
DNN Verification, Reachability, and the

Exponential Function Problem

Omri Isac

The Hebrew University of Jerusalem

Yoni Zohar

Bar-Ilan University

Clark Barrett

Stanford University

Guy Katz

The Hebrew University of Jerusalem

Abstract

Deep neural networks (DNNs) are increasingly being deployed to perform safety-critical tasks. The
opacity of DNNs, which prevents humans from reasoning about them, presents new safety and
security challenges. To address these challenges, the verification community has begun developing
techniques for rigorously analyzing DNNs, with numerous verification algorithms proposed in recent
years. While a significant amount of work has gone into developing these verification algorithms, little
work has been devoted to rigorously studying the computability and complexity of the underlying
theoretical problems. Here, we seek to contribute to the bridging of this gap. We focus on two
kinds of DNNs: those that employ piecewise-linear activation functions (e.g., ReLU), and those that
employ piecewise-smooth activation functions (e.g., Sigmoids). We prove the two following theorems:
1. The decidability of verifying DNNs with a particular set of piecewise-smooth activation functions,

including Sigmoid and tanh, is equivalent to a well-known, open problem formulated by Tarski;
and

2. The DNN verification problem for any quantifier-free linear arithmetic specification can be
reduced to the DNN reachability problem, whose approximation is NP-complete.

These results answer two fundamental questions about the computability and complexity of DNN
verification, and the ways it is a�ected by the network’s activation functions and error tolerance;
and could help guide future e�orts in developing DNN verification tools.

2012 ACM Subject Classification Theory of Computation

Keywords and phrases Formal Verification, Computability Theory, Deep Neural Networks

1 Introduction

The use of artificial intelligence, and specifically that of deep neural networks (DNNs),
is becoming extremely widespread — as DNNs are often able to solve complex tasks
more successfully than any other computational approach. These include critical tasks
in healthcare [16], autonomous driving [9], communication networks [12], and also the task
of communicating with humans through text [11] — which seems to bring DNNs closer and
closer to passing the famous Turing test [57].

However, it has been shown that even state-of-the-art DNNs are susceptible to various
errors. In one infamous example, known as adversarial perturbations, small input perturbations
that are imperceivable to the human eye are crafted to fool modern DNNs, causing them
to output incorrect results selected by an attacker [23]. Adversarial perturbations thus
constitute a safety and security threat, to which most DNNs are susceptible [52]. Other
issues, such as privacy concerns and bias against various groups, have also been observed,
making it clear that a high bar of trustworthiness must be met before stakeholders can fully
accept DNNs [30].

ar
X

iv
:2

30
5.

06
06

4v
2

 [c
s.L

O
]

10
 Ju

l 2
02

3

2 DNN Verification, Reachability, and the Exponential Function Problem

Overcoming these weaknesses of DNNs is a significant challenge, due to their size and
complexity. This is further aggravated by the fact that DNNs are machine-generated
(automatically trained over many examples). Consequently, they are opaque to human
engineers, and often fail to generalize their results to examples su�ciently di�erent from the
set of examples used for training [33]. This has sparked much interest in the verification
community, which began studying verification techniques for DNNs, in order to guarantee
their compliance with given specifications. In recent years, the verification community has
designed and implemented multiple verification algorithms for DNNs, relying on techniques
such as SMT solving [27, 29, 61], abstract interpretation [20, 24], convex relaxation [34],
adversarial search [25], and many others [63, 5, 7, 19, 2, 42, 48, 50, 56, 59, 41, 15, 51, 4].
Indeed, DNN verification technology has been making great strides recently [36].

Modern verification algorithms depend heavily on the structure of the DNN being verified,
and specifically on the type of its activation functions. Initial e�orts at DNN verification
focused almost exclusively on DNNs with piecewise-linear (PWL) activation functions. It
has been shown that the verification of such networks is an NP-complete problem [29, 46],
and multiple algorithms have been proposed for solving it [32, 29, 20]. Although more recent
approaches can handle DNNs with smooth activation functions, these algorithms are often
approximate and/or incomplete [37, 25, 50]; in fact, to the best of our knowledge, there is
not a single algorithm that is guaranteed to terminate with a correct answer when verifying
such DNNs. This raises two important questions:
1. Does there exists a non-approximating algorithm that can always solve verification queries

involving DNNs with non-PWL activation functions? Or, in other words, is the verification
problem of DNNs with smooth and piecewise-smooth activation functions decidable? and

2. When introducing approximations, how di�cult does the verification problem become
with respect to the DNN, the specification, and the size of the approximation? In other
words, what is the computational complexity of DNN verification with smooth and
piecewise-smooth activation functions and with ‘-error tolerance?

In this paper, we provide a partial answer for the first question, by showing that
the verification problem of DNNs with smooth and piecewise-smooth activation functions
is equivalent to a well-known, open problem from the field of model theory — Tarski’s
exponential function problem [54]. We do so by introducing a constructive bijection between
verification queries of such DNNs, and instances of Tarski’s open problem.

In addition, we provide a partial answer to the second question, by studying the relations
between DNN verification and DNN reachability problems, and ultimately proving that they
are equivalent. Even though this equivalence result was previously used [14], as far as we
know, we are the first to provide a formal reduction. This enables further investigation of
DNN verification with any quantifier-free linear arithmetic specification formula as a specific
case of DNN reachability, without loss of generality. The latter problem is known to be
NP-complete when ‘-error tolerance is introduced in the result [45].

Formally, we prove the two following theorems:
1. The DNN verification problem for DNNs with smooth and piecewise-smooth activation

functions is equivalent to Tarski’s exponential function problem [54], which is a well-known
open problem.

2. The DNN verification problem, with any quantifier-free linear arithmetic specification
formula, can be reduced to the DNN reachability problem, which is NP-complete when
some ‘-error tolerance is allowed [45].

Our results imply a fundamental di�erence between the hardness of verification of DNNs
with piecewise-smooth and with piecewise-linear activation functions. As far as we know, we

O. Isac, Y. Zohar, C. Barrett and G. Katz 3

are the first to provide any proof of this di�erence.
The rest of the paper is organized as follows. In Section 2 we provide background on

DNNs, verification and other necessary mathematical concepts. In Section 3 and Section 4
we formally prove the two main results mentioned above. In Section 5 we discuss related
work, and in Section 6 we describe our conclusions and directions for future work.

2 Background

2.1 Deep Neural Networks

Deep neural networks (DNNs) [22] are directed graphs whose nodes (neurons) are organized
into layers, and whose nodes and edges are labeled with rational numbers. Nodes in the first
layer, called the input layer, are assigned values matching the input to the DNN; and then
the values of nodes in each of the subsequent layers are computed as functions of the values
assigned to neurons in the preceding layer. More specifically, each node value is computed by
first applying an a�ne transformation (linear transformation and addition of a constant) to
the values from the preceding layer, and then applying a non-linear activation function [13]
to the result. The final (output) layer, which corresponds to the output of the network, is
computed without applying an activation function.

Three of the most common activation functions are the rectified linear unit (ReLU), which
is defined as:

ReLU(x) =
I

x x > 0
0 otherwise;

the Sigmoid function, defined as:

‡(x) : R æ (0, 1) = exp(x)
exp(x)+1

where exp is the exponential function; and the hyperbolic tangent, defined as:

tanh(x) : R æ (≠1, 1) = exp(x)≠exp(≠x)
exp(x)+exp(≠x)

The latter two activation functions are both injective, and their inverses are defined as
follows:

’x œ (0, 1) : ‡
≠1(x) = ln(x

1≠x)
’x œ (≠1, 1) : tanh≠1(x) = 1

2 ln(1+x
1≠x)

where ln is the natural logarithm function. In addition, we consider the NLReLU activation
function [31, 13], denoted · for short, which is defined as:

NLReLU(x) = ·(x) = ln(ReLU(x) + 1)

A simple DNN with four layers appears in Figure 1, where all biases are set to zero and
are ignored. For input È1, 2, 1Í, the first node in the second layer evaluates to ReLU(1 · 1 +
2 · (≠1)) = ReLU(≠1) = 0; the second node in the second layer evaluates to ReLU(2 · 1 + 1 ·
(≠1)) = ReLU(1) = 1; and the node in the third layer evaluates to ‡(0 ≠ 1) = ‡(≠1). Thus,
the node in the fourth (output) layer evaluates to 4 · ‡(≠1).

Formally, a DNN N : Rm æ Rk is a sequence of n layers L0, ..., Ln≠1 where each layer
Li consists of si œ N nodes, denoted v

1
i , ..., v

si
i , and biases p

j
i œ Q for each v

j
i . Each directed

edge in the DNN is of the form (vl
i≠1, v

j
i) and is labeled with wi,j,l œ Q. The assignment to

the nodes in the input layer is defined by v
j
0 = xj , where x œ Rm is the input vector, and the

assignment for the j
th node in the 1 Æ i < n ≠ 1 layer is computed as

4 DNN Verification, Reachability, and the Exponential Function Problem

x1

x2

x3

v1

v2

v3 y

1

≠1
1

≠1

1

≠1
4

ReLU

ReLU

‡

Figure 1 A toy DNN.

v
j
i = f

j
i

3si≠1q
l=1

wi,j,l · v
l
i≠1 + p

j
i

4

for some activation function f
j
i : R æ R. Finally, neurons in the output layer are computed

as:

v
j
n≠1 =

sn≠2q
l=1

wn≠1,j,l · v
l
n≠2 + p

j
n≠1

where wi,j,l and p
j
i are (respectively) the predetermined weights and biases of N . The size of

a network |N | is defined as the overall number of its neurons.

2.2 Formal Analysis of DNNs

The formal methods community has tackled the formal analysis of DNNs primarily along
two axes: DNN verification, and DNN reachability. These are two related formulations, as
reachability problems may be expressed as verification problems in a straightforward manner.
In this paper, we further study the connections between these two formulations.

DNN Verification. Let N : Rm æ Rk be a DNN and P : Rm+k æ {€, ‹} be a property,
where €, ‹ represent the values for which the property does and does not hold, respectively.
The DNN verification problem is to decide whether there exist x œ Rm and y œ Rk such
that (N (x) = y) · P (x, y) holds. In particular, a verification query is always expressed as
an existential formula. If such x and y exist, we say that the verification query ÈN , P Í is
satisfiable (SAT); and otherwise, we say that it is unsatisfiable (UNSAT).

A verification algorithm is sound if it does not return UNSAT for satisfiable queries, and
does not return SAT for unsatisfiable queries (in other words, if its answers are always correct);
and is complete if it always terminates, for any query.

So far, there have been several e�orts at studying the complexity-theoretical aspects
of DNN verification [17, 26, 46, 47, 45, 28, 29]. Most previous work was focused on DNNs
with piecewise-linear activation function (specifically, ReLUs), while leaving many open
questions about the complexity-theoretical aspects of verifying DNNs with smooth and
piecewise-smooth activation functions.

DNN Reachability. Given a DNN N : Rm æ R, a function o : R æ R and an input set
X ™ [0, 1]m, the DNN reachability problem is to compute sup

xœX
o(N (x)) and inf

xœX
o(N (x)),

perhaps up to some ‘-error tolerance. For DNNs with Lipschitz-continuous activation

O. Isac, Y. Zohar, C. Barrett and G. Katz 5

functions, either smooth or piecewise-linear, (such as ‡ and ReLU), the reachability problem
with some ‘-error tolerance is NP-complete, in the size of the network and ‘ [45]. In this
work, we consider a decision version for the problem where o is the identity, deciding whether
sup
xœX

N (x) Ø 0 is achieved for some x œ X . This decision version with some ‘-error tolerance

is then to decide whether sup
xœX

N (x) Ø ≠‘ is achieved for some x œ X . In addition, we may

assume that the input of N is within [0, 1]m, as the input domain may be normalized before
the network is evaluated.

For example, consider the DNN depicted in Figure 1. A possible verification query for
this DNN is given by a property P that returns € if and only if (x1, x2, x3) œ [0, 1]3 ·
(y œ [0.5, 0.75] ‚ y œ [0, 0.25]); i.e., if there exists an input in the [0, 1]3 cube, for which
y œ [0.5, 0.75] ‚ y œ [0, 0.25]. A possible reachability query is to check whether there exists
an input in the domain [0, 1] ◊ [0, 0.5] ◊ [0.5, 1], for which y Ø 0. This reachability query
can trivially be represented as a verification property P

Õ, which returns € if and only if
(x1, x2, x3) œ [0, 1] ◊ [0, 0.5] ◊ [0.5, 1] · y Ø 0. For any ‘ > 0, the equivalent reachability query
with ‘ tolerance is to decide if there exists an input in the domain [0, 1] ◊ [0, 0.5] ◊ [0.5, 1],
for which y Ø ≠‘.

2.3 Decidability and Mathematical Logic

Mathematical Logic. In mathematical logic, a signature � is a set of symbols, representing
functions and relations. A �-formula is a formula, comprised of atoms and relations that
appear in �, the usual logical operators (·, ¬, ‚, æ, ¡), and the quantifiers ’ (universal)
and ÷ (existential). A variable a�xed with a quantification symbol is a bounded variable;
and otherwise it is a free variable. A formula without free variables is called a sentence,
and a formula without bounded variables is called a quantifier-free formula. A formula with
variables x = (x1, ..., xn) of the form ÷(x).Ï where Ï is quantifier-free is called an existential

formula. A �-theory is a set of �-sentences. A �-model M is comprised of a set of elements,
denoted |M|, and an interpretation for all � functions and relations; that is, a definition
f

M : |M|n æ |M| for every n-ary function f œ �, and a definition r
M ™ |M|m or every

m-ary relation r œ �. If the interpretation of a �-sentence Ï is true within a model M, we
say that M satisfies Ï, and denote M |= Ï. If M satisfies all sentences in a �-theory T ,
then M is a T -model, denoted M |= T . Given some model M over signature �, we define
the theory Th(M) as the set of all �-sentences Ï such that M |= Ï. It is then trivial that
M |= Th(M).

For example, let � be the set {+, ≠, ·, 0, 1, <} where +, ≠, · are 2-ary functions, 0, 1 are
0-ary functions and < is a 2-ary relation. Let M be a model defined over R with addition,
subtraction, multiplication, the constants 0,1 and the usual order. Then Th(M) is the set of
all �-sentences that M satisfies, such as ’x : x · 0 = 0.

Theory Decidability. For a �-theory T and a �-sentence Ï, we say that Ï is T -valid and
denote T „ Ï, if every model of T satisfies Ï. Furthermore, we say that Ï is T -satisfiable if
there exists a model M of T , for which M |= Ï; and that Ï is T -unsatisfiable if M ”|= Ï

for all models M of T . Satisfiability and validity are closely connected, as Ï is T -valid if
and only if ¬Ï is T -unsatisfiable. A theory T is decidable if there exists an algorithm that,
for any sentence Ï, decides whether T „ Ï, within a finite number of steps. If Ï is valid,
the algorithm returns €; and otherwise, it returns ‹. Due to the connection of satisfiability
and validity, validity-checking algorithms may also be used to decide satisfiability, and vice
versa. In particular, for any theory Th(M) for some model M, all Th(M)-models satisfy

6 DNN Verification, Reachability, and the Exponential Function Problem

exactly the same sentences, so validity and satisfiability are equivalent. Thus, throughout
this paper we use decision procedures to decide the Th(M)-satisfiability of formulas. In
addition, when considering quantifier-free formulas (i.e., a formula where all variables are
free), all of the formula’s variables are implicitly existentially quantified. In this case, for
any quantifier-free formula Ï(x) with variable vector x, the satisfiability problem of Ï(x)
with respect to a model M is equivalent to deciding whether M |= ÷x.Ï(x). Similarly, the
satisfiability problem of Ï(x) with respect to a theory T is equivalent to deciding whether
÷x.Ï(x) is T -satisfiable.

It has previously been shown that the theory of the real field Th(R, +, ≠, ·, 0, 1, <)
is decidable [53], and that the theory of the real field with the transcendental functions
exp, sin and the constants log 2, fi is undecidable [43]. The question of the decidability of
Th(R, +, ≠, ·, 0, 1, <, exp) has remained an open problem since the 1950’s [54], and it is
commonly known as Tarksi’s exponential function problem.

A theory T is stably-infinite if for every quantifier-free formula Ï, the satisfiability of Ï

in T implies that Ï is satisfiable in some infinite model of T . It is then immediate that for
any infinite model M, Th(M) is stably-infinite.

Given two decidable, stably-infinite theories T1 and T2 defined over disjoint sets of symbols,
for any quantifier-free formulas F1 œ T1, F2 œ T2, the formula F1 · F2 is decidable as well [39].
The Nelson-Oppen method [39] is a well-known method for combining two decision procedures
for two theories into a decision procedure for the quantifier-free fragment of their union.

Equisatisfiability. Two formulas Ï and Â are equisatisfiable if Ï is satisfiable if and only
if Â is satisfiable. For example, the formulas Ï := (a + b) ú (a ≠ b) = 0 and Â := c ú d =
0 · c = a + b · d = a ≠ b are equisatisfiable. Note that Ï and Â may be formulated in di�erent
theories, T1 and T2, respectively. In this case, we say that the formulas are equisatisfiable if
Ï is T1-satisfiable if and only if Â is T2-satisfiable.

Function Definability. For any signature � and an n-ary function f , not necessarily in �,
we say that f is definable in a �-model M if there exists a �-formula Â(x1, ..., xn, y, z1, ..., zm)
over the variables x1, ..., xn, y such that for any elements a1, ..., an, b in M we have that
M |= ÷z1, ..., zm.Â(a1, ..., an, b, z1, ..., zm) if and only if b = f(a1, ..., an). We say that f is
definable in a �-theory T if it is definable in all models of T .

Model-Completeness. In model theory, the concept of model-completeness has several
equivalent definitions. For our purposes, a theory T is model-complete if and only if any
formula in the theory has an equivalent existential formula (modulo T). This means that
the existential formulas in T can express all the formulas in it. Th(R, +, ≠, ·, 0, 1, <, exp) is
known to be model-complete [60].

3 Decidability of DNN Verification

In this section, we prove our first main result: the decidability of verifying a DNN with the
activation functions ReLU, ‡, tanh and · is equivalent to the decidability of
Th(R, +, ≠, ·, 0, 1, <, exp). The decidability of this theory is an open problem [54]. Thus, the
equivalence implies that the decidability of DNN verification for DNNs with the activation
functions ReLU, ‡, tanh and · is an open problem as well.

For simplicity, we denote TR = Th(R, +, ≠, ·, 0, 1, <), Texp = Th(R, +, ≠, ·, 0, 1, <, exp),
and T‡ = Th(R, +, ≠, ·qœQ, 0, 1, <, ‡, tanh, ·), where ·q is an unary function, interpreted as
the multiplication with a constant q œ Q. We use �‡, �exp and �R to denote the signatures
of T‡, Texp and TR, respectively. Note that for any DNN, weights and biases are in Q, and can

O. Isac, Y. Zohar, C. Barrett and G. Katz 7

thus be expressed as TR-terms. Therefore, we can express the a�ne constraints of the network
as TR-formulas. In addition, any constraint of the form f = ReLU(b) can be expressed as the
formula (f = b ¡ b > 0) · (f = 0 ¡ b Æ 0), and thus ReLU is definable in TR, Texp and T‡.
Therefore, without loss of generality, we need not add a function symbol to �‡ to express
DNNs with ReLU activation functions (or any other piecewise-linear function). Our goal is
then to show that the decidability of Texp is equivalent to the decidability of all existential
formulas of T‡.

Example: We begin with an example that illustrates this equivalence. For the first direction,
consider the toy DNN depicted in Figure 1, and let x1, x2, x3, b1, f1, b2, f2, b3, f3, and y be
the variables of the network. Variables x1, x2, x3 represent the input variables, variables
b1, f1, b2, f2, b3, f3 represent the inputs and outputs of nodes v1, v2, v3, respectively, and
variable y represents the network’s output. Let P be the property restricting the input to
be within [0, 1]3 and the output to be in [1, 2]. The verification query for the network in
Figure 1 and P is then:

w
iœ1,2,3

[(xi Ø 0) · (xi Æ 1)]·

(x1 ≠ x2 = b1) · (x2 ≠ x3 = b2)·w
iœ1,2

[(fi = bi) ¡ (bi > 0)] · [(fi = 0) ¡ (bi Æ 0)]·

(f1 ≠ f2 = b3) · (f3 = ‡(b3)) · (4 · f3 = y)·
(1 Æ y) · (y Æ 2)

This is a T‡ query, which can be expressed as a query in Texp, since ‡(x) = exp(x)
1+exp(x) . The

equivalent Texp query is:
w

iœ1,2,3
[(xi Ø 0) · (xi Æ 1)]·

(x1 ≠ x2 = b1) · (x2 ≠ x3 = b2)·w
iœ1,2

[(fi = bi) ¡ (bi > 0)] · [(fi = 0) ¡ (bi Æ 0)]·

(f1 ≠ f2 = b3) · [(exp(b3) + 1) · f3 = exp(b3)] · (4 · f3 = y)
(1 Æ y) · (y Æ 2)

For the second direction, we begin by demonstrating a purification process of a given
formula Ï := exp(a + b) = exp(a) · exp(b) into a formula in T‡. We assume that we can define
Âc=a·b and Ây=exp(x) in �‡, which are defined over the variables a, b, c and x, y, respectively,
and that witness the definability of the functions · and exp in T‡. Therefore, the formula

Âp=exp(a) · Âq=exp(b) · Âr=exp(a+b) · Âr=p·q

is equisatisfiable to exp(a + b) = exp(a) · exp(b).
Formally, we prove the following theorem:

I Theorem 1. The decidability of verifying DNNs with ‡, tanh, · and ReLU activation

functions is equivalent to the decidability of Th(R, +, ≠, ·, 0, 1, <, exp).

Proof. The first direction of the proof is similar to a technique proposed by Ivanov et al. [28].
Assume there exists a decision procedure for Texp, and let F œ �‡ be a DNN verification
query. For any appearance of ‡(t) for some term t, we replace t, ‡(t) with the fresh variables
x, y, respectively and add the conjunction:

(exp(x) + 1) · y = exp(x) · x = t

8 DNN Verification, Reachability, and the Exponential Function Problem

to the resulting formula. This is done in a way similar to the one described in the example.
Similarly, for any appearance of tanh(t) for some term t, we replace t, tanh(t) with the fresh
variables x, y, respectively and add the conjunction:

(exp(x) + exp(≠x)) · y = exp(x) ≠ exp(≠x) · x = t

to the resulting formula. For defining · , we first define:

Âf=ReLU(b) := (f = b ¡ b > 0) · (f = 0 ¡ b Æ 0)

Now, for any appearance of ·(t) = ln(ReLU(t) + 1) for some term t, we replace t, ·(t) with
the fresh variables x, y, respectively and add the conjunction:

Âz=ReLU(x) · exp(y) = z + 1 · x = t

to the resulting formula, where z is an additional fresh variable. After repeating this process
iteratively, we convert any F œ �‡ to an equisatisfiable formula F

Õ œ �exp. We then use the
decision procedure to decide the satisfiability of F

Õ.
The second direction of the proof is more complex. Assume we have a sound and complete

verification procedure for DNNs with ‡, tanh and · activation functions; that is, a decision
procedure for deciding the satisfiability of quantifier-free �‡-formulas in T‡.

Since Texp is model-complete, it is tempting to try and construct a decision procedure for
the existential formulas of Texp. However, to the best of our knowledge, given a general formula
in Texp it is not known how to e�ectively derive its equivalent existential formula. In order
to circumvent this issue, we consider instead a fourth theory, Te = Th(R, +, ≠, ·, 0, 1, <, e),
defined over the signature �e, where e : R æ R with e(x) = exp(1

1+x2) is the restricted

exponential function. It has been shown by Macintyre and Wilkie [35] that the decidability
of this theory implies the decidability of Texp, and that given any formula in the language of
Te, one can e�ectively find an equivalent existential formula (in Te). Therefore, it is enough
for our purpose to consider any existential formula ÷x.Ï œ �e, and decide the satisfiability of
Ï in Te.

Let ÷x.Ï œ �e be an existential formula, where Ï is a quantifier-free formula. We
construct a �‡-formula Â, equisatisfiable to Ï. In this construction, all variables are
implicitly existentially quantified. In order to do so, it is enough to define formulas Âc=a·b
and Ây=e(x) over the variables a, b, c and x, y respectively, and witness the definability of the
functions · and e in T‡. In this case, given any formula Ï œ �e, we can iteratively replace any
occurrence of terms of the form t · s with the fresh variable p and add the conjunction Âp=t·s,
and occurrences of terms of the form e(x) with the fresh variable q and add the conjunction
Âq=e(x). This process terminates with a �‡-formula Â equisatisfiable to Ï, allowing us to
apply the decision procedure to Â.

To complete the proof, it remains to show how Âc=a·b and Ây=e(x) can be defined using
the formula Ây=ln(x). We show the construction of Ây=ln(x) later, in Lemma 2, and we use it
here to define both Âc=a·b and Ây=e(x).

We start by defining Âc=a·b. Note that ’a, b > 0, it holds that ln(a · b) = ln(a) + ln(b);
and so a · b = exp(ln(a) + ln(b)), assuming a, b > 0. This equality can be expressed using the
formula:

◊c=a·b := Âp=ln(a) · Âq=ln(b) · Âp+q=ln(c),

where c represents the value of a · b, and p, q are fresh variables. For defining Âc=a·b for all
a, b œ R, we split into cases, and write:

O. Isac, Y. Zohar, C. Barrett and G. Katz 9

Âc=a·b := [(a > 0 · b > 0) æ ◊c=a·b]·
[(a < 0 · b > 0) æ ◊≠c=≠a·b]·
[(a > 0 · b < 0) æ ◊≠c=a·≠b]·
[(a < 0 · b < 0) æ ◊c=≠a·≠b]·

[(a = 0 ‚ b = 0) ¡ c = 0],

which represents the function · and witnesses its definability in T‡.
We now define Ây=e(x). Recall that e(x) = exp(1

x2+1), so in order to define Ây=e(x) we
use both Âc=a·b and Ây=ln(x):

Ây=e(x) := Âa=ln(y)· Â1=a·(b+1)· Âb=x·x

where a, b are fresh variables.
We have defined both Âc=a·b and Ây=e(x), which concludes our proof. J

For the completeness of this section, we provide now the proof of Lemma 2, which shows
the construction of Ây=ln(x):

I Lemma 2. The natural logarithm function ln is definable in T‡.

Proof. First, observe that for any x Ø 1 we have that ·(x ≠ 1) = ln(ReLU(x ≠ 1) + 1) =
ln(x ≠ 1 + 1) = ln(x). Second, observe that ’x œ (0, 1), the inverses of ‡ and tanh are defined
and are equal to:

‡
≠1(x) = ln(x

1 ≠ x
) = ln(x) ≠ ln(1 ≠ x)

and

tanh≠1(x) = 1
2 ln(1 + x

1 ≠ x
) = 1

2(ln(1 + x) ≠ ln(1 ≠ x))

We conclude that:

’x œ (0, 1) : ‡
≠1(x)≠2 tanh≠1(x)+·(x) = ln(x)≠ln(1≠x)≠ln(1+x)+ln(1≠x)+ln(x+1) = ln(x)

We can express this relation using the following formula, and the fresh variables a, b, c:

◊x,y := [x = ‡(a)] · [x = tanh(b)] · [c = ·(x)] · [y = a ≠ 2b + c]

Where 2b is syntactic sugar for ·2(b). Thus, we can define:

Ây=ln(x) := [(1 < x) æ (y = ·(x ≠ 1))] · [(x = 1) ¡ (y = 0)] · [(0 < x < 1) æ ◊x,y] · [0 < x]

which concludes the proof. J

4 DNN Verification is DNN Reachability

The two main formal analysis approaches for DNNs, verification and reachability, are
closely connected: a DNN reachability instance can be formulated as DNN verification in a
straightforward manner, as in the example in Section 2.2. Presently, DNN analysis algorithms
and tools typically support one of the two formulations. Here, we prove that DNN verification
and DNN reachability are in fact equivalent.

In this part, we consider DNNs that use both piecewise-linear and Sigmoidal activation
functions. We formally prove that any instance of the DNN verification problem, with any
specification expressible by a quantifier-free linear arithmetic formula, can be reduced to an

10 DNN Verification, Reachability, and the Exponential Function Problem

instance of the DNN reachability problem. Since the reachability problem is a specific case of
verification, we ultimately prove that for DNNs, reachability and verification are equivalent.
Since it was shown that approximation of DNN reachability queries with Lipschitz-continuous
activation functions (such as ‡ and ReLU) is NP-complete [45], we deduce that the DNN
verification problem is reducible to a problem whose approximation is NP-complete. The
reduction involves adding an additional input, denoted ‘, and we use (x, ‘) to denote the
concatenation of ‘ to the input vector x. Formally, we prove the following theorem:

I Theorem 3. Let N : Rm æ Rk
be a neural network, let Ï be a quantifier-free property

with atoms expressing a�ne constraints over variables yi of N , and let X ™ Rm
. There

exists a neural network N Õ : Rm+1 æ R, with |N Õ| = O(|N | + |Ï|) such that the two following

conditions are equivalent:

÷x œ X. N (x) |= Ï

÷(x, ‘) œ X ◊ (0, 1] . N Õ(x, ‘) Ø 0

Example. We begin with an example for constructing N Õ, given some DNN N , and a
property Ï. Consider first N : R4 æ R2 as depicted in Figure 2a and Ï := (y1 > 0)·(y1 Ø y2).
We denote ◊ := y1 Ø y2 and Â := y1 > 0 © ¬(≠y1 Ø 0). In Figure 2 we start with the
initial DNN N , and then iteratively add new nodes to N . In particular, we show how to
add neurons that are active if and only if N |= ◊ and N |= Â, respectively in Figure 2b
and Figure 2c. Lastly, in Figure 2d we show how to add the output neuron, such that
÷x œ X. N (x) |= Ï if and only if ÷(x, ‘) œ X ◊ (0, 1] . N Õ(x, ‘) Ø 0. This concludes our
example.

We now prove the theorem by induction on the generating sequence of Ï; that is, a
sequence of sub-formulas of Ï: Ï1, ..., Ïn such that ’i, j if j > i then Ïj cannot be a sub-
formula of Ïi, and Ïn = Ï. This allows inductive proofs over the formulas [49]. For example,
a generating sequence for the formula

Ï := ÷x, y.(3x Ø 7) · ¬(y Ø x)

is:

y Ø x, 3x Ø 7, ¬(y Ø x), (3x Ø 7) · ¬(y Ø x), ÷x, y.(3x Ø 7) · ¬(y Ø x)

Proof. Without loss of generality, assume that Ï is composed of atoms, negations, and
conjunctions. In addition, assume that each variable yj is an output variable (otherwise,
we may add neurons with the identity as activation function from the neuron outputting
yj to the output layer). For every step i in the generating sequence Ï1, ..., Ïk = Ï, we add
a constant number of output neurons, such that for any x œ Rm, the resulting DNN N Õ

i ,
satisfies N Õ

i Ø 0 (for the last constructed output neuron) if and only if N (x) |= Ïi. Below
we explain the construction and prove its correctness; and in Figure 3 we show its visual
representation.

Base Cases:
1. Let Ï := €. In this case, N Õ is constructed from N by adding a single a�ne neuron with

no activation function, and with its input edges with weight 0 from all output nodes of
N . This also maintains the convention that the output layer does not have an activation
function. Therefore, ’x œ Rm : N Õ(x, ‘) Ø 0 if and only if

q
i

0 Ø 0, which is equivalent to

€. The case of ‹ is covered by our handling of negations.

O. Isac, Y. Zohar, C. Barrett and G. Katz 11

x1

x2

x3

x4

v1

v2

v3

y1

y2

1

≠1
1

≠1
1

≠1

5

≠3
3

≠5

ReLU

ReLU

ReLU

(a) The initial network.

x1

x2

x3

x4

v1

v2

v3

y1

y2

y◊

1

≠1
1

≠1
1

≠1

5

≠3
3

≠5

1

≠1

ReLU

ReLU

ReLU

(b) Adding a construct for y1 Ø y2.

x1

x2

x3

x4

v1

v2

v3

y1

y2

y◊

yÂ

‘

1

≠1
1

≠1
1

≠1

5

≠3
3

≠5

1

≠1

1 1

1

≠1

ReLU

ReLU

ReLU

(c) Adding a construct for y2 > 0.

x1

x2

x3

x4

v1

v2

v3

y1

y2

y◊

yÂ

‘

yÏ

1

≠1
1

≠1
1

≠1

5

≠3
3

≠5

1

≠1

1 1

1

≠1

≠1

≠1

≠1

≠1

ReLU

ReLU

ReLU

ReLU

ReLU
ReLU

(d) Adding a construct for Ï, as a conjunction.

Figure 2 Construction of a reachability problem for N |= Ï.

12 DNN Verification, Reachability, and the Exponential Function Problem

2. Let Ï :=
q
i

ci · yi + b Ø 0. In this case, N Õ is constructed from N by adding a single

a�ne neuron with no activation function, with its input edges with weight ci from every
output neuron yi of N , and a bias b. Therefore, ’x œ Rm and N (x) = y we have thatq
i

ci · yi + b Ø 0 if and only if N Õ(x, ‘) Ø 0. We note that equality can be handled using

conjunctions, while strict inequalities can be handled using negations.

Inductive step:
1. Let Ï := Â · ◊, and let yÂ, y◊ be the values of the neurons such that yÂ Ø 0, y◊ Ø 0 if

and only if N (x) |= Â, ◊, respectively. Consider:

yÏ = ≠ReLU(≠yÂ) ≠ ReLU(≠y◊)

In this case, we have that yÏ Ø 0 if and only if yÂ Ø 0 · y◊ Ø 0. We can see this since
if yÂ Ø 0 · y◊ Ø 0 then both ≠ReLU(≠yÂ) and ≠ReLU(≠y◊) equal zero. Otherwise, at
least one of ≠ReLU(≠yÂ) and ≠ReLU(≠y◊) is negative (and the other is non-positive).
Thus, we add two ReLU neurons, with a single ≠1 input edge from each of the nodes
corresponding to yÂ, y◊, respectively. We then add a third neuron with two ≠1 edges
from the ReLU nodes and no activation function.

2. Let Ï := ¬Â, and let yÂ be the value of the neuron such that yÂ Ø 0 if and only if
N (x) |= Â. In this case, we first need to add a new ‘Ï input neuron, and restrict it to
‘Ï > 0. Then, observe that ¬(yÂ Ø 0) © yÂ < 0 if and only if there exists some ‘ > 0
s.t. ‘ + yÂ Æ 0, or equivalently ≠‘ ≠ yÂ Ø 0. Therefore, we add a new neuron with no
activation function, with a skip connection from the ‘Ï neuron with weight ≠1, and with
a ≠1 weight from yÂ, resulting in yÏ = ≠‘Ï ≠ yÂ. We note that since there are finitely
many such constructions, we can choose the minimal ‘ implied by all of them, and again
choose the minimum of it and 1. Thus, a single ‘ œ (0, 1] su�ces. In addition, the use of
the skip connections can be replaced with a line of ReLU neurons, starting with the ‘

neuron and feed-forwarding to a neuron on every layer. This construction does not a�ect
the asymptotic size of N Õ.

On every step of the recursion, we added a constant number of neurons to the network,
such that ’x œ Rm, N Õ(x, ‘) Ø 0 if and only if N (x) |= Ïi. This concludes our proof. J

y1

yn

y€

0
0
0

(a) An atom predicate of the form €.

y1

yn

yP

c1
ci

cn

+b

(b) An atom predicate of the form P :=
q

i

ci · yi + b Ø 0.

yÂ

y◊

yÏ

≠1

≠1

≠1

≠1

ReLU

ReLU

(c) A formula of the form Ï = Â · ◊.

yÂ

‘

yÏ

≠1

≠1

(d) A formula of the form Ï = ¬Â.

Figure 3 Constructs for each step of the induction.

O. Isac, Y. Zohar, C. Barrett and G. Katz 13

5 Related Work

The complexity of DNN verification has been studied mainly for DNNs with piecewise-linear
activation functions — specifically, the ReLU function. It has previously been shown that
DNN verification is NP-complete, even for simple specifications [29, 46]. However, when
certain restricted classes of DNN architectures and specifications are considered, DNNs
with ReLUs only can be verified in polynomial time [17]. The verification complexity and
computability in the case of reactive systems controlled by ReLU DNNs (i.e., the DNN acts as
an agent that repeatedly interacts with an environment) has also been studied recently [2, 3].
One recent work showed that verifying CTL properties in this context is undecidable [1]. In
our work, however, we consider DNNs as stand-alone functions.

When considering realistic implementations of the ReLU function, e.g., in quantized

neural networks [26], the DNN verification problem for bit-vector specifications is PSPACE-
hard, introducing a big complexity gap from the case of ideal mathematical form. When
specific models of graph neural networks [64] are considered, the verification problem is
undecidable [47].

For DNNs with Sigmoidal activation functions, two main results are presently known.
First, it was shown that reachability analysis with some error tolerance ‘, for any Lipschitz-
continuous activation function, is NP-complete in the size of the network and of ‘ [45].
Second, it was shown that the decidability of Texp implies the decidability of verifying DNNs
with Sigmoidal activation functions, and that verifying such DNNs with a single hidden
layer is decidable [28]. Our work here is another step towards a better understanding of the
complexity of verifying such DNNs. The computational power of Recurrent Neural Networks
with Sigmoidal activation functions has been studied as well, with Turing completeness results
for Sigmoidal RNNs [10]. This can be further used to study the verification of Sigmoidal
RNNs.

The complexity of formal analysis of DNNs with other functions, such as Gaussian and
arctan has also been studied, showing the verification problem is at least as hard as deciding
formulas in TR [62].

The connections between DNN verification and DNN reachability have also been studied
before. Most prominently, it was shown that any local-robustness verification query can be
reduced to a DNN reachability query [45]. In addition, a similar construction showing the
equivalence between verification and reachability has been used before [14], though for a
specific example without a formal proof.

6 Conclusion and Future Work

Our results show that for DNNs with ReLU, ‡, tanh and NLReLU activation functions, the
decidability of the verification problem is equivalent to a well-known open problem; and that
it can be reduced to a problem whose approximation is decidable, and for whose complexity
an upper bound is known. This was achieved by reducing the verification problem to the
corresponding reachability problem. These results show a significant di�erence between the
verification problem for DNNs with piecewise-smooth activation functions and for DNNs
with piecewise-linear activation functions, which is known to be NP-complete [29, 46].

Moving forward, one goal that we plan to pursue is a version of our first result that
does not rely on the NLReLU function, which is not as mainstream as the other functions
that we considered. Although discarding this function does not alter the first direction
of the proof, the second reduction currently requires it; and we plan to circumvent this
requirement by defining a reduction from a �exp-formula to a formula in the signature of

14 DNN Verification, Reachability, and the Exponential Function Problem

TRfiTh(R, +, ≠, ·qœQ, 0, 1, <, ‡, tanh), and then using a combination of the decision procedures
for these two theories. It is noteworthy that the Nelson-Oppen method [39] cannot be directly
applied here, since it requires the combined theories to be disjoint, which is not the case.
Several generalizations of the Nelson-Oppen method for non-disjoint theories have previously
been proposed [55, 21, 40, 44], and we speculate that these could be useful in this context.

Another interesting direction that we plan to pursue is to combine our work with
approaches for switching between di�erent kinds of machine learning models. For example, it
would be intriguing to study whether DNNs with smooth activation functions can be reduced
to decision trees or to neural networks with a fixed number of layers, as can apparently
be done for piecewise-linear DNNs [6, 58]. Equivalently, fundamental di�erences between
piecewise-linear DNNs and smooth DNNs might imply similar di�erences between other
classes of machine learning models.

Our second result could also be generalized, in two di�erent manners. First, our
construction could be applied to verification queries that involve multiple DNNs, e.g.,
verification queries used for proving DNN equivalence [38]. This is true since for two DNNs
N1, N2 operating on the same domain, the verification query N1(x) ?= N2(x) can be reduced
to N Õ(x) ?= 0, where N Õ is constructed from copies of N1, N2 with outputs y1, y2, and where
additional neurons are used to stipulate that y3 Ø 0 ≈∆ y1 = y2, using our construction.
In this case, we have that N Õ = O(|N1| + |N2|). An illustration of this construction appears
in Figure 4. These results, in turn, could be generalized to queries that involve any finite
number of DNNs.

x1

x2

x3

v1

v2

y1

1

≠1
1

≠1

1

≠1

ReLU

ReLU

x5

x6

x7

x8

u1

u2

u3

y2

1

≠5
1

≠5
1

≠5

4

4

4

ReLU

ReLU

ReLU

yy1Æy2

yy1Øy2

y3

≠1

1

1

≠1 ≠1

≠1

≠1

≠1

ReLU

ReLU

ReLU

ReLU

Figure 4 Reducing DNN equivalence to DNN reachability.

Second, similar constructions can support specification formulas over arithmetics that
include any activation function (even piecewise-smooth). In this case, the number of added
neurons is proportional not only to the sizes of the original network and the formula, but
also to the number of activation functions composing the atoms. This construction is
straightforward, and is omitted.

Our second result provides a notion of estimation for the DNN verification problem in
general. That is, we could relax any DNN verification query to its equivalent ‘-tolerant

O. Isac, Y. Zohar, C. Barrett and G. Katz 15

reachability query. This e�ectively allows an error tolerance in the value of the output
neuron of the resulting network. However, the intuitive definition for approximating DNN
verification is to introduce error tolerance to the values of all neurons. To that end, we plan
to investigate the connections between these two definitions of relaxation, and the advantages
of using each one.

A final line of work that we intend to pursue in the future is to consider a more
realistic framework of verification, with a concrete implementation of ‡, rather than its
pure mathematical form. This is similar to what was done for DNNs with ReLU activation
functions [26]. In addition, we intend to characterize decidable fragments of the DNN
verification problem, by restricting specifications and/or architectures; that is, we plan to
identify su�cient conditions on the DNNs and specifications, which would render the resulting
verification problem decidable. For such decidable fragments, studying the computational
complexity of the verification problem is yet another intriguing line of work. Similar research
was conducted in the context of di�erential privacy [8], and it is interesting to study whether
the decidable fragments identified in this research could be useful for DNN verification as
well. We also intend to further explore implications of the Quasi-Decidability of Texp [18] on
DNN verification.

Acknowledgments This work was supported by the Israel Science Foundation (grant number
619/21), the Binational Science Foundation (grant numbers 2020250, 2021769, 2020704), and
by the National Science Foundation (grant numbers 1814369 and 2110397).

References

1 M. Akintunde, E. Botoeva, P. Kouvaros, and A. Lomuscio. Formal Verification of Neural
Agents in Non-Deterministic Environments. Autonomous Agents and Multi-Agent Systems,
36:1–36, 2022.

2 M. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verification of RNN-Based
Neural Agent-Environment Systems. In Proc. 33rd AAAI Conf. on Artificial Intelligence
(AAAI), pages 197–210, 2019.

3 M. Akintunde, A. Lomuscio, L. Maganti, and E. Pirovano. Reachability Analysis for
Neural Agent-Environment Systems. In Proc. 16th Int. Conf. on Principles of Knowledge
Representation and Reasoning, 2018.

4 G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of Deep Reinforcement
Learning. In Proc. 21st Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
pages 193–203, 2021.

5 G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Konighofer, and S. Pranger. Run-Time
Optimization for Learned Controllers through Quantitative Games. In Proc. 31st Int. Conf.
on Computer Aided Verification (CAV), pages 630–649, 2019.

6 C. Aytekin. Neural Networks are Decision Trees, 2022. Technical Report. https://arxiv.
org/abs/2210.05189.

7 T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative Verification of Neural
Networks And its Security Applications. In Proc. ACM SIGSAC Conf. on Computer and
Communications Security (CCS), pages 1249–1264, 2019.

8 G. Barthe, R. Chadha, P. Krogmeier, A. P. Sistla, and M. Viswanathan. Deciding Accuracy
of Di�erential Privacy Schemes. In Proc. ACM on Programming Languages (POPL), pages
1–30, 2021.

9 M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel, M. Monfort,
U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to End Learning for Self-Driving
Cars, 2016. Technical Report. http://arxiv.org/abs/1604.07316.

https://arxiv.org/abs/2210.05189
https://arxiv.org/abs/2210.05189
http://arxiv.org/abs/1604.07316

16 DNN Verification, Reachability, and the Exponential Function Problem

10 J. Cabessa. Turing Complete Neural Computation Based on Synaptic Plasticity. PloS one,
14(10), 2019.

11 OpenAI. ChatGPT: Optimizing Language Models for Dialogue, 2022. https://openai.com/
blog/chatgpt.

12 M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah. Artificial Neural Networks-Based
Machine Learning for Wireless Networks: A Tutorial. IEEE Communications Surveys &
Tutorials, 21(4):3039–3071, 2019.

13 S. Dubey, S. Singh, and B. Chaudhuri. Activation Functions in Deep Learning: A
Comprehensive Survey and Benchmark. Neurocomputing, 2022.

14 Y. Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework for Neural
Network Verification. In Proc. 32nd Intl. Conf. Computer Aided Verification (CAV), pages
43–65, 2020.

15 T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-Augmented Systems. In
Proc. Conf. of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), pages
305–318, 2021.

16 A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean. A Guide to Deep Learning in Healthcare. Nature
Medicine, 25(1):24–29, 2019.

17 J. Ferlez and Y. Shoukry. Bounding the Complexity of Formally Verifying Neural Networks:
a Geometric Approach. In Proc. 60th IEEE Conf. on Decision and Control (CDC), pages
5104–5109, 2021.

18 P. Franek, S. Ratschan, and P. Zgliczynski. Satisfiability of Systems of Equations of Real
Analytic Functions is Quasi-Decidable. In Proc. 36th Int. Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 315–326, 2011.

19 D. Fremont, J. Chiu, D. Margineantu, D. Osipychev, and S. Seshia. Formal Analysis and
Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI. In Proc. 32nd Int.
Conf. on Computer Aided Verification (CAV), pages 122–134, 2020.

20 T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev. AI2:
Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In Proc.
39th IEEE Symposium on Security and Privacy (S&P), 2018.

21 S. Ghilardi. Model-Theoretic Methods in Combined Constraint Satisfiability. Journal of
Automated Reasoning, 33:221–249, 2004.

22 I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

23 I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial Examples,
2014. Technical Report. http://arxiv.org/abs/1412.6572.

24 D. Guidotti, L. Pulina, and A. Tacchella. pyNeVer: A Framework for Learning and Verification
of Neural Networks. In Proc. 19th Int. Symposium Automated Technology for Verification and
Analysis (ATVA), pages 357–363, 2021.

25 P. Henriksen and A. Lomuscio. E�cient Neural Network Verification via Adaptive Refinement
and Adversarial Search. In Proc. 24th European Conf. on Artificial Intelligence (ECAI), pages
2513–2520, 2020.

26 T. Henzinger, M. Lechner, and –. éikeliÊ. Scalable Verification of Quantized Neural Networks.
In Proc. AAAI Conf. on Artificial Intelligence, pages 3787–3795, 2021.

27 X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep Neural Networks.
In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pages 3–29, 2017.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
http://arxiv.org/abs/1412.6572

O. Isac, Y. Zohar, C. Barrett and G. Katz 17

28 R. Ivanov, J. Weimer, R. Alur, G. Pappas, and I. Lee. Verisig: Verifying Safety Properties of
Hybrid Systems with Neural Network Controllers. In Proc. 22nd ACM Int. Conf. on Hybrid
Systems: Computation and Control (HSCC), pages 169–178, 2019.

29 G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a Calculus for
Reasoning about Deep Neural Networks. Formal Methods in System Design (FMSD), 2021.

30 X. Liu, L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying, and A. Vasilakos. Privacy and Security
Issues in Deep Learning: A Survey. IEEE Access, 9:4566–4593, 2020.

31 Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji. Natural-Logarithm-Rectified Activation Function
in Convolutional Neural Networks. In Proc. 5th Int. Conf. on Computer and Communications
(ICCC), pages 2000–2008, 2019.

32 A. Lomuscio and L. Maganti. An Approach to Reachability Analysis for Feed-Forward ReLU
Neural Networks, 2017. Technical Report. http://arxiv.org/abs/1706.07351.

33 A. Lukina, C. Schilling, and T. Henzinger. Into the Unknown: Active Monitoring of Neural
Networks. In Proc. 21st Int. Conf. Runtime Verification (RV), pages 42–61, 2021.

34 Z. Lyu, C.-Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened Crown: Tightened
Neural Network Robustness Certificates. In Proc. 34th AAAI Conf. on Artificial Intelligence
(AAAI), pages 5037–5044, 2020.

35 A. Macintyre and A. Wilkie. On the Decidability of the Real Exponential Field. Kreisel’s
Mathematics, 115:451, 1996.

36 M. Müller, C. Brix, S. Bak, C. Liu, and T. Johnson. The Third International Verification of
Neural Networks Competition (VNN-COMP 2022): Summary and Results, 2022. Technical
Report. http://arxiv.org/abs/2212.10376.

37 M. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev. PRIMA: General and Precise
Neural Network Certification via Scalable Convex Hull Approximations. In Proc. 49th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages 1–33, 2022.

38 N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. Verifying Properties
of Binarized Deep Neural Networks, 2017. Technical Report. http://arxiv.org/abs/1709.
06662.

39 G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–257, 1979.

40 E. Nicolini, C. Ringeissen, and M. Rusinowitch. Data Structures with Arithmetic Constraints:
A Non-Disjoint Combination. In Proc. 7th Int. Symposium of Frontiers of Combining Systems
(FroCoS), pages 319–334, 2009.

41 M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement Approach to Verifying
Convolutional Neural Networks. In Proc. 20th. Int. Symposium on Automated Technology for
Verification and Analysis (ATVA), pages 391–396, 2022.

42 L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification of Artificial
Neural Networks. In Proc. 22nd Int. Conf. on Computer Aided Verification (CAV), pages
243–257, 2010.

43 D. Richardson. Some Undecidable Problems Involving Elementary Functions of a Real Variable.
The Journal of Symbolic Logic, 33(4):514–520, 1969.

44 C. Ringeissen. Cooperation of Decision Procedures for the Satisfiability Problem. In Proc. 1st
Int. Workshop of Frontiers of Combining Systems (FroCoS), pages 121–139, 1996.

45 W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep Neural Networks
with Provable Guarantees, 2018. Technical Report. https://arxiv.org/abs/1805.02242.

46 M. Sälzer and M. Lange. Reachability Is NP-Complete Even for the Simplest Neural Networks.
In Proc. 15th Int. Conf. on Reachability Problems (RP), pages 149–164, 2021.

http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/2212.10376
http://arxiv.org/abs/1709.06662
http://arxiv.org/abs/1709.06662
https://arxiv.org/abs/1805.02242

18 DNN Verification, Reachability, and the Exponential Function Problem

47 M. Sälzer and M. Lange. Fundamental Limits in Formal Verification of Message-Passing
Neural Networks. In Proc. 11th Int. Conf. on Learning Representations (ICLR), 2023.

48 S. Sankaranarayanan, S. Dutta, and S. Mover. Reaching Out towards Fully Verified
Autonomous Systems. In Proc. 13th Int. Conf. on Reachability Problems (RP), pages 22–32,
2019.

49 J. Shoenfield. Mathematical Logic. Addison-Wesley publishing, 1967.

50 G. Singh, T. Gehr, M. Püschel, and M. Vechev. An Abstract Domain for Certifying Neural
Networks. In Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), pages 1–30, 2019.

51 C. Strong, H. Wu, A. ZeljiÊ, K. Julian, G. Katz, C. Barrett, and M. Kochenderfer. Global
Optimization of Objective Functions Represented by ReLU Networks. Journal of Machine
Learning, pages 1–28, 2021.

52 C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing Properties of Neural Networks, 2013. Technical Report. http://arxiv.org/abs/
1312.6199.

53 A. Tarski. Project Rand: A Decision Method for Elementary Algebra and Geometry. Rand
Corporation, 1948.

54 A. Tarski. A Decision Method for Elementary Algebra and Geometry. Journal of Symbolic
Logic, 17(3):24–84, 1952.

55 C. Tinelli and C. Ringeissen. Unions of Non-Disjoint Theories and Combinations of Satisfiability
Procedures. Theoretical Computer Science, 290(1):291–353, 2003.

56 H.-D. Tran, S. Bak, W. Xiang, and T. Johnson. Verification of Deep Convolutional Neural
Networks Using ImageStars. In Proc. 32nd Int. Conf. on Computer Aided Verification (CAV),
pages 18–42, 2020.

57 A. Turing. Computing Machinery and Intelligence. Mind, LIX(236), 1950.

58 M. Villani and N. Schoots. Any Deep ReLU Network is Shallow, 2023. Technical Report.
https://arxiv.org/abs/2306.11827.

59 S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis of Neural
Networks using Symbolic Intervals. In Proc. 27th USENIX Security Symposium, 2018.

60 A. Wilkie. Model Completeness Results for Expansions of the Ordered Field of Real Numbers
by Restricted Pfa�an Functions and the Exponential Function. Journal of the American
Mathematical Society, 9(4):1051–1094, 1996.

61 H. Wu, A. ZeljiÊ, G. Katz, and C. Barrett. E�cient Neural Network Analysis with Sum-of-
Infeasibilities. In Proc. 28th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 143–163, 2022.

62 A. Wurm. Complexity of Reachability Problems in Neural Networks, 2023. Technical Report.
https://arxiv.org/abs/2306.05818.

63 H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska. Verification of
Recurrent Neural Networks for Cognitive Tasks via Reachability Analysis. In Proc. 24th
European Conf. on Artificial Intelligence (ECAI), pages 1690–1697, 2020.

64 J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph Neural
Networks: A Review of Methods and Applications. AI open, 1:57–81, 2020.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2306.11827
https://arxiv.org/abs/2306.05818

	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Formal Analysis of DNNs
	2.3 Decidability and Mathematical Logic

	3 Decidability of DNN Verification
	4 DNN Verification is DNN Reachability
	5 Related Work
	6 Conclusion and Future Work

