variable

x
(r)
j < 1/(2namax

j ) that becomes large, i.e., x
(r)
j is updated to at least 1/(2namax

j ). Let L and S be the set

of large and small variable subscript labels before the violating constraint i arrives, respectively, and x̂
(r)
j be

the value of x
(r)
j after the update. If none of these two cases holds, then

n
∑

j=1

aij x̂
(r)
j <

3

2

∑

j∈L

aijx
(r)
j +

∑

j∈S

aij
2namax

j

<
3

2
+

1

2
= 2

where the second inequality is by the fact that constraint i is violated and aij ≤ amax
j . This implies that

constraint i is not satisfied by a factor of 2 after the update, a contradiction.

2The same argument is used for proving the consistency in Theorems 2.4, 3.1, and 3.2.
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Suppose x
(r)
j has been updated t times since it was large in phase r, then

cj
2namax

j

(

3

2

)t

= O(cTx)

which implies that t = O(log n+ log cTx+ log(amax
j /cj)) = O(log n+ log cTx+ log β).

There are n variables, each variable can be updated from small to large once and updated t times by a

factor of 3/2 since it was large in each phase. Hence, Algorithm 1 encounters O(n(log cT x
α(1) )(log n+log cTx+

log β)) violating covering constraints.

2.1 Adding Box Constraints

We recall that the covering LP (7) with box constraints is the following.

minimize cTx over x ∈ [0, 1]n subject to Ax ≥ 1.

Our PDLA algorithm simultaneously considers the dual packing LP:

maximize 1T y − 1T z over y ∈ Rm
≥0 and z ∈ Rn

≥0 subject to AT y − z ≤ c. (12)

We recall that we assume that the advice x′ ∈ [0, 1]n.
We use the guess-and-double approach similar to Algorithm 1 and 2, with a tweak of maintaining the

set T , which denotes the subscript indices of the x variables that are tight. In phase r, upon the arrival of a

violating constraint i, we increment x
(r)
j in terms of an exponential function of yi and zj subject to x

(r)
j ≤ 1.

Once x
(r)
j = 1, we add j to the tight set T and stop incrementing x

(r)
j , but we still increment yi continuously

and zj with rate aijyi in order to maintain dual feasibility. In the beginning of each phase, z is a zero vector
and T is an empty set. zj = 0 whenever j ∈ [n] \ T .

Subject to x
(r)
j ≤ 1, x

(r)
j is increased until the cost outside of the tight set exceeds the remaining capacity

by a factor of 2. More specifically, when we have a violating constraint i, we have that
∑

j∈[n]\T aijx
(r)
j <

1 −
∑

j∈T aij , and we increment x
(r)
j until

∑

j∈[n]\T aijx
(r)
j ≥ 2

(

1−
∑

j∈T aij

)

. Let A′
i denote the vector

with entries of Ai by considering only the coordinates that are not tight. The entry is zero if the coordinate
is tight. More formally,

a′ij =

{

aij if xj < 1, i.e., j ∈ [n] \ T,

0 if xj = 1, i.e., j ∈ T,

where a′ij denotes the j-th coordinate entry of A′
i.

If the advice adequately covers constraint i, i.e., A′
ix

′ ≥ 1, we increase the variables x
(r)
j with growth rate

aij
cj



x
(r)
j +

(

λ

A′
i1

+
(1− λ)x′

j1x
(r)
j <x′

j

A′
ix

′
c

)



1−
∑

j∈T

aij







 .

Alternatively if the advice does not cover the constraint enough, i.e., A′
ix

′ < 1, we increase x
(r)
j with growth

rate
aij
cj

(

x
(r)
j +

1−
∑

j∈S aij

A′
i1

)

.

We note that we increment x(r) only when 1 −
∑

j∈T aij > 0, since otherwise the constraint Aix
(r) ≥

∑

j∈T aij ≥ 1 is already satisfied and there is nothing to be updated. Similar to (9), we have that

∑

j∈[n]\T

aij
A′

i1
= 1 and

∑

j∈[n]\T

aijx
′
j1x

(r)
j <x′

j

A′
ix

′
c

= 1. (13)
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Each iteration now ends in one of the following four cases: (1) the arriving constraint i induces a cost

outside of the tight set that exceeds the remaining capacity by a factor of 2, (2) there exists a variable x
(r)
j

that reaches the advice value x′
j , (3) there exists a variable x

(r)
j that reaches 1, or (4) the objective cTx(r)

reaches α(r). The coefficients Dj and Bj for fitting boundary conditions are defined based on the value of

x
(r)
j in the end of the previous iteration, stored as x̄j . Again, the indicator value used for the growth rate,

1
x
(r)
j <x′

j

, has the same value as 1x̄j<x′
j
during an iteration.

The main algorithm that uses the phase scheme is presented in Algorithm 3. The continuous primal-dual
approach in phase r and round i, used as a subroutine, is presented in Algorithm 4.

Algorithm 3 Phase Scheme for Algorithm 4

1: r ← 1, α(1)← minj∈[n]{cj/a1j}, T ← ∅, i1 ← 1. . initialization for round 1
2: for each j ∈ [n] do

3: x
(r)
j ← min{x′

j , α(r)/(2ncj)}, zj ← 0.

4: for arriving covering constraint Aix ≥ 1 do . i = 1, 2, ...,m for an unknown m
5: Run Algorithm 4.
6: if cTx(r) ≥ α(r) then . start a new phase
7: r ← r + 1, α(r)← 2α(r − 1), T ← ∅, ir ← i.
8: for each j ∈ [n] do

9: x
(r)
j ← min{x′

j , α(r)/(2ncj)}, zj ← 0.

10: Go to line 5.
11: for each j ∈ [n] do

12: xj ← max`∈[r]{x
(`)
j }. . this is the solution returned in each round i

We note that when we start a new phase r from the violating constraint ir, yir is set to zero and z is set
to a zero vector. In phase r and round i, we are actually considering the following covering and packing LPs
with box constraints:

minimize cTx(r) over x(r) ∈ [0, 1]n subject to Akx
(r) ≥ 1 for k = ir, ..., i. (14)

and

maximize 1T y − 1T z over yk ≥ 0 for k = ir, ..., i and z ∈ Rn
≥0 subject to

i
∑

k=ir

akjyk − zj ≤ cj for j ∈ [n].

(15)

In Algorithm 4 line 16, when j ∈ T , x
(r)
j remains unchanged, since zj is increased with rate aijyi. This

ensures that approximate dual feasibility is maintained when x
(r)
j is tight. The performance of Algorithm 3

is stated in Theorem 2.4, the formal version of Theorem 1.5.

Theorem 2.4. For the learning-augmented online covering LP problem with box constraints, there exists an
online algorithm that generates x such that

cTx ≤ min

{

O

(

1

1− λ

)

cTx′ +O(log s)OPT, O
(

log
s

λ

)

OPT

}

and encounters O(n log s log cT x
α(1) ) violating constraints. If x

′ is feasible for LP (7), then cTx ≤ O
(

1
1−λ

)

cTx′.

Here,

s := max
i∈[m],T⊆[n]







∑

j∈[n]\T aij

1−
∑

j∈T aij
| 1−

∑

j∈T

aij > 0







.
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Algorithm 4 PDLA Online Covering with Box Constraints in Phase r and Round i

Input: x(r): current solution, α(r): estimate for OPT, Ai: current row, ir: starting round of phase r, yk
for k = ir, ..., i − 1, z: dual variable vector, T : tight variable set, λ: the confidence parameter, and x′: the
advice for x.
Output: Updated x(r), yi, and z.

1: yi ← 0. . the packing variable yi is used for the analysis
2: x̄← x(r). . x̄ is the value of x(r) at the end of the previous iteration
3: for j ∈ [n] do
4: if Aix

′ ≥ 1 then

5: Dj ←

(

λ
A′

i1
+

(1−λ)x′
j1x̄j<x′

j

A′
ix

′
c

)

(

1−
∑

j∈T aij

)

,

6: else

7: Dj ←
1−

∑

j∈T aij

A′
i1

.

8: Y
(i−1)
j ←

∑i−1
k=ir

akjyk. . if phase r just started, then i = ir, so Y
(i−1)
j ← 0

9: Bj ←
x̄j+Dj

exp
((

Y
(i−1)
j +aijyi−zj

)

/cj
) .

10: if Aix
(r) < 1 then

11: while T 6= [n] and
∑

j∈[n]\T aijx
(r)
j < 2

(

1−
∑

j∈T aij

)

do

12: Increase yi continuously.
13: for each j ∈ [n] do
14: if j ∈ T then

15: Increase zj with rate aijyi.

16: Update x
(r)
j simultaneously by

x
(r)
j ← min

{

1, Bj exp

(

Y
(i−1)
j + aijyi − zj

cj

)

−Dj

}

.

17: if any x
(r)
j = x′

j < 1 then

18: Break and go to line 2.

19: if any x
(r)
j = 1 for j /∈ T then

20: Add j to T and go to line 2.

21: if cTx(r) ≥ α(r) then
22: Break and return.
23: if T = [n] and Aix

(r) < 1 then

24: return no feasible solution.

Proof. Let P (r) = cTx(r) and D(r) = 1T y − 1T z be the objective value of the primal and the dual in
phase r, respectively. We use Algorithm 3 and first show robustness, i.e., cTx ≤ O

(

log s
λ

)

OPT, then show

consistency, i.e., cTx ≤ O
(

1
1−λ

)

cTx′+O(log s)OPT. Finally, we show that only O(n log s log cT x
α(1) ) violating

constraints are encountered.

Robustness. To show that cTx ≤ O
(

log s
λ

)

OPT, we prove the following five claims:

(i) If line 24 in Algorithm 4 is not encountered, then x is feasible for LP (7).

(ii) For each finished phase r, α(r) ≤ 6D(r).

(iii) (y, z)/Θ
(

log s
λ

)

is feasible for LP (15) in each phase.
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(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective cTx ≤ 2α(r′).

The proofs of (iv) and (v) are the same as the ones in Theorem 2.1, hence omitted. Equipped with these
claims and weak duality, we have that

cTx ≤ Θ(1)α(r′) ≤ Θ(1)D(r′) = O
(

log
s

λ

)

OPT.

Proof of (i). We prove that x(r) is feasible in phase r by showing that the growing functions in Algorithm 4
line 16 increments x(r) in a continuous manner. In the beginning of an iteration in round i, we have that

x
(r)
j = Bj exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj =
x̄j +Dj

exp
((

Y
(i−1)
j + aijyi

)

/cj

) exp

(

Y
(i−1)
j + aijyi

cj

)

−Dj = x̄j .

By following Algorithm 4, we have that x(r) is feasible for LP (14) since we terminate the while loop at line
11 when the cost outside of the tight set exceeds the remaining capacity by a factor of 2. Then, as x is the
coordinate-wise maximum of {x(r)}, capped at 1, x must be feasible for LP (7).

Proof of (ii). In the beginning of phase r, x
(r)
j = min{x′

j , α(r)/(2ncj)}, so P (r) is initially at most α(r)/2.
The total increase of P (r) is at least α(r)/2 as P (r) ≥ α(r) when phase r ends. Therefore, it suffices to show
that

∂P (r)

∂yi
≤ 3

∂D(r)

∂yi
.

Recall that T is the set of the tight x indices and the zj variables in T are increasing with rate aijyi, we
have that

∂D(r)

∂yi
= 1−

∑

j∈T

aij .

When yi is increasing, this partial derivative is always non-negative due to the condition in Algorithm 4 line

11. Namely, at the point when x
(r)
j is tight, we add j to T , and this may make the partial derivative change

from non-negative to negative. In this case, we have that 2(1−
∑

j∈T aij) < 0 so the condition automatically
fails. From here, when Aix

′ ≥ 1, we have that

∂P (r)

∂yi
=

∑

j∈[n]\T

cj
∂x

(r)
j

∂yi

=
∑

j∈[n]\T

aijcj

(

Bj

cj
exp

(

Y
(i−1)
j + aijyi − zj

cj

))

=
∑

j∈[n]\T

aij

(

Bj exp

(

Y
(i−1)
j + aijyi − zj

cj

)

−Dj +Dj

)

=
∑

j∈[n]\T

aij



x
(r)
j +

(

λ

A′
i1

+
(1− λ)x′

j1x̄j<x′
j

A′
ix

′
c

)



1−
∑

j∈T

aij









≤ 2



1−
∑

j∈T

aij



+ (λ+ (1− λ))



1−
∑

j∈T

aij





= 3



1−
∑

j∈T

aij



 = 3
∂D(r)

∂yi
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where the last inequality is due to the fact that
∑

j∈[n]\T aijx
(r)
j < 2

(

1−
∑

j∈T aij

)

and (13). The same

result can be obtained when Aix
′ < 1 by regarding λ as 1.

Proof of (iii). We show that (y, z)/Θ
(

log κn
λ

)

is feasible for LP (15) in the last round `r of phase r. The
argument applies to any round prior to `r. We recall that within a phase r, an iteration ends in one of the
following three cases: (1) the arriving constraint i induces a cost outside of the tight set that exceeds the

remaining capacity by a factor of 2, (2) there exists a variable x
(r)
j that reaches the advice value x′

j , or (3)

there exists a variable x
(r)
j that reaches 1. Suppose there are t ≤ `r − ir + 1+ 2n iterations in phase r since

there are `r−ir+1 covering constraints, n variables advised, and each variable is capped at 1 at most once. In

iteration p ≤ t, let x
(r,p)
j , B

(p)
j , andD

(p)
j be the value of x

(r)
j , Bj , andDj in the end of iteration p, respectively.

Additionally, let i(p) denote the corresponding round in which iteration p occurs and Ŷ
(p)
j =

∑i(p)

k=ir
akjyk−zj

be the accumulative weighted dual variable sum in the end of iteration p with respect to coordinate j in
the primal. Note that we are only incrementing yi(p) in iteration p and possibly incrementing zj with rate

ai(p)jyi(p) if j ∈ T . If j ∈ T in the beginning of iteration p, then x
(r,p−1)
j = x

(r,p)
j = 1 and Ŷ

(p−1)
j = Ŷ

(p)
j

because ai(p)jyj and zj cancel out each other. The goal is to show that Ŷ
(t)
j /cj ≤ Θ

(

log s
λ

)

.
By using a similar argument in Theorem 2.1 (iii), we can arrive at

Ŷ
(t)
j

cj
= ln

t
∏

p=1

x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

≤ ln
x
(r,t)
j +Dmin

j

x
(r,0)
j +Dmin

j

where Dmin
j := minp∈[t]{D

(p)
j }.

From here, notice that x
(r,t)
j ≤ 1, x

(r,0)
j ≥ 0, and

Dmin
j ≥ min

i∈{ir,...,`r},T⊆[n]
1−

∑

j∈T aij>0







λ
(

1−
∑

j∈T aij

)

A′
i1







≥ min
i∈{ir,...,`r},T⊆[n]
1−

∑

j∈T aij>0







λ
(

1−
∑

j∈T aij

)

∑

j∈[n]\T aij







≥
λ

s
.

We thus have

ln
x
(r,t)
j +Dmin

j

x
(r,0)
j +Dmin

j

≤ ln

(

1 +
1

Dmin
j

)

= O
(

log
s

λ

)

.

Consistency. We then show that cTx ≤ O
(

1
1−λ

)

cTx′ +O(log s)OPT. Suppose Algorithm 4 is in phase r

with constraint i arriving. If Aix
′ < 1, then the change of cTx simply follows (ii) and (iii) by regarding λ as

1, so cTx ≤ O(log s)OPT. For the more interesting case when Aix
′ ≥ 1, we decompose ∂P (r)

∂yi
= ∂Pc

∂yi
+ ∂Pu

∂yi
,

where Pc is the component of the primal objective due to the advice and Pu is the component of the primal

objective due to the online algorithm. We have that the rate of change is credited to ∂Pc if x
(r)
j < x′

j and

the rate of change is credited to ∂Pu otherwise, if x
(r)
j ≥ x′

j . In particular,

∂Pc

∂yi
=

∑

j∈[n]\T :x
(r)
j <x′

j

aij



x
(r)
j +

(

λ

A′
i1

+
(1− λ)x′

j1x
(r)
j <x′

j

A′
ix

′
c

)



1−
∑

j∈T

aij







 ≥ 0 +
λ

s
+ (1− λ),

∂Pu

∂yi
=

∑

j∈[n]\T :x
(r)
j ≥x′

j

aij



x
(r)
j +

(

λ

A′
i1

+
(1− λ)x′

j1x
(r)
j <x′

j

A′
ix

′
c

)



1−
∑

j∈T

aij







 ≤ 2 + λ+ 0.
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Thus we have ∂Pu

∂yi
≤ 2+λ

λ/s+1−λ ·
∂Pc

∂yi
, so that

∂P (r)

∂yi
≤

(

1 +
2 + λ

λ
s + 1− λ

)

∂Pc

∂yi
= O

(

1

1− λ

)

∂Pc

∂yi
.

We note that if x′ is feasible, then Aix
′ ≥ 1 for all i ∈ [m], so cTx ≤ O

(

1
1−λ

)

cTx′.

Bounding the number of violating constraints. We show that Algorithm 3 encountersO(n log s log cT x
α(1) )

violating constraints. Using the same argument as in the proof of Theorem 2.4, we have that there are
O(log(cTx/α(1))) phases.

In each phase r, when a violating constraint i just arrived, we have that
∑

j∈[n]\T aijx
(r)
j < 1−

∑

j∈T aij .

We increment x
(r)
j ’s where j ∈ [n] \ T until

∑

j∈[n]\T aijx
(r)
j ≥ 2

(

1−
∑

j∈T aij

)

. One of the following two

cases must hold after updating x(r): (1) there exist a large variable x
(r)
j ≥ 1/(2s) that is updated to at least

3x
(r)
j /2, or (2) there exists a small variable x

(r)
j < 1/(2s) that becomes large, i.e., x

(r)
j is updated to at least

1/(2s). Let L and S be the set of large and small variable subscript labels in [n] \ T before the violating

constraint i arrives, respectively, and x̂
(r)
j be the value of x

(r)
j after the update. If none of these two cases

holds, then

∑

j∈[n]\T

aij x̂
(r)
j <

3

2

∑

j∈L

aijx
(r)
j +

1

2s

∑

j∈S

aij <
3

2



1−
∑

j∈T

aij



+

(

1−
∑

k∈T aij
)

2
∑

k∈[n]\T aij

∑

j∈S

aij ≤ 2



1−
∑

j∈T

aij





where the second inequality is by the fact that constraint i is violated and the definition of the sparsity s,
while the last inequality is by S ⊆ [n] \T . This implies that the cost outside of the tight set does not exceed
the remaining capacity by a factor of 2 after the update, a contradiction.

Suppose x
(r)
j has been updated t times by a multiplicative factor of 3/2 since it was large in phase r,

then t = O(log s) since 1
2s (

3
2 )

t ≤ 1.
There are n variables, each variable can be updated from small to large once and updated at most t

times by a factor of 3/2 since it was large in each phase. Hence, Algorithm 3 encounters O(n log s log cT x
α(1) )

violating covering constraints.

2.2 Applications

Our general framework on learning-augmented online covering LPs can be directly applied to online problems
with predictions, including the online set cover problem and the online group Steiner tree problem on trees.

2.2.1 Online fractional set cover with fractional advice

In the online set cover problem introduced in [AAA+09], we are given offline n sets Sj where j ∈ [n], each
associated with a positive cost cj . The elements arrive online one at a time. Upon the arrival of an element
i ∈ [m] where m can be unknown, the information of whether each set Sj contains element i is revealed. The
goal is to irrevocably pick sets to cover all the elements that have arrived while minimizing the total cost.
Let Fi := {j ∈ [n] | i ∈ Sj} denote the subset of subscript indices with the corresponding sets containing
element i. Let d := maxi∈[m]{|Fi|} denote the maximum number of sets that contain one specific element i,
over all possible i ∈ [m]. An O(logm log d)-competitive algorithm was introduced in [AAA+09]. The online
algorithm first finds an O(log d)-competitive fractional solution for the following LP formulation:

minimize cTx over x ∈ [0, 1]n subject to
∑

j∈Fi

xj ≥ 1 ∀i ∈ [m] (16)

21



and then round by paying a factor of O(logm). The online fractional set cover problem considers LP (16),
where each row is associated with an element that arrives and each column is associated with a set. The
goal is to update x in a non-decreasing manner while minimizing the objective cTx.

The learning-augmented problem was later introduced in [BMS20], where the input also includes a
confidence parameter λ ∈ [0, 1] and an advice A ⊆ [n] presented as a subset of subscript indices of the
sets given offline. The advice A is feasible if ∪j∈ASj = [m]. Another way to present the advice is to describe
it as a vector x′ ∈ {0, 1}n, namely, set Sj is suggested by the advice if and only if x′

j = 1. Our framework
therefore naturally extends to a more general setting when the advice can be fractional, i.e., x′ ∈ [0, 1]n.
Let OPT denote the optimal objective value for LP (16). We show that the online fractional set cover
problem with fractional advice can be solved efficiently (independent of the number of elements) with the
same approximation guarantee as [BMS20].

Corollary 2.5. For the learning-augmented online fractional set cover problem with fractional advice, there
exists an online algorithm that generates x and encounters polynomially many uncovered elements such that

cTx ≤ min

{

O

(

1

1− λ

)

cTx′ +O(log d)OPT, O

(

log
d

λ

)

OPT

}

.

If x′ is feasible for LP (16), then cTx ≤ O
(

1
1−λ

)

cTx′.

Proof. We use Theorem 2.4 and observe that the sparsity parameter s = d since the entries of the constraint
matrix is either 0 or 1. We note that the number of violating constraints encountered does not depend on
m but depends on the cost cj since α(1) depends on cj .

2.2.2 Online group Steiner tree on trees

We consider the learning-augmented online group Steiner tree problem on trees. We note that this problem
generalizes other online problems including the online group Steiner tree problem on general graphs (by
paying another logarithmic factor in the competitive ratio), the online multicast problem on trees, and the
online non-metric facility location problem [AAA+06].

In the group Steiner tree problem on trees, we are given a weighted rooted tree T = (V,E, r) and groups
of vertices V1, V2, ..., Vk ⊆ V . Let n = |V | denote the number of vertices. Each edge e ∈ E is associated with
a positive cost ce. The goal is to find a minimum weighted rooted subtree T ′ = (V ′, E′, r) that contains at
least one vertex from each group Vi. An O(log n log k)-approximation algorithm was presented in [GKR00]
by considering the following LP formulation:

minimize
∑

e∈E

cexe over x ∈ [0, 1]|E| subject to x supports an r to Vi flow of value 1 ∀i ∈ [k] (17)

and round. We note that although LP (17) might have exponentially many constraints, it can be solved in
polynomial time by using a minimum cut procedure to retrieve violating constraints.

In the online problem, the groups Vi arrive one at a time, and the goal is to find T ′ by irrevocably adding
edges from E. The O(log2 n log k)-competitive algorithm in [AAA+06] implicitly considers LP (17) in an
online fashion by updating x in a non-decreasing manner and rounding x online.

In the learning-augmented problem, we are given a confidence parameter λ ∈ [0, 1] and a fractional advice
x′ ∈ [0, 1]|E| indicating how likely each edge should be selected. Let OPT denote the weight of the minimum
weighted subtree rooted at r that contains at least one vertex from each group Vi. We show the following.

Corollary 2.6. For the learning-augmented online group Steiner tree problem on trees, there exists a poly-
nomial time randomized online algorithm that generates T ′ = (V ′, E′, r) such that

∑

e∈E′

ce ≤ log n log k ·min

{

O

(

1

1− λ

)

cTx′ +O(log n)OPT, O
(

log
n

λ

)

OPT

}

and V ′ ∩ Vi 6= ∅ for each i ∈ [k]. If x′ is feasible, then
∑

e∈E′ ce ≤ O
(

logn log k
1−λ

)

cTx′.
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Proof. We use the following lemma due to [AAA+06].

Lemma 2.7. Given an α-competitive feasible solution for LP (17), there exists an O(α log n log k)-competitive
randomized rounding scheme for the online group Steiner tree problem on trees.

We use Theorem 2.4 to obtain an online solution x and observe that the sparsity parameter s = O(|E|) =
O(n2). Let LP∗ denote the optimal objective value of LP (17). We have that

cTx ≤ min

{

O

(

1

1− λ

)

cTx′ +O(log n2)LP∗, O

(

log
n2

λ

)

LP
∗

}

≤ min

{

O

(

1

1− λ

)

cTx′ +O(log n)LP∗, O
(

log
n

λ

)

LP
∗

}

and cTx ≤ O
(

1
1−λ

)

cTx′ if x′ is feasible for LP (17).

Combining the inequality above with Lemma 2.7, we have the desired guarantee for T ′.

3 PDLA Algorithms for Covering Semidefinite Programming

In this section, we prove Theorems 1.4 and 1.6. Namely, we present efficient, consistent, and robust PDLA
algorithms for online covering SDPs. We recall that the online covering SDP problem (4) is the following.

minimize cTx over x ∈ Rn
≥0 subject to

n
∑

j=1

Ajxj � B(i).

Here, Aj ∈ Rd×d
≥0 is an SPSD matrix for each j ∈ [n] and c ∈ Rn

>0 denotes the positive coefficients of the

linear cost function. We assume that in the beginning, B(0) is a zero matrix, and there are m arriving SPSD
matrices B(i)’s where m might be unknown. For each i ∈ [m], it is required that B(i) � B(i−1). In round i,
B(i) arrives and our goal is to approximately minimize the objective cTx by updating x in a non-decreasing
manner such that x is feasible. An important idea is to simultaneously consider the dual packing SDP
problem (5):

maximize B(i) ⊗ Y over Y � 0 subject to Aj ⊗ Y ≤ cj ∀j ∈ [n].

The approach closely follows the one for online covering LPs and the one in [EKN16]. In round i,
either

∑n
j=1 Ajxj � B(i) and there is nothing to be done, or we use a subroutine to retrieve an implicit

violating linear constraint and update x. More specifically, observe that
∑n

j=1 Ajxj � B(i) if and only if

vT
(

∑n
j=1 Ajxj

)

v ≥ vTB(i)v for all v ∈ Rn, if the constraint in round i is violated, we can find an SPSD

matrix V = vvT such that vT
(

∑n
j=1 Ajxj

)

v =
∑n

j=1 Ajxj ⊗ V < B(i) ⊗ V = vTB(i)v, and we update xj

proportionally to Aj⊗V . There are many possible options for V and without loss of generality, we can scale
V by a factor of trace(V ) such that trace(V ) = 1. One option is to use V = vvT where v is a unit vector
corresponding to the smallest eigenvalue of

∑n
j=1 Ajxj − B(i). Since

∑n
j=1 Ajxj − B(i) � 0, its smallest

eigenvalue λd is negative, so (
∑n

j=1 Ajxj −B(i))⊗ V = v(
∑n

j=1 Ajxj −B(i))vT = λd < 0 as required.
Again, we use the guess-and-double approach by increasing the primal and dual variables in each phase

r. We estimate a lower bound α(r) for OPT in phase r. In phase 1, let α(1) ← minnj=1{
cj trace(B(1))

trace(Aj)
} be a

proper lower bound for OPT. Once the online objective exceeds α(r), we start the new phase r+1 from the
current B(i) matrix (say phase r + 1 starts with i = ir+1, in particular, i1 = 1), and double the estimated

lower bound, i.e. α(r + 1)← 2α(r). In the beginning of phase r, x
(r)
j ← min{x′

j , α(r)/(2ncj)}.

We recall that x must be updated in a non-decreasing manner, so the algorithm maintains {x
(r)
j }, which

denotes the value of each variable xj in each phase r, and the value of each variable xj is actually set to

maxr{x
(r)
j }.
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In phase r and round i, we find V and increase Y continuously along V . If the advice is feasible, i.e.,
∑n

j=1 Ajx
′
j � B(i), we increase each variable x

(r)
j with growth rate

Aj ⊗ V

cj



x
(r)
j +

λB(i) ⊗ V
∑n

k=1 Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

B(i) ⊗ V
∑n

k=1 1x
(r)
k

<x′
k

Akx′
k ⊗ V





where 1
x
(r)
k

<x′
k

is an indicator variable with value 1 if x
(r)
k < x′

k and 0 otherwise. Alternatively if the advice

is not feasible, we increase x
(r)
j with growth rate

Aj ⊗ V

cj

(

x
(r)
j +

B(i) ⊗ V
∑n

k=1 Ak ⊗ V

)

.

We note that
n
∑

j=1

Aj ⊗ V
∑n

k=1 Ak ⊗ V
= 1 and

n
∑

j=1

Aj ⊗ V
(

x′
j1x

(r)
j <x′

j

)

∑n
k=1 1x

(r)
k

<x′
k

Akx′
k ⊗ V

= 1. (18)

To implement with the proper growth rate, the dual variable Y initialized as a zero matrix is used as a
proxy in each phase r. We increment x(r) until the implicit violating constraint i is satisfied by a factor of

2. This guarantees that at least one variable x
(r)
j is doubled thus ensures that the algorithm only updates

x(r) polynomially many times.
Similar to Algorithm 2, in phase r, each iteration ends in one of the following three cases: (1) the implicit

violating linear constraint is satisfied by a factor of 2, (2) there exists a variable x
(r)
j that reaches the advice

value x′
j , or (3) the objective c

Tx(r) reaches α(r). The coefficients Dj and Bj for fitting boundary conditions

are defined based on the value of x
(r)
j in the end of the previous iteration, stored as x̄j . The indicator value

used for the growth rate, 1
x
(r)
j <x′

j

, has the same value as 1x̄j<x′
j
during an iteration.

The main algorithm that uses the phase scheme is presented in Algorithm 5. The continuous primal-dual
approach in phase r and round i, used as a subroutine, is presented in Algorithm 6.

Algorithm 5 Phase Scheme for Algorithm 6

1: r ← 1, α(1)← minj∈[n]{cj trace(B
(1))/ trace(Aj)}, Y ← 0, i1 ← 1.

2: for each j ∈ [n] do

3: x
(r)
j ← min{x′

j , α(r)/(2ncj)}.

4: for arriving covering constraint
∑n

j=1 Ajxj � B(i) do . i = 1, 2, ...,m for an unknown m
5: Run Algorithm 6.
6: if cTx(r) ≥ α(r) then . start a new phase
7: r ← r + 1, α(r)← 2α(r − 1), Y ← 0, ir ← i.
8: for each j ∈ [n] do

9: x
(r)
j ← min{x′

j , α(r)/(2ncj)}.

10: Go to line 5.
11: for each j ∈ [n] do

12: xj ← max`∈[r]{x
(`)
j }. . this is the solution returned in each round i

The augmentation is in a continuous fashion, and it is not hard to implement it in a discrete way for any
desired precision by binary search. In each iteration, we use binary search to find the proper δ, and x(r) is
updated accordingly once. Therefore, to show that the algorithm is efficient, it suffices to bound the number
of iterations. The performance of Algorithm 5 is stated in Theorem 3.1, the formal version of Theorem 1.4.
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Algorithm 6 PDLA Online SDP Covering in Phase r and Round i

Input: x(r): current solution, α(r): estimate for OPT, B(i): current lower bound matrix, ir: starting round
of phase r, Y : dual variable matrix, λ: the confidence parameter, and x′: the advice for x.
Output: Updated x(r) and Y .

1: x̄← x(r). . x̄ is the value of x(r) at the end of the previous iteration
2: while

∑n
j=1 Ajxj 6� B(i) do

3: Find an SPSD matrix V with trace(V ) = 1 such that
∑n

j=1(Ajx
(r)
j )⊗ V < B(i) ⊗ V .

4: for each j ∈ [n] do
5: if

∑n
k=1 Akx

′
k � B(i) then

6: Dj ←
λB(i)⊗V

∑

n
k=1 Ak⊗V +

(1−λ)x′
j1x̄j<x′

j
B(i)⊗V

∑

n
k=1 1x̄k<x′

k
Akx′

k
⊗V ,

7: else

8: Dj ←
B(i)⊗V

∑

n
k=1 Ak⊗V .

9: Bj ←
x̄j+Dj

exp
(

Aj⊗Y

cj

) .

10: while
∑n

j=1 Ajx
(r)
j ⊗ V < 2B(i) ⊗ V do

11: Set δ = 0 and increase it continuously.
12: Increase Y by continuously adding V δ to Y .
13: Increase x(r) continuously by simultaneously setting

x
(r)
j ← Bj exp

(

Aj ⊗ Y

cj

)

−Dj .

14: if any x
(r)
j = x′

j then

15: Break and go to line 1.

16: if cTx(r) ≥ α(r) then
17: Break and return.

Theorem 3.1. For the learning-augmented online covering SDP problem, there exists an online algorithm
that generates x such that

cTx ≤ min

{

O

(

1

1− λ

)

cTx′ +O (log (κn))OPT, O
(

log
κn

λ

)

OPT

}

and x is updated O(n(log cT x
α(1) )(log n + log cTx + log β)) times. If x′ is feasible for SDP (4), then cTx ≤

O( 1
1−λ )c

Tx′. Here, β = maxj∈[n]{a
max
j /cj}, a

max
j := maxi∈[m]{aij | aij > 0}, and

κ :=
maxj∈[n],i∈[m]{λmax(Aj), λmax(B

(i))}

minj∈[n],i∈[m]{λmin(Aj), λmin(B(i))}

where λmax(M) and λmin(M) are the positive maximum and minimum eigenvalues of a PSD matrix M ,
respectively.

Proof. Let P (r) = cTx(r) and D(r) = B(i) ⊗ Y be the objective value of the primal and the dual in phase
r, respectively. We use Algorithm 5 and first show robustness, i.e., cTx ≤ O

(

log κn
λ

)

OPT, then show

consistency, i.e., cTx ≤ O
(

1
1−λ

)

cTx′ + O(log(κn))OPT. Finally, we show that only O(n(log cT x
α(1) )(log n +

log cTx+ log β)) iterations are needed.

Robustness. To show that cTx ≤ O
(

log κn
λ

)

OPT, we prove the following five claims:
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(i) x is feasible for SDP (4).

(ii) For each finished phase r, α(r) ≤ 6D(r).

(iii) Y/Θ
(

log κn
λ

)

is feasible for SDP (5) in each phase.

(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective cTx ≤ 2α(r′).

The proofs of (iv) and (v) are the same as the ones in Theorem 2.1, hence omitted. Equipped with these
claims and weak duality (6), we have that

cTx ≤ Θ(1)α(r′) ≤ Θ(1)D(r′) = O
(

log
κn

λ

)

OPT.

Proof of (i). We prove that x(r) is feasible in phase r by showing that the growing functions in Algorithm 6
line 13 increments x(r) in a continuous manner.

In the beginning of an iteration in round i, we have that

x
(r)
j = Bj exp

(

Aj ⊗ Y

cj

)

−Dj =
x̄j +Dj

exp
(

Aj⊗Y
cj

) exp

(

Aj ⊗ Y

cj

)

−Dj = x̄j .

By following Algorithm 6, we have that x(r) is feasible since we terminate the while loop at line 2 when there
does not exists an SPSD matrix V such that

∑n
j=1 Ajxj ⊗V < B(i)⊗V , indicating that

∑n
j=1 Ajxj � B(i).

Whenever we find such a V , it induces a linear constraint and we increment x(r) until it is satisfied by a
factor of 2 as in Algorithm 6 line 10. As x is the coordinate-wise maximum of {x(r)} and the sum of matrices
is still PSD, x must be feasible for SDP (4).

Proof of (ii). In the beginning of phase r, x
(r)
j = min{x′

j , α(r)/(2ncj)}, so P (r) is initially at most α(r)/2.
The total increase of P (r) is at least α(r)/2 as P (r) ≥ α(r) when phase r ends. Therefore, it suffices to show
that

∂P (r)

∂δ
≤ 3

∂D(r)

∂δ
.

By considering the partial derivative of P (r) with respect to δ, when
∑n

j=1 Ajx
′
j � B(i), we have that

∂P (r)

∂δ
=

n
∑

j=1

cj
∂x

(r)
j

∂δ

=

n
∑

j=1

cj
∂

∂δ

(

Bj exp

(

Aj ⊗ (Y + V δ)

cj

)

−Dj

)

=

n
∑

j=1

cj

(

Aj ⊗ V

cj

)

Bj exp

(

Aj ⊗ (Y + V δ)

cj

)

=

n
∑

j=1

(Aj ⊗ V )
(

x
(r)
j +Dj

)

=

n
∑

j=1

(Aj ⊗ V )



x
(r)
j +

λB(i) ⊗ V
∑n

k=1 Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

B(i) ⊗ V
∑n

k=1 1x
(r)
k

<x′
k

Akx′
k ⊗ V





≤ (2 + λ+ (1− λ))B(i) ⊗ V = 3
∂D(r)

∂δ

where the last inequality is due to the fact that
∑n

j=1 Ajxj ⊗ V < 2B(i) ⊗ V and (18). The same result can

be obtained when
∑n

j=1 Ajx
′
j � B(i) by regarding λ as 1.
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Proof of (iii). Y is the sum of matrices δV , where δ > 0 and V is SPSD since V = vvT . Hence, δV is SPSD.
Y is the sum of SPSD matrices and is therefore itself SPSD.

It remains to show that Y/Θ(log κn
λ ) is feasible for SDP (5) after satisfying the last implicit linear

constraint in phase r. We recall that within a phase, each iteration ends in one of the following two cases:

(1) the implicit violating linear constraint is satisfied by a factor of 2, or (2) there exists a variable x
(r)
j that

reaches the advice value x′
j . Suppose there are t iterations in phase r. In iteration p ≤ t, let x

(r,p)
j , B

(p)
j ,

and D
(p)
j be the value of x

(r)
j , Bj , and Dj in the end of iteration p, respectively. Additionally, let Y (p) be

the value of Y in the end of iteration p. We have x
(r,p)
j = B

(p)
j exp

(

Aj⊗Y (p)

cj

)

− D
(p)
j . By using a similar

argument in Theorem 2.1 (iii), we have that

Aj ⊗ Y (t)

cj
= ln

x
(r,t)
j +D

(t)
j

B
(t)
j

= ln

(

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

exp

(

Aj ⊗ Y (t−1)

cj

)

)

=
Aj ⊗ Y (t−1)

cj
+ ln

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

= ...

= ln

t
∏

p=1

x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

≤ ln
x
(r,p)
j +Dmin

j

x
(r,0)
j +Dmin

j

where Dmin
j := minp∈[t]{D

(p)
j }.

Now we upper-bound x
(r,p)
j and lower-bound Dmin

j to obtain the robustness ratio. Notice that x
(r,p)
j ≤ 2κ

since whenever
∑n

i=1 Aix
(r)
i ⊗V < 2B(p)⊗V , if we only consider x

(r,p)
j , the worst case is that the unit vector

v such that V = vvT , is in the same direction of the vector corresponding to the largest eigenvalue of B(p)

and that of the smallest eigenvalue of Ai, and x(r,p) is incremented until the implicit linear constraint is
satisfied by a factor of 2. We also have that

Dmin
j ≥

λmini∈[m]{λmin(B
(i))}

∑n
k=1 λmax(Ai)

≥
λ

κn
.

With x
(r,0)
j = α(r)/(2ncj) ≥ 0, we thus have that

ln
x
(r,p)
j +Dmin

j

x
(r,0)
j +Dmin

j

≤ ln

(

1 +
2κ

Dmin
j

)

= O

(

log
κ2n

λ

)

= O
(

log
κn

λ
+ log κ

)

= O
(

log
κn

λ

)

.

Consistency. We then show that cTx ≤ O
(

1
1−λ

)

cTx′ + O (log (κn))OPT. Suppose the algorithm is in

phase r with constraint i arriving. If
∑n

j=1 Ajx
′
j � B(i), then the change of cTx simply follows (ii) and (iii)

by regarding λ as 1, so cTx ≤ O (log (κn))OPT. For the more interesting case when
∑n

j=1 Ajx
′
j � B(i), we

decompose ∂P (r)
∂yi

= ∂Pc

∂yi
+ ∂Pu

∂yi
, where Pc is the component of the primal objective due to the advice and Pu

is the component of the primal objective due to the online algorithm. We have that the rate of change is

credited to ∂Pc if x
(r)
j < x′

j and the rate of change is credited to ∂Pu otherwise, if x
(r)
j ≥ x′

j . In particular,

∂Pc

∂δ
=

∑

j∈[n]:xj<x′
j

(Aj ⊗ V )



x
(r)
j +

λB(i) ⊗ V
∑n

k=1 Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

B(i) ⊗ V
∑n

k=1 1x
(r)
k

<x′
k

Akx′
k ⊗ V





≥ 0 +

(

λ

κn
+ 1− λ

)

B(i) ⊗ V,
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∂Pu

∂δ
=

∑

j∈[n]:xj≥x′
j

(Aj ⊗ V )



x
(r)
j +

λB(i) ⊗ V
∑n

k=1 Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

B(i) ⊗ V
∑n

k=1 1x
(r)
k

<x′
k

Akx′
k ⊗ V



 ≤ (2 + λ)B(i) ⊗ V + 0.

Thus we have ∂Pu

∂δ ≤
(2+λ)B(i)⊗V

(λ/(κn)+1−λ)B(i)⊗V
· ∂Pc

∂δ , so that

∂P (r)

∂δ
≤

(

1 +
2 + λ

1− λ

)

∂Pc

∂δ
= O

(

1

1− λ

)

∂Pc

∂δ
.

We note that if x′ is feasible, then
∑n

j=1 Ajx
′
j � B(i), so cTx ≤ O

(

1
1−λ

)

cTx′.

Bounding the number of iterations. The analysis simply follows the one for Theorem 2.1. The main
difference is that (1) instead of violating linear covering constraints, we use implicit violating linear con-
straints, and (2) we bound the number of iterations instead of implicit violating constraints, where the
number of iterations is O(n) more than the number of implicit violating constraints since each variable can
reach the advice value once.

3.1 Adding Box Constraints

We recall that the covering SDP problem (8) with box constraints is the following.

minimize cTx over x ∈ [0, 1]n subject to

n
∑

j=1

Ajxj � B(i).

Our PDLA algorithm simultaneously considers the dual packing SDP problem:

maximize B(i) ⊗ Y − 1T z over Y � 0 and z ∈ Rn
≥0 subject to Aj ⊗ Y − zj ≤ cj ∀j ∈ [n]. (19)

We recall that we assume that the advice x′ ∈ [0, 1]n.
We use the guess-and-double approach similar to Algorithms 3 and 5. We maintain the set T which

denotes the subscript indices of the x variables that are tight. In phase r, upon the arrival of an implicit

violating linear constraint, we increment x
(r)
j in terms of an exponential function of δ and zj subject to

x
(r)
j ≤ 1. Once x

(r)
j = 1, we add j to the tight set T and stop incrementing x

(r)
j , but we still increment Y

continuously and zj with rate Aj ⊗ V δ in order to maintain dual feasibility. In the beginning of each phase,

z is a zero vector and T is an empty set. zj = 0 whenever j ∈ [n] \ T . Subject to x
(r)
j ≤ 1, x

(r)
j is increasing

until the cost outside of the tight set exceeds the remaining capacity by a factor of 2. More specifically,

when we have an implicit violating linear constraint induced by V , we have that
∑

j∈[n]\T Ajx
(r)
j ⊗ V <

B(i) ⊗ V −
∑

j∈T Aj ⊗ V , and we increment until
∑

j∈[n]\T Ajx
(r)
j ⊗ V ≥ 2(B(i) ⊗ V −

∑

j∈T Aj ⊗ V ).

If the advice is feasible, i.e.,
∑n

j=1 Ajx
′
j � B(i), we increase each variable x

(r)
j with growth rate

Aj ⊗ V

cj

(

x
(r)
j +

(

λ
∑

k∈[n]\T Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j
∑

k∈[n]\T 1
x
(r)
k

<x′
k

Akx′
k ⊗ V

)(

B(i) ⊗ V −
∑

k∈T

Ak ⊗ V

))

.

Alternatively if the advice is not feasible, we increase x
(r)
j with growth rate

Aj ⊗ V

cj

(

x
(r)
j +

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
∑

k∈[n]\T Ak ⊗ V

)

.
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Similar to (18), we have that

∑

j∈[n]\T

Aj ⊗ V
∑

k∈[n]\T Ak ⊗ V
= 1 and

∑

j∈[n]\T

x′
j1x

(r)
j <x′

j

Aj ⊗ V
∑

k∈[n]\T 1
x
(r)
k

<x′
k

Akx′
k ⊗ V

= 1. (20)

Each iteration now ends in one of the following four cases: (1) the implicit linear constraint induces a cost

outside of the tight set that exceeds the remaining capacity by a factor of 2, (2) there exists a variable x
(r)
j

that reaches the advice value x′
j , (3) there exists a variable x

(r)
j that reaches 1, or (4) the objective cTx(r)

reaches α(r). The coefficients Dj and Bj for fitting boundary conditions are defined based on the value of

x
(r)
j in the end of the previous iteration, stored as x̄j . Again, the indicator value used for the growth rate,

1
x
(r)
j <x′

j

, has the same value as 1x̄j<x′
j
during an iteration.

The main algorithm that uses the phase scheme is presented in Algorithm 7. The continuous primal-dual
approach in phase r and round i, used as a subroutine, is presented in Algorithm 8. The performance of
Algorithm 7 is stated in Theorem 3.2, the formal version of Theorem 1.6. We note that in line 3 of Algorithm

8, given the round i and the tight set T , we find V such that
∑

j∈[n]\T Aj⊗V

B(i)⊗V−
∑

j∈T Aj⊗V
is minimized.3

Algorithm 7 Phase Scheme for Algorithm 8

1: r ← 1, α(1)← minj∈[n]{cj trace(B
(1))/ trace(Aj)}, Y ← 0, T ← ∅, i1 ← 1.

2: for each j ∈ [n] do

3: x
(r)
j ← min{x′

j , α(r)/(2ncj)}, zj ← 0.

4: for arriving covering constraint
∑n

j=1 Ajxj � B(i) do . i = 1, 2, ...,m for an unknown m
5: Run Algorithm 8.
6: if cTx(r) ≥ α(r) then . start a new phase
7: r ← r + 1, α(r)← 2α(r), Y ← 0, T ← ∅, ir ← i.
8: for each j ∈ [n] do

9: x
(r)
j ← min{x′

j , α(r)/(2ncj)}, zj ← 0.

10: Go to line 5.
11: for each j ∈ [n] do

12: xj ← max`∈[r]{x
(`)
j }. . this is the solution returned in each round i

Theorem 3.2. For the learning-augmented online covering SDP problem with box constraints, there exists
an online algorithm that generates x such that

cTx ≤ min{O(
1

1− λ
)cTx′ +O(log s)OPT, O(log

s

λ
)OPT}

and x is updated O(n log s log cT x
α(1) ) times. If x′ is feasible for SDP (8), then cTx ≤ O( 1

1−λ )c
Tx′. Here,

s := max
i∈[m],T⊆[n]

min
V :B(i)⊗V−

∑

j∈T Aj⊗V >0

{
∑

j∈[n]\T Aj ⊗ V

B(i) ⊗ V −
∑

j∈T Aj ⊗ V

}

.

Proof. Let P (r) = cTx(r) and D(r) = B(i) ⊗ Y − 1T z be the objective value of the primal and the dual
in phase r, respectively. We use Algorithm 7 and first show robustness, i.e., cTx ≤ O

(

log s
λ

)

OPT, then

3Following [EKN16], for fixed i and T , V can be calculated by estimating η to any desired precision via solving the SDP:

min
V











∑

j∈[n]\T

Aj − η



B(i) −
∑

j∈T

Aj







⊗ V | V � 0,



B(i) −
∑

j∈T

Aj



⊗ V ≥ 0







.
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Algorithm 8 PDLA Online SDP Covering with Box Constraints in Phase r and Round i

Input: x(r): current solution, α(r): estimate for OPT, B(i): current lower bound matrix, ir: starting
round of phase r, Y : dual variable matrix, z: dual variable vector, T : tight variable set, λ: the confidence
parameter, and x′: the advice for x.
Output: Updated x(r), Y , and z.

1: x̄← x(r). . x̄ is the value of x(r) at the end of the previous iteration
2: while

∑n
j=1 Ajxj 6� B(i) do

3: Find an SPSD matrix V with trace(V ) = 1 such that
∑n

j=1(Ajx
(r)
j )⊗ V < B(i) ⊗ V .

4: for each j ∈ [n] do
5: if

∑n
k=1 Akx

′
k � B(i) then

6: Dj ←

(

λ
∑

k∈[n]\T Ak⊗V +
(1−λ)x′

j1x̄j<x′
j

∑

k∈[n]\T 1x̄k<x′
k
Akx′

k
⊗V

)

(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

,

7: else

8: Dj ←
B(i)⊗V−

∑

k∈T Ak⊗V
∑

k∈[n]\T Ak⊗V .

9: Bj ←
x̄j+Dj

exp((Aj⊗Y−zj)/cj)
.

10: while T 6= [n] and
∑

j∈[n]\T Ajx
(r)
j ⊗ V < 2(B(i) ⊗ V −

∑

j∈T Aj ⊗ V ) do
11: Set δ = 0 and increase it continuously.
12: Increase Y by continuously adding V δ to Y .
13: for each j ∈ T do

14: Increase zj with rate Aj ⊗ V δ.

15: Update x(r) continuously by simultaneously setting

x
(r)
j ← min

{

1, Bj exp

(

Aj ⊗ Y − zj
cj

)

−Dj

}

.

16: if any x
(r)
j = x′

j < 1 then

17: Break and go to line 1.

18: if any x
(r)
j = 1 for j /∈ T then

19: Add j to T and go to line 1.

20: if cTx(r) ≥ α(r) then
21: Break and return.
22: if T = [n] and

∑n
j=1 Ajxj 6� B(i) then

23: return no feasible solution.

show consistency, i.e., cTx ≤ O
(

1
1−λ

)

cTx′ + O(log s)OPT. Finally, we show that only O(n log s log cT x
α(1) )

iterations are needed.

Robustness. To show that cTx ≤ O
(

log s
λ

)

OPT, we prove the following five claims:

(i) If line 23 in Algorithm 8 is not encountered, then x is feasible for SDP (8).

(ii) For each finished phase r, α(r) ≤ 6D(r).

(iii) (y, z)/Θ
(

log s
λ

)

is feasible for SDP (19) in each phase.

(iv) The sum of the covering objective generated from phase 1 to r is at most 2α(r).

(v) Let r′ be the last phase, then the covering objective cTx ≤ 2α(r′).

30



The proofs of (iv) and (v) are the same as the ones in Theorem 3.1, hence omitted. Equipped with these
claims and weak duality (6), we have that

cTx ≤ Θ(1)α(r′) ≤ Θ(1)D(r′) = O
(

log
s

λ

)

OPT.

Proof of (i). We prove that x(r) is feasible in phase r by showing that the growing functions in line 16
increments x(r) in a continuous manner. In the beginning of an iteration in round i, we have that

x
(r)
j = Bj exp

(

Aj ⊗ Y

cj

)

−Dj =
x̄j +Dj

exp
(

Aj⊗Y
cj

) exp

(

Aj ⊗ Y

cj

)

−Dj = x̄j .

By following Algorithm 8, we have that x(r) is feasible since we terminate the while loop at line 2 when there
does not exists an SPSD matrix V such that

∑n
j=1 Ajxj ⊗V < B(i)⊗V , indicating that

∑n
j=1 Ajxj � B(i).

Whenever we find such a V , it induces a linear constraint and we increment x(r) until the cost outside of the
tight set exceeds the remaining capacity by a factor of 2 in line 10. As x is the coordinate-wise maximum of
{x(r)}, capped at 1, and the sum of SPSD matrices is still SPSD, x must be feasible for SDP (8).

Proof of (ii). In the beginning of phase r, x
(r)
j = min{x′

j , α(r)/(2ncj)}, so P (r) is initially at most α(r)/2.
The total increase of P (r) is at least α(r)/2 as P (r) ≥ α(r) when phase r ends. Therefore, it suffices to show
that

∂P (r)

∂δ
≤ 3

∂D(r)

∂δ
.

Recall that T is the set of the tight x indices and the zj variables with in j ∈ T are increasing with rate
Aj ⊗ V , we have that

∂D(r)

∂δ
= B(i) ⊗ V −

∑

j∈T

Aj ⊗ V.

When Y is increasing, this partial derivative is always non-negative due to the condition in Algorithm 8 line

10. Namely, at the point when x
(r)
j is tight, we add j to T , and this may make the partial derivative change

from non-negative to negative. In this case, we have that 2(B(i) ⊗ V −
∑

j∈T Aj ⊗ V ) < 0 so the condition

automatically fails. From here, when
∑n

j=1 Ajx
′
j � B(i), we have that

∂P (r)

∂δ
=

∑

j∈[n]\T

cj
∂x

(r)
j

∂δ
=

∑

j∈[n]\T

cj
∂

∂δ

(

Bj exp

(

Aj ⊗ (Y + V δ)− zj
cj

)

−Dj

)

=
∑

j∈[n]\T

cj

(

Aj ⊗ V

cj

)

Bj exp

(

Aj ⊗ (Y + V δ)− zj
cj

)

=
∑

j∈[n]\T

(Aj ⊗ V )(x
(r)
j +Dj)

=
∑

j∈[n]\T

(Aj ⊗ V )(x
(r)
j +

λ(B(i) ⊗ V −
∑

k∈T Ak ⊗ V )
∑

k∈[n]\T Ak ⊗ V
+

(1− λ)x′
j1x

(`)
j <x′

j

(B(i) ⊗ V −
∑

k∈T Ak ⊗ V )
∑

k∈[n]\T 1
x
(`)
k

<x′
k

Akx′
k ⊗ V

)

≤ (2 + λ+ (1− λ)) (B(i) ⊗ V −
∑

j∈T

Aj ⊗ V ) = 3
∂D(r)

∂δ

where the last inequality is due to the fact that
∑

j∈[n]\T Ajxj ⊗ V < 2(B(i) ⊗ V −
∑

j∈T Aj ⊗ V ) and (20).

The same result can be obtained when
∑n

j=1 Ajx
′
j � B(i) by regarding λ as 1.

Proof of (iii). The constraint Y � 0 is satisfied by the same statement in Theorem 3.1. We show that
y/Θ(log κn

λ ) is feasible for SDP (19) after satisfying the last implicit linear constraint in phase r. We recall
that within a phase r, each iteration ends in one of the following three cases: (1) the implicit linear constraint
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induces a cost outside of the tight set that exceeds the remaining capacity by a factor of 2, (2) there exists

a variable x
(r)
j that reaches the advice value x′

j , or (3) there exists a variable x
(r)
j that reaches 1. Suppose

there are t iterations in phase r. In iteration p ≤ t, let x
(r,p)
j , B

(p)
j , and D

(p)
j be the value of x

(r)
j , Bj , and

Dj in the end of iteration p, respectively. Additionally, let Y (p) and z
(p)
j be the value of Y and zj in the end

of iteration p, respectively. We have x
(r,p)
j = B

(p)
j exp

(

Aj⊗Y (p)−z
(p)
j

cj

)

−D
(p)
j . By using a similar argument

in Theorem 3.1 (iii), we have that

Aj ⊗ Y (t) − z
(t)
j

cj
= ln

x
(r,t)
j +D

(t)
j

B
(t)
j

= ln

(

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

exp

(

Aj ⊗ Y (t−1) − z
(t−1)
j

cj

))

=
Aj ⊗ Y (t−1) − z

(t−1)
j

cj
+ ln

x
(r,t)
j +D

(t)
j

x
(r,t−1)
j +D

(t)
j

= ...

= ln

p
∏

p=1

x
(r,p)
j +D

(p)
j

x
(r,p−1)
j +D

(p)
j

≤ ln
x
(r,p)
j +Dmin

j

x
(r,0)
j +Dmin

j

where Dmin
j := minp∈[t]{D

(p)
j }.

Now we upper-bound x
(r,p)
j and lower-bound Dmin

j to obtain the robustness ratio. Clearly, x
(r,p)
j ≤ 1.

We also have that

Dmin
j ≥

λ
(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T Ak ⊗ V

≥ min
i∈[m],T⊆[n]

max
V :B(i)⊗V−

∑

k∈T Ak⊗V >0

{

λ
(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T Ak ⊗ V

}

≥
λ

s

where the second inequality holds by considering all possible i and T and using our choice of V .

With x
(r,0)
j ∈ [0, 1], we thus have that

ln
x
(r,p)
j +Dmin

j

x
(r,0)
j +Dmin

j

≤ ln

(

1 +
1

Dmin
j

)

= O
(

log
s

λ

)

.

Consistency. We then show that cTx ≤ O
(

1
1−λ

)

cTx′ +O(log s)OPT. Suppose the algorithm is in phase

r with constraint i arriving. If
∑n

j=1 Ajx
′
j � B(i), then the change of cTx simply follows (ii) and (iii)

by regarding λ as 1, so cTx ≤ O(log s)OPT. For the more interesting case when
∑n

j=1 Ajx
′
j � B(i), we

decompose ∂P (r)
∂yi

= ∂Pc

∂yi
+ ∂Pu

∂yi
, where Pc is the component of the primal objective due to the advice and Pu

is the component of the primal objective due to the online algorithm. We have that the rate of change is

credited to ∂Pc if x
(r)
j < x′

j and the rate of change is credited to ∂Pu otherwise, if x
(r)
j ≥ x′

j . In particular,

∂Pc

∂δ
=

∑

j∈[n]:xj<x′
j

(Aj ⊗ V )



x
(r)
j +

λ
(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T 1
x
(r)
k

<x′
k

Akx′
k ⊗ V





≥ 0 +

(

λ

s
+ 1− λ

)

(

B(i) ⊗ V −
∑

k∈T

Ak ⊗ V

)

,
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∂Pu

∂δ
=

∑

j∈[n]:xj≥x′
j

(Aj ⊗ V )



x
(r)
j +

λ
(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T Ak ⊗ V
+

(1− λ)x′
j1x

(r)
j <x′

j

(

B(i) ⊗ V −
∑

k∈T Ak ⊗ V
)

∑

k∈[n]\T 1
x
(r)
k

<x′
k

Akx′
k ⊗ V





≤ (2 + λ)

(

B(i) ⊗ V −
∑

k∈T

Ak ⊗ V

)

+ 0.

Thus we have ∂Pu

∂δ ≤
(2+λ)(B(i)⊗V−

∑

k∈T Ak⊗V )
(λ/s+1−λ)(B(i)⊗V−

∑

k∈T Ak⊗V )
· ∂Pc

∂δ , so that

∂P (r)

∂δ
≤

(

1 +
2 + λ

1− λ

)

∂Pc

∂δ
= O

(

1

1− λ

)

∂Pc

∂δ
.

We note that if x′ is feasible, then
∑n

j=1 Ajx
′
j � B(i), so cTx ≤ O

(

1
1−λ

)

cTx′.

Bounding the number of iterations. The analysis follows similarly to the one for Theorem 2.4. We
first have that there are O(log(cTx/α(1))) phases.

We recall that within phase r, each iteration ends in one of the following three cases: (1) the implicit
linear constraint induces a cost outside of the tight set that exceeds the remaining capacity by a factor of 2,

(2) there exists a variable x
(r)
j that reaches the advice value x′

j , (3) there exists a variable x
(r)
j that reaches

1. If an iteration ends in the first case, before x(r) is updated, we have an implicit violating linear constraint

induced by V such that
∑

j∈[n]\T Ajx
(r)
j ⊗V < B(i)⊗V −

∑

j∈T Aj⊗V . We increment x
(r)
j ’s where j ∈ [n]\T

until
∑

j∈[n]\T Ajx
(r)
j ⊗ V ≥ 2

(

B(i) ⊗ V −
∑

j∈T Aj ⊗ V
)

. One of the following two cases must hold after

updating x(r): (1) there exist a large variable x
(r)
j ≥ 1/(2s) that is updated to at least 3x

(r)
j /2, or (2) there

exists a small variable x
(r)
j < 1/(2s) that becomes large, i.e., x

(r)
j is updated to at least 1/(2s). Let L and

S be the set of large and small variable subscript labels in [n] \ T before the violating constraint i arrives,

respectively, and x̂
(r)
j be the value of x

(r)
j after the update. If none of these two cases holds, then

∑

j∈[n]\T

Aj x̂
(r)
j ⊗ V <

3

2

∑

j∈L

Ajx
(r)
j ⊗ V +

1

2s

∑

j∈S

Aj ⊗ V

<
3

2



B(i) ⊗ V −
∑

j∈T

Aj ⊗ V



+

(

B(i) ⊗ V −
∑

j∈T Aj ⊗ V
)

2
∑

j∈[n]\T Aj ⊗ V

∑

j∈S

Aj ⊗ V

≤ 2



B(i) ⊗ V −
∑

j∈T

Aj ⊗ V





where the second inequality is by the fact that implicit linear constraint induced by V is violated before the
update and the definition of the sparsity s, while the last inequality is by S ⊆ [n] \ T and Aj ⊗ V ≥ 0 since
Aj is SPSD. This implies that the cost outside of the tight set does not exceed the remaining capacity by a
factor of 2 after the update, a contradiction.

Suppose x
(r)
j has been updated t times by a multiplicative factor of 3/2 since it was large in phase r,

then t = O(log s) since 1
2s (

3
2 )

t ≤ 1.
There are n variables. In each phase, each variable can be updated from small to large once, updated at

most t times by a factor of 3/2 since it was large, capped at 1 once, and reach the advice value once. Hence,

Algorithm 7 has O(n log s log cT x
α(1) ) iterations.
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4 Empirical Evaluations

We demonstrate the applicability of our algorithmic framework on a synthetic dataset as well as a real
world case study on internet router graphs. Our focus will be on evaluating our online covering algorithms,
Algorithms 1 and 2, with possibly fractional hints and fractional entries. We focus on this setting since it’s
the simplest of our algorithms and already captures our overall algorithm framework. Note that prior work
in [BMS20] has already demonstrated the empirical advantage of learning-based methods for online covering
with integral hints and constraints, albeit on synthetic datasets.

Datasets. Our synthetic dataset is constructed as follows. The constraint matrix A represents a n × n
matrix where each entry is uniformly in {0, 1}. We set n = 500. The objective function c is a scaled vector
with entries uniform in [0, 1]. The vector we are covering is the all ones vector, i.e., we are solving Ax ≥ 1,
and the rows of A arrive online. Our graph dataset is constructed as follows. We have a sequence of nine
(unweighted) graphs which represents an internet router network sampled across time [LK14,LKF05]4. The
graphs have approximately n ∼ 104 nodes and m ∼ 2.2 ·104 edges. We note that the nodes of the graphs are
labeled and the labeling is consistent throughout the different time stamps. Each graph defines an instance
of the set cover problem derived from vertex cover as follows. The edges of the graphs are labeled and the
n vertex neighborhoods define n sets. The edges of the graph (the universe elements) appear online and we
must cover these edges by choosing vertices (the sets) which are incident on them. The objective function c
will be the same as the synthetic case so our problem represents an instance of weighted vertex cover.

Predictions. We instantiate predictions in a variety of ways, drawing inspiration from many prior works
[BMS20,DIL+21,CSVZ22]. First we describe our predictions for the synthetic datasets. We consider two
types of predictions. In one case, we first find the optimal offline solution x by solving the full linear program.
We then noisy corrupt the entries of x by setting the entries to be 0 independently with some probability p.
This is the same type of predictions in [BMS20] which they refer to as the ‘replacement rate’ strategy.

The second type of predictions are informed by the following motivating setting of learning-augmented
algorithms: we are solving many different, but related, problem instances. To mimic this situation, we have
matrices A0, A1, . . . where each index represents a new problem instance. A0 is our synthetic matrix and
Ai+1 updates Ai by flipping n entries at random. We fix c to be the same throughout. The predictions
for all instances i ≥ 1 are given by the optimal offline solution generated from the first instance A0. This
“batch” experimental design naturally models the scenario where the current problem instance is similar
to past instances and so one can hope to utilize past learned information to improve current algorithmic
performance. A similar style of predictions, although not in an online context, has been employed in [CEI+22,
EFS+22,DIL+21,CSVZ22]. Furthermore, this mimics the setting for proving PAC learning bounds.

For our graph dataset, we first solve the set cover instance on the first graph in the family using an offline
linear program solver. We then use the solution from the first graph as the hint for all subsequent graphs.
We also noisy alter this hint for one of our experiments using the replacement rate strategy. Note that the
set of vertices might vary across graphs since new vertices can appear in the network while older vertices
may be removed. In this case, we set the corresponding entry in the hint vector to be 0.

The type of dataset and predictions used will always be stated explicitly in our experimental results
below.

Results. Our results are shown in Figures 2 and 3. Figure 2 shows the results on the synthetic dataset
while Figure 3 refers to our graph dataset. Description of each figure follows.

In Figure 2a, we consider a single online instance of the synthetic dataset. Our prediction is the offline
optimal solution. The figure shows a smooth trade-off in the competitive ratio as the parameter λ ranges
from 0 (full trust in the predictions) to 1 (standard online algorithm with no hints), as predicted by our
theoretical bounds. Since the instance is random, we plot the average of 20 trials for each setting of λ and

4Graphs can be accessed in https://snap.stanford.edu/data/Oregon-1.html
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Figure 2: Figures for our synthetic dataset.

also shade in one standard deviation. The plot validates the consistency of our algorithms as the competitive
ratio is a factor of two lower with accurate predictions.

In Figure 2b, we again consider a single synthetic instance. This time, we consider the “replacement
rate” strategy and randomly zero out the entries of the prediction (which is again the offline optimum)
independently. The expected fraction of entries in the hint vector being set to zero is denoted as the
corruption rate and is shown in the x-axis. We see that for a fixed setting of λ, such as λ = 0.1, our algorithm
performs much better than not utilizing any hints when the corruption factor is low. This intuitively makes
sense and is exactly what Figure 2a shows. However, as we increase the corruption factor, the performance
of the algorithm degrades. Crucially, the performance does not degrade arbitrarily worse compared to λ = 1
(no hints) performance, which empirically validates the robustness of our algorithm. Indeed, our algorithm
with hints is able to outperform the baseline even up to a high corruption factor. Lastly, if we utilize hints
in a naive way where we only scale the hint variables to satisfy the constraints, then the competitive ratio is
at least four orders of magnitude larger than the values in Figure 2b. Thus, post-processing the hints, such
as what our algorithm does, is crucial.

In Figure 2c, we consider a “batch” experimental design for our synthetic dataset with 20 time steps. The
green curve shows the competitive ratio without using any hints, i.e., λ is set to 1 (the baseline). The orange
curve shows the competitive ratio across the varying instances when we use a batch prediction. Precisely,
this means we use the optimal offline solution of the first instance and this hint is fixed for all future instances
which noisily drift away from the first instance. The blue curve showcases more powerful predictions where
the offline optimal of time step t− 1 is used as the hint for time step t. We display the average values across
20 instances. We see that as the time step increases, the orange curve drifts upwards, which is intuitive as
the problem instances are increasingly different. Nevertheless, the hint stays valid for many time steps as
the orange curve is still below the green baseline even after many time steps. As expected, the blue curve
consistently has the lowest competitive ratio as the hints are also updated. We do not shade in the standard
deviation to increase the clarity of the figure but the variance of the curves similar to Figure 2a.

We now describe the experimental results on our graph dataset. In Figure 3a, the green curve represents
not using any hints (baseline) while the orange curve shows the competitive ratio as we vary the graph
instance while using the hint derived from graph #1 (λ is set to 0.1). It is shown that the hints help
outperform the baseline and in addition, the hints stay accurate even if the structure of graph #9 has drifted
away from that of graph #1. The online predictions, shown in blue, does marginally better than the batch
version.

Figure 3b shows a similar plot as Figure 2b. We consider a replacement rate strategy where we zero out
coordinates of the hint vector independently with varying probabilities. The curve shows the average of 5
trials and λ = 0.1 again. The same qualitative message as Figure 2b holds: while the corruption rate is
small, we achieve a similar competitive ratio as in Figure 3a and as the corruption rate increases, there is a
smooth increase in the competitive ratio.

In addition to extending and complementing the experimental results of [BMS20], we summarize our
experimental results in the following points: (a) Our theory is predictive of experimental performance and
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Figure 3: Figures for our time-varying graph dataset.

qualitatively validates our robustness and consistency trade offs. (b) Our algorithm framework which under-
lies all of our algorithm contributions is efficient to carry out and execute in practice. (c) Learning-augmented
online algorithms can be applied to real world datasets varying over time such as in the analysis of graphs
derived from a dynamic network.

5 Conclusion

We present the first framework for the learning-augmented online covering LP and SDP problem. As
shown in table 1, for the problems without box constraints, our algorithms are O(1/(1 − λ)))-consistent
and O(log(κn/λ))-robust; for the problems with box constraints, our algorithms are O(1/(1−λ)))-consistent
and O(log(s/λ))-robust. Our algorithms not only support fractional advice but also update the variables
efficiently. Our work raises several open questions.

First, for the problem without box constraints, is it possible to remove the dependency on the condition
number κ in the robustness ratio? The competitive ratio of the optimal online algorithms for covering
LPs [BN09a] and SDPs [EKN16] is O(log n). For the learning-augmented set cover problem where the
entries in the constraint matrix are zeros and ones, the robustness ratio is O(log(d/λ)), where the worst case
for d is d = n. It seems that the condition number arises due to additive term Dj used for the growth rate.
Another direction is to discover the trader-off lower bounds between the robustness and consistency ratio
for the online covering and SDP covering problem as in [WZ20] for the ski rental and the non-clairvoyant
scheduling problem.

Next, our technique can potentially be used on other online covering problems [ABC+16,SN20,GN14] for
the learning-augmented extension. It would be exciting to see if the primal-dual continuous augmentation
approach with well-selected growth rates can be employed for these problems.

As stated in [BMS20], another natural future direction is to design PDLA algorithms for packing LPs.
For general online packing LPs, an O(1/ log κ)-competitive online solution can be obtained only if a condition
number κ is known offline [BN09b], implying impossibility results without assumptions. The hope here is
to study structured packing problems, e.g., load balancing [BN09a] and ad-auction revenue maximization
[BJN07].
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A Learnability of Predictor

In this section, we present formal learning bounds for learning a good predictor for the covering formulation
of online semidefinite programming, which includes learning a good predictor for online fractional linear
programming. Specifically, we prove that a good predictor can be efficiently learned if the problem instances
are drawn from a particular distribution, in the style of the probably approximately correct (PAC) learning
framework for data-driven algorithm design. Similar ideas were used by [EFS+22, ISZ21,CEI+22,CSVZ22]
to show efficient learners for predictors for k-means clustering and triangle counting. Thus while the results
of this section use ideas of prior papers, they are still meaningful as it provides an “end-to-end” recipe
for designing learning-augmented online algorithms. The prior part of this paper designs online algorithms
which leverage predictions and thus, the natural follow up questions are how efficiently one can learn these
hint from data. Therefore this learnability section precisely addresses these questions and makes our results
complete.

Suppose there exists an underlying distribution D that generates independent covering semidefinite pro-
gramming or covering linear program instances, capturing the case where similar problem instances are being
solved. Note that this setting also mirrors some of our experiments, specifically in the case of our online
covering datasets which are derived from an underlying dataset (an internet router graph), sampled across
time. We would like to efficiently learn a good predictor f from a family of functions F , where the input to
f is an covering SDP S and the output is a weight vector. Each covering SDP instance can be written in
terms of d := O(nm2) variables, so we assume that each input instance S is encoded as a vector in Rd. The
output of f is then an n-dimensional vector, so that each coordinate i ∈ [n] represents the associated weight
of the matrix Ai selected in the covering SDP.

To quantify the quality of each function f , we consider a loss function L : f × S → R that outputs the
cost of corresponding SDP cover. For example, f can output a set of matrix weights given an instance S. If
the matrix weights are not feasible, then the loss function may output ∞. Otherwise if the matrix weights
are feasible, then the loss function may output the corresponding cost, defined by the cost vector that is also
given in S.

We would like to learn the best function f ∈ F that minimizes the objective:

ES∼D[L(f,S)]. (21)

Let f∗ denote the minimizer of the above objective, i.e., the optimal function in F , so that

f∗ = argminES∼D[L(f,S)].
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We assume that for each SDP instance S and each f ∈ F that f(S) and L(f,S) can be computed in time
that is a (small) polynomial in n and d, which we denote by T (n, d).

We show that there exists an efficient algorithm that outputs a function f̂ ∈ F whose loss is within an
additive ε of the loss of the optimal function f∗.

Theorem A.1. There exists an algorithm that uses poly
(

T (n, d), 1
ε

)

samples and outputs a function f̂ that
satisfies with probability at least 9

10 ,

ES∼D[L(f̂ ,S)] ≤ ES∼D[L(f
∗,S)] + ε,

where f∗ = argminES∼D[L(f,S)].

Theorem A.1 shows that only a small number of samples are needed to have a good probability of learning
an approximately-optimal function f̂ , in a typical PAC-style bound. Specifically, the algorithm to compute
f̂ is simply the empirical risk minimizer, i.e., the algorithm minimizes the empirical loss after an appropriate
number of samples are drawn. To prove correctness of Theorem A.1, we first define the notion of pseudo-
dimension for a function class, which generalizes the more familiar VC dimension to real functions, e.g.,
Definition 9 in [LFKF18].

Definition A.2 (Pseudo-Dimension). Let X be a ground set and F be a set of functions from X to the
interval [0, 1]. Let U = {x1, · · · , xn} ⊂ X be a fixed set, R = {r1, · · · , rn} be a fixed set of real numbers
with ri ∈ [0, 1] for all i ∈ [n], and f ∈ F be a fixed function. The set Uf = {xi ∈ U | f(xi) ≥ ri} is
called the induced subset of U formed by f and R. The set U with associated values R is shattered by F if
|{Uf | f ∈ F}| = 2n. The pseudo-dimension of F is the cardinality of the largest shattered subset of X (or
∞).

Let G be the class of functions in F composed with L, so that

G := {L ◦ f : f ∈ F}.

Without loss of generality, we normalize the range of the loss function L to [0, 1]. Then the performance of
the empirical risk minimization and the number of necessary samples can be related to the pseudo-dimension
using standard bounds as follows:

Theorem A.3. [AB99] Let D be a distribution over problem instances S and G be a class of functions
g : S → [0, 1] with pseudo-dimension dG. Consider t i.i.d. samples S1,S2, . . . ,St from D. There exists a
universal constant C, such that for any ε > 0, if t ≥ C·dG

ε2 , then with probability at least 9
10 ,

∣

∣

∣

∣

∣

1

t

t
∑

i=1

g (Si)− ES∼D g(S)

∣

∣

∣

∣

∣

≤ ε

for all g ∈ G.

From the triangle inequality, we then have the following corollary.

Corollary A.4. Let t ≥ C·dG

ε2 , where C is the universal constant from Theorem A.3. Consider a set of t

independent samples S1, . . . ,St from D and let ĝ be a function in G that minimizes 1
t

∑t
i=1 g(Si). Then with

probability at least 9
10 ,

ES∼D[ĝ(S)] ≤ ES∼D[g
∗(S)] + 2ε.

Hence, the main question is whether we can bound the pseudo-dimension of the given function class G.
To that end, we first observe that the pseudo-dimension can be related to the VC dimension of a related
class of threshold functions. In particular, this relationship has been instrumental in showing a number of
existing learning bounds, e.g., [LFKF18, ISZ21,EFS+22,CEI+22,CSVZ22].
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Lemma A.5 (Pseudo-dimension to VC dimension, Lemma 10 in [LFKF18]). For any g ∈ G, let Bg(x, y) =
sgn(g(x)−y), i.e., the indicator function of the region on or below the graph of g. Then the pseudo-dimension
of G is equivalent to the VC dimension of the subgraph class BG = {Bg | g ∈ G}.

We can also relate the VC dimension of a given function class to the computational complexity of the
function class, i.e., the time complexity of computing a function in the class.

Lemma A.6 (Theorem 8.14 in [AB99]). Let h : Ra × Rb → {0, 1} define the class

H = {x→ h(θ, x) : θ ∈ Ra}.

Suppose that h can be computed by an algorithm that takes as input the pair (θ, x) ∈ Ra × Rb and returns
h(θ, x) after no more than t of the following operations:

• arithmetic operations +,−,×, and / on real numbers,

• jumps conditioned on >,≥, <,≤,=, and = comparisons of real numbers, and

• output 0, 1.

Then the VC dimension of H is at most O(a2t2 + t2a log a).

We can now prove Theorem A.1 by roughly instantiating Lemma A.6 using the computational complexity
of any function in the function class G.

Proof of Theorem A.1. The proof essentially follows from the proofs of similar theorems in the sample com-
plexity bound sections of the papers [LFKF18, ISZ21,EFS+22,CEI+22,CSVZ22] but we nonetheless repeat
it here for completeness. By Theorem A.3 and Corollary A.4, we observe that it suffices to bound the
pseudo-dimension of the class G = L◦F . By Lemma A.5, the pseudo-dimension of G is equivalent to the VC
dimension of threshold functions defined by G. Moreover by Lemma A.6, the VC dimension of the threshold
functions defined by G is polynomial in the complexity of computing a member of the function class.

Hence, Lemma A.6 implies that the VC dimension of BG defined in Lemma A.5 is polynomial in the
number of arithmetic operations needed to compute the threshold function associated to some g ∈ G, which
is polynomial in T (n, d) by our definition. Therefore, the pseudo-dimension of G is also polynomial in T (n, d)
and the desired claim follows.

B A Simple Learning-Augmented Online Algorithm

In this section, we revisit a simple and possibly folklore learning-augmented online algorithm for online
covering LPs. Its robustness ratio is asymptotically as good as the state-of-the-art online algorithm and its
consistency ratio is also asymptotically as good as the advice if the advice is feasible. We recall that a similar
approach also applies to a wide range of learning-augmented online minimization problems, including online
SDPs, online LPs and SDPs with box constraints, online submodular cover [GL20], and online covering with
`q-norm objectives [SN20].

The idea of the algorithm is to maintain two candidate solutions, the advice x′ and the solution obtained
by a state-of-the-art online algorithm [GN14]. Let O be a state-of-the-art online algorithm and let x(i) be
its solution obtained at round i. In the beginning, x(0) is initialized according to the online algorithm O.
We follow the online algorithm O until its objective cTx(i) is larger than the objective of the advice cTx′.
Once the advice is infeasible, we ignore the advice and use the online algorithm. Transitioning either from
the online algorithm to the advice or from the advice to the online algorithm pays only a constant factor.
Once we transition, to maintain monotonicity of the online solution, we pick the coordinate-wise maximum
between the advice and the solution by O. The algorithm works as follows.
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Algorithm 9 A Simple Algorithm for Learning-Augmented Online Covering LPs

1: ia ←∞. . ia is the round that we transition to the advice
2: for i = 1, 2, ... do . each arriving row or constraint
3: Update A by adding a new row i.
4: Run O for round i and obtain x(i).
5: if Ax′ ≥ 1 and cTx′ ≥ cTx(i) then . use the online solution
6: x← x(i).
7: if Ax′ ≥ 1 and cTx′ < cTx(i) and i < ia then . transition to the advice
8: ia ← i. . (only once at round ia)
9: for j ∈ [n] do

10: xj ← max{x′
j , x

(i−1)
j }.

11: if Ax′ ≥ 1 does not hold then . use only the online solution
12: if i < ia then . no transition to advice
13: x← x(i).
14: if i ≥ ia then . has transitioned to advice
15: for j ∈ [n] do . transition back to the online solution

16: xj ← max{x′
j , x

(i)
j }.

Theorem B.1. For the learning-augmented online covering LP problem, there exists an online algorithm
that generates x such that

cTx ≤ min{O(cTx′), O(log k)OPT}

when x′ is feasible, and cTx ≤ O(log k)OPT when x′ is infeasible. Here, k ≤ n is the row sparsity of A, i.e.,
the maximum number of non-zero entries of each row.

Proof. We use Algorithm 9 with the O(log k)-competitive online algorithm for O.

Theorem B.2 ( [GN14]). There exists an O(log k)-competitive algorithm for the online covering LP problem.

Algorithm 9 considers four possible cases.

1. The advice is feasible but O is better (line 5).

2. The advice is feasible and it is better than O (line 7 or x is not updated).

3. The advice is infeasible and never used (line 12).

4. The advice is infeasible and was used when it was feasible (line 14).

Clearly, Algorithm 9 always returns a feasible solution x and x is updated in a non-decreasing manner.
We first consider the case when x′ is feasible. For the first case, we never use the advice, so

cTx ≤ O(log k)OPT ≤ min{O(cTx′), O(log k)OPT}.

For the second case, either the advice becomes better than the online solution at round i or x is not updated
because the advice becomes better than the online solution at a previous round ia < i. For the previous
case, by the design of Algorithm 9, we have that

cTx ≤ cT (x′ + x(i−1)) ≤ 2cTx′ ≤ min{O(cTx′), O(log k)OPT}.

For the later case, x is not updated after round ia so the claim still holds.
The remaining cases are when x′ is infeasible. For the third case, we never use the advice, so cTx ≤

O(log k)OPT. For the last case, let OPTi denote the value of OPT at round i. We know that the advice was
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feasible at some previous round i′ ≥ ia but became infeasible at round i′ + 1 ≤ i. Round i′ belongs to the
second case, so at that round

cTx ≤ 2cTx′.

In round i′ + 1, we transition back from the advice to the online algorithm, so

cTx ≤ 2cTx′ +O(log k)OPTi′+1 ≤ min{O(cTx′), O(log k)OPTi′+1} ≤ O(log k)OPTi′+1.

In round i, cTx′ does not change but OPT changes. By the property of the online algorithm O, we always
have

cTx ≤ O(log k)OPTi.
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