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Abstract

In this work, we present the Textless Vision-Language Transformer (TVLT), where
homogeneous transformer blocks take raw visual and audio inputs for vision-and-
language representation learning with minimal modality-specific design, and do
not use text-specific modules such as tokenization or automatic speech recognition
(ASR). TVLT is trained by reconstructing masked patches of continuous video
frames and audio spectrograms (masked autoencoding) and contrastive modeling
to align video and audio. TVLT attains performance comparable to its text-based
counterpart on various multimodal tasks, such as visual question answering, image
retrieval, video retrieval, and multimodal sentiment analysis, with 28x faster infer-
ence speed and only 1/3 of the parameters. Our findings suggest the possibility
of learning compact and efficient visual-linguistic representations from low-level
visual and audio signals without assuming the prior existence of text.!

1 Introduction

Humans perceive and learn the external world through signals from multiple modalities. To embody
such human learning in machines, substantial research efforts are dedicated to developing vision-
and-language (VL) models that can understand the joint semantics between visual and linguistic
modalities and solve tasks such as visual question answering [4]. Although most such VL models use
written language rather than spoken language as the main verbal communication channel, the default
communication modality among humans has been speech, since circa 100,000 BCE [78]. Written
language is relatively recent; cuneiform script, the earliest writing system, was developed circa 3,200
BCE [65]. Moreover, we have witnessed an increasing usage of AI models in real-world products
such as virtual assistants and smart speakers [40], where perception-level signals such as video and
audio are the natural form of input. Intuitively, direct modeling of such signals will potentially yield
more compact and efficient representations.

Transformers [8 1] have recently achieved great success in vision-language representation learning [76;

; 485 74; 87; 86] by using text-based modules [15] on text-annotated images or videos. However,
it is non-trivial to learn VL representations using transformers that take only low-level visual and
acoustic inputs without the prior existence of written language. The challenge lies in the difference
between text and acoustic signals; text is discrete and dense in information, while acoustic signals
are continuous and sparse in information [26; 7]. Therefore, modality-specific architectures have
been used to model data from different modalities. It is only recently that researchers started using
modality-agnostic transformer architecture to learn representations of different unimodal [17; 19; 8],
vision-text [32; 54], or vision-audio-text [2] data. However, to the best of our knowledge, no previous
work has explored a single homogeneous (modality-agnostic) minimalist transformer that learns
visual-linguistic representations directly from visual and acoustic input at the perception level (without
relying on text), and also makes the textless VL model more compact and efficient than the existing
text-based VL models (see Sec. 2 for details).

*equal contribution
'Our code and checkpoints are available at: https://github.com/zinengtang/TVLT
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Figure 1: Comparison of previous VL architectures and our proposed textless framework TVLT. The
removal of automatic speech recognition (ASR) from the VL pipeline brings efficiency improvement
while maintains competitive performance. For inference time calculation, we use 8 video frames and
20s audio (see Sec. 6.2 for detail). As shown in Table 1, TVLT achieves competitive performance to
text-counterpart on video retrieval and multimodal sentiment analysis tasks.

In this work, we propose Textless Vision-Language Transformer (T VLT) for vision-and-language
representation learning based on video data as the natural source of raw visual and audio input. As
depicted in Fig. 2, TVLT accepts low-level video frames and audio spectrograms as input. We
employ a minimalist design for TVLT where homogeneous transformer blocks are used for both the
encoder and decoder. TVLT is trained by reconstructing masked patches of continuous video frames
and audio spectrograms (masked autoencoding) and contrastive modeling to align video and audio.
More importantly, TVLT makes no assumptions about the existence of written language and does not
involve explicit modeling of text input, such as automatic speech recognition (ASR) or tokenization,
which are crucial submodules in the success of existing VL models in aligning written concepts with
visual clues.

Despite the removal of text-based modules and modality-specific designs, TVLT achieves results
comparable to its text-based counterparts in multimodal tasks (with either direct audio input, or text
converted to audio input via TTS) such as visual question answering, image retrieval, video retrieval,
and multimodal sentiment analysis, while being computationally efficient with 1/3 parameters and a
28x faster inference speed, as illustrated in Fig. 1. This indicates that the removal of text-specific
modules such as ASR in vision-and-language modeling helps reduce computational redundancy in
existing pipelined learning paradigms, where text is first extracted through ASR and then further
processed by a text-based VL model. Furthermore, we also show that TVLT can capture acoustic
information beyond speech and is more effective in multimodal emotion classification than its text-
based counterpart. We hope that our findings spark further research in the realm of textless VL models
that take raw signals as input and seek to learn a more compact and efficient vision-and-language
representation.

2 Related Work

Text-based Representation Learning. Large-scale unsupervised pretraining of contextualized
language models based on written texts has seen great success in recent years. ELMo [58] proposes to
pretrain and finetune a large recurrent language model, which improves performance on a diverse set
of downstream natural language processing tasks. BERT [15] improves the scalability of the pretrain-
then-finetune paradigm by using a transformer [8 1] model with a masked language modeling objective.
Since then, the pre-training of transformers has been extensively explored for transfer learning in
language [46; 83; 38; 165 73; 60; 13]. In these methods, learning is focused on eliciting high-level
linguistic semantics and structures from unlabeled written texts or natural sequences of words.

Audio-based Representation Learning. Pretraining methods on audio input involve transferring
the continuous 1D audio signal into dense vectors that can be input to a speech or acoustic model.
Early work mainly uses recurrent neural networks [12; 11; 70] and convolution networks [66] for
audio encoding. To take advantage of the proven expressiveness and genericity of transformers, more
recent work proposed using audio spectrograms [19; 20; 7] as image input and then encoding the
patches of such images with a transformer, following the same methodology in computer vision [17].
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Figure 2: TVLT is pretrained with two objectives: (a) vision-audio matching (Sec. 4.1) and (b)
masked autoencoding (Sec. 4.2). The model takes video frames and audio spectrogram as inputs and
does not use text input and completely removes text from the pipeline.

The pretraining objectives for transformers range from classification [ 19] to masked audio modeling
[20; 7]. A line of work uses an audio transformer with discrete audio units for pretraining [27] and
speech tasks such as generative spoken language modeling [37; 31] and speech emotion conversion
[35]. These works focus on learning the acoustic and linguistic characteristics of a language from
raw audio or spectrogram.

Vision-and-Language Representation Learning. Following the success of pretraining of trans-
former language models, pretraining of image+text [76; 48; 10; 43; 90; 41], video+text [74; 52;

351542577, 87], and video+text+audio [79; 85; 61; 86; 2] multlmodal transformers has recently
achieved improvements in downstream VL tasks such as visual question answering [4; 28] and
text-to-video retrieval [82; 91]. These methods use text, such as written captions or ASR transcripts,
as input into the language channel. There is another line of work on models taking video+audio
input, where they can utilize naturally synchronized vision+audio pairs from videos. Audio-visual
synchronization is often used for self-supervised learning [56; 5; 55; 34; 6; 53; 49], or for downstream
tasks such as automatic speech recognition [1; 72; 71] and video retrieval [75; 63; 64; 45]. Our work
is different from these works, in that we focus on the design of a homogeneous and modality-agnostic
transformer (Sec. 3) to achieve a novel, unified, and minimalist textless visual-linguistic representa-
tion learning method directly from visual and acoustic signals (without relying on text), via masked
autoencoding and contrastive modeling objectives (Sec. 4), which also makes the textless VL. model
more compact and efficient than the existing text-based VL models.

3 TVLT: Textless Vision-Language Transformer

We introduce TVLT: Textless Vision-Language Transformer, a minimal end-to-end vision-and-
language transformer model that accepts a list of embeddings obtained directly from perception-level
video and audio input without text-specific modules, as depicted in Fig. 1 and Fig. 2.

3.1 Input Embeddings

The input embeddings of TVLT are the sum of (1) modality embedding, (2) temporal/spatial
embedding for video, (3) temporal/frequency embedding for audio, and (4) vision/audio patch
embedding. As illustrated by the red and blue boxes in Fig. 2, the modality embeddings are two
trainable vectors added to the input embeddings and used to indicate whether the input is from vision
or audio input. In what follows, we explain the details of vision and audio embeddings.

Vision Embeddings. We adopt ViT [|7]-style vision embedding, where each video frame of
224 x 224 pixels is divided into a list of 16 x 16-sized patches. Then, a liner projection layer is



applied to the normalized pixel values of each patch, resulting in a 768-dimensional patch embedding.
For a video clip with N frame samples, the input tensor with shape N x 224 x 224 x 3 (time x height
x width x channel) will result in N x 14 x 14 embeddings. The temporal and spatial embeddings are
different trainable vectors added to the time, height, and width axis of the V x 14 x 14 embeddings
to incorporate the temporal and spatial information for each input patch. We treat image input as a
single frame video so that our model can handle both image and video tasks without modification of
the architecture [9]. Temporal embedding is only added for video inputs; we do not use temporal
embedding for images.

Audio Embeddings. To obtain audio embeddings, we first convert the 1D waveform of the raw
audio signal to 128-dimensional log Mel-spectrogram having a dimension of 7" x 128 (time axis
x frequency axis).”> Then, we treat the audio spectrogram as an image, divide the spectrogram
images into patches, and apply a liner projection layer on each patch to obtain a 768-dimensional
patch embedding. This follows the audio embedding methods in recent work [19; 20; 7], where a
similar modality-agnostic transformer is used to model spectrogram patches. We experiment with
two different patch sizes: 16 x 16 (square patches similar to the vision modality) and 2 x 128 (the
same area as the first one but covers the entire frequency domain with a shorter time range) and use
trainable3 temporal and frequency embeddings to indicate the temporal and frequency information of
patches.

3.2 Multimodal Encoder-Decoder

The main architecture of TVLT is a transformer [81] consisting of a 12-layer encoder (hidden
size 768), E, and an 8-layer decoder (hidden size 512), D. We follow He et al. [26] and use
a shallow decoder that only serves for masked autoencoding objective (Sec. 4.2) and has much
fewer computations than the encoder. After pretraining, we only use the encoder representation for
finetuning on downstream tasks.

4 Pretraining Objectives

By virtue of our minimal and modality-agnostic design, TVLT is pretrained with two objectives: (1)
vision-audio matching (Sec. 4.1) and (2) masked autoencoding (Sec. 4.2). For each training batch,
we compute each objective through a separate forward pass and use the weighted sum of them for the
final loss, where A\YAM = 1.0 and A\MAE = (.3.

loss = A\VAM[pgsVAM L \MAE ;o MAE (D

4.1 Vision-Audio Matching

We use the vision-audio matching (VAM) objective to learn the global cross-modal representation,
as illustrated in Fig. 2 (a). For each video input, we create a (positive) vision-audio pair (z"+, z4).
Then, we construct half of the vision-audio pairs inside a batch as mismatched (negative) pairs
(zV~,24), by replacing video frames ="' with randomly sampled video frames ="~ from the
training dataset.

Following previous vision-and-language transformers [76; 10; 48; 32], a linear layer with sigmoid
activation is used as the classification head applied to the encoder output of the first [CLS] token to
obtain the matching probability p. Then we compute the binary cross-entropy loss as:

loss"™™ = —ylogp 2)

where y is 1 when the input vision-audio pair (", ) is matched and 0 otherwise.

4.2 Masked Autoencoding

In addition to the VAM objective to learn cross-modal representation, we also use the masked
autoencoding (MAE) objective to improve unimodal representations in the vision-and-language

We use melspectrogram method of librosa [50] with arguments: sampling rate=44100,
n_fft=2048, hop length=512, window=‘hann’, pad_mode=‘constant’, n_mels=128.

3With 16x16 patch, a 20-second audio will have a spectrogram with shape 640 x 128 (time axis x frequency
axis), resulting in 40 x 8 = 320 patches.



settings, by masking random patches of visual frames and the audio spectrogram, and reconstruct
missing inputs as shown in Fig. 2 (b). Concretely, we randomly drop a portion of visual 2" and audio
embeddings 24, then feed the remaining patch embeddings to the encoder . We create inputs for
the decoder D by adding the dropped embeddings as trainable vectors [MASK] to the same location
as the original input (gray boxes in Fig. 2 (b)). We also add the corresponding temporal, positional,
and frequency embeddings to the decoder input. Note that the temporal, positional, and frequency
embeddings of the encoder and decoder are separately parameterized. We calculate the mean squared
error between the reconstructed and original video frames and spectrograms:

1 ~ 1 A AA
s = = S el —a¥ B4 o O llef - 1B G
M jemasked M jEmasked

where N); and N} are the number of masked patches for vision and audio, respectively. We compute
the loss only on masked patches, similar to BERT [15].

To save computation, we slice the audio and video parts of the encoder output and feed them separately
to the decoder, rather than decoding the video frames and the audio spectrogram jointly. In Sec. 6.6,
we show that separate decoding achieves better finetuning performance, as well as better efficiency
than joint decoding.

4.3 Masking Strategy

Vision Masking. Following MAE [26], we randomly mask 75% of the visual patches, and the
masking is applied for each video frame independently.

Audio Masking. Following MAE-AST [7], we randomly mask 75% of the spectrogram patches.
To better capture speech-related audio representation, we emphasize audio masking on speech audios.
We use Audiotok [3], an audio activity detection tool, to determine speech spans based on the
detection of events in the energy of the audio signal. Then, we apply the masking only on those audio
spans. We use a probability of 15%. We include the details of speech span detection in appendix.

S Experimental Setup

To compare the audio-based and text-based language representations for vision-and-language tasks,
we pretrain our TVLT and its text-based counterpart on video datasets. Then, we finetune the models
on a set of downstream vision-and-language datasets for evaluation.

5.1 Text-based TVLT Counterpart

Our text-based TVLT counterpart has the same architecture as the vanilla TVLT with minor changes
to accommodate text-based inputs. Firstly, we use sentence-piece [36] tokenizer and then map each
token to trainable vectors to encode the raw text into embeddings, instead of converting the continuous
input of frames or spectrograms into patch embeddings as in vanilla TVLT. Secondly, we follow the
norm in mask language modeling [15] to use an affine layer as the decoder to recover masked words
and set the mask ratio on text to be 15%, instead of using a transformer decoder to reconstruct 75%
of the masked video and audio embeddings in vanilla TVLT.

5.2 Pretraining Datasets

HowTol00M. We used HowTol00M [52], a dataset containing 136M video clips of a total of
134,472 hours from 1.22M YouTube videos to pretrain our model. Our vanilla TVLT is pretrained
directly using the frame and audio stream of the video clips. Our text-based TVLT is trained using the
frame and caption stream of the video. The captions are automatically generated ASR provided in the
dataset. We used 0.92M videos for pretraining, as some links to the videos were invalid to download.

YTTemporall80M. YTTemporall80M [87] includes 180M video segments from 6M YouTube
videos that spans multiple domains, and topics, including instructional videos from HowTo100M [52],
lifestyle vlogs of everyday events from the VLOG dataset [29], and YouTube’s auto-suggested videos
for popular topics like ‘science’ or ‘home improvement’. Each video segment consists of 1) an image



frame extracted from the middle timestep of the segment, and 2) an ASR-based caption of L=32
BPE [18; 68] tokens. For each sample, we randomly sample a 15s video clip from the entire video to
form a setting similar to HowTol100M dataset. Concretely, the original dataset provides 100 label
files which are random split of the dataset. We sample 20% of YTTemporal180M (0.93M videos) so
that the resulting subset consists of a similar number of videos to HowTo100M (0.92M videos), and
call it YTT-S. In appendix, we show that pretraining TVLT on YTT-S can improve the downstream
task performance of over pretraining on HowTo100M.

5.3 Downstream Tasks

We evaluate models on video-based and image-based vision-and-language tasks to compare the
learned representation based on audio and text. For video-based tasks, we experiment with video
retrieval [82; 91; 93] and multimodal sentiment analysis [85]. For image-based tasks, we experiment
with image retrieval [84] and visual question answering [4; 21]. Although audio comes naturally with
video, image-based tasks, such as visual question answering, do not include audio. Thus, we obtain
audio queries for visual question answering via the text-to-speech (TTS) synthesis method (Sec. 5.4).

Audio-to-Video Retrieval. Following AVLnet [63], we use MSR-VTT [82], Youcook2 [91], and
CrossTask [93] for audio-to-video retrieval. We also follow the same data split in AVLnet [63] to
finetune our models on their respective training set.

MSR-VTT is an open domain video dataset, consisting of 10,000 video clips from 20 categories such
as music, movies or food. We follow AVLnet for the standard split, i.e., 6,783 training clips and 1000
test clips (where 32 videos do not have sound). We report the test split results.

Youcook? is a video dataset on cooking tutorials that contains 2,000 long videos of 89 cooking
recipes. Each recipe has on average 22 videos. It has 9,586 training clips and 3,350 validation clips.
We report the validation split results.

CrossTask dataset contains instructional videos for 83 different tasks, divided into 18 primary tasks
and 65 related tasks. Primary tasks are manually collected with temporal step human annotations and
are the main focus of tasks such as cooking or repairing. Related tasks are automatically collected
without any annotations and are tasks related to the primary tasks, such as masking latte (primary) vs.
making machiato (related). The goal of related tasks is to assess whether they can improve primary
tasks. It has 17,840 training clips and 2,819 validation clips. We report the validation split results.
For all three tasks, we extract mp3 audio from videos with a sample rate of 44.1kHz. We also used
the extracted audio or its corresponding ASR as retrieval queries for our experiment.

Multimodal Sentiment / Emotion Analysis. We use CMU-MOSEI [85] for multimodal sentiment
analysis. The dataset is made up of 23,454 movie review clips with more than 65.9 hours of YouTube
video by 1000 speakers that cover 250 distinct topics. Each video clip also comes with a ground-truth
transcription written by the author of the video. Following previous studies, we use the 15,288/4,830
train-test split and report the binary accuracy (A2) for sentiment analysis and weighted accuracy
(WA) and F1 score on emotion classification over 6 emotion categories.

Audio-to-Image Retrieval. We use Places-400k (The Places Audio Caption 400K Corpus) [25; 23;

] for audio-to-image retrieval. The dataset contains approximately 1,000 hours of 400,000 spoken
English captions for natural images drawn from the Places-205 [89] image dataset. The queries are
conceptual descriptions of the image. The dataset also provides ASR of these audios. Places-205
is a large-scale scene dataset with 205 scene categories such as forest, bedroom, and coast, which
contains 2,500,000 images in total.

Visual Question Answering. We use VQAvI [4] and VQAV2 [21] for visual question answering.
VQAv1 contains 204,721 images from COCO [44] and 430,725 questions. VQAV2 is a newer version
of VQAvI, with 265,016 images from COCO and 1,105,904 questions. For experiments with audio
questions, we generate speech audio from textual questions using TTS (Sec. 5.4) and report test-dev
results for both tasks.

Finetuning on Downstream tasks. For each of the downstream tasks, we add a task-specific head
(two-layer MLP) on top of the encoder representation. For retrieval tasks, we use an MLP to map



Table 1:  Comparison of TVLT and its text-based counterpart on audio-to-video retrieval
and video-based multimodal sentiment analysis benchmarks; HTI100M=HowTolO0M, YTT-
S=YTTemporal180M subset.

Method Input Mod. Pretrain Audio-to-Video Retrieval (R@1) 1 Sentiment (A2) T Latency |

V T A Daasels Viep VTT  Youcook? CrossTask  CMU-MOSEI (ms)
TVLT « 3.1 5.0 22 68.1 2916
TVLT v ; 43 47 27 65.7 103
TVLT v HTIOOM  17.1 249 1.1 76.5 2916
TVLT s HTIOOM 226 318 14.9 753 103
TVLT « YTT-S 19.3 26.3 122 76.6 2916
TVLT v Y YTTS 238 328 153 76.8 103

encoder representation of [CLS] to matching scores € [0, 1], which correspond to match vs. mismatch
pairs, and train the model jointly with binary cross-entropy loss. For visual question answering
tasks, we use an MLP to map the encoder representation of [CLS] to the answer probabilities with
3129 answer candidates, and train the model jointly with binary cross-entropy loss in a multi-label
classification setup. For multimodal sentiment analysis tasks, we use an MLP to map the encoder
representation of [CLS] token to the entiment scores, and train the model jointly with L2 regression
loss.

5.4 Other Details

Automatic Speech Recognition (ASR). For the text-based model mentioned above, we ob-
tain text from audio with different automatic speech recognition (ASR) models. We use the
asr-crdnn-rnnlm-librispeech ASR model from the Speechbrain package [62]. The model
is based on RNN language model and CRDNN encoder-CTC/Attention decoder architecture and is
trained on LibriSpeech [57]. We also experiment with the Google Cloud Speech-to-Text API which
uses Conformer [22] as the backend model.*

Text-to-Speech (TTS). We use WaveNet [$0] Google Cloud Text-to-Speech API° to generate
audio input for the questions in VQAv2. Since VQAv2 questions are written in English, we use a
en-US-neutral speaker. We follow the default pitch and speech configuration. We use the mp3
audio format with a sample rate of 44.1kHz to match the audio configuration used in the pretraining.

Pretraining. We train TVLT and the text-based TVLT counterpart for 200k steps using Adam
optimizer [33] with a learning rate of 1e-5, batch size 4096, and a decay rate of 0.001 with a cosine
schedule [47]. We initialize the weights of both models with the masked autoencoder transformer in
He et al. [26] that is pretrained on ImageNet [14]. For the pretraining objectives in Eq. (1), we use
AVAM — 1.0 and \MAE = (.3. For each video clip, we uniformly sample 8 frames. Pretraining takes
2 weeks with 4 NVIDIA RTX A6000 GPUs (each 49GB memory).

Finetuning on Downstream Tasks. We use a learning rate of le-5, batch size 256, and a decay
rate of 0.001 with a cosine schedule for all tasks. For each video clip, we uniformly sample 8 frames.
We use 2 NVIDIA RTX A6000 GPUs.

6 Results and Analysis

6.1 Comparison to Text-based Counterpart

Table 1 shows that TVLT outperforms the text-based counterpart in audio-to-video retrieval tasks
when pretrained on either HowTol00M or YTT-S. On CMU-MOSEI sentiment analysis, TVLT
also outperforms its text variant when pretrained on YTT-S. In Table 2, although TVLT slightly
underperforms the text-based counterpart on audio-to-image retrieval and visual question answering,
TVLT can still achieve decently comparable results and remain competitive while being 27x
faster during inference due to the removal of ASR from the processing pipeline. More details on

*https://cloud.google.com/speech-to-text
Shttps://cloud.google.com/text-to-speech/docs/wavenet



Table 2: Comparison of TVLT and its text-based counterpart on audio-to-image retrieval and visual
question answering benchmarks.

Method Input Mod. Pretrain Audio-to-Image Retrieval Visual QA (Acc.) T Latency |
V T A Damsels  pieo 400k (R@1/R@5/R@10) 1 VQAV2 (ms)
TVLT v - 13.0/35.9/49.7 47.0 2010
TVLT v - 12.7/33.3148.0 46.7 52
TVLT v Vv HT100M 50.4/78.2/87.0 62.1 2010
TVLT v v HT100M 48.71/77.9186.0 60.8 52
TVLIT v Vv YTT-S 54.3/78.9/88.8 63.2 2010
TVLT v v YTTS 49.0/78.2/86.8 61.0 52

efficiency analysis are given in Sec. 6.2. The results provide evidence of the possibility of learning
a more compact and efficient vision-and-language representation from raw visual and audio signals
compared to the prevailing VL learning paradigms with explicit text-based modules in the pipeline.

.2 Effici i
6 ciency Comparison Table 3: Latency of FFT, ASR and VL Models.

To test inference latency, we sample 100 ;o # Param Video Input Latency (ms) |

videos in CMU-MOSEI. As the average Length/#Frames FFT ASR VL Total

video length in the CMU-MOSEI dataset  ssr.sps: 195M 10574 - o210 - -

. 0s /8 - 2890

is 12 seconds, we measure the latency =T o T,

. . . S -

with two sets of input video lengths: 10~ TVLT 88M 20s/8 0 - 43 103

and 20 seconds. For 10s and 20s videos, VLT s o BEM+ 195M 10s/4 T o1l0 25 2135

we also use 4 and 8 video frames, respec- 88M + 195M 20s/8 - 2890 26 2916
i i AVLnet 158M 10s/4 40 - 208 248

tively. Then we calculate the processing U1\ 50’ Josm 10s/4 - 2110 206 2316

time of Fast Fourier Transform (FFT),
SpeechBrain (ASR-SpBr) [62], TVLT, text-based TVLT, and AVLNet on the sampled inputs. Speech-
Brain is the default ASR module that we used in our text-based counterpart pipeline (see Sec. 5.4).

As shown in Table 3, we find that ASR dominates the inference time for text-based models. Although
ASR helps reduce the input length in transformers (as indicated by the VL module latency decrease),
TVLT is more than 27x and 28x faster than text-based TVLT for inference with video input lengths
of 10s and 20s, respectively, with only 1/3 of the parameters. The comparison is also shown in Fig. 1.
In the bottom rows, we also show the inference latency of AVLnet and its text variant, where TVLT
is 3x faster than AVLnet which contains audio-specific convolution modules.

6.3 Text Query vs. Speech Query for Language-based Video Retrieval

For text-to-video retrieval tasks, text cap-  Table 4: Text vs. Speech Query for Video Retrieval.
tions are commonly used for queries [82].

In Sec. 6.1, we show the experiment of  Method &XZ‘Z Query Video ‘;Z;‘::fjﬁ@‘)T
audio-to-video retrieval tasks following —vir HT100M Caption 320
AVLnet [ ]’ Where the audio queries are TVLT HT100M Speech Audio (TTS) 20.1
the sounds of the original videos. Since  Bitonpirr (711 HTI00M TVOA ggg;;g: 58
video sounds and text captions have dif- R L] coco. Vo 225333 29

ferent information, the audio-to-video re-
trieval results are not directly comparable to the results in other text-to-video retrieval papers. For a
better comparison, we experiment with video retrieval based on two language queries: 1) text captions
and 2) speech audio obtained by TTS (see Sec. 5.4) from text captions. Table 4 shows MSR-VTT
video retrieval results of TVLT with text/audio queries and recent text-to-video retrieval models pre-
trained with a similar scale of data.® Although TVLT with audio query slightly underperforms its text
query counterpart due to TTS errors, it still outperforms other text-to-video retrieval models (HERO
[42] and DeCEMBERT [77]), showing promising possibilities of speech-based video retrieval.

5We exclude the models pretrained on large-scale image captions such as Conceptual Captions [69] that has
written annotation, or visual encoder pretrained on a large-scale dataset beyond the scale of ImageNet [14], such
as CLIP [59], as they are not directly comparable to our models.



Table 5: TVLT on CMU-MOSEI emotion analysis test set; WA=weighted accuracy, F/=weighted f1.

Method Input Mod. Happy Sad Angry Fear Disgust Surprise
V T A WA FI WA FI WA FI WA FI WA Fl WA Fl

TVLT v V 647 639 702 660 689 71.8 662 844 707 829 584 862

TVLT v 651 641 722 700 699 721 68.1 88.0 688 79.6 621 874

6.4 Emotion Analysis

Since TVLT takes raw visual and audio input instead of relying solely on text as in text-based TVLT,
we further investigate what type of information TVLT can learn beyond speech on CMU-MOSEI
emotion classification task. As shown in Table 5, TVLT outperforms the text-based counterpart in
most emotion categories, except for ‘Disgust’. We conjecture that TVLT is capable of capturing
speech-related acoustic information, such as tone and loudness, which is helpful in recognizing these
emotions, while this ability is absent from text-based ASR-dependent models.

Table 6: Finetuning performance on audio-to-video retrieval and multimodal sentiment analysis
benchmarks. For a fair comparison, we gray out the models that use ground-truth text transcription as
additional input for CMU-MOSEI.

Input Mod. Pretrain Audio-to-Video Retrieval (R@1) 1 Sentiment (A2) T

Method Vv 1+ A Datasets

vV T A MSR-VTT  Youcook2 CrossTask CMU-MOSEI
Multilogue-Net [70] v v - - - - 75.2
AVLnet [63] v v’ HT100M 20.1 30.7 13.8 -
TVLT (Ours) v v' HT100M 22.6 31.8 14.9 75.3
TVLT (Ours) v v YTT-S 23.8 32.8 15.3 76.8

Table 7: Finetuning performance on audio-to-image retrieval and visual question answering (Visual
QA). For Visual QA, we create spoken questions from text via TTS (Sec. 5.4). TCSC (Conceptual
Spoken Caption) is 3.3M image-speech pairs, where speech is obtained via TTS API from Conceptual
Captions. The CSC dataset is not publicly available.

Method Input Mod. Pretrain Audio-to-Image Retrieval Visual QA (Acc.) T
V T A Damsels  ppie400k R@1/R@5/R@10)T  VQAvI/ VQAV2

TextMod [88] v - - 56.7/ -

SpeechMod [88] v v - - 47.0/-

AVLnet [63] v v HT100M 44.8/76.9 / 86.4 -

MILAN [64] v v csct 53.4/79.1/86.3 -

TVLT (Ours) v v HTI100M 48.7171.9/86.0 58.6/60.8

TVLT (Ours) v v YTTS 49.0/78.2/86.8 58.9/61.0

6.5 Comparison to State-of-the-art Textless Models

We compare our TVLT with recent models that also take raw visual and audio signals as input
but involve audio-specific designs in their networks. As shown in Table 6, TVLT outperforms
AVLnet [63] on three audio-to-video retrieval (MSR-VTT, Youcook?2, CrossTask) tasks and out-
perform Multilogue-Net [70] on multimodal sentiment analysis (CMU-MOSEI) task with a simple
modality-agnostic design. Similarly, Table 7 shows that TVLT achieves competitive results with
AVLnet [63] and MILAN [64] on audio-to-image retrieval (Places-400k). Note that MILAN is
pretrained on Conceptual Spoken Caption [30] which contains 3.3M well-aligned image-speech pairs
taken from Conceptual Captions [69] with TTS generated speech, whereas our TVLT is able to elicit
effective representation from video inputs where vision-and-language clues are only weakly aligned.
TVLT also outperforms both variants of the VQA models (TextMod, SpeechMod) in Zhang et al.
[88] on VQAV].

6.6 Ablation Studies

In the following, we show the results of the ablation study on TVLT training details: the audio
masking strategy, the encoder/decoder architectures, and the pretraining objectives.

"The dataset is also not publicly available.



Audio Masking Strategy. In Table 8, we show the Table 8: Audio masking configurations.
result of finetuning performance with different au-
dio masking configurations, described in Sec. 4.3.

Masking MSR-VTT VQAv2

For patch sizes, masking audio patches on de- Patch Size o speech  (R@1) (Acc.)
tected speech spans improves performance across 16 x 16 21.7 57.8
the board. However, we did not observe strict supe- 16 x 16 v 22.3 58.6
riority between the two patch sizes; 2 x 128 achieves 2% 128 21.0 58.8
higher scores on MSR-VTT, while 16 x 16 achieves 2x128 v 212 59.2

higher scores on VQAv2. For our default pretrain-

ing configuration, we use the 16 x 16 patch size and use speech span detection, since the 16 x 16
sized patch is also used in visual embedding (thus modality-agnostic) and speech span detection
improves performance with minimal additional computation (see appendix).

Encoder Architecture. As described in Section 3.2, we use
the joint encoder in TVLT. We compare this to modality-
specific encoders for vision and audio. Table 9 below com-

Table 9: Encoder variants.

Encoder MSR-VIT  VQAv2

pares the separate encoders with the joint encoder for two R@1) (Acc.)
tasks: VQAv2 and MSR-VTT. To tackle VQAV2 with separate Separate 96 531
encoders, we learned a two-layer self-attention fusion layer Joint 10.2 54.6

over the concatenation of hidden states of the vision and audio
encoder. Our joint encoder architecture achieves better accuracy on both tasks than a separate encoder
architecture. The results show that although vision and audio spectrogram are two different modalities,
the single joint encoder could learn useful cross-modal representation for VL tasks without needing
modality-specific encoders.

Decoder Architecture. As described in Sec. 4.2, we use sep-
arate decoders (with shared weights) for the vision and audio
MAE pretraining objectives. We compare this separate decod-

Table 10: Decoder variants.

MSR-VTIT VQAv2

ing with joint decoder, where we feed the concatenated encoder Decoder (R@1) (Acc.)
outputs to the decoder and jointly reconstruct the video frames Separate 223 58.6
and spectrogram. Table 10 shows that pretraining with separate Joint 22.0 581

decoder outperforms joint decoder on finetuning performance,
while being more efficient as well.

Pretraining Objectives. We measure the impact of each pre-  Table 11: Pretraining objectives.
training objective described in Sec. 4. Table 11 shows that MSRVTT VOAv2

each of the pretraining objectives (MAE and VAM) improves Objectives R@1) (Acc.)
ﬁnetumng performance over random welght initialization. The Random init 13 167
combination of VAM and MAE further improves the finetun- VAM 21.0 56.2
ing performance, and we use this configuration as default for =~ MAE 18.6 54.1
TVLT pretraining. VAM + MAE 22.3 58.6

7 Conclusion

In this work, we present TVLT, a simple end-to-end vision-and-language transformer that can
accept low-level visual and audio signals for vision-and-language representation learning. Our TVLT
achieves competitive performance with other state-of-the-art audio-based vision-and-language models
on visual question answering, image retrieval, video retrieval, and multimodal sentiment analysis. We
also show that by eliminating the need for expensive ASR in the model pipeline, TVLT can be 28x
faster than its text-based counterpart while achieving comparable performance. We comprehensively
analyze the efficiency of our model and show ablation studies over different training variants. We
hope that our research will inspire further exploration of simple and efficient vision-and-language
frameworks with low-level signals.
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In this appendix, we include the pretraining dataset combination experiment (Appendix A), TTS-based
text-to-video retrieval experiment (Sec. 6.3), ASR quality experiment (Appendix B), implementation
details (Appendix C), finetuning on unimodal ASR task (Appendix D), visualization of MAE
reconstruction (Appendix E), limitations and potential negative impacts (Appendix F), and licenses
(Appendix G).

A Combination of Pretraining Datasets

Table 1 and Table 2 in the main paper show that TVLT either pretraining on HowTol00M [52] or YTT-
S [87] can outperform random initialization across the board. Among the two pretraining datasets,
models pretrained on YTT-S achieve higher performance than models pretrained on HowTo100M.
The relative improvement is consistent with the findings of Zellers et al. [87], and we suspect that
coverage of a wider range of video topics improves overall performance. We also experiment with
pretraining TVLT with the combination of HowTo100M and YTT-S. The total size of the pretraining
dataset size is 1.85M = (0.92M + 0.93M) videos, and we pretrain the model for 200k steps. As shown
in Table 12, pretraining on the combination of both datasets achieves better finetuning performance
than single-dataset pretraining on both MSR-VTT audio-to-video retrieval and VQAv2. The results
indicate that TVLT can take advantage of the domain diversity of YTT-S and that pretraining with
data from a diverse range of domains can result in a more adaptable representation.

Table 12: Finetuning performance of TVLT pretrained on different datasets.

Input Mod. Pretrain Audio-to-Video Retrieval (R@1) 1  Visual QA (Acc.) T
Method Datasets

vV T A MSR-VTT VQAvV2
TVLT v v HowTo100M 22.6 60.8
TVLT v v YTT-S 23.8 61.0
TVLT v v" HowTolOOM+YTT-S 25.0 61.4

B Impact of ASR quality

Table 13 shows the results of TVLT on CMU-
MOSEI sentiment analysis with the following - ypje 13; TVLT with audio/text on CMU-MOSEL
different inputs: audio, ASR-based text, and
ground-truth text transcriptions. ASR-Google
and ASR-SpeechBrain refer to Google Cloud Language Input
API and SpeechBrain, respectively (see main

CMU-MOSEI (A2) 1
HT100M  YTT-S

paper Sec. 5.4). Although TVLT pretrained  Audio 75.3 76.8
on HowTo100M underperform the text variant ~_ 1ext (ASR-SpeechBrain) 76.5 76.6
with SpeechBrain ASR input, TVLT pretrained Text (ASR-Google) 77.1 77.8
on YTT-S (76.8) achieves comparable results to Text (GT Transcripts) 78.9 79.1

those of the text variant with SpeechBrain ASR
(76.6), which sheds light on the effectiveness of
TVLT. Although there is still a gap between TVLT and text-based TVLT with higher quality ASR
or ground truth transcript input, we expect that TVLT can be further improved with larger-scale
pretraining (e.g., full YTTemporall80M dataset) on raw video signals.

To better understand the impact of ASR on downstream tasks, we show two examples of the CMU-
MOSETI sentiment analysis task in Table 14. For example (a), ASR-Google Cloud provides more
accurate transcription than ASR-SpeechBrain, resulting in more accurate sentiment estimation (ASR-
SpeechBrain: -1.0 vs. ASR-Google: 0.0; label: 0.0). For example (b), ASR-Google Cloud and
ASR-SpeechBrain provide similar transcription quality, resulting in the same sentiment estimation
(ASR-SpeechBrain: 2.0 vs ASR-Google: 2.0; label: 1.0).
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Table 14: Comparison of different ASR models on CMU-MOSEI sentiment analysis task. Sentiment
label has range [—3, 3], where -3 and 3 corresponds to negative and positive, respectively. We use
TVLT pretrained on HowTo100M.

GT Transcripts ASR-SpeechBrain ASR-Google Cloud Pred (GT Pred Pred Label
Tran- (ASR- (ASR-
scripts) SpBr) GC)
(a) This is a new movie communicate of addi- Serbia this is a new 0.0 -1.0 0.0 0.0
(uhh) in which a char- tional punishment thor- movie and which a
acter is confined to oughly character is confined to
his house, he is under his house. He is un-
house arrest, and his der house arrest and his
mother takes away his mother takes away his
Xboxes and TV as sort Xboxes and TVs is sort
of a little bit of addi- of a little bit of addi-
tional punishment tional punishment.
(b)  The club that I'm part well the club that i’'m  The club that I'm part 1.0 2.0 2.0 1.0
of that organize that part of that organizes of that organizes it
has about currently 40 it has about currently has about currently 40
some students and then forty some students some students. And
last year we had 260- and then flashed here then last year we had
something come outto  we had two hundred 260 something come
the dance. and sixteen something out to the dance
come out to the dance
C Implementation Details

C.1 Speech Span Detection

For the speech span detection mentioned in the main paper Sec. 4.3, we use the Audiotok [3] word-
level speech event detector. We use the configurations as follows: (1) We set a single speech event
to have a duration within [0.3s, 1.2s], so that an event is likely to cover a single word. (2) We set
max_silence = 0.05s. max_silence refers to the maximum silence gap between two speech
spans. If the silence gap is too large, it is usually a stop between two words. Therefore, setting a
low value ensures that we do not detect two words as a single word. (3) We use an energy threshold
of 70, which is higher than the default value of 55, to avoid false positives of detecting noise. This
is because real-world audio contains natural sounds and noises that usually come with a high level
of audio signal energy. In the speech spans detected on HowTo100M, each word has an average
length of 15 in our audio spectrogram (Sec. 3.1). As this is similar to the size of a single audio patch
(16x16), masking an audio patch usually covers a word in speech.

Table 15: Audio Pipeline Latency.

Audio CPU Latency (ms) | GPU Latency (ms) |
Length Data Loading  Fast Fourier Transform  Speech Span Detection ASR VL Model
10s 60 40 130 2110 40
20s 110 60 170 2890 43

C.2 Audio Pipeline latency

In Table 15, we show the detailed latency for each audio processing pipeline for two different audio
length settings: 10s and 20s. In both settings, ASR takes significantly longer processing time than all
other modules and becomes the bottleneck of the entire vision-and-language pipeline.

D Finetuning on Unimodal ASR Task

To explore whether the cross-modal representation of TVLT Table 16: Finetuning on ASR.

is useful for unimodal tasks, we experiment using TVLT as an

audio encoder for an ASR model. Specifically, we construct Encoder PT WER (%) |

a 4-layer transformer language model that attends to TVLT dev-clean  dev-other
encoder outputs via cross-attentions and jointly train the en-  No-pretrain 3.1 6.0
coder and decoder. We experiment with two settings: where V+A pretrain 2.3 4.7
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Figure 3: Visualization on video frames reconstruction (single frame): masked frames (left),
reconstruction (middle), and original frames (right).

the TVLT encoder is randomly initialized or initialized with

V+A pretraining. We train the models on LibriSpeech [57], a widely used ASR corpus with 960 hours
of English audiobooks, and evaluate them on its two dev sets, dev-clean and dev-other. As shown in
Table 16, our ASR model with V+A pretrained TVLT encoder outperforms the No-pretrain baseline
by 0.8 (dev-clean) and 1.3 (dev-other) in Word Error Rate (WER), respectively. The results show that
the cross-modal representation learned by TVLT could also be helpful for ASR, a unimodal task.

E MAE Reconstruction Visualization

In Figure 3 and Figure 4, we show the reconstruction results with the MAE head, described in the
main paper Sec. 4.2. In each figure, the left column shows the masked input, the middle column
shows the reconstruction, and the right column shows the target. We use masking ratio 0.75, image
size 224 x 224, and audio spectrogram size 176 x 128 (time x frequency) for this visualization.

F Limitations

Green AL. A key barrier to the adoption of Green Al [67] has been the incentive to use massive
computational power for pretraining. As shown in our main paper, TVLT is also subject to pretraining
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Figure 4: Visualization on video frames reconstruction: masked audio spectrogram (left), reconstruc-
tion (middle), and original audio spectrogram (right).

in order to achieve decent performance on visual linguistic tasks. While TVLT is substantially faster
than vision-and-language models with explicit text-based modules that can help reduce pretraining
computation, there is still scope for future work on energy-efficient training to alleviate the heavy
reliance on large-scale pretraining.

English-only Datasets. We perform transfer learning with TVLT pretrained with HowTo100M and
YTTemporal180M datasets. Both datasets mostly contain content in English, since HowTo100M [52]
videos are obtained from English queries, and the authors of YTTemporall80M [87] filtered out
videos with non-English ASR results. Therefore, our models pretrained with the two datasets might
not have a good performance on non-English tasks without additional pretraining.

Note that the TVLT framework is a language-agnostic method, so one can adapt our model to a non-
English dataset without any architectural change. Furthermore, our architecture eliminates the need
for external ASR modules, which reduces the computation of the typical vision-and-language pipeline.
To reduce environmental damage, we will publicly release our code and pretrained checkpoint.

G License

We will publicly release our code and models. We use standard licenses from the community and
provide the following links to the licenses for the datasets, codes, and models that we used in the
project. For more details, see the individual link.

HowTo100M: Apache
YTTemporall80M: MIT

PyTorch: BSD-style

Huggingface Transformers: Apache

20



Torchvision: BSD 3-Clause

21



	1 Introduction
	2 Related Work
	3 TVLT: Textless Vision-Language Transformer
	3.1 Input Embeddings
	3.2 Multimodal Encoder-Decoder

	4 Pretraining Objectives
	4.1 Vision-Audio Matching
	4.2 Masked Autoencoding
	4.3 Masking Strategy

	5 Experimental Setup
	5.1 Text-based TVLT Counterpart
	5.2 Pretraining Datasets
	5.3 Downstream Tasks
	5.4 Other Details

	6 Results and Analysis
	6.1 Comparison to Text-based Counterpart
	6.2 Efficiency Comparison
	6.3 Text Query vs. Speech Query for Language-based Video Retrieval
	6.4 Emotion Analysis
	6.5 Comparison to State-of-the-art Textless Models
	6.6 Ablation Studies

	7 Conclusion
	A Combination of Pretraining Datasets
	B Impact of ASR quality
	C Implementation Details
	C.1 Speech Span Detection
	C.2 Audio Pipeline latency

	D Finetuning on Unimodal ASR Task
	E MAE Reconstruction Visualization
	F Limitations
	G License

