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Abstract. This paper presents a post hoc analysis of a deep learning-
based full-disk solar flare prediction model. We used hourly full-disk line-
of-sight magnetogram images and selected binary prediction mode to pre-
dict the occurrence of ≥M1.0-class flares within 24 hours. We leveraged
custom data augmentation and sample weighting to counter the inher-
ent class-imbalance problem and used true skill statistic and Heidke skill
score as evaluation metrics. Recent advancements in gradient-based at-
tention methods allow us to interpret models by sending gradient signals
to assign the burden of the decision on the input features. We interpret
our model using three post hoc attention methods: (i) Guided Gradient-
weighted Class Activation Mapping, (ii) Deep Shapley Additive Expla-
nations, and (iii) Integrated Gradients. Our analysis shows that full-disk
predictions of solar flares align with characteristics related to the active
regions. The key findings of this study are: (1) We demonstrate that our
full disk model can tangibly locate and predict near-limb solar flares,
which is a critical feature for operational flare forecasting, (2) Our can-
didate model achieves an average TSS=0.51±0.05 and HSS=0.38±0.08,
and (3) Our evaluation suggests that these models can learn conspicuous
features corresponding to active regions from full-disk magnetograms.

Keywords: Solar flares · Deep learning · xAI · Interpretability

1 Introduction

Solar flares are transient solar events of central importance to space weather
forecasting, manifested as the sudden large eruption of electromagnetic radi-
ation on the outermost atmosphere of the Sun. They are classified accord-
ing to their peak X-ray flux level into the following five categories by Na-
tional Oceanic and Atmospheric Administration (NOAA): X (≥ 10−4Wm−2), M
(≥ 10−5Wm−2), C (≥ 10−6Wm−2), B (≥ 10−7Wm−2), and A (≥ 10−8Wm−2),
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where, X>M>C>B>A [6]. These flare classes are on a logarithmic scale, mean-
ing that each class represents a tenfold increase in X-ray flux compared to the
previous class. Large flares (M- and X-class) are scarce events that are more likely
to incur a terrestrial impact and, therefore, the classes of interest that gather
the attention of researchers. These flares may potentially disrupt the electricity
supply chain, airline industry, and satellite communications, and pose radiation
hazards to astronauts in space. To mitigate these risks, the necessity of a precise
and reliable flare prediction model becomes imperative.

Active regions (ARs) on the Sun are places characterized by the largest ac-
cumulations of dipolar magnetic flux in the solar atmosphere. Most operational
flare forecasts target these regions of interest and issue predictions for individual
ARs, which are the main initiators of space weather events. To issue a full-disk
forecast with an AR-based model, the output flare probabilities for each ac-
tive region are usually aggregated using a heuristic function as mentioned in
[20]. The heuristic function used to aggregate the final forecast operates under
the assumption of conditional independence among ARs and that all ARs con-
tribute equally to the aggregate forecast. This uniform weighting scheme may
not accurately reflect the true influence of each AR on full-disk flare prediction
probability. It is important to highlight that the weights of these ARs are gener-
ally unknown; there are no established methods to accurately determine them,
nor are there any prior assumptions that guide the assignment of these weights.

Furthermore, the magnetic field measurements, employed by the AR-based
forecasting techniques, are susceptible to severe projection effects as ARs get
closer to limbs (to the degree that after ±60◦ the magnetic field readings are
distorted [5]); therefore, the aggregated full-disk flare probability is in fact, re-
strictive (i.e., from ARs in central locations) as the data in itself is limited to
ARs located within ±45◦ [11] to ±70◦ [9] and in some cases, even ±30◦ [8] due
to severe projection effects [7]. As AR-based models include data up to ±70◦,
in the context of this paper, this upper limit (±70◦) is used as a boundary for
central (within ±70◦) and near-limb regions (beyond ±70◦).

In contrast to AR-based models, which use individual AR data from central
locations, full-disk models use complete magnetogram images corresponding to
the entire disk. These images are typically compressed JP2 (JPEG 2000) 8-bit
representations (i.e., pixel values ranging from 0 to 255) derived from origi-
nal magnetogram rasters which contain magnetic field strength values ranging
from ∼±4500G. The compressed magnetogram images are used for shape-based
parameters, e.g., size, directionality, borders, and inversion lines. Although pro-
jection effects still prevail in these images, full-disk models can learn from the
near-limb areas. Thus, incorporating a full-disk model is essential to supplement
AR-based models, enabling the prediction of flares in the Sun’s near-limb areas
and enhancing operational flare forecasting systems.

With recent advancements in machine learning and deep learning meth-
ods, their application in predicting solar flares has demonstrated great experi-
mental success and accelerated the efforts of many interdisciplinary researchers
[8,11,15,16,17,18,19,32]. Although deep learning methods have significantly en-
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hanced solutions to image classification and computer vision problems, these
models learn highly complex data representations, rendering them as black-box
models. Consequently, the decision-making process within these models remains
obscured, presenting a critical challenge for operational forecasting communities
that rely on transparency to make informed decisions. Recently several empiri-
cal methods have been developed to explain and interpret the decisions made by
deep neural networks. These are post hoc analysis methods (attribution meth-
ods) [12], meaning they focus on the analysis of trained models and do not
contribute to the models’ parameters while training. In this work, we primarily
focus on developing a CNN-based full-disk model for solar flare prediction of
≥M1.0-class flares and evaluate and explain our model’s performance by using
three of the attribution methods: (i) Guided Gradient-weighted Class Activation
Mapping (Guided Grad-CAM) [25], (ii) Deep Shapley Additive Explanations
(Deep SHAP) [13], and (iii) Integrated Gradients (IG) [31]. More specifically, we
show that our model’s decisions are based on the characteristics corresponding
to ARs, and our models can tackle the flares appearing on near-limb regions.

The rest of this paper is organized as follows. In Sec. 2, we present the
related work on flare forecasting. In Sec. 3, we present our methodology with
data preparation and model architecture. In Sec. 4 we provide the description of
all three post hoc explanation methods utilized in this work. In Sec. 5, we present
our experimental settings, and model evaluation, and discuss the interpretation
of our models, and in Sec. 6, we present our conclusions and future work.

2 Related Work

There have been several attempts to predict solar flares using machine learning
and deep learning models. A multi-layer perceptron-based model was applied for
solar flare prediction of ≥C1.0- and ≥M1.0-class flares in [15] by utilizing 79 man-
ually selected physical precursors extracted from multi-modal solar observations.
A CNN-based flare forecasting model trained with solar AR patches extracted
from line-of-sight (LoS) magnetograms within ±30◦ of the central meridian to
predict ≥C1.0-, ≥M1.0-, and ≥X1.0-class flares was presented in [8]. Similarly,
[11] also used a CNN-based model to issue binary class predictions for both
≥C1.0- and ≥M1.0-class flares within 24 hours using AR patches located within
±45◦ of the central meridian. It is important to note that both of these models
[8], [11] are limited to a small portion of the observable disk in central locations
(within ±30◦ to ±45◦) and thus possess the limited operational capability.

More recently, we presented a deep learning-based binary full-disk flare pre-
diction model to predict ≥M1.0-class flares in [17] and to predict ≥C4.0- and
≥M1.0-class flares in [18] using bi-daily observations (i.e., two magnetograms
per day) of full-disk LoS magnetograms. It is important to note that in [18] all
the instances that fall between the ≥C4.0- and ≥M1.0-class flares were excluded
in both training and validation sets. These particular sets of instances lie on
the border of two binary outcomes and can be considered the harder-to-predict
instances. These models are still black-box and do not provide explanations on
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any global and local variable importance. These explanations are important to
understand the capabilities of full-disk models in near-limb regions and improve
their trustworthiness in operational settings. In solar flare prediction, [2] used an
occlusion-based method to interpret a CNN-based solar flare prediction model
trained with AR patches. Similarly, [33] presented a deep learning-based flare
prediction model for predicting C-, M-, and X-class flares and provided visual ex-
planations using Grad-CAM [25], and Guided Backpropagation [28]. They used
daily observations of solar full-disk LoS magnetograms at 00:00 UT, and their
models show limitations for the near-limb flares. Moreover, in [30], DeepLIFT
[27] and IG [31] were evaluated for explaining CNN-based flare prediction model
trained using tracked AR patches within ±70◦.

This paper presents a CNN-based model to predict ≥M1.0-class flares, trained
with full-disk LoS magnetograms images. The novel contributions of this paper
are as follows: (i) We show an improved overall performance of a full-disk so-
lar flare prediction model, (ii) We utilized contemporary attribution methods to
explain and interpret the decisions of our deep learning model, and (iii) More
importantly, we show that our models can predict solar flares appearing on
difficult-to-predict near-limb regions of the Sun.

3 Data and Model

Fig. 1. Data distribution used in this study with four tri-monthly partitions for training
≥M1.0-class flare prediction models. Note: The length of the bars is in logarithmic scale.

We used full-disk LoS solar magnetograms obtained from the Helioseismic
and Magnetic Imager (HMI) [24] instrument onboard Solar Dynamics Observa-
tory (SDO) [21] available as compressed JP2 images in near real-time publicly via
Helioviewer1. To enhance computational efficiency for training the deep learning
model, these compressed images are resized to a smaller resolution of 512x512

1 Helioviewer: https://api.helioviewer.org

https://api.helioviewer.org
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pixels. We sampled hourly instances of magnetogram images at [00:00, 01:00,
..., 23:00] each day from Dec 2010 to Dec 2018. We labeled our data with a
prediction window of 24 hours. The images are labeled based on the maximum
peak X-ray flux (converted to NOAA flare classes) within the next 24 hours.
We collect a total of 63,649 images and label them such that if the maximum
X-ray intensity of flare is weaker than M1.0, the observations are labeled as ”No
Flare” (NF: <M1.0) and ≥M1.0 ones are labeled as ”Flare” (FL: ≥M1.0). This
results in 54,649 instances for the NF-class and 9,000 instances (8,120 instances
of M-class and 880 instances of X-class flares) for the FL-class.
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Fig. 2. The architecture of our full-disk flare prediction model.

We finally split our data into four temporally non-overlapping tri-monthly
partitions for the cross-validation experiments. This partitioning of the dataset
is created by dividing the data timeline from Dec 2010 to Dec 2018 into four
partitions, where Partition-1 contains data from Jan to Mar, Partition-2 contains
data from Apr to Jun, Partition-3 contains data from Jul to Sep, and finally,
Partition-4 contains data from Oct to Dec as shown in Fig. 1. As a result of the
infrequent occurrence of ≥M1.0-class flares, the dataset exhibits a significant
imbalance, with the ratio of FL to NF class being approximately 1:6.

In this work, we extend the AlexNet [10] model by concatenating a convo-
lutional layer at the beginning of the network to make use of the pre-trained
weights for our 1-channel input magnetogram images as the pre-trained model
requires a 3-channel image as input to the network. Our added convolutional
layer uses a 3×3 kernel, size-1 stride, and outputs a 3-channel feature map
which is then integrated into the standard AlexNet architecture as shown in
Fig. 2. Furthermore, to efficiently utilize the pre-trained weights regardless of
the architecture of the AlexNet model, which expects 224×224, 3-channel image
as input, we use the adaptive average pooling after feature extraction before the
fully-connected layer to match the dimension on our 1-channel, 512×512 magne-
togram image. Overall, our model has six convolutional layers, three max-pool
layers, one average-pool layer, and two fully-connected layers.
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4 Interpretation Methods

Deep learning models are often deemed black-box due to their complex rep-
resentations, resulting in interpretability, transparency, and consistency chal-
lenges concerning the patterns they learn [12]. To address this, various methods
[34] have been proposed to interpret CNNs. One common approach is using
attribution methods, which visualize how specific parts of the input influence
the model’s decisions. Attribution methods generate attribution vectors (heat
maps) representing the contribution of each input element to the model’s deci-
sion. These methods can be perturbation-based (e.g., Local Interpretable Model-
Agnostic Explanations (LIME) [23]), involving altering the input and measuring
the difference in output, or gradient-based, calculating gradients via backpropa-
gation to estimate attribution scores. While perturbation-based methods suffer
from inconsistency issues due to creating Out-of-Distribution data [22], gradient-
based methods are more robust to input perturbations and computationally ef-
ficient [14]. Therefore, in this work, we employed three recent gradient-based
methods to assess the interpretability of our models. By leveraging gradient-
based techniques, known for their computational efficiency and robustness com-
pared to perturbation-based methods, we aimed to visualize the decisions made
by our model and gain insights into the specific characteristics in a magne-
togram image that trigger the models’ decisions. These methods allowed us to
cross-validate and ensure the consistency of the explanations provided by our
models, contributing to a more reliable and robust interpretation.

Guided Grad-CAM: The Guided Gradient-weighted Class Activation Map-
ping (Guided Grad-CAM) method [25] leverages the benefits of the Grad-CAM
and guided backpropagation [28]. Grad-CAM is a model-agnostic method that
uses the class-specific gradient information flowing into the final convolutional
layer of a CNN to produce a coarse localization map of the important regions
in the image. Guided Backpropagation is based on the premise that the neurons
act as detectors of certain image features, so it computes the gradient of the
output with respect to the input, except that when propagating through ReLU
functions, it only backpropagates the non-negative gradients and highlights the
pixels that are important in the image. Attributions from Grad-CAM are class-
discriminative and localize relevant image regions; however, do not highlight the
fine-grained pixel importance as guided backpropagation [3]. Guided Grad-CAM
combines the fine-grained details of guided backpropagation with the course lo-
calization advantages of Grad-CAM and is computed as the element-wise prod-
uct of guided backpropagation with the upsampled Grad-CAM attributions.

Deep SHAP: SHAP values (SHapley Additive exPlanations) [13] is a method
based on cooperative game theory[26] and used to increase the transparency
and interpretability of machine learning models. SHAP shows the contribution
of each feature to the prediction of the model, it does not evaluate the qual-
ity of the prediction itself. The contribution of each feature is calculated using
cooperative game theory and Shapley values to assess how much each feature
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adds to the difference between the actual prediction and the average prediction.
For deep-learning models, Deep SHAP [13] is considered an enhanced version
of the DeepLIFT algorithm [27], where we approximate the conditional expec-
tations of SHAP values using a selection of baseline samples from the dataset.
The baselines typically contain a set of representative samples from the same
distribution as the input data. For each input sample, it computes DeepLIFT
attribution with respect to each baseline and averages resulting attributions.
This method assumes that input features are independent of one another, and
the explanations are modeled through the additive composition of feature effects.

Integrated Gradients: The last method we will analyze in this study is Inte-
grated Gradients (IG) [31], which quantifies feature attributions by integrating
the gradients of the model’s output along a straight-line path from a baseline ref-
erence to the input feature under consideration. This method requires an extra
input as the baseline, representing the non-appearance of the feature in the orig-
inal image which is typically an all-zero vector. IG is favored for its completeness
property, where the sum of integrated gradients for all features precisely equals
the difference between the model’s output for the given input and the baseline
input values. This property ensures that the feature attributions accurately rep-
resent each feature’s individual contribution to the model output, allowing us to
reliably recover the model’s output value by summing these contributions [29].

5 Experimental Evaluation

5.1 Experimental Settings

We trained a full-disk flare prediction model with stochastic gradient descent
(SGD) as an optimizer and negative log-likelihood (NLL) as the objective func-
tion. Our model is initialized with pre-trained weights of AlexNet Model [10],
and then we make use of a dynamic learning rate (initialized at 0.0099 and re-
duced 5%) to further train the model to 40 epochs with a batch size of 64. We
address the class-imbalance issue using data augmentation and class weights to
the loss function. We use three augmentation techniques: vertical flipping, hori-
zontal flipping, and +5◦ to -5◦ rotations. We augment the data for both classes
(where the entire FL-class data are augmented three times with three augmen-
tation techniques and NF-class is augmented once randomly). We then adjust
class weights inversely proportional to the class frequencies after augmentations.
The use of class weights penalizes the misclassification made in the minority
class. Our models are trained as 4-fold cross-validation experiments with each
fold representing a different partition serving as the test set. Specifically, Fold-1
corresponds to Partition-1, Fold-2 corresponds to Partition-2, and so on.

We evaluate the performance of our models using two widely-used forecast
skills scores: True Skill Statistics (TSS, in Eq. 1) and Heidke Skill Score (HSS, in
Eq. 2), derived from the elements of confusion matrix: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). In the context
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of our paper, the FL class is the positive outcome and NF is the negative.

TSS =
TP

TP + FN
− FP

FP + TN
(1)

HSS = 2× TP × TN − FN × FP

((P × (FN + TN) + (TP + FP )×N))
, (2)

where N = TN + FP and P = TP + FN .

Recall =
TP

TP + FN
(3)

TSS and HSS values range from -1 to 1, where 1 indicates all correct predictions,
-1 represents all incorrect predictions, and 0 represents no skill. In contrast to
TSS, HSS is an imbalance-aware metric, and it is common practice to use HSS in
combination with TSS for the solar flare prediction models due to the high class-
imbalance ratio present in the datasets. For a balanced dataset, these metrics are
equivalent [1]. In solar flare prediction, TSS and HSS are the preferred choices of
evaluation metrics compared to commonly used metrics in image classification
(e.g., accuracy) as they ensure a comprehensive and reliable evaluation of pre-
dictive capabilities, especially in scenarios with imbalanced class distributions.
Lastly, we report the subclass and overall recall (shown in Eq. 3) for flaring
instances (M- and X-class) to assess the prediction sensitivity of our models
in central and near-limb regions. To reproduce this work, the source code and
experimental results can be accessed from our open-source repository [4].

5.2 Model Evaluation

Our models have on average TSS∼0.51±0.05 and HSS∼0.38±0.08, which im-
proves over the performance of [17] by ∼4% in terms of TSS (reported 0.47±0.06)
and by ∼3% in terms of HSS (reported 0.35±0.05) 2. The detailed experimental
results for each fold are shown in Table. 1.

In addition, we evaluate our results for correctly predicted and missed flare
counts for class-specific flares (X-class and M-class) in central locations (within
±70◦) and near-limb locations (beyond ±70◦) of the Sun as shown in Table 2. We
observe that our models made correct predictions for ∼95% of the X-class flares
and ∼73% of the M-class flares in central locations. Similarly, our models show
a compelling performance for flares appearing on near-limb locations of the Sun,
where∼74% of the X-class and∼50% of the M-class flares are predicted correctly.
This is important because, to our knowledge, the prediction of near-limb flares
is often overlooked. More false positives in M-class are expected because of the
model’s inability to distinguish bordering class flares (C4.0 to C9.9) from ≥M1.0-
class flares, which we have observed empirically in our prior work [18] as well.

2 While there are several other works (mentioned in Sec. 2) in solar flare prediction,
the results of these models are not directly comparable since they employ different
datasets, data timelines, and data partitioning strategies.
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Table 1. A comprehensive overview of 4-fold cross-validation experiments, showing all
the four outcomes of confusion matrices (TP, FP, TN, FN) evaluated on the test sets,
and performance of our models in terms of two skill scores (TSS and HSS).

Folds TP FP TN FN TSS HSS

Fold-1 1,720 1,943 10,511 614 0.58 0.47

Fold-2 1,155 3,083 10,772 457 0.49 0.29

Fold-3 1,585 2,668 11,640 779 0.48 0.36

Fold-4 1,706 2,241 11,791 984 0.47 0.40

Aggregated 6,166 9,935 44,714 2,834 0.51±0.05 0.38±0.08

Table 2. Counts of correctly (TP) and incorrectly (FN) classified X- and M-class
flares in central (|longitude|≤ ±70◦) and near-limb locations. The recall across different
location groups is also presented. Counts are aggregated across folds.

Within ±70◦ Beyond ±70◦

Flare-Class TP FN Recall TP FN Recall

X-Class 637 31 0.95 157 55 0.74

M-Class 4,229 1,601 0.73 1,143 1,147 0.50

Total (X&M) 4,866 1,632 0.75 1,300 1,202 0.52

Fig. 3. A scatterplot to quantify the performance of our models in terms of True
Positives (TP) and False Negatives (FN) for X-class flares grouped by flare locations.
The flare events beyond ±70◦ longitude are represented as near-limb events. Note: (i)
Red marker is for locations with zero TP. (ii) For some locations, TP+FN<24, given
that we used hourly instances, is due to the unavailable instances from the source.

Overall, we observed that ∼90% and ∼66% of the X-class and M-class flares,
respectively, are predicted correctly by our models.
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Furthermore, given that we sample our data with a 1-hour cadence result-
ing in 24 instances per day unless there are gaps due to unavailable data in-
stances, any given flare instance is expected to be in the prediction window of
24 instances. X-class flares are relatively large flares that often dominate the
prediction window. Therefore, we analyzed the predictions on X-class flares and
observed that from a total of 45 X-class flare locations, our models correctly
predict the occurrence of a flare at least once for 44 of them, as shown in Fig. 3.
In particular, we show that the full-disk model presented in this paper can pre-
dict flares appearing on near-limb locations of the Sun at great accuracy, which
provides a crucial addition to operational flare forecasting systems.

5.3 Model Interpretation

In this section, we present a case study, interpreting the visual explanations
generated by our model, and also discuss the implications of these explanations in
the operational forecasting scenario. For this, we use the visualizations generated
using all three post hoc explanation methods mentioned earlier in Sec. 4 for two
instances: (i) a correctly predicted (TP) near-limb flare instance and (ii) an
incorrectly predicted (FP) instance.

Firstly, we interpret the predictions of our model for a correctly predicted
X1.4-class flare observed on 2011-09-22 at 10:29:00 UTC on the East limb (note
that East and West are reversed in solar coordinates). We generate a visual
explanation using all three attribution methods. We utilized an input image
from 2011-09-22 05:00:00 UTC (approximately 5.5 hours prior to the flare event)
where the sunspot corresponding to the flare becomes visible in the magnetogram
image. Interestingly, we observed that the pixels covering the AR on the East
limb, which is responsible for the eventual X1.4 flare, are activated, as shown
in Fig. 4. Note that the location of the flare is indicated by a green flag and all
visible NOAA ARs are indicated by red flags in Fig. 4 (b). The model focuses on
specific ARs, including the relatively smaller AR on the East limb, even though
other ARs are present in the magnetogram image. The visualization of attri-
bution maps suggests that, for this particular prediction, the region responsible
for the flare event is attributed as important, contributing to the consequent
decision. This finding is consistent across all three methods, corroborating the
explanation’s reliability. However, Guided Grad-CAM and Deep SHAP provide
finer details by suppressing noise compared to IG.

Similarly, to analyze a false positive case, we present an example of a C7.1
flare observed on 2014-01-06 at 00:08:00 UTC. To explain the result, we used an
input magnetogram instance from 2014-01-05 06:00:00 UTC (∼18 hours prior
to the event). The model’s prediction probability for this instance being an
FL-class is ∼0.97. Therefore, we seek a visual explanation of this prediction
using all three interpretation methods. Upon analysis, we observed that the
prediction mainly relies on only one AR, which indeed corresponds to the location
of the eventual C7.1 flare (indicated by the green flag) when visualized with all
three attribution methods, as shown in Fig. 5. This incorrect prediction can be
attributed to the interference of the bordering class flares mentioned in [18]. Such
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Input Image Time: 2011-09-22 05:00:00
Flare Start Time: 2011-09-22 10:29:00
Flare Class: X1.4
Flare Location: (-81.6, 11)
Model's Flare Probability: 0.68

Note: The scale in the color bar shows
attribution strength ranging from 0-1 for
each respective method.  A higher value
on the scale suggests a more significant
feature for the corresponding prediction,
while 0 indicates that the feature has no
influence on the prediction.

(a) (b)

(GGCAM-Overlay)

(GGCAM-Map) (SHAP-Map) (IG-Map)

(SHAP-Overlay) (IG-Overlay)

Fig. 4. A visual explanation for a correctly predicted near-limb FL-class instance. (a)
Actual magnetogram from the dataset used as the input image. (b) Annotated full-
disk magnetogram at flare start time, showing flare location (green flag) and NOAA
ARs (red flags). Overlays (GGCAM, SHAP, IG) depict the input image overlayed with
attributions, and Maps (GGCAM, SHAP, IG) showcase the attribution maps obtained
from Guided Grad-CAM, Deep SHAP, and Integrated Gradients respectively.

interference poses a problem for binary flare prediction models. We noticed that
out of 25,150 C-class flares, 9,240 flares led to incorrect predictions, accounting
for approximately 37% of the total C-class flares in our dataset.

These two examples, although not exhaustive, carry significant implications
for operational forecasting systems. By incorporating visual explanations into
the forecasting process, in addition to providing a full-disk flare prediction prob-
ability, we have the capability to identify potential flare event locations among
all visible ARs precisely. This is invaluable for improving the accuracy and reli-
ability of solar flare forecasts, aiding in effective risk assessment and mitigation
strategies. Furthermore, it provides a deeper understanding of the underlying fac-
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Input Image Time: 2014-01-05 06:00:00
Flare Start Time: 2014-01-06 00:08:00
Flare Class: C7.1
Flare Location: (-27, -6)
Model's Flare Probability: 0.97

Note: The scale in the color bar shows
attribution strength ranging from 0-1 for
each respective method.  A higher value
on the scale suggests a more significant
feature for the corresponding prediction,
while 0 indicates that the feature has no
influence on the prediction.

(a) (b)

(GGCAM-Overlay)

(GGCAM-Map) (SHAP-Map) (IG-Map)

(SHAP-Overlay) (IG-Overlay)

Fig. 5. A visual explanation for an incorrectly predicted NF-class instance. (a) Actual
magnetogram from the dataset used as the input image. (b) Annotated full-disk mag-
netogram at flare start time, showing flare location (green flag) and NOAA ARs (red
flags). Overlays (GGCAM, SHAP, IG) depict the input image overlayed with attribu-
tions, and Maps (GGCAM, SHAP, IG) showcase the attribution maps obtained from
Guided Grad-CAM, Deep SHAP, and Integrated Gradients respectively.

tors contributing to flare occurrences, empowering researchers and space weather
experts to make more informed decisions and take timely actions to safeguard
critical infrastructure and space assets.

6 Conclusion and Future Work

In this work, we used three recent gradient-based methods to interpret the predic-
tions of our AlexNet-based binary flare prediction model trained for the predic-
tion of ≥M1.0-class flares. We addressed the highly overlooked problem of flares
appearing in near-limb locations of the Sun, and our model shows a compelling
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performance for such events. Furthermore, we evaluated our model’s predictions
with visual explanations, showing that the decisions are primarily capturing
characteristics corresponding to the active regions in the magnetogram instance.
Although our model shows improved capability, still suffers from high false pos-
itives attributed to high C-class flares. As an extension, we plan to study the
individual class characteristics to obtain a better way of segregating these flare
classes considering the background flux and generate a new set of labels that
can better address the issue with border class flares. Furthermore, at this point,
the models are only looking at the spatial patterns in our data, and we intend
to widen this work toward spatiotemporal models to improve the performance.
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