


alignment. This coarse-grained alignment only captures

the high-level visual clues (scene, action, etc) that connect

to the text query. As shown in the first row of Figure 1,

the coarse-grained alignment only captures the scene of the

stage with the huge audience” and the action of “singing

(possibly talking)”, thus leading to the incorrect retrieval re-

sult. On the other hand, Zou et al. [68] build a fine-grained

alignment between patch tokens from the video and word

tokens from the text query. As illustrated in the second

row of Figure 1, the fine-grained alignment does capture the

detailed information like “microphone”, but it might over-

look high-level clues like scene information (“stage with the

huge audience”). These results reveal that video-text re-

trieval requires an understanding of the both high-level and

low-level correspondence between text and video. Thus, in

this work, we aim to jointly consider coarse-grained and

fine-grained cross-modal alignment and how to unify them

to get the correct answer (as shown in the last row of Fig-

ure 1).

To this end, we propose UCOFIA, a Unified Coarse-to-

fine Alignment model for video-text retrieval. Our approach

aims to capture the multi-grained similarity between the

text and video by performing alignment at different gran-

ularity. We begin with a coarse-grained alignment between

the entire video and the query sentence (video-sentence).

Next, we perform frame-sentence alignment by matching

individual video frames and the query sentence. Finally, we

conduct a fine-grained alignment between the video patches

and query words (patch-word).

However, while this multi-grained information provides

richer, more diverse detailed information, it also brings

significant irrelevant information to the cross-modal align-

ment. For instance, several frames in the video might not

contain information related to the query, and some patches

in a frame might only correspond to the background infor-

mation unrelated to any subjects in the query. The irrel-

evant information could impede the model from learning

precise cross-modal correspondence. To address these is-

sues, we first propose an Interactive Similarity Aggregation

module (ISA) that considers the importance of different vi-

sual features while aggregating the cross-modal similarity

to obtain a similarity score for each granularity. For frame-

sentence alignment, our ISA module jointly considers the

cross-modal similarity and the interaction of frame features

while aggregating the frame-sentence similarity. Compared

to the previous methods [36] that ignore the temporal clues

between video frames, our ISA module can better capture

the important information within continuous video frames.

Note that the ISA module is a general similarity aggregation

approach regardless of the feature granularity, and we fur-

ther extend it to a bidirectional ISA module for patch-word

alignment.

Next, once we obtain the similarity score for each level

of alignment, we can sum them to one score as the final re-

trieval similarity. However, we find that similarity scores

across different videos are highly imbalanced, and we em-

pirically show that correcting this imbalance before sum-

mation improves the performance. Concretely, sometimes

the sum of retrieval similarities between one specific video

and all texts (we called this term marginal similarity) might

be much higher than that of the other videos, meaning that

this video is over-represented and will lower the probabil-

ity of the other video being selected. To address this, we

utilize the Sinkhorn-Knopp algorithm [15] to normalize the

similarity scores and make sure the marginal similarities for

different videos are almost identical so that each video has

a fair chance to be selected after normalization. We then

unify the scores of different levels by performing the algo-

rithm separately on the similarities of different levels and

summing them together.

We validate the effectiveness of our UCOFIA model

on diverse video-text retrieval benchmarks. Specifically,

UCOFIA achieve a text-to-video retrieval R@1 of 49.4%
on MSR-VTT [59] and 45.7% on ActivityNet, thus, outper-

forming the current state-of-the-art CLIP-based methods by

2.4% and 1.4%, respectively.

2. Related Work

Video-text Retrieval. Video-text retrieval [64, 33, 14, 61,

55, 32, 10, 1, 66, 9, 56, 39, 13, 48] is a fundamental topic

in the vision-language domain and has attracted significant

research attention. To retrieve the correct video candidate

given the text query, it is crucial to align the features of

the related video and text sample together. To this end,

early works in video-text retrieval [52, 64, 65] focus on de-

signing fusion mechanisms for the alignment between pre-

extracted and frozen video and text features. Later, Clip-

BERT [29] proposes a sparse sampling strategy on video

data to accomplish end-to-end training and apply image-

text pretraining for video-text retrieval. Afterward, Bain et

al. [3] utilize a curriculum learning schedule to accomplish

joint image and video end-to-end training on cross-modal

data. With the great success of large-scale image-text pre-

training model CLIP [46], several works [40, 4, 19, 7, 24]

utilize the powerful CLIP encoder for video-text retrieval

tasks and achieve state-of-the-art results with an efficient

training paradigm. Thus, in this work, we also use CLIP as

our image-text backbone to enable a fair comparison with

existing methods.

Moreover, most cross-modal alignment approaches can

be divided into two categories: coarse-grained alignment

[30, 17, 23, 38, 18, 28, 31, 11, 57, 67] which leverage the

frame-level (or video-level) visual features and fine-grained

alignment [68, 27, 42, 62, 22] which utilize the informa-

tion of patch within each video frames. Recently, several

coarse-grained CLIP-based methods [40, 4, 21] use frame

2



aggregation strategies to convert frame features to video

features and perform coarse-grained alignment between the

video and query features. Follow-up works [41, 36] in-

vestigate various similarity calculation schemes for bet-

ter cross-modal alignment. TS2-Net [36] designs a cross-

modal alignment model between the frame feature and sen-

tence feature of the text query. X-CLIP [41] utilizes a

cross-grained alignment between coarse-grained video fea-

tures and text features, including video-sentence, video-

word, frame-sentence, and frame-word contrast. However,

the coarse-grained alignment fails to capture detailed cor-

respondence to due the limited information within high-

level features. To this end, TokenFlow [68] proposes a fine-

grained alignment function for token-wise similarity calcu-

lation. The fine-grained alignment does capture more subtle

correspondence between text and video, but it could over-

look the high-level information like scene and action. In

this work, we aim to combine the advantage of both coarse-

grained and fine-grained alignment to better capture the cor-

respondence between text query and video candidates.

Normalization for Video-text Retrieval. To retrieve the

most relevant video candidate given a text query, common

video-text retrieval models compute a similarity matrix be-

tween video and text input and retrieve the candidate with

the highest similarity. Several previous works [12, 6, 43] fo-

cus on the normalization of this similarity matrix to improve

the performance. CAMoE [12] introduces a Dual Softmax

Loss (DSL) as a reviser to correct the similarity matrix and

achieve the dual optimal match. Later, NCL [43] reveals

that cross-modal contrastive learning suffers from incor-

rect normalization of the sum retrieval probabilities of each

text or video instance and proposes Normalized Contrastive

Learning that computes the instance-wise biases that prop-

erly normalize the sum retrieval probabilities. Empirically,

we find that the logits from the multi-level similarity ma-

trix are imbalanced and make some videos and texts over-

or under-representative. To mitigate the issue, we propose

to balance the multi-level alignments by separately normal-

izing each similarity matrix and aggregating the normalized

matrix for better retrieval prediction.

3. Methodology

In this selection, we present our proposed UCOFIA

model. As shown in Figure 2, UCOFIA consists of four

components: (1) text and video encoders, (2) coarse-to-fine

alignment module, (3) Interactive Similarity Aggregation

module, (4) and multi-granularity unification module with

the Sinkhorn-Knopp algorithm. First, the video and text

encoders extract multi-grained visual and textual features.

Afterward, multi-grained features are fed into a coarse-to-

fine alignment module that calculates the different levels of

cross-modal similarity. Then, the Interactive Similarity Ag-

gregation module fuses the similarity vector (or matrix, de-

pending on the input type) and obtains the similarity score

for each granularity. Finally, the multi-granularity unifica-

tion module aggregates the similarity scores from all gran-

ularity and obtains the final unified similarity score for re-

trieval prediction. Below, we discuss each of these compo-

nents in more detail.

3.1. Feature Extraction

Text Encoder. Given a text query T (we prepend a [EOS]

token to T ), we leverage the CLIP [46] text encoder Ft to

output the word feature w, where w = Ft (T ) ∈ R
Lt×C ,

Lt denotes the length of word sequences, and C denotes the

dimension of the word feature. Then we take the represen-

tation of the [EOS] token as the sentence feature s ∈ R
C .

Video Encoder. Following [40, 36], we utilize the pre-

trained CLIP visual encoder [16] (Fv) to extract the vi-

sual features of each video. A video with N frames can

be denoted as V = [F1, F2, ..., FN ]. Given the n-th

frame of the video Fn, we divide it into disjoint patches,

prepend a [CLS] token to it, and use the vision encoder

Fv to obtain the patch representation pn, where pn =
Fv (Fn) ∈ R

M×C , M denotes the number of the visual

patches within a video frame. Note that both textual and vi-

sual tokens are embedded in the same dimension C. Then

we take the [CLS] representation from each frame and com-

bine them together to get the frame representation f =
[f1; f2; ...; fN ], f ∈ R

N×C . Since we feed frames to ViT

separately for better efficiency, the vision encoder cannot

learn the temporal information across different frames. To

enable the model to learn temporal information with mini-

mal cost, inspired by [36], we adopt a token shift module,

which shifts the whole spatial token features back and forth

across adjacent frames, in the last two transformer blocks of

the ViT model.

3.2. Coarse­to­fine Alignment

Our proposed coarse-to-fine alignment module calcu-

lates the cross-modal similarity from multi-grained visual

and textual inputs to address the weakness of only consid-

ering either coarse alignment or fine-grained alignment (as

shown in Figure 1). First, we adopt a video-sentence align-

ment to obtain the similarity score of video and sentence

features. Then, we leverage a frame-sentence alignment to

capture the similarity between each frame and text query

and obtain a frame-sentence vector. Lastly, we apply the

most fine-grained patch-word alignment to model the simi-

larity between each patch and word representation and ob-

tain a patch-word matrix. Below, we describe each of these

alignments in more detail.

Video-sentence Alignment. To obtain the video represen-

tation, following [40], we leverage a temporal encoder to

aggregate the frame features f and obtain the video feature

v. We then compute the cosine similarity between v ∈ R
C
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Figure 3. Interactive Similarity Aggregation module (ISA). (a) We

directly leverage the ISA module to aggregate the frame-sentence

vector to obtain the frame-sentence score. (b) Further, we extend

the ISA module to bidirectional ISA (Bi-ISA) to aggregate the

patch-word matrix. (For simplicity, frame-sent stands for frame-

sentence).

sentence similarity vector cFS ∈ R
N , the ISA module can

be formulated as:

sFS = Softmax (Ti (Softmax (cFS))) cFS, (1)

where sFS denotes the frame-sentence similarity score be-

tween the text query and video candidate. To sum up, the

ISA module is capable of aggregating the similarity vec-

tor to obtain a similarity score by jointly considering cross-

modal relevance and feature interaction. Regardless of the

feature dimension, the ISA module is flexible enough to

deal with similarity vectors with different feature granular-

ity. Thus, we extend the ISA module to aggregate the patch-

word similarity matrix.

A direct idea is to flatten the patch-word matrix to a

large vector and apply the ISA module to obtain the sim-

ilarity score. However, due to the modality gap, it is diffi-

cult to model the feature interaction across video and text

for the ISA module. The alternative idea is to split each row

or column of the similarity matrix into a similarity vector

and leverage the ISA module on each vector. Afterward,

we aggregate the similarity score from each vector to an-

other similarity vector and apply another ISA to obtain the

patch-word score. In that way, we can separately model

the feature interaction between patches and words to pro-

vide better similarity aggregation. We consider two ways of

aggregation: patch-then-word (see the top of Figure 3(b))

and word-then-patch (see the bottom of Figure 3(b)). Em-

pirically we find that jointly considering these two direc-

tions provides better aggregation for the patch-word ma-

trix. To this end, we combine the strength of both direc-

tions and name the module as a bi-directional ISA module

(Bi-ISA, Figure 3(b)). To describe the module formally, we

first adopt a patch-level ISA module Ap on CPW to obtain

a word-level similarity vector. We then adopt a word-level

ISA module Aw to aggregate the word-level similarity vec-

tor to the patch-then-word score. Similarly, we can obtain

the word-then-patch score by leveraging a word-level ISA

module and a patch-level ISA in a reverse way. The whole

process of Bi-ISA can be formulated as:

sPW = Ap (Aw (CPW)) +Aw (Ap (CPW)) , (2)

where sPW denotes the patch-word similarity score. Con-

ceptually, our ISA module jointly considers the cross-modal

relevance and the interaction between different features

while aggregating the similarity vector (matrix). In Table 5

and Table 6, we validate the effectiveness of our ISA and

Bi-ISA module compared to different aggregation mecha-

nisms. In the next section, we further aggregate the different

levels of similarity score to one final score for retrieval.

3.4. Unifying Coarse and Fine­grained Alignments

For simplicity, we explained our approach above with

only one video-query pair; but when we perform retrieval

on G videos and H queries, we compute the similarity

scores over all possible combinations of the videos and

queries, and denote the score combinations for each align-

ment level (video-sentence, frame-sentence, patch-word) as

SVS, SFS, SPW ∈ R
G×H , where Sij is the score for the ith

video and jth query. For the last step of obtaining the fi-

nal cross-modal similarity for retrieval, the common method

[41] is usually to directly compute the average over the dif-

ferent levels of similarities.

However, we find that scores across different videos are

highly imbalanced in the similarity matrices of each level,

and we empirically find that correcting the issue before

summing the similarities leads to a better result in multi-

level alignment methods [41, 36]. The imbalance issue is

similar to the findings of Park et al. [43]. Specifically, some-

times the summation of retrieval similarities between one

specific video and all texts (we called this term marginal

similarity in the following) might be much higher than

that of the other videos, meaning that this video is over-

represented and will lower the probability of the other video

being selected. To address this, we re-scale the similarity

matrix to normalize the marginal similarity of every video

to be a similar value. One approach is to apply dual soft-

max operation [12] on the similarity matrix, but this is not

realistic in the testing phase since it requires obtaining all

the testing videos and queries at hand.

A more realistic setting is where we can access all the

testing videos, but only have one test query at a time for
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text-to-video retrieval(reversely, for video-to-text retrieval,

we search for the best candidate out of all testing queries

for one test video). Since there is only one data point on

the query side, double softmax is not useful in this case. To

address this, we use the training query set as the approxi-

mation for the test set and follow Park et al. [43] to leverage

the Sinkhorn-Knopp algorithm [15] to correct the imbal-

ance. We describe our algorithm for text-to-video retrieval

for simplicity as we can just swap videos and texts in the

algorithm for video-to-text retrieval. Specifically, assuming

we have G test videos and J train queries, for each level of

similarity score, the algorithm computes the test video bias

α ∈ R
G and training text bias β ∈ R

J in an alternating and

iterative manner. Please refer to the supplements for the de-

tails of the algorithm. Adding these biases to the similarity

matrix can normalize it to have similar marginal similarities

for videos and for texts, respectively. However, since we

only introduce the training query set to approximate the test

set distribution and help to compute the test video bias α,

we discard the training query bias β after. We then add α to

the testing similarity matrix S ∈ R
G×H that is generated by

G test videos and H test queries, that is,

SK(S)ij = Sij + αi (3)

We then obtain a normalized similarity matrix for testing

videos. We apply the algorithm separately on the similar-

ity matrix of different alignments before summing them to-

gether, and we empirically find out this is better than doing

summation first and then normalization. Finally, the final

retrieval score R can be written as:

R = SK(SVQ) + SK(SSQ) + SK(SPQ) (4)

Note that we only apply Equations (3) and (4) in the in-

ference phase. Similarly, for video-to-text retrieval, we nor-

malize the similarity matrix by adding the test text bias. In

Table 7, we validate the effectiveness of applying the above

normalization. We also provide a visualization of the re-

duction of over-/under-representation by applying this tech-

nique in the supplementary material.

3.5. Training and Inference

During training, we randomly sample B video-query

pairs, compute the scores over all possible combinations be-

tween the videos and the queries without normalization, and

denote the similarity combination as R ∈ R
B×B , where

Rij is the score for the ith video and jth query. We utilize

the cross-modal contrastive objective [46] to maximize the

scores of the positive pairs (the diagonal in R) and minimize

the scores of negative pairs:

Lv2t = −
1

B

B
∑

i

log
exp

(

Rii
)

∑B

j=1
exp

(

Rij
)

,
(5)

Lt2v = −
1

B

B
∑

i

log
exp

(

Rii
)

∑B

j=1
exp

(

Rji
)

,
(6)

L = Lv2t + Lt2v, (7)

During inference, to perform video-text retrieval, we will

compute the similarities between all videos and the query,

normalize the similarities by the method introduced in Sec-

tion 3.4, and retrieve the video with the highest similarity.

We conduct the procedure similarly but in the other direc-

tion for video-to-text retrieval.

4. Experimental Setup

4.1. Datasets

We evaluate UCOFIA on five popular video-text re-

trieval datasets: MSR-VTT [59], MSVD [8], ActivityNet

[26] and DiDeMo [2].

MSR-VTT [59] contains 10, 000 videos, each annotated

with 20 text captions. The video length is ranged from 10
to 32 seconds. Following [35, 20], we train UCOFIA on

9, 000 videos and report the results on 1, 000 selected video-

text pairs (the 1kA test set).

Activity-Net [26] consists of 20, 000 YouTube videos

with 100, 000 captions. The average video length is 180
seconds. We follow [40] to concatenate the multiple text

descriptions of a video into one paragraph and perform

paragraph-to-video retrieval on ActivityNet. We train our

model on 10, 000 videos and use the ’val1’ split for evalua-

tion which contains 5, 000 videos.

DiDeMo [2] is comprised of 10, 000 videos and 40, 000
captions. The average video length is 30 seconds. Similar

to ActivityNet, we evaluate paragraph-to-video retrieval on

DiDeMo. There are 8, 395 videos in the training set, 1, 065
videos in the validation set, and 1, 004 videos in the test set.

We report the results on the test set for evaluation.

MSVD [8] contains 1, 970 videos, each with a length

that ranges from 1 to 62 seconds. Each video contains ap-

proximately 40 captions. Following [40], we split the train,

validation, and test set with 1, 200, 100, and 670 videos.

We follow the common multiple caption evaluation [35, 40]

setting in which each video in the test set is associated with

multiple text captions.

VATEX [54] consists of 34, 991 video clips with multi-

ple captions per video. We follow HGR’s [9] split protocol.

There are 25, 991 videos in the training set, 1, 500 videos in

the validation set and 1, 500 videos for evaluation.

4.2. Evaluation Metrics

Following [40], we use standard video-text retrieval met-

rics, including R@1, R@5, and Mean Rank (MnR) to vali-

date the effectiveness of our UCOFIA model. We report re-
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Method
MSR-VTT Activity-Net DiDeMo MSVD VATEX

R@1 R@5 MnR↓ R@1 R@5 MnR↓ R@1 R@5 MnR↓ R@1 R@5 MnR↓ R@1 R@5 MnR↓
Non-CLIP Methods

CE [35] 20.9 48.8 28.2 18.2 47.7 23.1 16.1 41.1 43.7 19.8 49.0 - - - -

MMT [20] 26.6 57.1 24.0 26.6 57.1 16.0 - - - - - - - - -

Support Set [44] 30.1 58.5 - 29.2 61.6 - - - - 28.4 60.0 - 45.9 82.4 -

Frozen [3] 31.0 59.5 - - - - 34.6 65.0 - 33.7 64.7 - - - -

All-in-one [53] 37.9 68.1 - 22.4 53.7 - 32.7 61.4 - - - - - - -

Singularity [28] 42.7 69.5 - 48.9 77.0 - 53.1 79.9 - - - - - - -

VindLU [11] 45.3 69.9 - 54.4 80.7 - 59.2 84.1 - - - - - - -

CLIP-based Methods

CLIP4Clip [40] 44.5 71.4 15.3 40.5 73.4 10.0 43.4 70.2 17.5 46.2 76.1 10.0 55.9 89.2 3.9

CAMoE [12] 44.6 72.6 13.3 - - - - - - 46.9 76.1 9.8 - - -

X-Pool [21] 46.9 72.8 14.3 - - - - - - 47.2 77.4 9.3 - - -

TS2-Net [36] 47.0 74.5 13.0 41.0 73.6 8.4 41.8 71.6 14.8 - - - 59.1 90.0 3.5

X-CLIP [41] 46.1 73.0 13.2 44.3 74.1 7.9 45.2 74.0 14.6 47.1 77.8 9.5 - - -

UCOFIA 49.4 72.1 12.9 45.7 76.0 6.6 46.5 74.8 13.4 47.4 77.6 9.6 61.1 90.5 3.4
Table 1. Comparison to the state-of-the-art text-to-video retrieval methods on MSR-VTT, AcitivityNet, DiDeMo, MSVD, VATEX. The

top section shows the results of non-CLIP methods and the middle section shows the results of CLIP-based methods. Our results indicate

that UCOFIA achieves better or comparable results on all five datasets compared to the current state-of-the-art methods. For a fair

comparison, we de-emphasize Singularity [28] and VindLU [11] (by using gray color and italic font) since they are pretrained on large-

scale video datasets and use time-consuming two-stage re-ranking strategy (two-step retrieval, the first step retrieves top-K candidates

from all candidates and the second step retrieves the best candidate from the top-K candidates).

Method
MSR-VTT Activity-Net DiDeMo

R@1 R@5 R@1 R@5 R@1 R@5

CE [35] 20.6 50.3 17.7 46.6 15.6 40.9

MMT [20] 27.0 57.5 28.9 61.1 - -

Support set [44] 26.6 55.1 28.7 60.8 - -

HiT [34] 32.1 62.7 - - - -

TT-CE [14] 32.1 62.7 23.0 56.1 21.1 47.3

CLIP4Clip [40] 42.7 70.9 42.5 74.1 42.5 70.6

TS2-Net [36] 45.3 74.1 - - - -

X-CLIP [41] 46.8 73.3 43.9 73.9 43.1 72.2

UCOFIA 47.1 74.3 46.3 76.5 46.0 71.9
Table 2. Comparison to the state-of-the-art video-to-text retrieval

methods on MSR-VTT, AcitivityNet, DiDeMo datasets. The top

section shows the results of non-CLIP methods and the middle

section shows the results of CLIP-based methods. Our results in-

dicate that UCOFIA achieves better or comparable results on all

datasets compared to the current state-of-the-art methods.

sults with more metrics (including R@10, Median Recall)

in supplements.

4.3. Implementation Details

Following [40], we leverage the CLIP [46] pre-trained

weights to initialize our UCOFIA model. For the visual

encoder, we use CLIP’s ViT-B/32 weights. The dimension

C of visual and textual representations is set to 512. We

choose the K = 4 most salient patches for each frame in

our patch selection module on all datasets. For MSR-VTT,

MSVD, and VATEX, we follow the previous work [40] to

sample N = 12 frames per video and set the max length

of text query as 32. For the paragraph-to-video dataset Ac-

tivityNet and DiDeMo, we sample 64 frames per video and

set the max length of text query as 64. We adopt the Adam

optimizer [25] with a cosine warm-up strategy [37]. We set

the learning rate of the visual and text encoders as 1e−7 and

other modules as 1e−4. In the Sinkhorn-Knopp algorithm,

we set the number of iterations as 4 across all datasets. We

set a batch size to 128 for MSR-VTT, MSVD, and VA-

TEX and 64 for ActivityNet and Didemo following [41].

We train UCOFIA for 8, 5, 20, 20, 20 epochs on MSR-VTT,

MSVD, ActivityNet, DiDeMo, and VATEX, respectively.

We conduct the ablation study on the most popular MSR-

VTT dataset to analyze the effect of different designs of our

model.

5. Experimental Results

In this section, we compare UCOFIA with several recent

methods on the five video-text retrieval datasets and conduct

comprehensive ablation studies to verify our design choices.

We also provide a qualitative analysis to show the effective-

ness of our model designs. Moreover, we display quanti-

tative results with full metrics (R@1,5,10, MdR, MnR) for

each dataset, more experiments about applying UCOFIA

to more advanced backbone model [60], and quantitative

analysis on computational cost and training strategy in the

supplements.
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5.1. Comparison to State­of­the­art Approaches

In Table 1, we compare UCOFIA with existing meth-

ods that are either with (in the middle section of the table)

or without (in the upper section of the table) CLIP on text-

to-video retrieval. We also compare UCOFIA with exist-

ing methods on video-to-text retrieval in Table 2. We ob-

serve that UCOFIA achieves better performance than exist-

ing methods on most of the metrics on both text-to-video

and video-to-text retrieval settings.

On MSR-VTT, compared to the recent multi-level align-

ment method X-CLIP [41], UCOFIA gives a significant

3.3% improvement on text-to-video R@1 metric and com-

parable video-to-text retrieval results despite X-CLIP lever-

aging more levels of coarse alignments (video-sentence,

video-word, frame-sentence, and frame-word) than us. This

result verifies our motivation that building a coarse-to-

fine alignment is useful for video-text retrieval. We also

achieve 2.0% improvement on text-to-video R@1 on VA-

TEX dataset.

Similarly, on ActivityNet and DiDeMo datasets, we no-

tice that UCOFIA is capable of handling longer text queries

and achieves observe 5.2% and 4.7% improvement on

paragraph-to-video retrieval compared to CLIP4Clip [40]

which only utilizes video-sentence alignment. Further-

more, we observe 1.4% and 1.3% gain on ActivityNet

and DiDeMo compared to X-CLIP [41] under paragraph-

to-video retrieval and 2.4% and 2.9% gain on video-to-

paragraph retrieval. These results show the importance

of fine-grained correspondence even on retrieval for long

videos.

Meanwhile, our method achieves comparable results

on the MSVD dataset which evaluates a multiple-caption

setting, which further verifies the generalizability of our

model. However, we observe our normalization before the

summation strategy still introduces some performance gain

on MSVD even though the multiple-caption setting breaks

our assumption that one video has one corresponding query,

showing the robustness of our approach.

5.2. Ablation study

In this section, we study the different design choices

of our UCOFIA model and verify their effects on the

video-text retrieval performance on MSR-VTT under text-

to-video retrieval setting. Specifically, we investigate (1)

the effect of different alignment schemes, (2) the compari-

son of our fine-grained alignment design to others, (3) dif-

ferent similarity aggregation methods and (4) the effect of

the unification module.

The Effect of Different Alignment Schemes. First, we

validate the effectiveness of our different levels of align-

ment. As shown in Table 3, adding frame-sentence and

patch-word alignments improves the base model (that only

leverages video-sentence alignment) with a significant mar-

video-sent frame-sent patch-word R@1 R@5 MnR↓
✓ 44.5 71.1 15.2

✓ ✓ 47.1 73.2 14.1

✓ ✓ ✓ 48.2 73.3 13.2
Table 3. The effect of different level alignments. Video-sent de-

notes the video-sentence alignment, frame-sent denotes the frame-

sentence alignment and patch-word denotes patch-word align-

ment. The results indicate the effectiveness of each level align-

ment.

patch-sent patch-word R@1 R@5 MnR↓
47.1 73.2 14.1

✓ 46.5 73.7 14.7

✓ 48.2 73.3 13.2

✓ ✓ 47.2 71.9 13.8
Table 4. Comparison of our fine-grained alignment design to oth-

ers. “Patch-word” denotes patch-word alignment and “patch-

sentence” denotes patch-sentence alignment. The last row denotes

the ensemble of patch-word and patch-sentence alignment. The re-

sults indicate our patch-word alignment is the best design choice

for fine-grained alignment on MSR-VTT.

Aggregation Method R@1 R@5 MnR ↓
Mean Pooling 45.6 71.2 15.2

Softmax Weight 46.2 72.7 14.7

ISA (ours) 47.1 73.2 14.1
Table 5. Effect of different similarity aggregation methods for

frame-sentence vector. Results show that our ISA module has bet-

ter performance on all metrics.

gin. Specifically, we observe that adding patch-word align-

ment improves the R@1 while keeping a similar R@5,

which indicates that the fine-grained alignment helps the

model choose the most relevant video (top-1) from several

similar video candidates (top-5) by capturing the subtle dif-

ferences between these video candidates. This result justi-

fies our motivation for using fine-grained alignment as com-

plementary to coarse alignment.

Comparison of Our Fine-grained Alignment Design to

Others. In Table 4, we study the different designs of fine-

grained alignment in our model. We compare our patch-

word similarity with patch-sentence alignment and the en-

semble of these two alignments. Based on the results, we

observe that our patch-word alignment is the best design,

and meanwhile, adding patch-sentence alignment degrades

the performance, possibly caused by the mismatch between

patch and sentence representations, where one conveys lo-

cal information and the other contains global information.

We also provide qualitative analysis on different alignment

designs in supplements.

Different Similarity Aggregation Methods. To validate

the effectiveness of our ISA module for frame-sentence

alignment and Bi-ISA module for patch-word alignment in

Section 3.3, we compare our modules with several other ag-
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Aggregation Method Bidirectional R@1 R@5 MnR↓
Direct-ISA 46.4 72.8 14.8

Mean Pooling ✓ 47.1 73.0 13.9

Softmax Weight ✓ 47.5 73.4 13.5

Bi-ISA (ours) ✓ 48.2 73.3 13.2
Table 6. Effect of different similarity aggregation methods for

patch-word matrix. Results verify the effectiveness of our Bi-ISA

module compared to other methods.

Setting R@1 R@5 R@10 MnR↓
w/o SK norm 48.2 73.3 82.3 13.2

w SK norm 49.4 72.1 83.5 12.9
Table 7. The effect of SK norm of different level similarity scores.

gregation methods. In Table 5, we show the effectiveness

of our interactive similarity attention (ISA) on the frame-

sentence score. Specifically, we compare the vanilla mean

pooling strategy and softmax-based weighted combination

[36]. Note that we only adopt video-sentence and frame-

sentence alignment (remove patch-word alignment and the

Bi-ISA module) for the experiments in Table 5 to study

the effect of ISA independently. Results show that using

the ISA module achieves better performance compared to

other aggregation methods. We also compare our Bi-ISA

with other aggregation methods in Table 6, where we have

adopted ISA for the frame-sentence score. We observe that

the design of bi-directional aggregation achieves a signifi-

cant gain in performance. In general, our experiments show

that adding one linear layer to learn the temporal informa-

tion across frames before aggregation is crucial.

The Effect of Unification Module. To verify the impor-

tance of the unification module for different levels of simi-

larity, we compare our UCOFIA model with the variant that

removes the Sinkhorn-Knopp normalization (abbreviated as

SK norm) in Table 7. We notice that adding the SK norm

provides better performance on video-text retrieval with a

1.2% gain on both R@1 and R@10.

5.3. Qualitative Analysis

In this section, we report the qualitative analysis of the

effectiveness of the ISA module. We show the compari-

son of the model with and without ISA module in Figure 4.

We can see from the upper part of Figure 4 that the ISA

module improves the softmax weight by highlighting the

most relevant frame to the query. As a result, the calcu-

lated similarity score of ISA is significantly increased since

the irrelevant information is eliminated. In the lower part,

by recognizing the most related frame, our model with ISA

produces a lower similarity to the unmatched video. For ei-

ther the ground truth or wrongly retrieved video, we find the

softmax weights used in TS2-Net [36] (without frame-wise

interaction) tend to be more uniformly distributed. On the

contrary, our ISA module is capable of finding and assign-

Query: . 

Ground truth 

video

Softmax weights

ISA weights (ours)

Wrongly retrieved 

video

Softmax weights

ISA weights (ours)

Similarity score/ results

0.23 0.41 0.29

0.06 0.110.81

0.27 0.21 0.33

0.12 0.14 0.72

Wrongly retrieved via 

Softmax weights

Correctly retrieved 

via ISA weights

0.62

0.88

0.65

0.43

Figure 4. The visualization of the effectiveness of our ISA mod-

ule. In the upper part, we show that the ISA improves the softmax

weight by highlighting the most relevant frame to the query. As

a result, the calculated similarity score of ISA is significantly in-

creased since the irrelevant information is eliminated. In the lower

part, we show that the ISA module is also capable of assigning the

most related frame (the player is about to get the ball) the highest

score for the unmatched video (caption: the player is chasing the

ball). However, since it is still not directly related to the text query

(compared to the upper video), our model with ISA produces a

lower similarity score.

ing the highest score to the most relevant frame (the player

is making shots) through the interaction between frames,

which shows video candidates and results in the correct re-

trieval. This analysis verifies the effectiveness of our ISA

module.

6. Conclusion

In this paper, we present UCOFIA, which jointly con-

siders cross-modal correspondence from different granular-

ity and accomplishes the unification of multi-grained align-

ment. It achieves state-of-the-art results on multiple video-

text retrieval benchmarks. UCOFIA is a simple but effec-

tive model that achieves state-of-the-art results on five di-

verse video-text retrieval benchmarks. In the future, we plan

to extend our method to other video-language tasks such as

video question answering and video reasoning.
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Appendix

In this Appendix, we present the following items:

A. Additional Quantitative Results

B. Additional Qualitative Results

C. Method Details

A. Additional Quantitative Results

In this section, we report additional quantitative results

for our UCOFIA model. First, we report the results with

full video-text retrieval metrics (including video-to-text re-

trieval) on MSR-VTT, ActivityNet, and DiDeMo. Re-

sults indicate our UCOFIA model achieves better results on

both text-to-video and video-to-text retrieval compared to

the current state-of-the-art CLIP-based approaches. Mean-

while, we show UCOFIA is capable of adapting to other

advanced backbone models. Then, we compare the perfor-

mance and computational cost of UCOFIA with previous

work and validate our methods accomplish significant im-

provement with limited additional computation. Lastly, we

ablate the different training settings for encoders and the

model design of our bi-directional ISA module (Bi-ISA).

A.1. Results with Full Metrics

In this section, we report the video-text retrieval results

on MSR-VTT [59], ActivityNet [26] and DiDeMo [2] with

full video-text retrieval metrics, including the results on

video-to-text retrieval setting.
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Method
Text→ Video Video→ Text

R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓
CE [35] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1

MMT [20] 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3

Support set [44] 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -

Frozen [3] 31.0 59.5 70.5 3.0 - - - - - -

HiT [34] 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -

TT-CE [14] 29.6 61.6 74.2 3.0 - 32.1 62.7 75.0 3.0 -

CLIP-straight [45] 31.2 53.7 64.2 4.0 - 27.2 51.7 62.6 5.0 -

CLIP4Clip [40] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6

CAMoE [12] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0

X-pool [21] 46.9 72.8 82.2 2.0 14.3 - - - - -

X-CLIP [41] 46.1 73.0 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1

TS2-Net [36] 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2

UCOFIA(ViT-32) 49.4 72.1 83.5 2.0 12.9 47.1 74.3 83.0 2.0 11.4

UCOFIA(ViT-16) 49.8 74.6 83.5 2.0 13.3 49.1 77.0 83.8 2.0 11.2
Table 8. Comparison to the state-of-the-art video-text retrieval methods on MSR-VTT. The top section shows the results of non-CLIP

methods and the middle section shows the results of CLIP-based methods. The bottom section shows the UCOFIA performance on

different size of backbone. For fair comparison, we highlight the best results of each metric using the same backbone model (ViT-32).

Method
Text→ Video Video→ Text

R@1 R@5 R@10 MdR↓ MnR↓ R@1 R@5 R@10 MdR↓ MnR↓
CE [35] 18.2 47.7 91.4 6.0 23.1 17.7 46.6 - 6.0 24.4

MMT [20] 28.7 61.4 94.5 3.3 16.0 28.9 61.1 - 4.0 17.1

Support set [44] 29.2 61.6 94.7 3.0 - 28.7 60.8 - 2.0 -

TT-CE [14] 23.5 57.2 96.1 4.0 - 23.0 56.1 - 4.0 -

CLIP4Clip [40] 40.5 72.4 98.2 2.0 7.5 42.5 74.1 85.8 2.0 6.6

TS2-Net [36] 41.0 73.6 84.5 2.0 8.4 - - - - -

X-CLIP [41] 44.3 74.1 - - 7.9 43.9 73.9 - - 7.6

UCOFIA(ours) 45.7 76.6 86.6 2.0 6.4 46.3 76.5 86.3 2.0 6.7
Table 9. Video-text retrieval results on ActivityNet.

MSR-VTT. As shown in Table 8, UCOFIA achieves state-

of-the-art results on most metrics. Specifically, compared to

the most recent multi-level alignment method X-CLIP [41],

UCOFIA achieves a 3.3% gain on text-to-video R@1 met-

ric and obtains comparable results on video-to-text retrieval

metrics. Compared to another recent state-of-the-art CLIP-

based method TS2-Net [36], our model gets 2.4% and 1.8%
improvement on R@1 metric for text-to-video and video-to-

text retrieval. These results verify the effectiveness of the

UCOFIA model. Moreover, replacing the visual backbone

(ViT-32) with a larger model (ViT-16) would improve the

model performance, especially on video-to-text retrieval.

ActivityNet. As shown in Table 9, UCOFIA outperforms

the current state-of-the-art CLIP-based methods on a wide

range of metrics on ActivityNet benchmark [26]. Con-

cretely, our model achieves 1.4% and 2.4% gain on the

R@1 metric on text-to-video and video-to-text retrieval

compared to the state-of-the-art approaches. This indi-

cates our UCOFIA model is capable of tackling long video

retrieval, thus validating the generalization ability of our

method.

DiDeMo. As shown in Table 10, compared to the current

state-of-the-art models, UCOFIA achieves better results on

most evaluation metrics. Specifically, our model outper-

forms the recent state-of-the-art CLIP-based approach X-

CLIP [41] with a significant margin of 1.3% on text-to-

video R@1 and 2.9% on video-to-text R@1.

A.2. Adapt UCOFIA to Other Backbone Model

In this section, we apply UCOFIA to the recent CLIP-

ViP’s [60] backbone model, which is a video-text model

pretrained on 100M video-text pairs. As shown in Table 11,

UCOFIA improves the backbone CLIP-ViP model on all

metrics on the MSR-VTT text-to-video retrieval task. This

indicates that our method is able to generalize to a more

advanced backbone model and verifies the robustness of our

method.

A.3. The Computational Cost of UCOFIA

In this section, we compare our model with the recent X-

CLIP model [41] on the balance of model performance and

computational cost in Table 12. Results show that UCOFIA
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Query: a man is playing a guitar with a band in a live concert

Coarse + Fine-grained Coarse-grained Only Fine-grained Only

Query: a man drives a motorcycle in a video game

Query: a man runs into the crowd when trying to catch a basketball

Figure 6. The visualization of different alignments. The left part is the correctly retrieved video by our coarse-to-fine alignment module.

The middle part is the wrongly retrieved video by coarse-grained only alignment and the right part is the wrongly retrieved video by

fine-grained only alignment.

B. Additional Qualitative Results

In this section, we provide additional qualitative results

of UCOFIA. First, we visualize the imbalanced retrieval re-

sults and show how our unification module mitigates this

issue. Then, we visualize the video samples retrieved by

methods focusing on different alignment levels to validate

the effectiveness of our coarse-to-fine alignment design.

B.1. Visualization of Imbalanced Retrieval

As discussed in the main paper, we find that scores

across different videos are highly imbalanced in the similar-

ity matrices of each level. As a result, the video candidate

could be over-/under-represented by the retrieval model due

to the imbalanced summation of retrieval similarities. As

shown in Figure 5, the left part denotes the video candi-

dates haven’t been retrieved in the inference stage which

corresponds to under-representative. The right part de-

notes the video candidates have been retrieved more than

twice (including twice) in the inference stage which cor-

responds to over-representative. The middle part denotes

the video candidates have been retrieved once, which is the

ideal situation. The blue column in Figure 5 represents the

model without the Sinkhorn Knopp algorithm. The results

show that only 43% video candidates are retrieved once in

the inference stage while 34% video candidates are under-

represented and 23% video candidates are over-represented.

After applying the Sinkhorn Knopp algorithm in the unifi-

cation module (the orange column in Figure 5), the under-

representative issue is mitigated and more than 50 under-

represented video candidates have been re-scaled and re-

trieved by the model. Meanwhile, we also observe a slight

reduction in the number of over-represented videos. In all,

the Sinkhorn Knopp algorithm in the unification module in-

deed mitigates the over- and under-representation issue in

the inference stage.

B.2. Comparison of Different Alignments

As discussed in the main paper, our coarse-to-fine align-

ment module captures comprehensive cross-modal clues

compared to coarse-grained or fine-grained alignment. We

provide more visualization results in Figure 6. For the first

text query (on the first row of Figure 6), the coarse-grained

alignment only captures the scene of “singing” and the fine-

grained alignment only focuses on the object “guitar”. For

the second text query (on the second row of Figure 6), the

coarse-grained alignment only considers the scene informa-

tion like “driving”, and “video game” while the fine-grained

alignment only captures the detail information “motorcy-

cle”. For the last text query (on the last row of Figure 6),

the coarse-grained alignment overlooks the detailed infor-

mation “basketball” and the fine-grained alignment ignores
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the scene of “crowd” and the action of “run into”. To sum

up, the coarse-grained or fine-grained alignment could over-

look some crucial cross-modal clues while our coarse-to-

fine alignment is capable of capturing both high-level and

detailed information and retrieving the correct video candi-

date.

C. Method Details

In this section, we present more details of UCOFIA.

First, we discuss the patch selection module. Then, we

present details of the Sinkhorn-Knopp Algorithm that nor-

malizes the similarity matrix for unification.

C.1. Patch Selection Module

As discussed in the main paper, due to the high redun-

dancy of patch tokens, inspired by [36], we propose a patch

selection module to choose the top-K salient patches from

each frame for patch-word alignment. Here we present the

details of the patch selection module.

Specifically, given the patch feature for the n-th frame

pn, where pn = Fv (Fn) ∈ R
M×C , M denotes the num-

ber of the visual patches within a video, we select the top-

K salient token out of the M tokens of the frame. To al-

low each patch to be aware of the information of the whole

frame, we first concatenate the frame feature f ∈ R
C with

each patch feature and leverage an MLP layer to fuse the

global (frame) and local (patch) information and leverage

an MLP layer Ga to obtain the frame-augmented patch in-

formation to mitigate the influence of irrelevant background

patches. Then, to avoid the selection module only consider-

ing the frame information and deviating from the informa-

tion of the original video, we further concatenate the frame-

augmented patch information with the video representation

v and apply another MLP layer Gb to obtain a saliency score

U for each patch. The whole process can be denoted as:

U = Gb (Concat (Ga (Concat (pn, f)) , v)) . (8)

Then, according to the saliency score U , we select the

indices of K most salient patches within a video frame

ind ∈ {0, 1}K . Through this one-hot vector ind, we ex-

tract the top-K salient patch by

p̂ = indT p, (9)

where p̂n ∈ R
K×C denotes the selected patch representa-

tion for the whole video. We concatenate the selected patch

feature from all N frames and obtain the selected patch fea-

ture p̂ ∈ R
Lv×C , where Lv = N ∗K. Note that the direct

top-K patch selection is non-differentiable, in practice, to

make the patch selection module differentiable, we apply

the perturbed maximum method proposed in [5].

Algorithm 1 Sinkhorn-Knopp algorithm

function SINKHORN-KNOPP(S, niter)

L = S. exp()
β = 1 /L.sum(dim = 0)
for i in range(niter) do

α = 1 / (L @ β)
β = 1 / (α @ L)

end for

α← α. log()
return α

end function

C.2. Sinkhorn­Knopp Algorithm

As discussed in the main paper, inspired by [43], we uti-

lize the Sinkhorn-Knopp algorithm [15] to normalize the

similarity scores for each granularity and make sure the

marginal similarities (the sum of retrieval similarities be-

tween one specific video and all texts) for different videos

are almost identical so that each video has a fair chance to

be selected. Below, we discuss the algorithm in detail.

Recall that our goal is to compute the video bias using

the testing video set (G videos) and the training text set (H
queries). Given the similarity matrix S ∈ R

G×H , we lever-

age the Algorithm 1 to compute the video bias α ∈ R
G in

an iterative manner (the number of iterations niter = 4 for

all datasets). The fixed-point iteration process allows the

model to find the optimal value of α with minimum cost.

We further add the α to the similarity logits to re-scale the

similarity matrix to normalize the marginal similarity of ev-

ery video to be a similar value.
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