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Abstract—We present GNNHLS, an open-source framework to
comprehensively evaluate GNN inference acceleration on FPGAs
via HLS, containing a software stack for data generation and
baseline deployment and FPGA implementations of 6 well-tuned
GNN HLS Kkernels. Evaluating on 4 graph datasets with distinct
topologies and scales, the results show that GNNHLS achieves up
to 50.8x speedup and 423 x energy reduction relative to the CPU
baselines. Compared with the GPU baselines, GNNHLS achieves
up to 5.16x speedup and 74.5x energy reduction.

Index Terms—field-programmable gate arrays, graph neural
networks, high-level synthesis

[. INTRODUCTION

Machine learning (ML) on graphs has experienced a surge
of popularity recently since traditional ML models, which are
designed to process Euclidean data with regular structures,
are ineffective at performing prediction tasks on graphs. Due
to their simplicity and superior representation learning ability,
Graph Neural Networks (GNNs) [4], [9], [13], [14], [16] have
achieved impressive performance on various graph learning
tasks, such as node classification, graph classification, etc.

To implement GNNs, a set of widespread libraries, such as
PyTorch Geometric (PYG) and Deep Graph Library (DGL),
are built upon ML frameworks (e.g., PyTorch) targeting both
CPUs and GPUs. However, the performance and energy con-
sumption of GNN execution is hindered by both hardware plat-
forms and software frameworks: (1) Distinct from traditional
NNs, GNNs combine the irregular communication-intensive
patterns of graph processing and the regular computation-
intensive patterns of NNs. (2) These frameworks execute
functions sequentially, which leads to extra memory accesses
and implicit barriers for intermediate results.

Field-Programmable Gate Arrays (FPGAs) are an attractive
approach to GNN inference acceleration. FPGAs’ massive
fined-grained parallelism provides opportunities to exploit
GNNs’ inherent parallelism. They also deliver better perfor-
mance per watt than general-purpose computing platforms. In
addition, FPGAs’ reconfigurability and concurrency provide
great flexibility to solve the challenges of hybrid computing
patterns. Most of the prior works investigating FPGAs focus
on accelerating a specific GNN model implemented using
Hardware Description Languages (HDL). AWB-GCN [6] pro-
poses a GCN accelerator to solve the workload imbalance
problem. BoostGCN [15] proposes a graph partition algorithm
in a preproessing step to address workload imbalance issues.
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High-Level Synthesis (HLS) tools have also been used to
create GNN kernels using popular languages such as C/C++.
With the help of HLS, development time is substantially
shortened relative to HDL designs. Lin et al. [11] proposes an
HLS-based accelerator for GCN with separated sparse-dense
matrix multiplication units and dense matrix multiplication
units which are connected by shared memory and execute
sequentially. GenGNN [1] proposes a framework to accelerate
GNNs for real-time requirements where the whole graph and
corresponding intermediate results are stored on the FPGA.
Despite promising results, this work is limited to small-scale
graphs with low edge-to-node ratio due to memory usage being
proportional to graph scale and feature dimensions.

Distinct from pure software programming, HLS developers
need to adopt multiple optimization pragmas and follow cer-
tain coding styles to achieve best performance and energy cost.
The performance difference between a well-optimized version
and a non-optimized version of the same kernel can be two to
three orders of magnitude. This invites an open question: how
effectively can modern HLS tools accelerate GNN inference?

In this paper, we introduce GNNHLS', an open-source
framework for comprehensive evaluation of GNN kernels on
FPGAs via HLS. GNNHLS contains a software stack extended
from a prior GNN benchmark [5] based on PyTorch and DGL
for input data generation and conventional platform baseline
deployments (i.e., CPUs and GPUs). It also contains six well-
optimized general-purpose GNN applications: Graph Convo-
lutional Network (GCN) [9], GraphSage (GS) [7], Graph
Isomorphism Network (GIN) [14], Graph Attention Network
(GAT) [13], Mixture Model Networks (MoNet) [12], and
Gated Graph ConvNet (GatedGCN)) [2]. These kernels can be
classified into 2 classes: (1) isotropic GNNs (GCN, GS, and
GIN) in which every neighbor contributes equally to the update
of the target vertex, and (2) anisotropic GNNs (GAT, MoNet,
and GatedGCN) in which edges and neighbors contribute
differently to the update due to the adoption of operations
such as attention and gating mechanisms. In this paper, we
make the following contributions:

o We propose GNNHLS, a framework to evaluate GNN

inference acceleration via HLS, containing: (a) a software
stack based on PyTorch and DGL for data generation

IReleased as a benchmark suite [17] and also available at https://github.
com/ChenfengZhao/GNNHLS
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Fig. 1. Diagram of the GNNHLS framework.

and baseline deployment, and (b) FPGA implementation
including 6 well-tuned GNN HLS kernels which can also
be used as benchmarks.

o We provide a comprehensive evaluation of our GNN
HLS implementations on 4 graph datasets, assessing both
performance improvement and energy reduction.

Our results show that GNNHLS provides up to 50.8x speedup
and 423 x energy reduction relative to the multicore CPU base-
lines. Compared with the GPU baselines, GNNHLS achieves
up to 5.16x speedup and 74.5x energy reduction.

II. FRAMEWORK DESCRIPTION
A. GNNHLS Overview

The GNNHLS framework, as depicted in Figure 1, com-
prises two primary components: data generation and HLS
FPGA. The former is designed to generate input and output
files and measure baselines on a CPU and a GPU, while the
latter is designed to implement the optimized HLS applications
on an FPGA. The data generation component mainly consists
of the training system and the inference system.

The HLS FPGA component implements the GNN kernels
on the FPGA. These kenels match the functionality of the
DGL baselines and are optimized with several optimization
techniques [3]. The optimized HLS kernels are compiled by
Vitis and executed on the FPGA. Detailed descriptions of the
optimized GNN HLS kernels, experimental methodology, and
computation characterization are all included in the supple-
mentary material [17].

III. EXPERIMENTAL METHODOLOGY

Datasets: Table I shows the graph datasets used in our evalua-
tion. All these graphs are from Open Graph Benchmark [8] and
have a wide range of fields and scales. These graphs represent
two classes of graphs with distinct topologies: MH and MT
consist of multiple small dense graphs, while AX and PT each
consist of one single sparse graph. The maximum and average
degree shown in Table I indicates their varying distributions
ranging from regular-like to powerlaw-like.

Evaluation methods: To perform evaluation, we use a Xil-
inx Alveo U280 FPGA card, provided by the Open Cloud
Testbed [10], to execute the HLS kernels. We compare our
HLS implementation with CPU and GPU baselines with
PyTorch and the highly-optimized DGL library.
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TABLE 1
GRAPH DATASETS.
Dataset Node # Edge # Max. Avg.
Deg. Deg.
OGBG-MOLTOX21 (MT) 145459 302190 6 2.1
OGBG-MOLHIV (MH) 1049163 2259376 10 2.2
OGBN-ARXIV (AX) 169343 1166243 | 13155 6.9
OGBN-PROTEINS (PT) 132534 | 79122504 7750 | 597.0
TABLE 11
RESOURCE UTILIZATION OF HLS GNN MODELS.
Frequency LUT FF BRAM | DSP
GCN 250 MHz | 264485 | 413197 41 2880
GS 204 MHz | 253608 | 358722 33 2766
GIN 190 MHz | 278251 | 421915 55 3264
GAT 255 MHz 168559 | 248424 81 1718
MN 250 MHz | 289208 | 428917 212 2236
GGCN | 270 MHz 151497 | 235484 124 1036

IV. EVALUATION
A. Resource Utilization

We first examine the resource utilization and clock fre-
quency after place & route. FPGA resources include look-
up tables (LUT), flip-flops (FF), BRAM, and digital-signal-
processors (DSP). Table II shows these results. Among these
kernels, GraphSage achieves a low frequency due to some
critical paths unresolvable by the tool. In addition, we observe
that the resources on the FPGA are not over-utilized.

B. Performance

We next examine the performance improvement by showing
the overall speedup, defined as the execution time of the GNN
HLS kernels relative to CPU-DGL (using all 10 cores on the
CPU), in Figure 2. Focusing on the first and third bar of each
kernel, we observe that the speedup of our HLS kernels ranges
from 0.47x to 50.8x over the multi-core CPU baselines.

Among isotropic GNN kernels, GCN achieves better per-
formance than GraphSage and GIN, ranging from 1.08x to
1.98x because its simpler structure enables us to create two
CUs. In contrast, we can only create one CU for GraphSage
and GIN because of their complex structure and heavy re-
source usage. In addition, we observe that the performance
of GraphSage and GIN are close. Thus, we conclude that the
distinction on the structure of these two GNN models will not
substantially affect HLS implementation results.

Among anisotropic kernels, MoNet achieves the highest
performance improvement, ranging from 6.04x to 50.8x due
to: (1) its single pipeline structure with computation order
optimization where the node-wise operations are placed behind
the edge-wise operations, and (2) well-designed MHVMM
modules with lower I1, reduced from O(dk) to O(d + k).
In spite of the 2-pipeline structure of GAT, we observe
that it still achieves 4.31x to 6.61x speedup. In addition,
since the feature size of GatedGCN is smaller, leading to
more performance improvement for CPU baselines with time
complexity of O(d?), its speedup is not comparable to other
anisotropic kernels, ranging from 0.5x to 1.16x.
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Fig. 2. Speedup of HLS kernels relative to DGL-CPU. Higher is better.

Turning our attention to how the performance benefit of
HLS implementations varies across graph datasets, we observe
that the speedup of isotropic kernels relative to DGL-CPU
on regular-like graphs (i.e., MT and MH) is higher than
powerlaw-like graphs (i.e., AX and PT) because (1) the edge-
wise operations are less computation-intensive than node-
wise operations in these kernels, making the baselines more
computationally efficient on powerlaw-like graphs containing
more edges than nodes; and (2) the edge-wise aggregation
operations in HLS implementations are executed sequen-
tially without leveraging edge-level parallelism, making these
HLS kernels less computationally efficient for powerlaw-
like graphs. Distinct from isotropic kernels, the speedup of
anisotropic kernels on powerlaw-like graphs is higher than
regular-like graphs because the edge-wise operations of these
kernels are more computation-intensive than isotropic kernels,
making baselines less efficient on powerlaw-like graphs.

Focusing on the second and the third bar, we observe that
DGL-GPU outperforms HLS implementations in many cases,
due to the high-performance fixed-function accelerators in
the GPU. The speedup of HLS kernels relative to the GPU
baselines ranges from 0.13x to 5.16x. Note that GPU results
for GAT, MN, and GGCN on PT cannot be obtained because of
out of memory (OoM) limitations. In spite of the promising
GPU performance, there are still some drawbacks of GPU
compared with HLS implementations. For the execution of
isotropic GNN models, DGL-GPU achieves lower speedup
than HLS on small-scale graphs such as MT and AX. It is
speculated that the GPU is designed to achieve high throughput
in the cost of latency which plays a more important role
for small-scale graphs than large-scale graphs. In addition,
compared with HLS implementations on FPGA, GPU is also
not suitable for the execution of anisotropic GNN models on
large-scale, especially powerlaw-like graphs (e.g., PT) due to:
(1) the non-trivial memory footprint caused by its sequential
execution, storing intermediate results of edge-wise operations,
and (2) insufficient memory capacity on the GPU. That is why
we failed to execute anisotropic GNNs on PT with GPU. This
is addressed by the HLS implementations’ pipeline structure
not storing the intermediate results.

Since GenGNN [1] also discusses 3 of the GNN models
included in this paper (GCN, GIN, and GAT), we can make
a limited comparison of our GNN HLS implementations with
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TABLE III
EXECUTION TIME OF VARIOUS OPTIMIZATION TECHNIQUES FOR
GRAPHSAGE ON MH.

Optimizations | Execution Time (s) | Speedup
No Pragmas 129.59 1.00x
Dataflow 65.11 1.99x
Loop Unroll 11.11 11.7x
Vectorization 4.44 29.2x
Split Loops 0.98 132x

theirs. The two are not directly comparable for a number of
reasons: (1) the feature dimensions of our GNN HLS kernels
are higher, (2) we use off-chip memory instead of on-chip
memory, (3) our general-purpose GNN HLS kernels focus
more on throughput rather than real-time latency, and (4) the
FPGAs are from the same family, but are not same part. The
performance of our HLS kernels exceeds that of GenGNN,
achieving overall speedup of 35X, 5x, and 6x over GCN,
GIN, and GAT, on MT, respectively.

C. Optimization Techniques

As described in Section II, we apply multiple optimization
techniques to the HLS kernels. In order to evaluate the efficacy
of these techniques, we use GraphSage on MT as a case
study. Table III presents the execution time of GraphSage
with the combined impact of optimization techniques applied.
The reported execution time of each technique represents the
effect of both the current technique and above techniques
listed in the table. In the table, No Pragma means we don’t
intentionally apply any pragmas to the HLS code, except
for those automatically applied by Vitis (i.e., Pipeline, Loop
Merge, and Memory optimizations). Dataflow denotes that we
apply dataflow pragma and FIFO streams to exploit the task-
level parallelism of each application. Loop Unroll means we
apply loop unroll pragmas to completely or partially unroll
for loops, keeping II as low as possible while exploiting
instruction parallelism. Vectorization means using vector data
types to widen the width of FIFO streams and corresponding
operations to decrease the cost of FIFO accesses. Split Loops
means splitting the outer-most node loop and putting it inside
each function connected by streams to further optimize FIFO
properties inferred from loop indices.

We observe that Loop Unroll achieves the highest perfor-
mance improvement. Therefore, exploiting instruction paral-
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Fig. 3. Energy consumption reduction of HLS kernels relative to DGL-CPU (logarithmic scale). Higher is better.

lelism is still the primary choice for GNN HLS optimization.
In order to further improve performance, exploiting task-level
parallelism is necessary. Focusing on the first and second row
in the table, we observe that only performing the dataflow
pragma and streams in a naive way obtains 1.99x performance
improvement. By applying Vectorization and Split Loops as
complementary techniques of Dataflow, performance is further
improved by 2.5x and 3.9x, respectively. After applying
all the optimization techniques together we observe that the
performance of GraphSage is improved by 132x.

D. Energy Consumption

We next present a quantitative analysis of the energy con-
sumption. Figure 3 displays the energy reduction of both DGL-
GPU and HLS implementations relative to DGL-CPU. Energy
reduction is calculated as the energy consumption of DGL-
GPU or HLS divided by that of DGL-CPU. Examining the
final bar of each application and dataset, we observe that HLS
implementations consume less energy than CPU and GPU
baselines in all cases, the energy reduction ranging from 2.95 x
to 423 x and from 2.38x to 74.5x, respectively. It is because
of the low power of FPGA logic, low clock frequency, and
efficient pipeline structure of HLS implementations.

Focusing on the first and last bar, we observe a similar
tendency in energy reduction as in performance: for isotropic
GNN models, denser graphs result in lower energy reduction,
whereas for anisotropic GNN models, denser graphs result
in higher energy reduction. This leads us to conclude that
improving GNN applications generally will require some
degree of graph topology awareness.

V. CONCLUSIONS

We propose GNNHLS, an open-source framework to com-
prehensively evaluate GNN inference acceleration on FPGAs
via HLS. GNNHLS consists of a software stack for data
generation and baseline deployment, and 6 well-tuned GNN
HLS kernels. We evaluate the HLS kernels on 4 graph datasets
with various topologies and scales. Results show up to 50.8 x
speedup and 423x energy reduction relative to the multi-
core CPU baselines. Compared with GPU baselines, GNNHLS
achieves up to 5.16x speedup and 74.5x energy reduction.
GNNHLS has been released as a benchmark suite [17].
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