














Deduplicating Training Data Mitigates Privacy Risks in Language Models

6. Discussion

More General Notions of Duplication We define dupli-

cates as two sequences that exactly match one another. We

chose this definition because it mirrors an adversary’s goal

of exactly recovering a training sequence. However, privacy

can also be compromised by approximately recovering a

training sequence. To study this, one would need to analyze

near-duplicates. This is a challenging open problem as it

can be difficult to detect more general notions of duplica-

tion such as sequences with similar semantics but different

lexical forms (Cer et al., 2017).

Duplication and Differential Privacy Satisfying a

strong differential privacy (DP) guarantee is considered the

gold standard of protecting privacy (Dwork et al., 2006). DP

guarantees that the effect of a single training sample on a

model is small. However, even when training with a strong

DP guarantee, data points that are exact or near-duplicates

can still possibly have a large cumulative impact on the

model. Consequently, deduplication is still necessary even

when training with DP.

Duplication Beyond Text Data Our work focuses on nat-

ural language, but datasets in domains such as images and

source code also contain duplicate samples (Recht et al.,

2018; Ziegler, 2021). Models trained on these datasets have

been shown to be vulnerable to data privacy attacks. How-

ever, it remains unclear as to whether the success of these

attacks is mainly due to training data duplication. Given

the results of our work, it is important to evaluate the rela-

tionship between duplication and privacy in non-language

domains.

7. Related Work

Memorization of Training Data Our work is enabled by

models “memorizing”’ their training data. We focus on a

definition of memorization that is based on regeneration of

training data. Past and concurrent work uses similar defini-

tions and experimental setups (McCoy et al., 2021; Lee et al.,

2021; Carlini et al., 2022). McCoy et al. (2021) observe

that LMs are capable of regenerating sequences over 1,000

words long. Lee et al. (2021) find that models trained on

sequence-level-deduplicated data regenerate approximately

10 times less training data. Concurrent work from Carlini

et al. (2022) measures the worst-case memorization of lan-

guage models by conditioning on prefixes from the training

data. They find that the likelihood of a model generating

exact continuations from the training data scales with model

size, training data duplicates, and prefix length. Compared

to these results, our work studies how sequence-level dupli-

cation affects the performance of practical privacy attacks

that leverage this type of memorization.

Past work has also proposed alternate definitions of mem-

orization. Feldman & Zhang (2020) and Van den Burg &

Williams (2021) define counterfactual memorization as the

difference between a training example’s expected loss under

models that have and have not been trained on that example.

Zhang et al. (2021) study this form of memorization in large

LMs. They find that training examples that are the most

memorized are qualitatively different from other examples

in the training set but simple enough to learn from a single

training example. For long-tailed data distributions, counter-

factual memorization can be necessary for learning accurate

models (Feldman & Zhang, 2020; Brown et al., 2021). Our

work does not focus on this definition of memorization as

measuring it requires access to the training corpus and thus

does not elicit practical privacy attacks.

Privacy Attacks Training data privacy can be compro-

mised through membership inference attacks (Shokri et al.,

2017), which use a trained model to identify training data

from a candidate set of samples. Past works on member-

ship inference find that while overfitting is sufficient for

performing membership inference, well-generalized models

can also leak membership information (Yeom et al., 2018;

Long et al., 2018). Membership inference can also be ex-

tended to audit models subject to data-protection laws (Song

& Shmatikov, 2019).

Another type of privacy attack is model inversion. Early

model inversion attacks use a trained model and non-

sensitive features of a training sample to reconstruct that

sample’s sensitive features (Fredrikson et al., 2015). Later

model inversion attacks focus on fully recreating training

samples given access to only a trained model (Hidano et al.,

2017; Song & Raghunathan, 2020; Yang et al., 2019). Au-

toregressive and masked transformer LMs have both been

shown to be susceptible to model inversion (Carlini et al.,

2021b; Lehman et al., 2021). We build on Carlini et al.

(2021b), who propose a model inversion attack that first gen-

erates a set of candidate samples from an autoregressive LM

and then scores the generations based on their likelihoods

relative to a baseline model.

Privacy Defenses Training data privacy can be protected

using the differential privacy (DP) framework (Dwork et al.,

2006), which guarantees that the effect of any single train-

ing example on the trained model is not too large. Yu et al.

(2021); Li et al. (2022) demonstrate the practicality of train-

ing differentially private LMs. (Zhao et al., 2022) propose

provable confidentiality, a related guarantee that ensures

that the content of particular secrets in the training data do

not have a large effect on training. Other approaches such as

Mireshghallah et al. (2021); Li et al. (2018); Coavoux et al.

(2018) use adversarial training to make private information

more difficult to recover from model activations.
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Benefits and Drawbacks of Deduplication Lee et al.

(2021) study the effects of performing sequence-level dedu-

plication on training corpora. They find that deduplication

reduces the amount of training data emitted by trained LMs

and speeds up the training process without harming model

perplexity. Hernandez et al. (2022) also show that LM

perplexity is harmed by data duplication, but only for an

intermediate amount of duplication. They conjecture that

this occurs when the amount of duplicated data is small

enough to be memorized but large enough to use a signifi-

cant amount of the model’s capacity. Deduplication between

a model’s train and test set is also necessary for proper eval-

uation (Lee et al., 2021; Brown et al., 2020).

Prior work using LMs for closed-book question answering

shows that deduplication is not universally beneficial, as

memorization of facts from the training data can be neces-

sary for certain tasks (Petroni et al., 2019; Roberts et al.,

2020).

8. Conclusion and Future Work

To create privacy-preserving machine learning models, one

must go beyond simply identifying privacy vulnerabilities

and instead trace the causes of vulnerabilities back to the

training algorithms, models, and datasets. We take a step

towards this goal by highlighting that sequence-level du-

plication is a large factor behind the success of recently

proposed privacy attacks on LMs. Moreover, our finding

that LMs exhibit a superlinear increase in their regenera-

tion rates as the number of duplicates increase is a novel

phenomenon worthy of future study.

We also show that past work may overestimate the effective-

ness of privacy attacks when duplicates are removed from

the training data. Consequently, future attack evaluations

should take into account duplication as a possible confound-

ing factor. More broadly, future attacks should be evaluated

as a function of different features of the data, be it duplica-

tion or otherwise. This will allow a better understanding of

when attacks succeed and how to defend against them.
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