
Published as a conference paper at ICLR 2023

SUMMARIZATION PROGRAMS: INTERPRETABLE

ABSTRACTIVE SUMMARIZATION WITH NEURAL

MODULAR TREES

Swarnadeep Saha, Shiyue Zhang, Peter Hase, Mohit Bansal
Department of Computer Science
University of North Carolina at Chapel Hill
{swarna,shiyue,peter,mbansal}@cs.unc.edu

ABSTRACT

Current abstractive summarization models either suffer from a lack of clear in-
terpretability or provide incomplete rationales by only highlighting parts of the
source document. To this end, we propose the Summarization Program (SP), an
interpretable modular framework consisting of an (ordered) list of binary trees,
each encoding the step-by-step generative process of an abstractive summary sen-
tence from the source document. A Summarization Program contains one root
node per summary sentence, and a distinct tree connects each summary sentence
(root node) to the document sentences (leaf nodes) from which it is derived, with
the connecting nodes containing intermediate generated sentences. Edges rep-
resent different modular operations involved in summarization such as sentence
fusion, compression, and paraphrasing. We first propose an efficient best-first
search method over neural modules, SP-SEARCH that identifies SPs for human
summaries by directly optimizing for ROUGE scores. Next, using these programs
as automatic supervision, we propose seq2seq models that generate Summariza-
tion Programs, which are then executed to obtain final summaries. We demon-
strate that SP-SEARCH effectively represents the generative process behind hu-
man summaries using modules that are typically faithful to their intended behav-
ior. We also conduct a simulation study to show that Summarization Programs
improve the interpretability of summarization models by allowing humans to bet-
ter simulate model reasoning. Summarization Programs constitute a promising
step toward interpretable and modular abstractive summarization, a complex task
previously addressed primarily through blackbox end-to-end neural systems.1

1 INTRODUCTION

Progress in pre-trained language models has led to state-of-the-art abstractive summarization mod-
els capable of generating highly fluent and concise summaries (Lewis et al., 2020; Zhang et al.,
2020; Raffel et al., 2020). Abstractive summarization models do not suffer from the restrictive na-
ture of extractive summarization systems that only copy parts of the source document. However,
their ability to generate non-factual content (Cao et al., 2018; Maynez et al., 2020) and their lack
of clear interpretability makes it harder to debug their errors and deploy them in real-world scenar-
ios. Towards interpretable summarization models, Jing & McKeown (1999; 2000) show that human
summaries typically follow a cut-and-paste process, and propose a modular architecture involving
separate operations that perform sentence extraction, sentence reduction, sentence fusion, etc. Most
recent efforts on explainable abstractive summarization follow an extractive-abstractive framework
that only provides supporting evidence or ‘rationales’ for the summary (Hsu et al., 2018; Gehrmann
et al., 2018; Liu & Lapata, 2019; Zhao et al., 2020; Li et al., 2021). These models highlight words or
sentences from the source document but are not able to explicitly capture the generative process of a
summary, i.e., the reasoning steps performed in order to generate each summary sentence from the
source document sentence(s), like sentence compression, fusion, etc. In this work, we seek to bridge

1Supporting code available at https://github.com/swarnaHub/SummarizationPrograms.
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promising results and while state-of-the-art end2end models demonstrate better ROUGE scores, our
oracle SP-SEARCH results indicate significant room for improvement in future work (§6.3).

To evaluate whether SPs improve the interpretability of summarization models, we conduct a small-
scale simulation study (Doshi-Velez & Kim, 2017; Hase & Bansal, 2020; Zhou et al., 2022) where
we ask humans to simulate model’s reasoning by writing programs for model summaries (§6.4). We
observe that after seeing model SPs, humans are able to better predict them for unseen samples, such
that the executed summaries match more closely with the model summaries. Our contributions are:

• We introduce the Summarization Program, an interpretable modular framework for explainable
abstractive summarization. Summarization Program consists of an ordered list of binary trees,
each encoding the step-by-step generative process of an abstractive summary sentence through
the use of different neural modules (sentence compression, paraphrasing, and fusion).

• We propose an efficient best-first search method, SP-SEARCH that identifies Summarization Pro-
grams for human-written summaries, obtaining a high ROUGE-2 of 40 on the CNN/DailyMail
dataset with neural modules that are highly faithful to their intended behavior.

• We present initial Summarization Program generation models that generate SPs from a source doc-
ument, which are then executed to obtain final summaries. We demonstrate that SPs improve the
interpretability of summarization models by allowing humans to better simulate model behavior.

2 RELATED WORK

Pre-trained Models for Summarization. State-of-the-art pre-trained language models like
BART (Lewis et al., 2020), T5 (Raffel et al., 2020), and PEGASUS (Zhang et al., 2020) generate
summaries in an end-to-end manner. Lacking complete mechanistic understanding of transformers
(Elhage et al., 2021), it remains difficult to understand the reasoning process behind the generated
summary. In particular, we cannot determine whether generation follows a process similar to that of
humans, e.g., using operations like selection of important information, abstraction through vocab-
ulary generalization, sentence fusion, etc (Kintsch & van Dijk, 1978; Brown & Day, 1983; Jing &
McKeown, 1999; 2000). Moreover, it is hard to determine the source of errors in summaries without
knowing the reasoning path to the summary. Recent work on interpretable summarization models
highlight words or sentences as rationales for the generated summaries (Hsu et al., 2018; Gehrmann
et al., 2018; Liu & Lapata, 2019; Liu et al., 2019; Zhao et al., 2020; Li et al., 2021), but textual
highlights do not provide a complete explanation of the summary generation process. Thus, Sum-
marization Program is a step towards more explicit interpretability in abstractive summarization.

Neural Module Networks. Our work also draws inspiration from Neural Module Networks (NMN)
that execute programs as learned functions composed of neural modules (Andreas et al., 2016; Hu
et al., 2018; Jiang & Bansal, 2019; Gupta et al., 2020; Subramanian et al., 2020; Saha et al., 2021a;
Le et al., 2022). Typically, the modules in an NMN provide attention-based explanations whose
interpretability has been debated (Serrano & Smith, 2019; Wiegreffe & Pinter, 2019). Khot et al.
(2021) alternatively propose Text Modular Networks that decompose multi-hop questions into sub-
questions to be solved by simpler QA models. We also follow this text-in text-out paradigm for
our modules but equipped to perform diverse sentence-level operations in document summarization.
We evaluate our modules for ‘neural module faithfulness’ (Subramanian et al., 2020) to demonstrate
that the SPs mostly provide a faithful interpretation of the generated summaries.

Multi-step Reasoning over Text. Step-by-step reasoning has received much interest as a way to
explain various reasoning tasks including QA (Dalvi et al., 2021; Ribeiro et al., 2022) and natural
language deduction (Bostrom et al., 2022; Saha et al., 2020; Gontier et al., 2020; Saha et al., 2021b;
Tafjord et al., 2021). Summarization Programs similarly encode the reasoning steps in a summary
generation process. Our SP-SEARCH method follows a forward chaining method that tries to reach a
hypothesis from a set of premises (Tafjord et al., 2021; Bostrom et al., 2022), unlike backward chain-
ing methods that do the opposite (Gontier et al., 2020; Arabshahi et al., 2021; Kalyanpur et al., 2022;
Dalvi et al., 2022). In another recent line of work, chain-of-thought prompting (Nye et al., 2021;
Wei et al., 2022; Wang et al., 2022) encourages LMs to generate intermediate reasoning steps before
producing a final answer to a problem. However, the lack of explicit chaining between the reasoning
steps and the final output may compromise the faithfulness of those steps, which have also not yet
been evaluated as explanations of model behavior per se. Recent work has explored ways to force
these reasoning steps to be more like deductive proofs of the final answer (Creswell & Shanahan,
2022) or instead use generations from a larger language model as silver supervision for a smaller
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pipeline student model (Eisenstein et al., 2022). In contrast, we aim to develop a method whose ra-
tionales (our summarization programs) exactly describe the reasoning process of the overall system
and we explicitly evaluate their faithfulness. Specifically, we generate silver programs by our search
algorithm that tries to emulate the human summaries and then train models that generate programs
which are further executed to obtain final summaries (and evaluated via a simulatability study).

3 SUMMARIZATION PROGRAM

We assume that we have a document D = {Di}
d
i=1

consisting of d sentences and a correspond-
ing abstractive summary S = {Si}

s
i=1

consisting of s sentences. A Summarization Program
P = {Ti}

s
i=1

is defined as an (ordered) list of s binary trees where each tree Ti = (Vi, Ei)
is a structured representation of the generative process of each summary sentence Si ∈ S . Fig. 1
shows an example of an SP with two trees for two summary sentences. The set of nodes Vi

in each tree consists of single sentences, and the edges Ei are labeled with one of the neural
modules m ∈ {paraphrase(·), compression(·), fusion(·, ·)}. These modules represent operations
over sentences wherein compression(X ) → Y and paraphrase(X ) → Y are unary operations and
fusion(X ,Y ) → Z is a binary operation. The leaf nodes in each tree are sentences from the doc-
ument Di ∈ D, and the root is a summary sentence Si ∈ S . All other nodes are intermediates
sentences generated by executing a neural module (referred to as I1 and I2 in Fig. 1). An edge from
a node u ∈ Vi to a node v ∈ Vi labeled with the module m means that v is generated by executing
m on u. The summary S is obtained by concatenating the root nodes of the trees in order. We
hypothesize that the generative process of each summary sentence can be captured by composing
different neural modules that operate over sentences. Following prior work on modular approaches
to abstractive summarization (Jing & McKeown, 1999; 2000; Lebanoff et al., 2019; 2020b), we
define the following three neural modules for building Summarization Programs.

Fusion Module. Sentence fusion in summarization combines information from multiple sen-
tences (Lebanoff et al., 2020a). We finetune a BART-large model, which takes two sentences as
input and outputs one fused sentence. Existing sentence fusion datasets either aim to improve
discourse connections (Geva et al., 2019) or aim to fuse similar sentences from multiple docu-
ments (Brook Weiss et al., 2022). Instead, we want to fuse two disparate sentences into one sen-
tence, which requires the model to merge related pieces and remove unimportant information. To
obtain training data for such a model, we follow Lebanoff et al. (2019) to align each summary sen-
tence from CNN/DailyMail with one to many similar and non-redundant document sentences. As
our training data, we only use examples that align one summary sentence with two source sentences.

Compression Module. The compression module generates a compressed output of a single sen-
tence. It involves generating a shorter sentence by preserving the essential content and the syntactic
structure of the input. We finetune a BART-large model (Lewis et al., 2020) on a large parallel
corpus of uncompressed and compressed sentences (Filippova & Altun, 2013).

Paraphrase Module. The paraphrase module generates a sentence that involves syntactic trans-
formations or lexical paraphrasing of the input sentence. We use a publicly available PEGASUS-
based (Zhang et al., 2020) paraphrase model from HuggingFace (Wolf et al., 2020).3 In practice, we
observe paraphrased outputs to frequently involve some compression as well, which we analyze in
detail as part of the ‘Neural Module Faithfulness’ evaluation (§6.2).

4 RQ1: SUMMARIZATION PROGRAM SEARCH

Our first research question of interest is whether given a document D and a human-written summary
S , we can generate a Summarization Program P that best explains the generative process of the
summary (see the left part of Fig. 2). We achieve this by developing an efficient best-first search
method, named SP-SEARCH, outlined in Algorithm 1 in the Appendix. Conceptually, it is similar
to a forward chaining algorithm in logic programming (Russell & Norvig, 2009), in which we start
from a set of premises (equivalently, a small set of document sentences) and iteratively apply neu-
ral modules on them to generate newer deductions (equivalently, intermediate sentences) until the
goal hypothesis (equivalently, the summary) is generated. SP-SEARCH processes each summary

3Model available at https://huggingface.co/tuner007/pegasus_paraphrase.
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compressed again, each document sentence is used at most once in a tree, etc. (3) Priority Queue
and Pruning. SP-SEARCH maintains a fixed queue size and a ranked list of the elements accord-
ing to Eq. 1 such that only the top-ranked elements are kept in the queue and the rest are pruned.
(4) Parent has a higher ROUGE than children. A branch of the search is only expanded further
if the new generation (parent) has a higher R-L score than the source sentence(s) (children). This
greedy approach ensures that every reasoning step is a step closer to the summary. (5) Maximum
Tree Height. SP-SEARCH chooses a maximum height of the trees. (6) Batching Module Executions.
SP-SEARCH executes all operations in the queue together by batching at each depth of the search.

5 RQ2: ABSTRACTIVE SUMMARIZATION VIA SUMMARIZATION PROGRAMS

Given that we have proposed SP-SEARCH for identifying SPs for human summaries, we now want
to leverage the algorithm to generate training data for building SP generation models, as part of RQ2.
In particular, we use SP-SEARCH to identify Summarization Programs for all training samples in
the CNN/DailyMail dataset (Hermann et al., 2015). Our second research question now asks whether
these identified SPs can be used as supervision for developing abstractive summarization models via
the generation of SPs (see the right part of Fig. 2). Hence, we define a supervised learning problem
f : D → P that generates a Summarization Program P from document D.

Summarization Program Generation Models. We propose two initial models for our task. The
SPs are encoded as strings such that they can be generated by a seq2seq generative model. We
first label each sentence in the document with unique identifiers like ‘<D1>’, ‘<D2>’, etc. The
Summarization Program is then represented using a nested bracketing structure composed of the
modules and the sentence identifiers as shown in Fig. 2. For our first Extract-And-Build Summa-
rization Program Generation Model, we hypothesize that a document can contain a large number
of sentences but only a small fraction of those are typically useful for generating a summary. Given
a training corpus of samples (Dk, P) where Dk represents the set of k document sentences on which
the SP P is built, we finetune BART such that it can generate a Summarization Program given a
small number of document sentences. During inference, given a document, we first extract a set
of relevant sentences using a state-of-the-art extractive summarization model, MatchSum (Zhong
et al., 2020), which are then used to generate the program. While this model simplifies the learning
problem by separating out the sentence extraction phase from the program building phase, relevant
sentence extraction is an essential first step towards generating good SPs. Our next Joint Sum-
marization Program Generation Model aims to solve sentence extraction and SP generation as
part of a single model. We finetune BART on the parallel corpus of document and Summarization
Programs and the model learns to directly generate the program given an entire document.

Summary Generation from an SP. We parse and execute a generated SP through iterative inference
over the neural modules to obtain the final summary. We check for well-formedness of the SP
by ensuring that the generated sequence (1) has balanced parentheses, (2) does not contain any
out-of-vocabulary token (besides module names, sentence identifiers, and parentheses), and (3) has
consistent number of operands for an operation. During inference, we decode up to top-k SPs using
beam search and execute the first well-formed one. When none of the top-k outputs is well-formed
(<1% of the samples), we generate the corresponding extractive summary.

6 EXPERIMENTS

We experiment with two English single-document summarization datasets, CNN/DailyMail (Her-
mann et al., 2015) and XSum (Narayan et al., 2018). We discuss CNN/DM results below and point
readers to Appendix F for XSum results.

6.1 RQ1 RESULTS: CAN SP-SEARCH REPRESENT THE SUMMARIZATION PROCESS?

Our first set of experiments is aimed at answering our first RQ (as discussed in §4) where the goal is
to analyze how well the Summarization Programs identified by SP-SEARCH represent the human-
written summaries. We consider two variants of SP-SEARCH – (1) SP-SEARCH Top-1 in which
each module generates only one output, and (2) SP-SEARCH where each module generates Top-5
outputs (via beam search) and one with the best R-L is chosen.

6
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Evaluation Metrics. We use ROUGE to measure similarity between the SP-SEARCH summaries
and the human summaries. We also compute factuality of the SP-SEARCH summaries with respect
of the gold summaries using a SOTA factuality metric, QuestEval (Scialom et al., 2021). Note that
while factuality is typically measured against the source document, RQ1 requires us to evaluate how
factual the SP-SEARCH summary is to the reference summary (that the SPs are aiming to reproduce).

Experimental Design. We conduct experiments with 1000 random validation samples.5 We set
the number of initial document sentences (k) to 4, the maximum queue size (Q) to 20, maximum
height of the trees (H) to 2 and the decoding strategy for each module to beam search with beam
size of 5. Our choice of hypeparameters is based on a comprehensive study of the trade-off between
ROUGE scores and average search time, as presented in Appendix C. As baselines, we consider the
following extractive and abstractive oracles. (1) Random SP. For each summary sentence in the
gold summary, we randomly sample a tree structure (from those obtained through SP-SEARCH) and
execute it with randomly chosen leaf nodes from the set of top-k sentences. (2) Top-4 Sentences.
Our next baseline is an extractive summarization system with the top-4 document sentences ranked
according to ROUGE-1 scores with the gold summary. (3) BART-Oracle. We also compare with
two BART-oracle models. In one, we generate top-10 summaries using beam search. In another,
we sample 10 summaries with multinomial sampling and the summary with the highest ROUGE-L
score with the gold summary is chosen. (4) SP-SEARCH Leaves. Our final baseline is an SP-
SEARCH variant where we only consider the leaf nodes (document sentences). This represents an
extractive summary with upto6 top-4 sentences. Since the trees are built on top of these nodes, a
better ROUGE score for SP-SEARCH will indicate that these leaf nodes or document sentences are
being composed in a way such that the resultant summary is more similar to the human summary.
(5) Ablations of Modules. These are SP-SEARCH variants where each module is removed.

R1 / R2 / RL / RLsum QEval

Random SP 37.54 / 15.18 / 25.65 / 33.42 40.50
Top-4 Sentences 35.55 / 17.77 / 25.02 / 32.42 50.56
BART-Oracle (Beam) 40.07 / 19.57 / 32.04 / 37.06 43.25
BART-Oracle (Sample) 42.07 / 19.44 / 33.56 / 39.04 45.09
SP-SEARCH Leaves 39.15 / 20.01 / 27.94 / 35.58 50.53

SP-SEARCH Top-1 56.92 / 34.34 / 52.15 / 54.80 52.32
SP-SEARCH 61.88 / 40.11 / 58.46 / 60.32 54.48
- Paraphrase 60.08 / 38.28 / 56.36 / 58.29 53.80
- Compression 59.50 / 37.44 / 55.45 / 57.66 53.85
- Fusion 53.73 / 31.30 / 48.90 / 51.73 48.78

Table 1: RQ1 – ROUGE scores for SP-SEARCH summaries
and oracle extractive, abstractive baselines. Final column
compares the factuality of the summaries with respect to the
gold summaries through a factuality metric, QuestEval.

Results. As shown in Table 1,
SP-SEARCH generates summaries
that better emulate gold summaries
by obtaining an R-2 of 40, a sig-
nificant7 20 points improvement
(p < 0.001) over the SP-SEARCH

leaves. The random SP baseline
uses the same pre-trained modules
as SP-SEARCH but only obtains
an R-2 of 15, demonstrating that
arbitrary composition of these
modules is much less effective
than the searched programs. The
BART-oracle models exhibit less
diversity between the generations,
as reflected by their lower ROUGE
scores. This demonstrates the utility
of a tree structure in an SP. Finally, we observe that each of our neural modules plays a significant
role in constructing more accurate SPs. Removing the fusion module leads to the highest drop
in ROUGE which suggests that fusing information from multiple sentences is one of the core
operations in human summaries. SP-SEARCH also obtains the best QuestEval score, even though
it does not specifically optimize for it, suggesting that the summaries are not only similar to the
human summaries (as measured by ROUGE) but also have high factual overlap with the human
summaries. In summary, SP is an effective way of representing the generative process of abstractive
summaries, outperforming random SPs, extractive oracles and unstructured abstractive oracles.

6.2 RQ1 RESULTS: NEURAL MODULE FAITHFULNESS EVALUATION

Higher ROUGE and factuality scores obtained by SP-SEARCH with respect to the refer-
ence summaries do not guarantee that SPs provide a faithful interpretation of the gen-
erated summaries. §6.1 specifically evaluates the final summaries but not the interme-

5Due to the expensive nature of SP-SEARCH, we experiment with a random subset of the validation set.
6SP-SEARCH can ignore certain top-4 sentences if including them do not lead to higher ROUGE scores.
7We use a non-parametric bootstrap test (Efron & Tibshirani, 1994) for significance testing.
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diate steps used to generate them. In fact, prior work on Neural Module Networks has
shown that faithfulness may not always be guaranteed for neural modules and that incor-
rect intermediate outputs can still lead to correct final outputs (Subramanian et al., 2020).

Comp Para Fusion Non-Factual

Comp 0.98 0.05 - 0.00
Para 0.68 0.90 - 0.04
Fusion 0.86 0.45 0.80 0.20

Table 2: RQ1 – Neural Module Faithfulness evaluation
of SPs. Entry (i,j) shows how often a module ‘i’ in a
row performs the operation ‘j’ in a column. The final
column shows the fraction of non-factual outputs.

Hence, we also evaluate the faithfulness of
the three modules by conducting a human
study (with 2 experts having knowledge
of NLP) for 20 SPs. These constitute a
total of 107 samples, including 54 fusion,
25 paraphrase, and 28 compression op-
erations. Table 2 shows the results (with
more details in Appendix E). The diagonal
entries in the table demonstrate how often
a module performs its intended behavior
and the high values of 0.8-0.98 suggest
that our modules are highly faithful.
Interestingly, the values in the last column demonstrate that compression and paraphrase modules
almost never generate non-factual outputs while our fusion module is more prone to that (about
20%), indicating room for improvement in the fusion module.

6.3 RQ2 RESULTS: EVALUATION OF SUMMARIZATION PROGRAM GENERATION MODELS

Our next set of experiments addresses our second RQ (as discussed in §5) on evaluating Summa-
rization Program Generation models in terms of their summary generation capabilities.

Experimental Design. We compare our SP generation models (Joint and Extract-and-Build) with
the following baselines and oracles on the CNN/DailyMail test set. As baselines, we consider (1)
a SOTA Extractive Summarization Model, MatchSum (Zhong et al., 2020) that we also use
to extract initial document sentences for our Extract-and-Build SP generation model, (2) SOTA
Abstractive Summarization Models, BART (Lewis et al., 2020) and PEGASUS (Zhang et al.,
2020), and (3) Random SP Models that randomly sample the number of summary sentences from
{1,2,3,4}, and for each summary sentence, randomly sample and execute a tree structure with ran-
domly chosen leaf nodes from all or top-k document sentences. As oracles, we consider the same
models introduced in §6.1 for RQ1. They provide an estimate of the upper bound of SP models.

Evaluation Metrics. Besides ROUGE, we also evaluate the factuality of the generated summaries
(with respect to the source document) using QuestEval that is shown to correlate well with humans.

R1 / R2 / RL / RLsum QEval

MatchSum (Zhong et al., 2020) 43.98 / 20.66 / 28.72 / 40.02 63.22
BART (Lewis et al., 2020) 44.19 / 21.29 / 31.06 / 41.04 59.15
PEGASUS (Zhang et al., 2020) 44.16 / 21.55 / 31.38 / 41.01 58.83

Random SP (Joint) 24.47 / 6.48 / 15.60 / 22.07 40.73
Random SP (Extract-and-Build) 31.61 / 12.69 / 21.84 / 28.88 52.83
SP Model (Joint) 37.66 / 16.00 / 25.68 / 34.45 56.88
SP Model (Extract-and-Build) 37.23 / 16.40 / 26.48 / 34.18 55.95

Top-4 Sentences (Oracle) 45.35 / 24.60 / 31.30 / 41.92 60.00
SP-SEARCH Leaves (Oracle) 47.28 / 25.92 / 32.73 / 43.70 59.60
SP-SEARCH Top-1 (Oracle) 58.17 / 35.31 / 51.87 / 55.96 54.72
SP-SEARCH (Oracle) 62.69 / 40.58 / 58.02 / 61.10 54.11

Table 3: RQ2 – Comparison of our SP generation models with state-
of-the-art extractive and abstractive summarization models, random
SP baselines and oracle systems with our SP-SEARCH variants on the
CNN/DM test set. All methods are compared based on ROUGE and a
state-of-the-art factuality metric, QuestEval (Scialom et al., 2021).

Results. Table 3 shows the
results. We observe that
our models obtain R-2 and
R-L scores of 16 and 26
respectively. The Extract-
and-Build model performs
slightly better than our
Joint model, possibly due
to the former generating
programs over a good
initial set of document sen-
tences. Both of our models
outperform the Random
SP baselines, demon-
strating that they learn
useful patterns of which
neural modules should
act on which document
sentences. Compared to
SOTA abstractive models,
our models’ interpretability (as discussed in §6.4) comes at the cost of some drop in performance
(about 5 points in R-2). However, the oracle results suggest that our models provide good starting
points for better SP generation models and that there is substantial room for improvement in future
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work (e.g., the SP-SEARCH Top-1 model obtains an R-2 of 35, leaving a large gap of 19 R-2 points
to oracle SPs). We hope the community will explore and improve upon our SP generation models,
as a way to make progress on the important and challenging task of developing interpretable
abstractive summarization models. We observe a similar trend for the QuestEval scores where our
models largely outperform the random SP baselines, while showing worse performance than BART
and PEGASUS, possibly because of the cascading effect of compositional generation via SPs.

Discussion. Note that BART and PEGASUS optimize for gold summaries while our SP models
optimize for SP-Search summaries. The SP models, by themselves, are simple and effective –
when the generated summaries are evaluated using SP-Search summaries as targets, we obtain a
comparable R-2 of 21 to SOTA models. This shows that retraining our models on even better
oracle programs by incorporating more modules to SP-SEARCH or further enhancing the existing
ones can help close the gap to SOTA models. We hope the community will explore and improve
upon our methods, as a way to make progress on the important and challenging task of developing
interpretable abstractive summarization models.

6.4 RQ2 RESULTS: INTERPRETABILITY EVALUATION OF SP VIA SIMULATION STUDY

We ask if SPs improve the interpretability of a summarization model. In particular, we are interested
in evaluating model simulatability, a measure of whether a person can predict model behavior on
new inputs (Doshi-Velez & Kim, 2017). Similar to Zhou et al. (2022), we are specifically interested
in model reasoning, as represented by the programs that our models generate and execute. The
primary motivation for predicting model reasoning is that it is what we want to better understand
by virtue of model explanations, and simulation studies that focus on predicting final outputs do so
only to show that users have a good mental model of model reasoning (Hase & Bansal, 2020).

R1 / R2 / RL / RLsum

Before Expl. 74.37 / 62.79 / 71.62 / 72.54
After Expl. 78.03 / 66.80 / 72.37 / 74.69

Table 4: RQ2 – Comparison of mean
ROUGE scores between our model sum-
maries and their human simulations before
and after being trained with SPs.

Study Design. With 3 experts (authors) who have
prior knowledge in NLP and explainability, we
design and carry out a small-scale human study that
tests whether presenting humans with Summarization
Programs improves their ability to predict SPs on
future unseen data. Human subjects are first provided
with some test documents and corresponding model
summaries (from our Explain-and-Predict SP model)
and are tasked with predicting the model’s Summa-
rization Programs. Next, in a training phase, they are
shown model-generated SPs for a few training samples and are then asked again to perform the same
task with the same set of test examples. The study is conducted with 10 training examples and 31
test examples. We say that an SP is more representative of the model summary if executing it with
our pre-trained modules generates a summary that is closer to the model summary. This is a measure
of program similarity since variance in the SPs may make graph similarity measures inappropriate
(e.g., compression followed by paraphrase and vice versa may generate similar outputs).

Results. The results are presented in Table 4. In general, high ROUGE scores suggest that, when
models are forced to generate summaries via SPs, their reasoning becomes quite predictable a priori.
We also see about 4 points improvement in ROUGE-2, with 61% of samples showing an improved
R-2 score (statistically significant at p < 0.001), 10% of samples with a drop in R-2, and remaining
being ties. This suggests that SPs are potentially good explanations of model reasoning, such that
humans can generalize across model reasoning patterns after being given the explanations.

7 DISCUSSION AND CONCLUSION

A small-scale manual study of our generated SPs reveal that the two most common forms of errors
include (1) redundant or longer paths in an SP, and (2) fusion module generating non-factual
sentences or ignoring one of its source sentences. Two other notable issues, arising out of the in-
dependence assumption of summary sentences, are (1) final summary sentences having overlapping
information, and (2) incoherence between consecutive sentences. One way to improve this is to add
a ‘coherence’ module on top of the root nodes before generating the final summary, which is an inter-
esting topic for future work. We build SPs using sentences as the fundamental content unit (nodes)
due to the relative ease of defining and training neural modules on sentences and the availability of
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large-scale training data. Summarization may also involve other text manipulation operations that
are not fully captured by our modules but our framework allows easy inclusion of other modules.
Finally, we envision that SPs could also help in locating and debugging errors in human and model
summaries by tracing back the generative process of summary sentences to document sentences.

We proposed the Summarization Program, a novel framework for interpretable abstractive summa-
rization. We demonstrated its effectiveness by developing SP-SEARCH that identifies summariza-
tion programs for human summaries with highly faithful neural modules and SP generation models
that produce summaries from source documents. Via an initial simulation study, we also show that
SPs improve the interpretability of a summarization model.

ETHICS STATEMENT

Despite the recent success of pre-trained language models in abstractive summarization, their lack
of explainability still remains a major concern and we hope that Summarization Programs prove to
be an important step in bridging that gap. That said, summarization is inherently a subjective task
and existing summarization datasets also significantly vary in terms of their stylistic features like
abstractiveness, length, and specificity (Goyal et al., 2022). Hence, more future work is needed to
understand the general applicability of our neural modules and how effective they are in encoding
different kinds of summaries. Broadly put, Summarization Program is a case study for breaking a
complex NLP problem down into sub-problems and then solving them through neural modules with-
out having access to intermediate supervision. We fine-tune language models for building modules
and language models can be prone to generating unwanted content (Weidinger et al., 2021). How-
ever, since each module is focused on one particular skill, that should help limit the negative impact
and provide users with more control, compared to end-to-end models. Summarization Programs are
also specifically designed to trace the origin of any toxic or hallucinated content in the generated
summaries.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we make our source code publicly available. The details of our SP-
SEARCH algorithm are shown in Algorithm 1. The hyperparameters for RQ1 and RQ2 are dis-
cussed in Appendix C and Appendix D respectively. The CNN/DailyMail and XSum datasets are
also publicly available at https://huggingface.co/datasets/cnn_dailymail and
https://huggingface.co/datasets/xsum respectively.
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Tree Structure H Freq (in %)

compression (·) 1 8
compression ( fusion (·, ·) ) 2 8
fusion ( fusion (·, ·) fusion (·, ·) ) 2 7
(·) 0 7
fusion ( compression (·) fusion (·, ·) ) 2 6
paraphrase ( compression (·) ) 2 6
paraphrase ( fusion (·, ·) ) 2 6
fusion ( fusion (·, ·) compression (·) ) 2 5
fusion ( fusion (·, ·) ) 2 5
fusion ( compression (·) ) 2 5

Table 5: Top 10 tree structures for the human-written summaries in the training corpus of CNN/DM.
For clarity, each tree structure is accompanied with the corresponding tree height and the frequency
(in percentage). An empty structure of “(·)” represents a singleton node.

Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuan-Jing Huang. Extrac-
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United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.392. URL https://aclanthology.org/2022.naacl-main.392.

A DESIGN CHOICES FOR EFFICIENT SP-SEARCH (CONTINUED FROM §4)

SP-SEARCH is outlined in Algorithm 1. It is made efficient through important design choices as
discussed below. For clarity, we do not show all of these choices in the Algorithm outline.

Top-k Document Sentences. The search space grows exponentially at each depth (because of the
fusion operation), but one way to limit the growth is to ensure that SP-SEARCH starts with a small
number of document sentences. A summary is typically constructed by using information from
only a small number of sentences from the document. Hence, we rank each document sentence by
computing the ROUGE-1 score with the summary and build the Summarization Program with only
the top-k document sentences (‘k’ being a small number) as eligible source sentences.

Filtering Queue Elements. The search space is also dependent on how many elements are added
to the queue at each step and how many of those are expanded further. Note that whenever a new
sentence is generated via a module, it can potentially fuse with all previous generations to create
new queue elements. Since doing this exhaustively increases the search space, SP-SEARCH defines
certain heuristics for choosing the elements that will be added to the queue: (1) a sentence that has
been compressed once is not compressed again, (2) a sentence that has been paraphrased once is
not paraphrased again, (3) each document sentence is used at most once in a tree, (4) two sentences
are not fused if they are intermediate generations from the same sentence, and (5) since fusion is
not a symmetric operation and can lead to different generations based on the order, sentence fusion
happens keeping the temporal order of the sentences in the document intact.

Priority Queue and Pruning. SP-SEARCH performs an additional step of pruning for the elements
that are added to the queue. It maintains a fixed queue size and while expanding the elements in the
queue in a best-first manner, it maintains a ranked list of the elements according to Eq. 1 such that
only the top-ranked elements are kept in the queue and the rest are pruned.

Parent has a higher ROUGE than children. Each module generates multiple outputs through
beam search and SP-SEARCH ensures that the best output has a higher R-L score than the nodes on
which the module is defined. If this is not the case, the corresponding branch of the search is not
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Algorithm 1: SP-SEARCH Algorithm

Input: Top-k Document Sentences Dk, Summary S, Modules {Mc,Mp,Mf}, Maximum HeightH,
Maximum Queue SizeQ, Number of Generations G, Scoring Function Score

Output: Summarization Program P
1 function SP-SEARCH(Dk,S, {Mc,Mp,Mf},H,Q,G,Score)
2 P = [] . Initialize Summarization Program.

3 forall S ∈ S do
4 queue← [], height ← 1 . Initialize queue of items and tree height.

5 maxRouge ← 0, bestRoot ← φ . Initialize a tree with maximum ROUGE.

6 forall D1 ∈ Dk do
7 currRouge ← ComputeRouge(D1, S) . Compute ROUGE with leaf nodes.

8 if currRouge > maxRouge then
9 maxRouge ← currRouge , bestRoot ← Node(D1) . Update ROUGE and root.

10 queue← queue ∪ {(D1, φ,Mc, height)} . Add compression items.

11 queue← queue ∪ {(D1, φ,Mp, height)} . Add paraphrase items.

12 for D2 ∈ Dk do
13 queue← queue ∪ {(D1,D2,Mf , height)} . Add fusion items.

14 prevHeight ← 0, visited← []
15 while |queue| > 0 do
16 height ← queue[0].height . Get height of the top queue item.

17 if height > H then
18 continue . Stop expanding beyond max height.

19 if height 6= prevHeight then
20 prevHeight ← height
21 queue← argmaxq∈queue(queue,Q,Score) . Rank and prune the queue.

22 gens ← Execute(queue, {Mc,Mp,Mf},G) . Execute all operations in

queue.

23 newNode ← queue.pop() . Pop the top item from the queue.

24 newGen ← gens[newNode] . Get the newly generated sentence.

25 newRouge ← ComputeRouge(newGen , S) . Get rouge with new sentence.

26 if newRouge > maxRouge then
27 maxRouge ← newRouge , bestRoot ← Node(newGen) . Update root.

28 if newGen 6∈ visited then
29 visited ← visited ∪ {newGen}, height ← height + 1
30 queue← queue ∪ {(newGen, φ,Mc, height)} . Add compression items.

31 queue← queue ∪ {(newGen, φ,Mp, height)} . Add paraphrase items.

32 forall prevGen ∈ visited do
33 queue← queue ∪ {(newGen, prevGen,Mf , height)} . Add fusion

items.

34 TS = ConstructTree(bestRoot) . Get Tree by backtracking from best root.

35 P ← P ∪ {TS} . Append new tree to the Summarization Program.

36 return P

expanded further. This constraint generalizes to the property that every node in a Summarization
Program will have a higher R-L score (with respect to the summary sentence) than all other nodes
in the subtree rooted at that node. Conceptually, this greedy approach ensures that every reasoning
step in a Summarization Program is a step closer to the summary (according to a scoring function).

Maximum Tree Height. SP-SEARCH chooses a maximum height of the trees, beyond which the
nodes are not expanded further during the search.

Batching Module Executions. Instead of executing each module separately, which requires a for-
ward pass over a neural model and can be time-consuming, SP-SEARCH executes all operations in
the queue together by batching at each depth of the search.
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k Q D H ROUGE (R1/R2/RL) T

3 20 beam (5) 2 59.36 / 37.38 / 55.59 21.09
4 20 beam (5) 2 61.88 / 40.11 / 58.46 29.58
5 20 beam (5) 2 63.72 / 41.99 / 60.46 35.80

4 10 beam (5) 2 61.21 / 39.06 / 57.46 15.38
4 20 beam (5) 2 61.88 / 40.11 / 58.46 29.58
4 30 beam (5) 2 62.32 / 40.57 / 58.97 41.61

4 20 beam (5) 1 56.45 / 34.16 / 51.34 13.58
4 20 beam (5) 2 61.88 / 40.11 / 58.46 29.58
4 20 beam (5) 3 65.00 / 43.81 / 62.36 34.68

4 20 greedy 2 52.87 / 30.12 / 47.08 26.85
4 20 beam (1) 2 56.91 / 34.34 / 52.15 28.56
4 20 beam (5) 2 61.88 / 40.11 / 58.46 29.58

Table 6: Analysis of ROUGE scores (R1/R2/RL) and average search time (in seconds) for SP-
SEARCH on 1000 validation samples in CNN/DM with different search hyperparameters. k = Num-
ber of extracted document sentences. Q = Maximum queue size. D = Decoding Strategy from the
modules. H = Maximum height of the tree. T = Average search time in seconds. Search times are
computed on a single RTX 2080 Ti GPU. Beam(5) refers to beam search with beam size 5 and best
of top-5 generations from each module.

B ANALYSIS OF SP-SEARCH SUMMARIZATION PROGRAMS FOR CNN/DM

We observe that 68% of the summaries in CNN/DM have 3 or 4 summary sentences and, equiva-
lently, the corresponding Summarization Programs have 3 or 4 trees. Note that while we initialize
SP-SEARCH with the Top-4 document sentences, a Summarization Program may choose to ignore
some of these sentences if including them does not lead to higher ROUGE scores. Upon analysis, we
find that 73% of the programs are constructed using all four initial sentences, 23% are constructed
with three sentences and 3% have two sentences. We also note that the trees can have any height
up to the maximum defined height of 2. A tree of height 0 represents a singleton node with a single
document sentence. Thus, a Summarization Program with only singleton nodes represents an ex-
tractive summary. Overall, we observe that our trees have as many as 20 different structures. Table 5
shows the top 10 tree structures in our corpus. As an example, a tree structure of “compression (
fusion (·, ·) )” represents a tree of height 2 in which two document sentences are first fused and then
the resultant sentence is compressed.

C SP-SEARCH HYPERPARAMETERS

In order to analyze the effect of different hyperparameters in SP-SEARCH, we compare the trade-off
between ROUGE8 scores and average search time per sample (on a single RTX 2080 Ti GPU) by
varying the number of initial document sentences (k), the queue size (Q), decoding strategy (D) and
the maximum height of the trees (H) in Table 6. We observe that increasing the number of document
sentences k beyond 4 leads to some improvements in ROUGE scores. However, this comes at the
cost of increased search time. Increasing the queue size (Q) also leads to minor improvements but
again suffers from increased search time. While increasing the maximum tree height (H) to 3 results
in better ROUGE scores, on inspection, we observe that it happens primarily due to low-quality
fusion of two arbitrary sentences that may not always lead to better programs. Finally, beam search
performs better than greedy decoding, and leveraging the best of the top-5 generations from each
module improves the results further with almost no increase in search time. Overall, at a moderate
search time of less than 30 seconds/sample on a single RTX 2080 Ti GPU, SP-SEARCH obtains a
20 point increase in R-2 compared to our extractive baseline with leaf nodes (document sentences).

8We use the HuggingFace implementation of ROUGE at https://github.com/huggingface/
datasets/blob/main/metrics/rouge/rouge.py.
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Opt. Metric R1 R2 RL RLsum

R1 64.28 38.40 54.36 57.68
R2 59.11 41.85 53.28 55.97
RL 61.88 40.11 58.46 60.32

Table 7: Comparison of ROUGE scores for the summaries generated by SP-SEARCH based on the
optimization metric. Optimizing for R-L leads to more consistent results across all ROUGE metrics.

IS Metric R1 R2 RL RLsum

R1 61.88 40.11 58.46 60.32
R2 62.07 41.61 59.05 60.76
RL 61.79 40.36 58.66 60.38

Table 8: Comparison of ROUGE scores for the summaries generated by SP-SEARCH based on the
metric used for choosing the initial sentences (IS). The optimization metric is set to R-L for all.

SP-SEARCH builds Summarization Programs by optimizing for ROUGE-L because of its better
overall performance across all ROUGE metrics. As shown in Table 7, optimizing instead for R-1
and R-2 leads to slightly better R-1 and R-2 respectively but overall R-L performs better. In general,
we find that the different ROUGE metrics may not correlate well with each other when optimizing
for one of these.

SP-SEARCH uses ROUGE-1 scores to select the candidate sentences for building the Summarization
Programs. We also experiment with other ROUGE metrics in Table 8 and observe that our algorithm
is fairly robust to the choice of metric. R-2 obtains slightly better results than R-1 and R-L but
overall, all metrics still obtain sufficiently high oracle results of 40-41 points in R-2 through SP-
Search, independent of the selection metric.

D SP MODEL HYPERPARAMETERS

We build our models on top of the HuggingFace transformers library (Wolf et al., 2020). All models
are trained for 40000 steps with a batch size of 16, learning rate of 3 ∗ 10−5 and warmup steps
of 500. We set the maximum input length to 512 and maximum generation length to 100. During
inference, we generate up to Top-10 Summarization Programs with beam search and output the
first well-formed program. We also set the minimum generation length to 10 to prevent the model
from generating too short sequences and repetition penalty to 2. Program execution from the SPs is
performed with the same set of hyperparamaters for each module as used during SP-SEARCH.

E RQ1 RESULTS: NEURAL MODULE FAITHFULNESS EVALUATION ON

CNN/DM (CONTINUED FROM §6.1)

We discuss the faithfulness evaluation of our modules below.

Study Design. We would attribute each sentence to exactly one of the modules, but since our mod-
ules are generative, we do not know if each module performs only and exactly its named function.
For example, fusing two sentences into a fluent sentence may in practice also involve some para-
phrasing or compression. Hence, we evaluate module faithfulness by analyzing how often a module
mi performs the role of a module mj . Two expert annotators, with knowledge of NLP, annotate
each intermediate generation (from a module) and assign a binary label against each of the modules
that could lead to that output. Additionally, the annotators also label each generation for whether it
contains non-factual content (that cannot be verified from the sentence(s) used to generate it). The
study is conducted with 20 Summarization Programs, consisting of a total of 107 samples, with 54
fusion, 25 paraphrase, and 28 compression operations.
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Compression Paraphrase Fusion Non-Factual

Compression 0.98±0.01 0.05±0.02 - 0.00±0.00
Paraphrase 0.68±0.04 0.90±0.05 - 0.04±0.00
Fusion 0.86±0.01 0.45±0.03 0.80±0.03 0.20±0.05

Table 9: RQ1 – Neural Module Faithfulness evaluation of Summarization Programs. Each entry
(i,j) shows the fraction of time a module ‘i’ in a row performs the operation ‘j’ in a column. The
final column shows how often a module generates non-factual outputs. We report the mean and
variance of the scores between the two annotators.

R1 R2 RL RLsum

Lead 1 15.88 1.54 11.71 11.81
SP-SEARCH Leaves 25.10 5.89 16.48 19.44
Top-1 Sentence 29.77 7.21 20.85 21.13
Random SP 28.96 9.04 22.38 22.41
BART-Oracle (Sample) 49.23 25.82 42.31 42.30

SP-SEARCH Top-1 47.72 24.83 43.50 43.50
SP-SEARCH 51.86 29.60 48.48 48.51

Table 10: RQ1 – Comparison of ROUGE scores for the SP-SEARCH summaries with different
oracle extractive and abstractive baselines on the XSum dataset.

Results. Table 9 shows the results. The diagonal entries in the table demonstrate how often a
module performs its intended behavior and the high values of 0.8-0.98 suggest that our modules
are highly faithful. In about 20% of the cases, a fusion operation may not involve any fusion.
We also observe that some form of compression frequently happens as part of the paraphrasing
and fusion modules, as shown in the first column of the table. Similarly, the fusion outputs also
tend to involve some compression and paraphrasing operations. Interestingly, the values in the last
column of the table demonstrate that compression and paraphrase modules almost never generate
non-factual outputs while our fusion module is more prone to that (about 20%), indicating room for
improvement in the fusion module.

F RESULTS ON XSUM DATASET (CONTINUED FROM §6)

To further test the generalizability of Summarization Programs, we conduct experiments on another
single document summarization dataset, XSum (Narayan et al., 2018), a highly abstractive dataset
consisting of single-sentence summaries.

F.1 RQ1 RESULTS: CAN SP-SEARCH REPRESENT THE SUMMARIZATION PROCESS?

As part of answering RQ1, we keep the paraphrase and compression modules unaltered and only
retrain the fusion module for XSum, with the training data obtained using the same heuristics as
used for CNN/DM (Lebanoff et al., 2019). We also use the same hyperparameters for SP-SEARCH

as those used for CNN/DM and compare all methods on 1000 randomly chosen validation samples
of XSum. As shown in Table 10, SP-SEARCH obtains an R-2 of 29.60 and an R-L of 48.48, out-
performing all baseline methods by a significant margin. Unlike CNN/DM, extractive baselines like
‘Lead 1’, ‘SP-SEARCH Leaves’, and ‘Top-1 Sentence’ do not perform well for XSum, while the
abstractive baseline, BART-Oracle does significantly better. The SP-SEARCH results are also lower
than in CNN/DM because of the highly abstractive nature of the dataset and the relative difficulty in
emulating reference summaries.
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