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Abstract

Past work has shown that large language models
are susceptible to privacy attacks, where adver-
saries generate sequences from a trained model
and detect which sequences are memorized from
the training set. In this work, we show that the
success of these attacks is largely due to dupli-
cation in commonly used web-scraped training
sets. We first show that the rate at which language
models regenerate training sequences is superlin-
early related to a sequence’s count in the training
set. For instance, a sequence that is present 10
times in the training data is on average gener-
ated ~1000 x more often than a sequence that is
present only once. We next show that existing
methods for detecting memorized sequences have
near-chance accuracy on non-duplicated training
sequences. Finally, we find that after applying
methods to deduplicate training data, language
models are considerably more secure against these
types of privacy attacks. Taken together, our re-
sults motivate an increased focus on deduplication
in privacy-sensitive applications and a reevalua-
tion of the practicality of existing privacy attacks.

1. Introduction

Neural language models (LMs)—systems trained to pre-
dict the next-word in a sequence of text—have become
fundamental building blocks for numerous NLP tasks and
domains. The performance and generality of these models
make it important to study the extent to which they maintain
the privacy of their training data, because many of their
applications involve training on private information (e.g.,
emails, health records, chat logs, and source code).

Unfortunately, when training on private data, LMs may
memorize and leak information to adversaries. Past work
has demonstrated the practicality of these so-called model
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Figure 1. For a sequence duplicated d times in a language model’s
training dataset, we measure how often that sequence is expected
to occur in a set of generated text that is equal in size to the training
data. Perfect Memorization amounts to generating a sequence at the
same frequency as it appears in the training data. All LMs tested
show a superlinear increase in the expected number of generations
(slopes > 1 on a log-log plot), i.e., training samples that are not
duplicated are very rarely generated, whereas samples that are
duplicated multiple times appear dramatically more frequently.

inversion attacks, which can successfully recover training
data with only black-box access to a trained model (Carlini
et al., 2019; 2021b; Inan et al., 2021). In particular, the
strongest attack, proposed by Carlini et al. (2021b), recov-
ers training data from LMs by first generating sequences
from the models and then scoring those sequences with var-
ious membership inference methods. The highest-scoring
sequences are classified as belonging to the training data.

In this work, we show that the success of the Carlini et al.
(2021b) attack is largely due to duplicated sequences found
in commonly used web-scraped training datasets. We study
transformer LMs over various parameter scales and show
that (1) the attack’s likelihood of recovering a particular
training sequence is correlated with the number of occur-
rences of that sequence in the training data, and (2) the
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Figure 2. Overview of our analysis. Web-scraped text datasets that are used to train language models contain duplicated sequences,
depicted in the figure as training data rows of the same color (fop left). Model inversion attacks attempt to recover training data from a
trained model by first generating large amounts of text, some of which is memorized training data (fop middle). Membership inference
is then performed to detect which generated sequences were copied from the training data (top right). Our analysis focuses on the
relationship between the amount a sequence is duplicated in the training data and the effectiveness of the model inversion attack at

generating and detecting that sequence (bottom).

overall attack effectiveness is reduced when sequence-level
duplication in the training data is removed.

Concretely, we first show that the content that an LM gener-
ates is highly sensitive to sequence-level duplication in the
training data. Using various sampling strategies, we gen-
erate text from LMs ranging from 117M-1.5B parameters.
We consistently find a superlinear relationship between the
number of times a sequence is duplicated in the training
data and the rate at which that sequence is generated (e.g.,
Figure 1). For instance, a sequence that is present 10 times
in the training data is on average generated ~1000x more
often than a sequence that is present only once. Notably, our
results show that samples which are not duplicated are very
rarely regenerated by language models.

We then look at the next stage of the model inversion attack:
detecting memorized training data from a set of LM gen-
erations. We demonstrate that the membership inference
methods from Carlini et al. (2021b) are correlated with the
number of duplicates of a sequence in the training data. For
example, the membership inference methods have an area
under the ROC curve as high as 0.90 for sequences that are
duplicated many times but achieve only chance accuracy
for sequences that appear once.

In our final set of experiments, we directly test whether
retraining LMs on deduplicated training datasets can mit-
igate privacy risks. We find that model inversion attacks
are indeed much weaker for deduplicated models: they emit
~20x less training data and reduce the effectiveness of two
of the three proposed membership inference methods. All
in all, our results underscore the need to carefully remove
duplicates when training privacy-sensitive models and show

that past work may overestimate the effectiveness of LM
privacy attacks when duplication is mitigated.

2. Background and Experimental Setup

Language Models Language models take as input a se-
quence of tokens and output a probability distribution over
the next token. LMs are trained to maximize the likelihood
of a corpus of text and can be used to generate text at test
time by iteratively sampling from the next-token distribu-
tion. In practice, various strategies exist for sampling tokens,
including random sampling, sampling from the top-k high-
est probability tokens (Fan et al., 2018), or sampling after
using a temperature to sharpen the next-token distribution.

Memorization The concept of “memorization” refers to
ways that a trained model stores and consequently leaks
information about its training data. Multiple notions of
memorization have been studied that vary in their defini-
tions and assumptions (see Section 7 for further discussion).
In this work we focus on generation-based memorization,
where a generative model leaks information by generating
exact samples from its training data (Carlini et al., 2019).

When studying generation-based memorization in LMs, we
compare models’ generation behavior with the expected
behavior of a model that has perfectly fit the training data
through memorization. This perfect memorization model
only assigns non-zero probability to samples seen during
training and sampling from the model is identical to uni-
formly sampling from the training data. The perfect memo-
rization model serves as a positive control showing how far
LMs are from fully memorizing their training data.
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Figure 3. Web-scraped training sets are rife with duplicated sequences. Above, we plot the frequency of different amounts of duplication
for 400-character sequences in the OpenWebText (a) and C4 (b) datasets. Note that C4 is an order of magnitude larger than OpenWebText.

Privacy Attacks The fact that state-of-the-art LMs mem-
orize and regenerate sequences seen during training en-
ables attacks that compromise the privacy of their training
data (Carlini et al., 2019; Inan et al., 2021; Carlini et al.,
2021b). In this work, we focus specifically on the Carlini
et al. (2021b) attack, which is currently the strongest and
most accessible model inversion attack on LMs. While we
focus on this particular attack, our analysis also applies to
other attacks that leverage generation-based memorization.

The Carlini et al. (2021b) attack works in two stages:

1. Generate a large amount of text from a language model.

2. Score the generated sequences using a membership in-
ference scoring method.

For the first stage, Carlini et al. (2021b) study different
methods of generating data (unconditional vs. conditional
sampling, different sampling strategies, etc.). We focus on
unconditional generation using standard sampling, top-k
sampling, and temperature sampling.

For the second stage, we study all scores proposed by Carlini
et al. (2021b). Each score is defined as the ratio between a
metric estimating the “easiness” of sequence (a property of
the sequence itself and not whether the sequence appears
in the training dataset) and the trained model’s perplexity
on that sequence. For measures of easiness, Carlini et al.
(2021b) used three choices:

* Reference Model: the perplexity of another LM on
the sequence. We use the GPT-2 small language
model (Radford et al., 2019).

» zlib: the length of the sequence after compression by
the zlib compression library.

* Lowercase: the trained model’s perplexity on the se-
quence with all lowercased characters.

Training Data Collection and Duplication Modern lan-
guage modeling datasets are generated by large-scale scrap-
ing of the Internet (Gokaslan et al., 2019; Radford et al.,
2019; Raffel et al., 2020; Gao et al., 2020). Most web-
scraped datasets are deduplicated at the document level, e.g.,
if two web pages have the exact same contents, only one is
kept in the data. Lee et al. (2021) observe that these datasets
still have large-scale approximate and exact sequence-level
duplication, e.g., quotes, paragraphs, and advertisements
appearing in many web pages. To correct this, they propose
efficient sequence-level deduplication methods based on
locality sensitive hashing and suffix arrays.

When measuring duplication in the training data, we con-
sider identical sequences to be duplicates. Although broader
definitions such as approximate or semantic duplication may
also be useful to study, we choose to investigate exact dupli-
cation in this work because it matches the adversary’s goal
of exactly recovering sequences from the training data (e.g.,
social security numbers). To detect duplicate sequences,
we adapt the suffix array-based algorithm from Lee et al.
(2021). Searching for exactly duplicated sequences in two
sets of text can be done efficiently with a linear traversal of
the two texts’ suffix arrays.

Datasets In our experiments, we use models trained on
the widely-used OpenWebText (Gokaslan et al., 2019) and
C4 (Raffel et al., 2020) datasets. Both are large-scale
datasets, 39GB and 750GB respectively, and were generated
by scraping text from the Internet with basic filtering and
deduplication. Despite deduplicating at the level of whole
training examples, both datasets still contain a large number
of duplicated token sequences between training examples,
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Figure 4. We vary the sequence length that is used when measuring
whether a model generation overlaps with the training set. Using
longer sequence lengths naturally reduces the chance that a gener-
ation exactly overlaps with the training set. However, the overall
shape of the generation vs. duplication curve is consistent across a
range of sequence lengths.

a property that is not unique to just these two datasets (Lee
et al., 2021). To illustrate this quantitatively, in Figure 3
we show how often each unique 400-character sequence
is duplicated in these two datasets. Both datasets contain
millions of sequences that are duplicated 10 or more times,
and some individual sequences are even duplicated tens of
thousands of times. This large amount of sequence-level
duplication allows us to reliably measure the effect of du-
plication on memorization and downstream model privacy
over a wide range of duplication levels.

Models We focus on Transformer-based (Vaswani et al.,
2017) language models that range in scale from millions
to billions of parameters. Specifically, we use the 117M
and 345M parameter models from the Mistral project' and
the 1.5B parameter forward language model from West
et al. (2021), all of which were trained on the OpenWebText
dataset. Additionally, we evaluate the two 1.5B parame-
ter models from Lee et al. (2021), one trained on the C4
dataset and the other trained on a sequence-level dedupli-
cated version of C4. We choose this set of models as they
are near-state-of-the-art, and they allow us to test the effect
of model scale, changes in codebase and implementation,
optimization hyperparameters, and training data.

"https://github.com /stanford-crfm /mistral

Experimental Setup Our experiments follow the analysis
depicted in Figure 2. In Section 3 we analyze the likelihood
of regenerating a training sample as a function of that sam-
ple’s number of duplicates in the training data. In Section
4, we analyze the relationship between duplication and the
detection of LM generations copied from the training data.
The code used to perform our experiments can be found at
https://github.com /nkandpa2/Im_memorization.

3. How Duplication Affects The Regeneration
of Training Sequences

The first step of the Carlini et al. (2021b) attack is to generate
a large pool of sequences in hopes that some are verbatim
copies from the training data. In this section, we analyze
how duplication in the training data affects this stage.

Concretely, we first record the number of duplicates for each
N-length character sequence in the training data. We then
generate many times from an LM and analyze how often
each N-length training sequence is generated as a function
of its duplicate count. Note that we also scale our calcula-
tions to simulate a scenario where we generate an amount
of text equal in size to the training dataset. This allows
us to directly compare the behavior of models trained on
datasets of different sizes, and also compare to a theoretical
model that has perfectly memorized its training data (i.e.,
generating from this model is identical to sampling from the
training dataset).

3.1. Regeneration is Superlinearly Related to
Duplicates

All models that we test have a superlinear relationship be-
tween the number of times a training sequence is regenerated
and the number of times that sequence is duplicated in the
training data. This relationship is shown in Figure 1 by the
> 1 slope on a log-log plot.

Furthermore, Figure 1 shows that the generation behavior of
LMs is far from perfect memorization: sequences duplicated
d times in the training data are expected to be generated far
fewer than d times by a trained model. This is especially
true for low duplicate counts, i.e., samples which are not
duplicated are very rarely regenerated by language models.
This shows that the Carlini et al. (2021b) attack—which
relies on models regenerating training samples—will rarely
be able to extract training data that is not duplicated.

Our finding that LMs exhibit a superlinear increase in their
regeneration rates is a also novel phenomenon worthy of fu-
ture study. Concretely, one would expect that LMs would ex-
hibit “calibrated” generation behavior—training sequences
that appear twice as frequently are twice as likely to be
generated—but this is not true for state-of-the-art models.
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Figure 5. The sampling method impacts how often LMs regenerate training samples. Sampling methods that emit more likely sequences
(e.g., top-k with smaller k£ or temperature sampling with smaller 7") generate more verbatim training samples. Nevertheless, all sampling
methods rarely generate training sequences when the number of duplicates is small.

3.2. Regeneration Trends Are Robust Across
Experimental Setups

Having observed an initial superlinear trend, we next mea-
sure whether this relationship is a more general phenomenon
that holds across different experimental setups varying the
sequence length, model size, sampling strategy, and number
of training epochs.

Effect of Duplicate Sequence Length Our analysis fo-
cuses on the duplication of N-length character sequences
in the training data. To ensure that our conclusions are not
dependent on any one choice of N, we vary the sequence
length and report the results for the Mistral 345M parameter
model in Figure 4. Using longer sequence lengths natu-
rally reduces the chance that a generation exactly overlaps
with the training set. Nevertheless, the superlinear relation-
ship between generation and duplication is nearly identical
across different sequence lengths. For the rest of the paper
we set IV = 100 characters unless otherwise specified.

Effect of Model Scale Larger models tend to regenerate
more training data across all levels of duplication. This
effect is shown by comparing the duplication curves for
the 117M and 345M parameter Mistral models in Figure 1.
These two models were trained nearly identically and thus
the comparison controls for confounding factors such as the
number of training steps and optimization hyperparameters.
Larger models likely regenerate more training sequences

because they achieve a lower training loss (i.e., they assign
training samples higher likelihoods on average).

Effect of Sampling Scheme The amount of regeneration
depends on the sampling scheme used. Figure 5 compares
random, top-k, and temperature sampling for the Mistral
117M parameter model. We find that sampling schemes
that emit more likely sequences (e.g., top-k with smaller k)
generate more verbatim training samples.

Effect of Increasing Epochs Finally, we find that the re-
generation rate increases over the course of training. Figure
6 shows that as training progresses for the 117M parameter
Mistral model, the regeneration rate of training sequences
increases at nearly all levels of duplication. Notably, stop-
ping early does not change the fact that language models
generate disproportionately many highly-duplicated training
sequences.

4. How Duplication Affects The Detection of
Training Sequences

Thus far, we found that models rarely regenerate training
sequences that are not duplicated many times. Nevertheless,
the second stage of the Carlini et al. (2021b) attack, which
looks to identify training sequences using membership infer-
ence methods, may be able to flag these rare cases. To test
this, we evaluate the three membership inference scoring
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Figure 6. We plot the effect of performing multiple training epochs
on the generation behavior. Performing additional epochs has a
multiplicative effect that is uniform across all duplication levels.
In particular, using twice as many epochs will cause the expected
number of generations to increase by approximately 3 times for all
duplication levels.

methods (Reference Model, z1ib, and Lowercase) and
stratify the results by different duplication levels.

Concretely, we bucket the samples generated from the 345M
parameter Mistral model into sequences that are duplicated
in the training data d times, for d = 1 to d = 800. We
also collect a set of 25,000 negative sequences that were
generated by the LM but were not in the training data. Using
these two sets of samples, we measure the effectiveness of
the three membership inference scores at distinguishing
between the two sets.

Figure 7(a) shows the area under the Receiver Operating
Characteristic (AUROC) curve achieved by the different
membership inference scores. Notably, for generated se-
quences only found once in the training data, all three scores
yield classifiers that are close to chance.? Of the three scores,
the Reference Model is the highest performing classifier
at nearly all levels of duplication.

Following the suggestions of Carlini et al. (2021a), we also
evaluate membership inference using the True Positive Rate
(TPR) at a very low False Positive Rate (FPR). This simu-
lates the realistic evaluation setting where the prevalence of
training data in a set of generated samples is very low com-
pared to non-training data. We found that approximately 1
in 1000 generated 100-character spans are copied from the

2 A random “no-skill classifier” has an AUROC of 0.50.

training data. Thus, we use a FPR of 0.1%.

In Figure 7(b), we show that the TPR of all three member-
ship inference scores are highly correlated with the number
of duplicates. For example, the TPR for the Reference
Model method is as high as 0.60 for sequences that are dupli-
cated many times but is only 0.10 for sequences that appear
once. All in all, these results show that while membership
inference methods may achieve non-trivial accuracies on
average over the entire generated set, most of their successes
are on sequences that have been duplicated many times.

5. Model Inversion with Deduplicated Data

In our final set of experiments, we directly test whether
retraining LMs on deduplicated data can indeed mitigate pri-
vacy risks. In particular, we test two of the 1.5B parameter
LMs from Lee et al. (2021), one trained on C4 and another
trained on a deduplicated version of C4.3

Generating From Deduplicated Models We first gener-
ate one million samples from each of the language models
and measure the number of sequences copied from the train-
ing data. The top of Table 1 shows the number of unique
400-character training sequences generated by each of the
language models (Count) and the percentage of all 400-
character training sequences that are generated (Percent).
Respectively, these measure the total amount of informa-
tion from the training data leaked by each model and the
probability of a single sequence in the training data being
leaked. We find that the model trained on deduplicated data
emits ~20x less training data, i.e., deduplication strongly
weakens the first stage of the Carlini et al. (2021b) attack.

Membership Inference Next, we evaluate the perfor-
mance of the membership inference scoring methods on
the generated samples. We randomly subsample 25,000
sequences that are copied from the training data and 25,000
sequences that are novel from each of the models. All of
these sequences are scored by the membership inference
methods and we report the AUROC in the bottom of Table 1.
We find that z1ib and Lowercase are considerably affected
by deduplication, whereas Reference Model performs al-
most equally as well on both models.

One factor to consider when comparing the AUROC scores
between the normal and deduplicated models is that the set
of memorized training samples that they are trying to detect
are different. We hypothesize that in the rare circumstance

3We use the LM trained on the version of C4 that has exact
duplicates removed using the suffix array-based EXACTSUBSTR
method. This removes exact duplicates that were at least 50 byte-
pair encoding (BPE) tokens long. To ensure that we do not attempt
to recover sequences shorter than 50 tokens, we set N = 400
characters in this experiment.
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Figure 7. State-of-the-art membership inference methods fail to accurately detect training sequences when they are not duplicated in the
training set. In (a), we report the area under the ROC curve for different membership inference methods as a function of the number of
duplicates. In (b), we report the true positive rate at a false positive rate of 0.1%.

that the deduplicated model does indeed regenerate a train-
ing sample, those samples may be unique in some manner.
This may make the samples easier to classify, which can
explain why the AUROC can remain relatively high for the
deduplicated model (0.87). Further investigation of the dif-
ference between the regenerations made by a normal and
deduplicated model is worthy of future study.

Qualities of Effective Membership Inference Methods
The reasonable accuracy of the Reference Model method
suggests that it measures training data leakage beyond just
generation-based memorization. We hypothesize that this
is due to its similarity to a different notion of memoriza-
tion known as counterfactual memorization (Zhang et al.,
2021). A sample’s counterfactual memorization is mea-
sured by comparing the sample’s expected likelihood under
models that have and have not trained on that sample. The
Reference Model method is an approximation of counter-
factual memorization that uses a single model trained on
different training data to approximate the expected likeli-
hood under a model that has not trained on the sample being
scored. While we find that duplication and generation-based
memorization are highly correlated, this result suggests that
approximating other notions of memorization, such as coun-
terfactual memorization, may lead to membership inference
scores that are less sensitive to deduplication. Similar find-
ings have been noted in Watson et al. (2021) and Carlini
et al. (2021a).

Normal Deduped
Model Model
Training Data Count 1,427,212 68,090
Generated Percent 0.14 0.007
Mem. Inference Zh? del 8;2 827
AUROC Ref Mode . .87
Lowercase 0.86 0.68

Table 1. Deduplicating training data drastically reduces the effec-
tiveness of privacy attacks. We first generate 1 million 256-token
samples from models trained on C4 and deduplicated C4. We
then report the number of unique 400-character training sequences
that are generated (Count) and the percentage of all 400-character
training sequences that are generated (Percent). We then report the
classification AUROC achieved by each of the three membership
inference scores when applied to the generated sequences.

Is Deduplication An Effective Defense? Overall, our
results show that deduplication is an effective safeguard
against models regenerating their training data, which ren-
ders the first stage of many existing model inversion attacks
largely ineffective. Fortunately, this defense comes at little-
to-no cost in model performance, as training on deduplicated
data does not harm language modeling perplexity (Lee et al.,
2021). Nevertheless, in the rare cases when deduplicated
models do generate training data, those samples can still be
detected somewhat reliably by membership inference scores
such as the Reference Model method.
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6. Discussion

More General Notions of Duplication We define dupli-
cates as two sequences that exactly match one another. We
chose this definition because it mirrors an adversary’s goal
of exactly recovering a training sequence. However, privacy
can also be compromised by approximately recovering a
training sequence. To study this, one would need to analyze
near-duplicates. This is a challenging open problem as it
can be difficult to detect more general notions of duplica-
tion such as sequences with similar semantics but different
lexical forms (Cer et al., 2017).

Duplication and Differential Privacy Satisfying a
strong differential privacy (DP) guarantee is considered the
gold standard of protecting privacy (Dwork et al., 2006). DP
guarantees that the effect of a single training sample on a
model is small. However, even when training with a strong
DP guarantee, data points that are exact or near-duplicates
can still possibly have a large cumulative impact on the
model. Consequently, deduplication is still necessary even
when training with DP.

Duplication Beyond Text Data Our work focuses on nat-
ural language, but datasets in domains such as images and
source code also contain duplicate samples (Recht et al.,
2018; Ziegler, 2021). Models trained on these datasets have
been shown to be vulnerable to data privacy attacks. How-
ever, it remains unclear as to whether the success of these
attacks is mainly due to training data duplication. Given
the results of our work, it is important to evaluate the rela-
tionship between duplication and privacy in non-language
domains.

7. Related Work

Memorization of Training Data Our work is enabled by
models “memorizing” their training data. We focus on a
definition of memorization that is based on regeneration of
training data. Past and concurrent work uses similar defini-
tions and experimental setups (McCoy et al., 2021; Lee et al.,
2021; Carlini et al., 2022). McCoy et al. (2021) observe
that LMs are capable of regenerating sequences over 1,000
words long. Lee et al. (2021) find that models trained on
sequence-level-deduplicated data regenerate approximately
10 times less training data. Concurrent work from Carlini
et al. (2022) measures the worst-case memorization of lan-
guage models by conditioning on prefixes from the training
data. They find that the likelihood of a model generating
exact continuations from the training data scales with model
size, training data duplicates, and prefix length. Compared
to these results, our work studies how sequence-level dupli-
cation affects the performance of practical privacy attacks
that leverage this type of memorization.

Past work has also proposed alternate definitions of mem-
orization. Feldman & Zhang (2020) and Van den Burg &
Williams (2021) define counterfactual memorization as the
difference between a training example’s expected loss under
models that have and have not been trained on that example.
Zhang et al. (2021) study this form of memorization in large
LMs. They find that training examples that are the most
memorized are qualitatively different from other examples
in the training set but simple enough to learn from a single
training example. For long-tailed data distributions, counter-
factual memorization can be necessary for learning accurate
models (Feldman & Zhang, 2020; Brown et al., 2021). Our
work does not focus on this definition of memorization as
measuring it requires access to the training corpus and thus
does not elicit practical privacy attacks.

Privacy Attacks Training data privacy can be compro-
mised through membership inference attacks (Shokri et al.,
2017), which use a trained model to identify training data
from a candidate set of samples. Past works on member-
ship inference find that while overfitting is sufficient for
performing membership inference, well-generalized models
can also leak membership information (Yeom et al., 2018;
Long et al., 2018). Membership inference can also be ex-
tended to audit models subject to data-protection laws (Song
& Shmatikov, 2019).

Another type of privacy attack is model inversion. Early
model inversion attacks use a trained model and non-
sensitive features of a training sample to reconstruct that
sample’s sensitive features (Fredrikson et al., 2015). Later
model inversion attacks focus on fully recreating training
samples given access to only a trained model (Hidano et al.,
2017; Song & Raghunathan, 2020; Yang et al., 2019). Au-
toregressive and masked transformer LMs have both been
shown to be susceptible to model inversion (Carlini et al.,
2021b; Lehman et al., 2021). We build on Carlini et al.
(2021b), who propose a model inversion attack that first gen-
erates a set of candidate samples from an autoregressive LM
and then scores the generations based on their likelihoods
relative to a baseline model.

Privacy Defenses Training data privacy can be protected
using the differential privacy (DP) framework (Dwork et al.,
2006), which guarantees that the effect of any single train-
ing example on the trained model is not too large. Yu et al.
(2021); Li et al. (2022) demonstrate the practicality of train-
ing differentially private LMs. (Zhao et al., 2022) propose
provable confidentiality, a related guarantee that ensures
that the content of particular secrets in the training data do
not have a large effect on training. Other approaches such as
Mireshghallah et al. (2021); Li et al. (2018); Coavoux et al.
(2018) use adversarial training to make private information
more difficult to recover from model activations.
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Benefits and Drawbacks of Deduplication Lee et al.
(2021) study the effects of performing sequence-level dedu-
plication on training corpora. They find that deduplication
reduces the amount of training data emitted by trained LMs
and speeds up the training process without harming model
perplexity. Hernandez et al. (2022) also show that LM
perplexity is harmed by data duplication, but only for an
intermediate amount of duplication. They conjecture that
this occurs when the amount of duplicated data is small
enough to be memorized but large enough to use a signifi-
cant amount of the model’s capacity. Deduplication between
a model’s train and test set is also necessary for proper eval-
uation (Lee et al., 2021; Brown et al., 2020).

Prior work using LMs for closed-book question answering
shows that deduplication is not universally beneficial, as
memorization of facts from the training data can be neces-
sary for certain tasks (Petroni et al., 2019; Roberts et al.,
2020).

8. Conclusion and Future Work

To create privacy-preserving machine learning models, one
must go beyond simply identifying privacy vulnerabilities
and instead trace the causes of vulnerabilities back to the
training algorithms, models, and datasets. We take a step
towards this goal by highlighting that sequence-level du-
plication is a large factor behind the success of recently
proposed privacy attacks on LMs. Moreover, our finding
that LMs exhibit a superlinear increase in their regenera-
tion rates as the number of duplicates increase is a novel
phenomenon worthy of future study.

We also show that past work may overestimate the effective-
ness of privacy attacks when duplicates are removed from
the training data. Consequently, future attack evaluations
should take into account duplication as a possible confound-
ing factor. More broadly, future attacks should be evaluated
as a function of different features of the data, be it duplica-
tion or otherwise. This will allow a better understanding of
when attacks succeed and how to defend against them.
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