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Abstract
Finding parameters in a deep neural network (NN) that fit training data is a nonconvex
optimization problem, but a basic first-order optimization method (gradient descent) finds
a global optimizer with perfect fit (zero-loss) in many practical situations. We examine this
phenomenon for the case of Residual Neural Networks (ResNet) with smooth activation
functions in a limiting regime in which both the number of layers (depth) and the number
of weights in each layer (width) go to infinity. First, we use a mean-field-limit argument
to prove that the gradient descent for parameter training becomes a gradient flow for a
probability distribution that is characterized by a partial differential equation (PDE) in the
large-NN limit. Next, we show that under certain assumptions, the solution to the PDE
converges in the training time to a zero-loss solution. Together, these results suggest that
the training of the ResNet gives a near-zero loss if the ResNet is large enough. We give
estimates of the depth and width needed to reduce the loss below a given threshold, with
high probability.
Keywords: Residual neural network, overparameterization, mean-field analysis, zero loss,
gradient flow

1. Introduction

In the training of deep neural networks (NN), the loss function is nonconvex, but algorithms
based on gradient descent (GD) appear to converge to a zero-loss solution that interpolates
the training data. As the number of layers and the width of the NN increase to infinity,
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the training problem becomes vastly overparameterized, potentially yielding a large set
of interpolating solutions. Still, it remains surprising that GD approaches find the global
minimizer reliably.

What is the mechanism that allows gradient descent to find the minimizer?
This article proposes a partial answer to this question for residual neural networks

(ResNet), relying on three main toolboxes: a continuous limit argument, a mean-field limit
argument, and gradient flow analysis. These toolboxes are used to translate gradient descent
for parameter training into a partial differential equation (PDE), where PDE analysis
(specifically, steady-state equilibrium analysis) is employed to trace the convergence to the
minimizer.

We denote by L and M the number of layers, and the number of weights per layer,
respectively. We study highly overparameterized NN in which both L and M go to infinity.
As L → ∞, the NN approaches infinite depth, and ResNet translates into an ordinary
differential equation (ODE) with a force term encoding the parameter configuration. We refer
to this limit as the continuous limit. As M →∞, the NN approaches infinite width, and the
ODE that characterizes ResNet further translates into an ordinary-integral equation (OIE),
with the integrand encoding the configuration of neuron parameters. We refer to this limit
as the mean-field limit. In the limiting regime, the training of the parameters becomes the
training of the integrand, and gradient descent on the parameters translates into a gradient
flow on the integrand. The gradient flow process turns out to be characterized by a PDE. We
observe that under certain assumptions, the long “time" limit of the PDE solution has zero
cost, suggesting that gradient descent applied to a (finite) parameter configuration yields
almost-zero-cost solutions too. The smallness of this cost depends on the largeness of L and
M ; we give a precise quantification.

We describe the problem setup in Section 2, where we also formally derive the continuous
and mean-field limits. We unify notations in Section 3 and present our main results in
Section 4, including rigorous justifications for both limiting procedures, the result about
convergence of the PDE solution to the global minimum, and a result about convergence to
near-zero losses of gradient descent on large (but finite) networks. As a byproduct of our
analysis, well-posedness for both the ODE formulation and the PDE formulation is obtained
in Section 5.

There is a vast of literature addressing the overparameterization of DNN, its associated
nonconvex optimization problem, and the application of the first order (gradient descent)
optimization methods. Three major perspectives have been taken. One approach is to analyze
the landscape of the objective functions, identifying properties that a nonconvex optimization
problem needs to satisfy for a first order method to converge to an optimizer. Different NN
structures are then analyzed to fit these properties (Jin et al., 2017; Ge et al., 2015; Du et al.,
2017; Ge et al., 2018; Nguyen and Hein, 2018; Du and Lee, 2018; Soltanolkotabi et al., 2019;
Nguyen and Hein, 2017; Kawaguchi, 2016; Yun et al., 2018; Safran et al., 2020; Bartlett et al.,
2018b,a). The second approach largely depends on the insensibility of the Gram matrix as
the number of weights goes to infinity (Allen-Zhu et al., 2019; Du et al., 2019a; Zhang et al.,
2019; Chatterji et al., 2021; Zou et al., 2020; Du et al., 2019b; Frei et al., 2019; Chen et al.,
2020; Li and Liang, 2018), as a way to analyze Neural Tangent Kernel (Jacot et al., 2018; Liu
et al., 2020). The analysis crucially depends on the fact that GD confines the iteration in a
small neighborhood if the initial conditions are random. However, as point out in (Allen-Zhu
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and Li, 2019; Ba et al., 2020; Wei et al., 2019), NTK, like many other kernel models Arora
et al. (2019), is rather a limited description of NN. The success of NTK highly depends on the
fact that a nonlinear NN can be approximated by a linear model of the infinite dimensional
random features associated with the NTK. The third approach, which we adopt in this paper,
involves the mean-field limit. The idea is to let the number of weights M and/or the number
of layers L go to infinity, and translate the gradient descent for the parameters in a finite
dimensional space to a gradient flow in a (infinite-dimensional) function space (Araújo et al.,
2019; Fang et al., 2019; Nguyen, 2019; Allen-Zhu et al., 2019; Du et al., 2019a; Zhang et al.,
2019; Chatterji et al., 2021; Chizat and Bach, 2018; Mei et al., 2018; Wojtowytsch, 2020; Lu
et al., 2020; Sirignano and Spiliopoulos, 2021, 2020; E et al., 2020b; Nguyen, 2019; Pham and
Nguyen, 2021; Nguyen and Pham, 2021; Fang et al., 2021; Lu et al., 2020; E et al., 2020a;
Jabir et al., 2021). In particular, in (E et al., 2020a), the authors have formally derived the
limiting gradient flow equation for deep and overparameterized ResNet. Some PDE analysis
techniques are borrowed to show the convergence of the limiting gradient flow equation.
In (Chizat and Bach, 2018; Mei et al., 2018; Wojtowytsch, 2020), the authors study the
two-layer (one hidden layer) NN in the regime where M is infinite. In these works, both
the mean-field limit and the convergence of the gradient flow are proved, giving a complete
answer about the convergence to the zero-loss when NN has two layers. The problem is
significantly more complicated for NNs that have multiple layers, since the convexity of the
objective function is lost. To the best of our knowledge, the current paper is the first that
both rigorously proves the mean-field limit that translates the optimization problem into a
gradient flow, and demonstrates why the gradient flow leads to a global minimizer.

2. ResNet and Gradient Descent

General ResNet uses the following model:

zl+1(x) = zl(x) +
1

ML

M∑
m=1

f(zl(x), θl,m) , l = 0, 1, . . . , L− 1

z0(x) = x ,

(1)

where x ∈ Rd is the input data. The configuration of the NN is encoded in ΘL,M =

{θl,m}L−1,M
l=0,m=1, where θl,m ∈ Rk, and f : Rd × Rk → Rd is a given activation function. (E

et al., 2020b, Section 3.3) verifies that “conventional” ResNets are included in this framework.
Define

zl+1(x) = zl(x) +
1

ML

M∑
m=1

Ul,mσ(W>l,mzl(x) + bl,m) , l = 0, 1, . . . , L− 1

z0(x) = x ,

where Wl,m, Ul,m ∈ Rd, bl.m ∈ R, and σ is the ReLU activation function. In this example, we
have θl,m = (Wl,m, Ul,m, bl,m) ∈ Rk, with k = 2d+ 1.

Denote by ZΘL,M (l;x) the solution to (1). The goal of training ResNet is to seek
parameters ΘL,M such that the following cost is minimized:

E(ΘL,M ) = Ex∼µ
[

1

2

(
g(ZΘL,M (L;x))− y(x)

)2]
, (2)
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where g(x) : Rd → R is a given measuring function, y(x) ∈ R is the label corresponding to x,
and µ is the probability distribution from which x is drawn.

Classical gradient descent updates the parameters according to the formula

Θn+1
L,M = Θn

L,M − h∇ΘL,ME(Θn
L,M ) ,

where h is the step length. In the h → 0 limit, these parameters satisfy the following
ODE (Chizat and Bach, 2018, Def 2.2), with s denoting the rescaled pseudo-time:

dΘL,M (s)

ds
= −ML∇ΘL,ME(ΘL,M ) , for s ≥ 0 . (3)

2.1 The Continuous Limit and Mean-field Limit

We obtain the continuous limit of (1) by making the ResNet infinitely deep, that is, L→∞.
By reparameterizing the indices l = [0, 1, . . . , L− 1] with the continuous variable t ∈ [0, 1],
we view z in (1) as a function in t that satisfies a coupled ODE, with 1/L being the stepsize
in time. Accordingly, θl,m can be viewed as θm(t = l/L). Denoting Θ(t) = {θm(t)}Mm=1, the
continuous limit of (1) can be written as

dz(t;x)

dt
=

1

M

M∑
m=1

f(z(t;x), θm(t)) , t ∈ [0, 1], with z(0;x) = x . (4)

Following (2), we define the cost functional E for this formulation as

E(Θ) = Ex∼µ
[

1

2
(g(ZΘ(1;x))− y(x))2

]
, (5)

where ZΘ(t;x) solves (4) for a given collection Θ(t) of the M functions {θm(t), m =
1, 2, . . . ,M}. Similar to (3), we can use GD to find the configuration of Θ(t) that minimizes (5)
by making Θ(t) flow in the descending direction of E(Θ), that is,

∂Θ(s; t)

∂s
= −M δE

δΘ

∣∣∣∣
Θ(s;·)

, s > 0, t ∈ [0, 1] , (6)

where δE
δΘ is the functional derivative of E with respect to Θ(t).

The mean-field limit is obtained by making the ResNet infinitely wide, that is, M →∞.
Considering that the right hand side of (4) has the form of an expectation, it naturally
becomes an integral in the limit with respect to a certain probability density. Denoting this
density by ρ(θ, t), and assuming that the θm are drawn from it, the ODE (4) for z translates
to the following OIE:

dz(t;x)

dt
=

∫
Rk
f(z(t;x), θ) dρ(θ, t) , t ∈ [0, 1] with z(0;x) = x . (7)

By mimicking (5), we define the cost function in the mean-field setting as

E(ρ) = Ex∼µ
[

1

2
(g(Zρ(1;x))− y(x))2

]
, (8)
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where Zρ(t;x) is the solution to (7) for a given ρ. Similar to the gradient flow for ΘL,M

and Θ(t), the probability distribution ρ that encodes the configuration of θ in the mean-
field setting, flows in the descending direction of E(ρ) in pseudo-time s. Considering that
ρ(θ, t, s) should be a probability density for all s and t, this gradient flow is conducted in the
Wasserstein metric. Following (Chizat and Bach, 2018; Lu et al., 2020), we have

∂ρ(θ, t, s)

∂s
= ∇θ ·

(
ρ(θ, t, s)∇θ

δE(ρ)

δρ

∣∣∣∣
ρ(·,·,s)

)
, s > 0, t ∈ [0, 1] , (9)

where δE
δρ is the functional derivative with respect to ρ. With the classical variational method,

one can explicitly compute this derivative as follows (see (Lu et al., 2020, Section 3.1)):

δE

δρ

∣∣∣∣
ρ

(θ, t) = Ex∼µ
(
p>ρ (t;x)f(Zρ(t;x), θ)

)
, (10)

where pρ(t;x), parameterized by x, maps [0, 1]→ Rd, and is a vector solution to the following
ODE: 

dp>ρ
dt

= −p>ρ
∫
Rk
∂zf(Zρ, θ)ρ(θ, t) dθ ,

pρ(t = 1;x) = (g(Zρ(1;x))− y(x))∇g(Zρ(1;x)) .

(11)

In the later sections, to emphasize the s dependence, we use δE(Θ(s))
δΘ and δE(ρ(s))

δρ to denote
δE
δΘ

∣∣
Θ(s;·) and δE

δρ

∣∣∣
ρ(·,·,s)

respectively. As a summary, to update ρ(θ, t, s) to ρ(θ, t, s + δs)

with an infinitesimal δs, we solve (7) for Zρ(t;x) using the given ρ(θ, t, s) and compute
pρ using (11). This allows us to compute δE(ρ(s))

δρ (θ, t) which, in turn, yields ρ(θ, t, s + δs)
from (9). In (11), ∂zf is a d× d matrix that stands for the Jacobian of f with respect to its
z argument.

Remark 1 We stress that equation (9) is not a classical Wasserstein-2 gradient flow in the
probability space. The classical gradient flow looks for one probability function of θ in the
pseudo-time s (Ambrosio et al., 2008). Instead, we now have ρ(θ, t), where ρ is a probability
density of θ for every t, and their flows are all coupled through the definition of E. Note that
this feature emerges exactly because we have infinitely many layers L → ∞, reformulated
using a continuous variable t. When there are only 2 layers, the dependence on t can be
dropped, and the problem reduces to the classical gradient flow (Chizat and Bach, 2018). A
core obstacle to be overcome in this paper is the need for new technicalities to handle the
non-standard gradient flow.

2.2 Contributions

With the roadmap above, it is clear that we need to justify that the gradient flow in the
discrete setting (3) is tracked closely by the PDE, so that E(ΘL,M (s)) ≈ E(ρ(·, ·, s)), and
that the PDE (9) achieves the global minimum, for which E(ρ(·, ·, s =∞)) = 0.

In this paper we fully address the first question, and we provide some conditions under
which the global minimum can be achieved. More specifically, the two main contributions of
the paper are as follows.
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– Contribution 1: We give a rigorous proof of the continuous and mean-field limit:
Theorem 6. This is to justify that when M,L → ∞, E(ΘL,M (s)) ≈ E(Θ(s; ·)) ≈
E(ρ(·, ·, s)). The dependence of these approximations on L and M are made precise in
the result.

– Contribution 2: We show that the global minimum can be achieved in the continuous
setting under certain conditions: Theorem 7. That is, the gradient flow equation (20),
a modified version of (9), sends its distribution ρ(θ, t, s) to a global minimizer in
the long-time regime (as s → ∞). The conditions required may be stringent in real
applications and we discuss their validity in certain scenarios in Appendix F.

Theorems 6 and 7 are combined in Theorem 9, which shows that E(ΘL,M (s))→ 0 for large
s.

By comparison with existing mean-field limit results, Theorem 6 gives rigorous justifi-
cations for both L→∞ and M →∞. By contrast, (Chizat and Bach, 2018; Araújo et al.,
2019; Fang et al., 2019; Nguyen, 2019) consider M →∞ with L fixed. In most results for
NTK (Allen-Zhu et al., 2019; Du et al., 2019a; Zhang et al., 2019; Chatterji et al., 2021), the
size of M grows as L increases, while our results have these two parameters independent of
each other. Furthermore, we have no requirement on the number of training samples.

For the a priori estimates, we also show the well-posedness of all six equations (three for
z and three for θ) and that these equations have unique solutions. These results are mostly
collected in Section 5, as follows.

– Well-posedness of Z: Theorem 10. For a given ρ, equation (7) has a unique solution
Zρ, and the solution is stable with respect to ρ. With Remark 13, the uniqueness and
stability result extend to treating (4) for a given Θ(t).

– Well-posedness of ΘL,M ,Θ(t), ρ: Theorems 11 and 12. These quantities satisfy the
modified gradient flow equations (18), (19), and (20) respectively, and these equations
have unique solutions.

3. Notations, Assumptions, and Definitions

Throughout the paper, we denote the collection of probability distribution that has a bounded
second moment by P2(Rk), that is, P2(Rk) = {ρ :

∫
Rk |θ|

2 dρ(θ) <∞}. We assume certain
regularity properties for the activation function f , the measuring function g, the data y, and
the input measure µ, as follows

Assumption 3.1 Let f : Rd × Rk → Rd and g, y : Rd → R be C2 functions. We assume
that these functions and µ satisfy the following properties:

1. For all x ∈ Rd, θ ∈ Rk, we have∣∣∣∂ix∂jθf ∣∣∣ ≤ C1|θ|i (|x|+ 1)j , 0 < i+ j ≤ 2, i ≥ 0, j ≥ 0 , (12)

where C1 is a constant, ∂ix∂
j
θf is (i, j) derivative of f , and | · | is the Frobenius norm.

2. The function set
{
h
∣∣h =

∫
Rk f(x, θ) dρ(θ), ρ ∈ P2(Rk)

}
is dense in C

(
|x| < R;Rd

)
for

any R > 0.
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3. g(x) and ∇g(x) are Lipschitz continuous. Moreover, |∇g(x)| has a positive lower bound,
that is, infx∈Rd |∇g(x)| > 0.

4. The associated probability density function of µ(x) is in L∞, and is compactly supported:

µ({|x| ≥ R}) = 0 , (13)

for some fixed R > 0.

5. y(x) ∈ L∞loc(Rd), that is, sup|x|≤R |y(x)| <∞.

The assumption (12) is satisfied by most commonly used activation functions (E et al.,
2020b). Consider, for example,

f(x, θ) = f(x, θ1, θ2, θ3, θ4) = σ(θ1x+ θ2)− σ(θ3x+ θ4) ,

where θ1, θ3 ∈ Rd×d, and θ2, θ4 ∈ Rd, and σ is a component-wise regularized ReLU activation
function. The form of the assumption controls the growth of its derivatives, and is used
widely (Chizat and Bach, 2018; Lu et al., 2020).

For every fixed s, the solution to (9) is in the space C([0, 1];P2). This is a non-standard
probability space due to the introduction of t, so we need to build a new metric.

Definition 2 1 C([0, 1];P2) is a collection of continuous paths of probability distribution
ρ(θ, t) (θ ∈ Rk, t ∈ [0, 1]) where

1. For every fixed t ∈ [0, 1], ρ(·, t) ∈ P2(Rk) .

2. For any t0 ∈ [0, 1], limt→t0 W2 (ρ(·, t), ρ(·, t0)) = 0, whereW2 is the classical Wasserstein-
2 distance.

The space C([0, 1];P2) is equipped with the metric: d1 (ρ1, ρ2) = suptW2(ρ1(·, t), ρ2(·, t)).

We further define the space involving the pseudo-time s.

Definition 3 2 C([0,∞); C([0, 1];P2)) is a collection of continuous paths of probability dis-
tribution ρ(θ, t, s) (θ ∈ Rk, t ∈ [0, 1], s ∈ [0,∞)) where

1. For every fixed s ∈ [0,∞), ρ(·, ·, s) ∈ C([0, 1];P2).

2. For any s0 ∈ [0,∞), lims→s0 d1 (ρ(·, ·, s), ρ(·, ·, s0)) = 0 where d1 is given in Defini-
tion 2.

The metric in C([0,∞); C([0, 1];P2)) is defined by d2 (ρ1, ρ2) = supt,sW2(ρ1(·, t, s), ρ2(·, t, s)).

Since P2 is complete in W2 distance, C([0, 1];P2) and C([0,∞); C([0, 1];P2)) are complete
metric spaces under d1 and d2 respectively also.

For carrying out the mean-field limit, we use the classical approach and follow the particle
presentation of ρ, this means we require the probability distribution ρ to be admissible.

1. C([0, T ];A) is a collection of functions f(θ, t) that are continuous in time t ∈ [0, T ], and for each fixed
time t0, f(t0, θ) ∈ A. In this case, T = 1 and A = P2, equipped with W2 metric.

2. Similar to Definition 3, C([0,∞); C([0, 1];P2)) is a collection of functions f(θ, t, s) that are continuous in
s and t, and for each fixed (s0, t0) ∈ [0,∞)× [0, 1], f(θ, t0, s0) ∈ P2.
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Definition 4 We call ρ(θ, t) admissible if it has a particle presentation, namely there exists
a continuous stochastic process θ(t) : [0, 1]→ Rk such that

θ(t0) ∼ ρ(θ, t0) , lim
t→t0

E
(
|θ(t)− θ(t0)|2

)
= 0 . (14)

Furthermore, ρ(θ, t) is called limit-admissible if its M averaged trajectory is bounded and
Lipschitz with high probability. See the rigorous definition in Definition 29.

Remark 5 We have two comments on the admissible condition.

• Without the dependence on t, all probability distributions are admissible: One can
define a particle by drawing it from this distribution. With the dependence on t, the
admissible requirement is stricter: There needs to be a continuous stochastic process
θ(t) whose underlying distribution is the given ρ(θ, t).

• According to (Ambrosio et al., 2008, Theorem 8.2.1), if ρ(·, t) is absolutely continuous
in t using the Wasserstein metric, it can be regarded as a probability measure over
continuous function C([0, 1];Rk), and can be represented by a continuous stochastic
process θ(t).

4. Mean-field and Convergence of the Gradient Flow

We present our main result in this section. To ensure the well-posedness of the gradient flow
equation (9), we need to add a regularizer to the cost function, as discussed in Section 4.1.
Sections 4.2 and 4.3 discuss validity of the continuous and mean-field limits and convergence
to the global minimizer. The convergence to the global minimizer requires a fully-supported
assumption; we discuss the validity of this assumption in Appendix F.

4.1 Modified Cost Function

The analysis is conducted with a modified cost function to ensure the well-posedness of (9),
the gradient flow equation. To do so, we add a regularizer to the cost function (2), as follows:

Es(ΘL,M ) = Ex∼µ
[

1

2

(
g(ZΘL,M (L;x))− y(x)

)2]
+ e−s

1

ML

L−1∑
l=0

M∑
m=1

|θl,m|2 . (15)

Recalling our notation Θ(t) = {θ(t)}Mm=1, the corresponding regularized cost function in the
continuous limit (L→∞) is

Es(Θ(·)) = Ex∼µ
[

1

2
(g(ZΘ(1;x))− y(x))2

]
+
e−s

M

M∑
m=1

∫ 1

0
|θm(t)|2 dt . (16)

Finally, in the mean-field limit (M → ∞), we assume θm is i.i.d. drawn from ρ, the
corresponding regularized cost function becomes

Es(ρ) = Ex∼µ
[

1

2
(g(Zρ(1;x))− y(x))2

]
+ e−s

∫ 1

0

∫
Rk
|θ|2 dρ(θ, t) . (17)
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In these definitions, ZΘL,M , ZΘ, and Zρ are solutions to the difference equation (1), ODE (4)
and OIE (7), respectively. It is straightforward to see that Es differs from the (non-regularized)
cost function E by only an exponentially small term, which disappears as s → ∞. As a
consequence, the global minimum of Es coincides with the global minimum of the true cost
E in the large-s limit, so it makes sense to analyze gradient descent applied to Es.

4.2 Continuous and Mean-field Limit of the Gradient Flow

Mimicking the derivation in Section 2.1, the gradient flows for ΘL,M , Θ(t), and ρ can be
changed according to the regularized cost functions involving pseudo-time s ∈ [0,∞) defined
above. ΘL,M solves

dΘL,M (s)

ds
= −ML∇ΘL,ME(ΘL,M (s))− 2e−sΘL,M (s) , for s > 0 . (18)

For the continuous limit (L→∞), we have

dθm(s; t)

ds
= −M δE(Θ(s))

δθm
− 2e−sθm(s; t) , m = 1, 2, . . . ,M. (19)

For the mean-field limit (M →∞), we have
∂ρ(θ, t, s)

∂s
= ∇θ ·

(
ρ(θ, t, s)∇θ

δEs(ρ(s))

δρ

)
, for s > 0, t ∈ [0, 1] ,

ρ(θ, t, 0) = ρini(θ, t) .

(20)

Noting the definition of Es in (17), we have the explicit expression for the Fréchet derivative:

δEs(ρ)

δρ
=
δE(ρ)

δρ
+ e−s|θ|2 , (21)

where δE(ρ)
δρ is defined in (10).

The connection between these three equations is made rigorous in the following result.

Theorem 6 Suppose that Assumption 3.1 holds. Let ρini(θ, t) be limit-admissible, and
{θm(0; t)}Mm=1 in (19) be i.i.d. drawn from ρini(θ, t). Let

• ΘL,M (s) = {θl,m(s)} be the solution to (18) with initial condition θl,m(s = 0) =
θm
(
0; lL

)
, and

• ρ(θ, t, s) be the solution to (20) with initial condition ρini(θ, t).

Then for any positive ε, η, and S, there exists a constant C > 0 that depends on ρini(θ, t)
and S such that when

M >
C(ρini(θ, t), S)

ε2η
, L >

C(ρini(θ, t), S)

ε
,

we have
P (|E(ΘL,M (s))− E(ρ(·, ·, s))| ≤ ε) ≥ 1− η , ∀s < S ,

where E(ΘL,M (s)) is defined in (2) and E(ρ(·, ·, s)) is defined in (8).

9
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The proof of this result appears in Appendix G. This theorem suggests that for every
fixed S > 0, arbitrarily large, the cost generated by ΘL,M that follows its gradient flow coded
in GD is comparable (with high probability) to the cost generated by ρ, the continuous
mean-field limit of ΘL,M , provided that L and M are sufficiently large. The size of the
ResNet depends negative-algebraically on ε (the desired accuracy) and η (the confidence
of success). The essence of this theorem is that it matches the zero-loss property of the
parameter configuration of a finite sized ResNet to its limiting PDE, whose analysis can be
performed with some standard PDE tools.

The proof of Theorem 6 divides naturally into two components: first, showing E(ρ(·, ·, s)) ≈
E(Θ(s; ·)) and second, showing E(Θ(s; ·)) ≈ E(ΘL,M (s)) for all s < S. The former amounts
to utilizing the mean-field limit theory and justifying that the particle trajectory θm(t, s)
follows ρ(θ, t, s) for all t in pseudo-time s ∈ [0, S]. The latter is to adopt the continuity in
t and trace the differences between θm( lL) and θl,m. These two components of the proof
are summarized in Theorems 31 and 32, respectively. According to the formula of the
Fréchet derivatives (10) and (11), the estimates in these theorems naturally route through the
boundedness of pρ, pΘ, pΘL,M , and similarly Zρ, ZΘ and ZΘL,M . These bounds are collected
in Theorem 10 and Lemmas 24 and 37.

To intuitively see the equivalence between (19) and (20), we test them on the same
smooth function h(θ). To test (20), we multiply it on both sides and perform integration by
parts to obtain:

d

ds

∫
Rk
h dρ(θ) = −

∫
Rk
∇θh∇θ

δEs(ρ(s))

δρ
dρ .

This is to say d
dsE(h) = −E

(
∇θh∇θ δEs(ρ(s))

δρ

)
. Testing h on (19) gives the same equivalence.

Suppose ρ = 1
M

∑M
m=1 δθm , then:

d

ds
E(h) =

1

M

M∑
m=1

∇θh(θm)
d

ds
θm = −

M∑
m=1

∇θh(θm)
δEs(Θ)

δθm
.

The right hand side is also−E
(
∇θh∇θ δEs(ρ(s))

δρ

)
if and only ifM δEs(Θ(s))

δθm
= ∇θ δEs(ρ(s))

δρ (θm, t).
This holds true, as presented in Lemma 34. The proof in Theorem 31 gives the rigorous
quantification in the convergence in M .

4.3 Descending to the Global Minimum

We investigate the convergence in s of the ρ system by studying the large-s behavior of the
limiting gradient flow equation (20). Our main theorem is the following.

Theorem 7 Assume that Assumption 3.1 holds and that ρini(θ, t) is admissible. Suppose
that ρ(θ, t, s) ∈ C([0,∞); C([0, 1];P2)) solves (20). If the following two conditions hold:

• there exists a long-time limit ρ∞(θ, t) ∈ C([0, 1];P2) such that ρ(θ, t, s) converges to
ρ∞(θ, t) in C([0, 1];P2) as s→∞;

• the support of ρ∞(θ, t0) is the full space Rk for some t0 ∈ [0, 1],

10
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then E(ρ∞) = 0, so that ρ∞ is a global minimizer. More specifically, for any ε > 0, there is
a constant C0 > 0 depending only on ρini(θ, t) and ε such that

E(ρ(s)) ≤ ε, ∀s > C0(ρini(θ, t), ε).

This theorem gives the conditions under which the long-time limit ρ∞, if achievable,
becomes a global minimizer with zero value of the objective E. Its proof, which uses PDE
analysis techniques, appears in Appendix E. The approach follows other similar results on
the global minimum: For every ρ with E(ρ) > 0, we can find a measure ν with

∫
dν = 0

such that δE(ρ)
δρ in the direction of ν is negative, suggesting that a better probability measure

than ρ can be obtained by descending along the ν direction. This essentially equates a steady
state with the global minimum; see Proposition 26. In addition, under the assumption that
ρ∞ is supported in the entire space, we show that the global minimum is achievable with the
flow suggested by the equation.

Remark 8 (Assumptions in Theorem 7.) There are two notable assumptions in Theo-
rem 7: First, that ρ(θ, t, s) converges to ρ∞(θ, t) as s→∞, and second, that ρ∞ is supported
on the whole domain Rk for some time t0 ∈ [0, 1]. These two assumptions are difficult to jus-
tify, but in Appendix F we describe some scenarios under which both conditions hold, though
these scenarios are themselves stringent. We leave an investigation of weaker conditions
under which the limit exists to future research.

When the neural network has two layers, with M →∞, (Chizat and Bach, 2018) shows
that the limiting gradient flow equation can achieve the global minimum without the full-
support condition. However, they require f to be 2-homogeneous or partially 1-homogeneous
(in θ). They also assume the convergence of ρ(θ, s) to ρ∞ in the s → ∞ limit. Without
additional structure in the activation function, proving global convergence is a challenging
task that we leave to future work.

4.4 Main Result: Global Convergence of Finite-sized ResNet

We are now ready to present the main result of the paper. Combining Theorems 6 and 7
we naturally obtain the main theorem that justifies the overparameterizing deep ResNet
architecture.

Theorem 9 Suppose that the conditions in Theorem 6 and 7 hold. Then for any positive
ε and η, there exist positive constants C0 depending on ρini(θ, t), ε and C depending on
ρini(θ, t), s such that when

s > C0(ρini(θ, t), ε) , M >
C(ρini(θ, t), s)

ε2η
, L >

C(ρini(θ, t), s)

ε
,

we have
P (|E(ΘL,M (s))| ≤ ε) ≥ 1− η .

This theorem states the final result of the paper: If ResNet is big enough, the gradient
descent, after running long enough time, finds nearly-zero loss solution with high probability.
The size of the ResNet algebraically depends on the accuracy and confidence level.

11
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5. Well-posedness and Mean-field Result

Some a priori estimates on the well-posedness of the dynamical system are necessary in the
course of establishing the long-time convergence result. We list well-posedness results in this
section. We show that the dynamical system for z has a unique and stable solution, and the
gradient flow of the parameter configuration is also well-posed.

5.1 Well-posedness of the OIE (7)

As L and M approach ∞, z satisfies the ordinary-integral equation presented in (7). We
justify that this differential equation is well-posed, in the sense that the solution is unique
and stable.

Theorem 10 Suppose that Assumption 3.1 holds, that x is in the support of µ, and that
ρ1, ρ2 ∈ C([0, 1];P2). Then (7) has a unique C1 solution. Further, this solution is stable, in
the sense that

|Zρ1(t;x)| ≤ C(L1) (22a)
|Zρ1(t;x)− Zρ2(t;x)| ≤ C(L1,L2)d1(ρ1, ρ2) , for all t ∈ [0, 1]. (22b)

Here C(·) are constants depending only on the given arguments, and Li are the second
moments of ρi (i = 1, 2), defined by Li =

∫ 1
0

∫
Rk |θ|

2dρi(θ, t) dt.

The proof of this result appears in Appendix B. The theorem suggests that a small perturba-
tion to ρ is linearly reflected in Zρ, the solution to (7). Thus, a small perturbation in the
parameterization of the ResNet leads only to a small perturbation to the ResNet output.

5.2 Well-posedness of the Adjusted Gradient Flow

The gradient flow of the parametrization is also well-posed, in both the discrete setting and
the continuous mean-field limit.

In the discrete setting, we have the following.

Theorem 11 Suppose that Assumption 3.1 holds, then (18) has a unique solution.

Next, we show that equation (20), which characterizes the dynamics of the continuous
mean-field limit of the parameter configuration, is also well-posed.

Theorem 12 Suppose that Assumption 3.1 holds and that ρini(θ, t) is admissible. Then
(20) has a unique solution ρ(θ, t, s) in C([0,∞); C([0, 1];P2)) with initial condition ρini(θ, t).
Furthermore, ρ(θ, t, s) is admissible for any s and

dEs(ρ(·, ·, s))
ds

≤ 0 . (23)

The proofs of both theorems can be found in Appendix D.
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Remark 13 Although we do not directly show the well-posedness of (4) and (19), it is
effectively a corollary of Theorem 10 and 12 above. One way to connect them is to reformulate
the discrete probability distribution as

ρdis
Θ (θ, t, s) =

1

M

M∑
m=1

δθm(s;t)(θ) , (24)

where Θ(s; t) = {θm(s; t)}Mm=1 is the list of trajectories. Since θm(0; t) is continuous in t, we
have ρdis

Θ (θ, 0; t) ∈ C([0, 1];P2). Because

1

M

M∑
m=1

f(z(t;x), θm(0; t)) =

∫
Rk
f(z(t;x), θ) dρdis

Θ (θ, t, 0) ,

using Theorem 10, (4) has a unique C1 solution ZΘ(t;x) when Θ(t) is continuous. Further-
more, according to the definition (16) and (17), we have

Es

(
ρdis

Θ (·, ·, s)
)

= Es (Θ(s; ·)) .

As a consequence, if Θ(s; t) satisfies (19), then ρdis
Θ satisfies (20), and vice versa. The

well-posedness result in Theorem 12 for (20) then can be extended to justify the well-posedness
of (19). The rigorous proof for this comment can be found in Remark 35.

6. Conclusion

First-order methods such as gradient descent can find a global optimizer that provides
zero-loss for fitting deep neural network. We explain this mechanism for ResNet in the
limiting regime when both the number of layers and the number of weights per layer approach
infinity. We show that GD of parameter configuration of ResNet can be translated to a
gradient flow of the limiting probability distribution. Furthermore, we give an estimate of the
size of such ResNets. Moreover, we show that under some conditions, the limiting gradient
flow captures the zero-loss as its global minimum.

In future work, we would like to relax the assumptions for the activation function and
the fully-supported condition required in Theorem 7. Furthermore, the regularized version
Es is used as a replacement of E for technical reasons, but we believe such strategy can be
relaxed as well.
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Appendix A. Introduction of the Appendix

This appendix contains proofs and supporting analysis for the theorems in the main text. We
start by proving well-posedness of the ResNet ODE and the gradient flow. This is followed by
the global convergence of the gradient-flow PDE. Finally, we prove the validity of continuous
and mean-field limit.

The specific organization of the appendix is as follows.

Appendix B: Proof of Theorem 10: Well-posedness of the ResNet ODE in its continuous
limit (4), and the mean-field limit (7).

Appendix C: Preparation of a-priori estimates, subsequently used to show well-posedness of
the gradient flow equation.

Appendix D: Proof of Theorem 11 and 12: Well-posedness of gradient flows (18) and (20).

Appendix E, F: Proof of Theorem 7: Global convergence of the gradient flow. (Section F
demonstrates validity of the assumption we made in the statement of Theorem 7.)

Appendix G-I: Proof of Theorem 6. Section G lays out the structure of the proof, Section H
shows the continuous limit, and Section I shows the mean-field limit.

The analytical core of the paper lies in Appendices E and G, which describe properties
of the gradient flow PDEs and explain why the gradient descent method for ResNet can be
explained by these gradient flow equations. The technical results of Appendix B-D can be
skipped by readers who are interested to proofs of the main results.

Throughout, we denote by C(·) a generic constant that depends on its arguments (·).
The precise value of this constant may change at each instance.

Appendix B. Proof of Theorem 10

First, we study well-posedness of the dynamical system by proving Theorem 10. Recall the
equation:

dZρ(t;x)

dt
= F (Zρ, t) , ∀t ∈ [0, 1] with z(0;x) = x , (25)

where for a given ρ ∈ C([0, 1];P2) we use the notation

F (z, t) =

∫
Rk
f(z, θ) dρ(θ, t) . (26)

The proof of Theorem 10 relies on the classical Lipschitz condition for the well-posedness
of an ODE.
Proof [Proof of Theorem 10] Since ρ ∈ C([0, 1];P2), we obtain that

sup
0≤t≤1

∫
Rk
|θ|2 dρ(θ, t) < C <∞ .

This implies that
∫
Rk |θ| dρ(θ, t) <

√
C for all t.

14



Convergence of gradient descent for overparameterized multi-layer ResNets

For any t ∈ [0, 1], using (12) from Assumption 3.1, we have

|f(z, θ)| ≤ C(|θ|+ 1)(|z|+ 1) , |f(z1, θ)− f(z2, θ)| ≤ C1|θ||z1 − z2| . (27)

Then, with the boundedness of the first moment of θ, we have

|F (z1, t)− F (z2, t)| ≤
∣∣∣∣∫

Rk
(f(z1, θ)− f(z2, θ)) dρ(θ, t)

∣∣∣∣
≤ C1

∣∣∣∣∫
Rk
|θ| dρ(θ, t)

∣∣∣∣ |z1 − z2| < C|z1 − z2| ,
(28)

meaning that F (z, t) is uniformly Lipschitz in z for all t ∈ [0, 1]. Therefore (7) has a unique
C1 solution.

To show the boundedness in (22a), we have from (27) and (26) that

|F (z, t)| ≤ C(|z|+ 1)

∫
Rk

(|θ|+ 1) dρ(θ, t) . (29)

Multiplying (25) and using (29), we obtain

d|Zρ1(t;x)|2

dt

≤ 2C
(
|Zρ1 |2 + |Zρ1 |

) ∫
Rk

(|θ|+ 1) dρ1(θ, t)

≤ 4C

∫
Rk

(|θ|+ 1) dρ1(θ, t)
(
|Zρ1(t;x)|2 + 1

)
,

Using Grönwall’s inequality, we have

|Zρ1(t;x)| ≤ exp

(
2C

(∫ 1

0

∫
Rk
|θ| dρ1 dt+ 1

))
(|x|+ 1)

≤ exp

(
2C

((∫ 1

0

∫
Rk
|θ|2dρ1 dt

)1/2

+ 1

))
(|x|+ 1)

≤ exp
(

2C
(√
L1 + 1

))
(|x|+ 1) ,

where L1 =
∫ 1

0

∫
Rk |θ|

2 dρ1 dt. Finally, to prove the stability result (22b), we define for
ρ1, ρ2 ∈ C([0, 1];P2) the notation

∆(t;x) = Zρ1(t;x)− Zρ2(t;x) .
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Then we have (using (28)) that

d|∆(t;x)|2

dt

= 2

〈
∆(t;x),

∫
Rk
f(Zρ1(t;x), θ) dρ1(θ, t)−

∫
Rk
f(Zρ2(t;x), θ) dρ2(θ, t)

〉
= 2

〈
∆(t;x),

∫
Rk
f(Zρ1(t;x), θ) dρ1(θ, t)−

∫
Rk
f(Zρ2(t;x), θ) dρ1(θ, t)

〉
+ 2

〈
∆(t;x),

∫
Rk
f(Zρ2(t;x), θ) dρ1(θ, t)−

∫
Rk
f(Zρ2(t;x), θ) dρ2(θ, t)

〉
≤ 2C1|∆(t;x)|2

∫
Rk
|θ| dρ1(θ, t) + 2C1|∆(t;x)|(|Zρ2(t;x)|+ 1)d1(ρ1, ρ2)

≤ 2C1

(∫
Rk
|θ| dρ1(θ, t) + 1

)
|∆(t;x)|2 + 2C1(|Zρ2(t;x)|+ 1)2d2

1(ρ1, ρ2) ,

(30)

where in the first inequality we first use the mean-value theorem and Assumption 3.1 (12) to
obtain

|f(Zρ1(t;x), θ)− f(Zρ2(t;x), θ)| ≤ C1|θ||Zρ1(t;x)− Zρ2(t;x)| = C1|θ||∆(t;x)| .

Next, let θ1 ∼ ρ1(θ, t) and θ2 ∼ ρ2(θ, t) such that
(
E
(
|θ1 − θ2|2

))1/2
= W2(ρ1(·, t), ρ2(·, t)).

Similarly, we also have∣∣∣∣∫
Rk
f(Zρ2(t;x), θ) dρ1(θ, t)−

∫
Rk
f(Zρ2(t;x), θ) dρ2(θ, t)

∣∣∣∣
≤E (|f(Zρ2(t;x), θ1)− f(Zρ2(t;x), θ2)|)
≤C1 (|Zρ2(t;x)|+ 1)E (|θ1 − θ2|)

≤C1 (|Zρ2(t;x)|+ 1)
(
E
(
|θ1 − θ2|2

))1/2
≤C1 (|Zρ2(t;x)|+ 1) d1(ρ1, ρ2)

,

Finally, since |∆(0;x)| = 0, we have

|∆(t;x)| ≤ 2C1d
2
1(ρ1, ρ2) exp

(
2C1

(√
L1 + t

))∫ t

0
(|Zρ2(t;x)|+ 1)2 ds

where we use Grönwall’s inequality and
∫ 1

0

∫
Rk |θ|dρ1(θ, t)dt ≤

√
L1 by Hölder’s inequality.

By substituting |Zρ2(t;x)| from (22a), we complete the proof of (22b).

Appendix C. A Priori Estimates of the Cost Function

Some a priori estimates are necessary in the proof for the main theorems. We prove two
lemmas here.

For Es, standard techniques (see (Lu et al., 2020)) show that

δEs(ρ)

δρ
(θ, t) = Ex∼µ

(
p>ρ (t;x)f(Zρ(t;x), θ)

)
+ e−s|θ|2 , (31)
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where pρ(t;x) is the solution to the following ODE:
∂p>ρ
∂t

= −p>ρ
∫
Rk
∂zf(Zρ(t;x), θ) dρ(θ, t) ,

pρ(1;x) = (g(Zρ(1;x))− y(x))∇g(Zρ(1;x)) .

(32)

According to assumption (13), µ(x) has a compact support with |x| < R.
Our first lemma shows that pρ is Lipschitz continuous with respect to ρ.

Lemma 14 Suppose that Assumption 3.1 holds and that x in the support of µ. Suppose that
ρ1, ρ2 ∈ C([0, 1];P2) with corresponding solutions pρ1 , pρ2 of (32), and denote

Li =

∫ 1

0

∫
Rk
|θ|2 dρi(θ, t) dt .

Then the following two bounds are satisfied:

|pρ1(t;x)| ≤ C(L1) , (33a)
|pρ1(t;x)− pρ2(t;x)| ≤ C(L1,L2)d1(ρ1, ρ2) . (33b)

Proof From (12) in Assumption 3.1, with i = 1 and j = 0, we have∣∣∣∣∫
Rk
∂zf(Zρ1(t;x), θ) dρ1(θ, t)

∣∣∣∣ ≤ C1

∫
Rk
|θ| dρ1(θ, t) . (34)

it follows from the initial conditions of (32) that

|pρ1(1;x)| ≤ C(|Zρ1(1, x)|+ 1) ≤ C(L1) . (35)

where we use Assumption 3.1 in the first inequality and (22a) in the second inequality. Noting
that (32) is a linear equation, (33a) follows naturally when we combine (34) with (35) and
use

∫ 1
0

∫
Rk |θ| dρ1(θ, t) dt ≤ L1/2

1 .
To prove (33b), we define

∆(t;x) = pρ1(t;x)− pρ2(t;x) .

First, when t = 1 and |x| < R, we have from the initial conditions that

|∆(1;x)| =|pρ1(1;x)− pρ2(1;x)|
= |(g(Zρ1(1;x))− y(x))∇g(Zρ1(1;x))− (g(Zρ2(1;x))− y(x))∇g(Zρ2(1;x))|
≤C(L1,L2)|Zρ1(1;x)− Zρ2(1;x)| ≤ C(L1,L2)d1(ρ1, ρ2) ,

(36)

where we use Assumption 3.1, (22a), and |x| < R in the first inequality and (22b) in the
second inequality. The following ODE is satisfied by ∆:

∂∆>(t;x)

∂t
= −∆>(t;x)

∫
Rk
∂zf(Zρ1(t;x), θ) dρ1(θ, t) + p>ρ2

(t;x)Dρ1,ρ2(t;x) , (37)
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where

Dρ1,ρ2(t;x) =

∫
Rk
∂zf(Zρ2(t;x), θ) dρ2(θ, t)−

∫
Rk
∂zf(Zρ1(t;x), θ) dρ1(θ, t) .

The boundedness of Dρ1,ρ2(t;x) can be shown similarly to (30), by first splitting into two
terms:

|Dρ1,ρ2(t;x)| ≤
∣∣∣∣∫

Rk
∂zf(Zρ2(t;x), θ) dρ2(θ, t)−

∫
Rk
∂zf(Zρ2(t;x), θ) dρ1(θ, t)

∣∣∣∣︸ ︷︷ ︸
(I)

+

∣∣∣∣∫
Rk

[∂zf(Zρ2(t;x), θ)− ∂zf(Zρ1(t;x), θ)] dρ1(θ, t)

∣∣∣∣︸ ︷︷ ︸
(II)

.

(38)

The bound of (II) relies on Assumption 3.1 and (22b):

(II) ≤ C1 |Zρ1(t;x)− Zρ2(t;x)|
∫
Rk
|θ|2dρ1(θ, t)

≤ C(L1,L2)

(∫
Rk
|θ|2dρ1(θ, t)

)
d1(ρ1, ρ2).

(39)

To bound (I), noticing that ρi are admissible, we let θ1 ∼ ρ1(θ, t) and θ2 ∼ ρ2(θ, t) such
that

(
E
(
|θ1 − θ2|2

))1/2
= W2(ρ1(·, t), ρ2(·, t)). We then have

(I) ≤ E (|∂zf(Zρ2(t;x), θ1)− ∂zf(Zρ2(t;x), θ2)|)
≤ C1 (|Zρ2(t;x)|+ 1)E ((|θ1|+ |θ2|)|θ1 − θ2|)
≤ C(L2)E ((|θ1|+ |θ2|)|θ1 − θ2|)

≤ C(L2)
(
E
(
|θ1|2 + |θ2|2

))1/2 (E (|θ1 − θ2|2
))1/2

≤ C(L2)
(
E
(
|θ1|2 + |θ2|2

))1/2
d1(ρ1, ρ2)

= C(L2)

(∫
Rk
|θ|2dρ1(θ, t) +

∫
Rk
|θ|2dρ2(θ, t)

)1/2

d1(ρ1, ρ2) ,

(40)

where we use the mean-value theorem and Assumption 3.1 (12) in the second inequality: For
some λ ∈ (0, 1), we have

|∂zf(Zρ2(t;x), θ1)− ∂zf(Zρ2(t;x), θ2)| ≤ |∂z∂θf(Zρ2(t;x), θ1 + λθ2)||θ1 − θ2|
≤ C1 (|Zρ2(t;x)|+ 1) (|θ1|+ |θ2|)|θ1 − θ2|.

(41)

We use (22a) in the third inequality.
By substituting (40) and (39) into (38) and using Hölder’s inequality, we obtain

|Dρ1,ρ2(t;x)| ≤ C(L1,L2)

(∫
Rk
|θ|2dρ1(θ, t) +

∫
Rk
|θ|2dρ2(θ, t) + 1

)
d1(ρ1, ρ2) .

18



Convergence of gradient descent for overparameterized multi-layer ResNets

By using this bound in (37), using (34) and Hölder’s inequality, we have

d|∆(t;x)|2

dt
≤C(L1,L2)

(∫
Rk
|θ|2dρ1(θ, t) +

∫
Rk
|θ|2dρ2(θ, t) + 1

)
|∆(t;x)|2

+ C(L1,L2)

(∫
Rk
|θ|2dρ1(θ, t) +

∫
Rk
|θ|2dρ2(θ, t) + 1

)
d2

1(ρ1, ρ2) .

(42)

Finally, we use Grönwall’s inequality with the initial condition (36) to obtain (33b).

Our second lemma concerns the continuity of ∇θ δEs(ρ)
δρ .

Lemma 15 Assume ρ, ρ1, ρ2 ∈ C([0, 1];P2). Defining

L =

∫ 1

0

∫
Rk
|θ|2dρ(θ, t) dt, L̃ = sup

{∫ 1

0

∫
Rk
|θ|2dρ1(θ, t) dt,

∫ 1

0

∫
Rk
|θ|2dρ2(θ, t) dt

}
,

then for any (θ1, t1), (θ2, t2) ∈ Rk × [0, 1] and s > 0, we have

• Boundedness: ∣∣∣∣∇θ δEs(ρ)

δρ
(θ1, t1)

∣∣∣∣ ≤ 2|θ1|+ C(L) , (43)

• Lipschitz continuity in θ and t:∣∣∣∣∇θ δEs(ρ)

δρ
(θ1, t1)−∇θ

δEs(ρ)

δρ
(θ2, t2)

∣∣∣∣
≤ C(L)

(
|θ1 − θ2|+ (|θ2|+ 1)|t1 − t2|1/2

)
,

(44)

• Lipschitz continuity in ρ:∣∣∣∣∇θ δEs(ρ1)

δρ
(θ, t)−∇θ

δEs(ρ2)

δρ
(θ, t)

∣∣∣∣ ≤ C(L̃)d1(ρ1, ρ2) (|θ|+ 1) , (45)

where d1 is defined in (2).

Proof From (31), we have

∇θ
δEs(ρ)

δρ
(θ, t) = Ex∼µ

(
p>ρ (t;x)∂θf(Zρ(t;x), θ)

)
+ 2e−sθ , (46)

which gives∣∣∣∣∇θ δEs(ρ)

δρ
(θ, t)

∣∣∣∣ ≤ Ex∼µ (‖∂θf(Zρ(t;x), θ)‖ |pρ(t;x)|) + 2 |θ| ≤ 2|θ|+ C(L) ,

where we use (13), (22a), and (33a) in the second inequality. Thus, (43) is proved.
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To prove (44), we use assume t1 > t2 without loss of generality, use (46), and reformulate
bound the left-hand side of (44) as follows:∣∣∣∣∇θ δEs(ρ)

δρ
(θ1, t1)−∇θ

δEs(ρ)

δρ
(θ2, t2)

∣∣∣∣
≤
∣∣∣Ex∼µ (p>ρ (t1;x)∂θf(Zρ(t1;x), θ1)− p>ρ (t1;x)∂θf(Zρ(t1;x), θ2)

)∣∣∣︸ ︷︷ ︸
(I)

+
∣∣∣Ex∼µ (p>ρ (t1;x)∂θf(Zρ(t1;x), θ2)− p>ρ (t1;x)∂θf(Zρ(t2;x), θ2)

)∣∣∣︸ ︷︷ ︸
(II)

+
∣∣∣Ex∼µ (p>ρ (t1;x)∂θf(Zρ(t2;x), θ2)− p>(t2;x)∂θf(Zρ(t2;x), θ2)

)∣∣∣︸ ︷︷ ︸
(III)

+2e−s|θ1 − θ2| .

(47)
The bounds on all three terms in this expression rely on (12) with the mean-value theorem
in Assumption 3.1. For (I), we have

|∂θf(Zρ(t1;x), θ1)− ∂θf(Zρ(t1;x), θ2)| ≤ |∂2
θf(Zρ(t1;x), (1− λ)θ1 + λθ2)||θ1 − θ2|

≤ C1(|Zρ(t1;x)|+ 1)2|θ1 − θ2|
≤ C(L)|θ1 − θ2| ,

where we use (12) with mean-value theorem (λ ∈ [0, 1]) in the first two inequalities, and
(22a) in the last inequality.

To bound term (II), we have from (25) and (27) that

|Zρ(t1;x)− Zρ(t2;x)| ≤
∣∣∣∣∫ t1

t2

∫
Rk
f(Zρ(t;x), θ) dρ(θ, t) dt

∣∣∣∣
≤
∫ t1

t2

∫
Rk
|f(Zρ(t;x), θ)| dρ(θ, t) dt

≤ C
∫ t1

t2

∫
Rk

(|Zρ(t;x)|+ 1)(|θ|+ 1) dρ(θ, t) dt

(a)

≤ C(L)

(∫ t1

t2

∫
Rk

(|θ|+ 1) dρ(θ, t) dt

)
(b)

≤ C(L)

(∫ t1

t2

∫
Rk

(|θ|+ 1)2 dρ(θ, t) dt

)1/2(∫ t1

t2

∫
Rk

1 dρ(θ, t) dt

)1/2

(c)

≤ C(L)
√
t1 − t2 ,

where we use (22a) in (a), Hölder’s inequality in (b), and
∫
Rk dρ(θ, t) = 1 for all t ∈ [0, 1] in

(c). This implies

(II) ≤ Ex∼µ
(
|p>ρ (t1;x)| |∂θf(Zρ(t1;x), θ2)− ∂θf(Zρ(t2;x), θ2)|

)
≤ C(L)Ex∼µ (|∂θf(Zρ(t1;x), θ2)− ∂θf(Zρ(t2;x), θ2)|)
≤ C(L)Ex∼µ (|θ2| |Zρ(t1;x)− Zρ(t2;x)|) ≤ C(L)|θ2|

√
t1 − t2 ,
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where we use (33a) in the first inequality, |∂x∂θf(x, θ)| ≤ C1|θ|(|x| + 1) with mean-value
theorem and (22a) in the second inequality.

To bound term (III), we also use (32) to obtain

|pρ(t1;x)− pρ(t2;x)| ≤
∣∣∣∣∫ t1

t2

∫
Rk
p>ρ (t;x)∂zf(Zρ(t;x), θ) dρ(θ, t) dt

∣∣∣∣
≤ C1|p>ρ (t;x)|

∫ t1

t2

∫
Rk
|θ| dρ(θ, t) dt

≤ C(L)

∣∣∣∣∫ t1

t2

∫
Rk
|θ| dρ(θ, t) dt

∣∣∣∣
≤ C(L)

√
t1 − t2 ,

where we use |∂zf(Zρ(t;x), θ)| < C1|θ| in the second inequality, (33a) in the third inequality,
and Hölder’s inequality with

∫
Rk dρ(θ, t) = 1 in the last inequality. This implies

(III) ≤ Ex∼µ (|∂θf(Zρ(t2;x), θ2)||pρ(t1;x)− pρ(t2;x)|) ≤ C(L)
√
t1 − t2 ,

where we also use |∂θf(Zρ(t2;x), θ2)| ≤ C1(|Zρ(t2;x)|+ 1) ≤ C(L) by (22a). These estimates
together with (47) lead to (44).

Finally, to prove (45), we have from (31) that∣∣∣∣∇θ δEs(ρ1)

δρ
(θ, t)−∇θ

δEs(ρ2)

δρ
(θ, t)

∣∣∣∣
= Ex∼µ (|∂θf(Zρ1(t;x), θ)pρ1(t;x)− ∂θf(Zρ2(t;x), θ)pρ2(t;x)|)
≤ Ex∼µ (|∂θf(Zρ1(t;x), θ)− ∂θf(Zρ2(t;x), θ)| |pρ1(t;x)|)

+ Ex∼µ (|∂θf(Zρ2(t;x), θ)| |pρ1(t;x)− pρ2(t;x)|)

≤ C
(
L̃
)

(|θ|Ex∼µ (|Zρ1(t;x)− Zρ2(t;x)|) + Ex∼µ (|pρ1(t;x)− pρ2(t;x)|))

≤ C
(
L̃
)
d1(ρ1, ρ2) (|θ|+ 1) .

In the second inequality we use |∂z∂θf(z, θ)| ≤ C1|θ|(|z|+ 1) with mean-value theorem and
(22a) to obtain that

|∂θf(Zρ1(t;x), θ)− ∂θf(Zρ2(t;x), θ)|
≤ |∂z∂θf((1− λ)Zρ1(t;x) + λZρ2(t;x), θ)| |Zρ1(t;x)− Zρ2(t;x)|

≤C
(
L̃
)
|θ| |Zρ1(t;x)− Zρ2(t;x)| ,

where λ ∈ [0, 1].

Appendix D. Proof of Theorem 12 and Theorem 11

Theorem 12 states the well-posedness of equation (20), the continuous mean-field limit of
the gradient flow. We verify that the solution is unique and the energy is nonincreasing.
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The proof uses a fixed-point argument: We build a map and show that this map allows
only a single fixed point. Fixing S > 0, for any φ(θ, t, s) ∈ C

(
[0, S]; C([0, 1];P2)

)
and

φ(θ, t, 0) = ρini(θ, t), we define a map

ϕ = TS(φ) : C
(
[0, S]; C([0, 1];P2)

)
→ C

(
[0, S]; C([0, 1];P2)

)
(48)

where ϕ solves: 
∂ϕ(θ, t, s)

∂s
= ∇θ ·

(
ϕ(θ, t, s)∇θ

δEs(φ(s))

δρ
(θ, t)

)
,

ϕ(θ, t, 0) = ρini(θ, t) .

(49)

The proof is divided into three steps:

Step 1: We show this map is well-defined and maps a C
(
[0, S]; C([0, 1];P2)

)
measure to a

C
(
[0, S]; C([0, 1];P2)

)
measure. Furthermore, if the second moment of φ is bounded,

then T (φ) also has a bounded second moment, and we can specify such boundedness.

Step 2: We give a bound of d2(TS(φ1), TS(φ2)) using d2(φ1 , φ2). Furthermore, the associated
energy is non-increasing.
By combining steps 1 and 2, we can find a small enough S so that TS is a contraction
map in a complete subset of C

(
[0, S]; C([0, 1];P2)

)
. Then, according to the contraction

map theorem, there is a unique distribution in the function space so that φ∗ = TS(φ∗),
meaning that φ∗ solves (49) itself, and is thus the unique solution to (20) for s < S.

Step 3: We extend the local solution to a global solution.

D.1 Step 1

For fixed φ(θ, t, s), we define the gradient flow:
dθφ(s; t)

ds
= −∇θ

δEs(φ(s))

δρ
(θ, t) (θφ(s; t), t) ,

θφ(0; t) ∼ ρini(θ, t) .

(50)

Then ϕ = TS(φ) is the probability measure of θφ for any s ∈ [0, S]. Well-posedness of ϕ
translates to the well-posedness of θφ.

According to (44) in Lemma 15, the force ∇θ δEs(φ(s))
δρ (θ, t)(·, t) is a Lipschitz function

with any t ∈ [0, 1]. The classical ODE theory then suggests there is a unique solution for
s ∈ [0, S], which depends continuously on the initial θ(0; t).

Denoting

LS,φ = sup
0≤s≤S

∫ 1

0

∫
Rk
|θ|2 dφ(θ, t, s) dt, Lsup

ini = sup
0≤t≤1

∫
Rk
|θ|2 dρini(θ, t) , (51)

we have the following proposition.
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Proposition 16 Suppose that θφ(0; t) is a random measurable path drawn from ρini(θ, t) and
that θφ(s; t) is the solution to (50). Then for any (t1, s1), (t2, s2) ∈ [0, 1]× [0, S], we have

E
(
|θφ(s1; t1)|2

)
≤ exp(5S)

(
Lsup

ini + SC(LS,φ)
)
, (52)

and
E
(
|θφ(s1; t1)− θφ(s2; t2)|2

)
≤ C

(
LS,φ,Lsup

ini , S
) (

E
(
|θφ(0; t1)− θφ(0; t2)|2

)
+ |t1 − t2|+ |s1 − s2|2

)
,

(53)

Proof To prove (52), we use (43) and (50) to obtain that

d |θφ(s; t1)|2

ds
≤ 4 |θφ(s; t1)|2 + 2 |θφ(s; t1)|C(LS,φ) ≤ 5 |θφ(s; t1)|2 + C(LS,φ) .

Using Grönwall’s inquality, we obtain, for all s1 < S

|θφ(s1; t1)|2 ≤ exp(5S) |θφ(0; t1)|2 + exp(5S)SC(LS,φ) .

By taking the expectation with respect to ρini(θ, t), we have

E
(
|θφ(s1; t1)|2

)
≤ exp(5S)E

(
|θφ(0; t1)|2

)
+exp(5S)SC(LS,φ) ≤ exp(5S)(Lsup

ini +SC(LS,φ)) ,

completing the proof of (52).
For the left-hand side of (53), we have

E
(
|θφ(s1; t1)− θφ(s2; t2)|2

)
≤ 2E

(
|θφ(s1; t1)− θφ(s1; t2)|2

)
︸ ︷︷ ︸

(I)

+2E
(
|θφ(s1; t2)− θφ(s2; t2)|2

)
︸ ︷︷ ︸

(II)

, (54)

and bound the two terms (I) and (II) separately.

(I): From (50) and (44) in Lemma 15, we have

d |θφ(s; t1)− θφ(s; t2)|2

ds
≤ C(LS,φ) |θφ(s; t1)− θφ(s; t2)|2 + |θφ(s; t1)|2 |t1 − t2| ,

which implies

E
(
|θφ(s1; t1)− θφ(s1; t2)|2

)
≤ C

(
LS,φ,Lsup

ini , S
)(

E
(
|θφ(0; t1)− θφ(0; t2)|2

)
+

(∫ s1

0
E |θφ(s; t1)|2 ds

)
|t1 − t2|

)
≤ C

(
LS,φ,Lsup

ini , S
) (

E
(
|θφ(0; t1)− θφ(0; t2)|2

)
+ |t1 − t2|

)
,

(55)

where we use the bound (52) in the second inequality.
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(II): This is estimated by integrating (50) from s1 to s2 and using the bound of ∇θ δEs(ρ)
δρ

from (43). From the Grönwall inequality and (52), we have

|θφ(s1; t2)− θφ(s2; t2)| ≤ C
(
LS,φ,Lsup

ini , S
)

(|s1−s2|+|es1−e−s2 |) ≤ C
(
LS,φ,Lsup

ini , S
)
|s1−s2| .

The second inequality comes from the fact that si < S. This leads to

E |θφ(s1; t2)− θφ(s2; t2)|2 ≤ C
(
LS,φ,Lsup

ini , S
)
|s1 − s2|2 . (56)

By substituting (55) and (56) into (54), we complete the proof of (53).

An immediate corollary of Proposition 16 is that the map TS(·) is well-defined.

Corollary D.1 For every S > 0, the map TS is well-defined. That is, for any φ ∈
C
(
[0, S]; C([0, 1];P2)

)
, one can find ϕ = TS(φ) ∈ C([0, S]; C([0, 1];P2)) as the unique so-

lution of (49). In particular, for any (t, s) ∈ [0, 1]× [0, S], we have∫
Rk
|θ|2dϕ(θ, t, s) ≤ exp(5S)(Lsup

ini + SC(LS,φ)) , (57)

where C(LS,φ) is a quantity depending only on LS,φ.

Proof For fixed (t, s) ∈ [0, 1]× [0, S], define ϕ(θ, t, s) as the distribution of θφ(s; t). Using
the classical stochastic theory (Ambrosio et al., 2008, Prop 8.1.8), ϕ(θ, t, s) is a solution to
(49). For fixed (t, s) ∈ [0, 1]× [0, S], we prove (57) due to (52). Finally, using (14) and (53),
we obtain that

lim
(t,s)→(t0,s0)

W2(ϕ(·, t, s), ϕ(·, t0, s0)) ≤ lim
(t,s)

(
E
(
|θφ(s; t)− θφ(s0; t0)|2

))1/2
= 0 ,

which proves that ϕ ∈ C
(
[0, S]; C([0, 1];P2)

)
.

D.2 Step 2.

We show first the contraction property.

Proposition 17 For any φ1, φ2 ∈ C([0, S]; C([0, 1];P2)), we have

d2(TS(φ1), TS(φ2)) ≤ Q(LS)(S exp(5S)(Lsup
ini + SQ(LS)) + S)1/2d2(φ1, φ2), (58)

where Q : R+ → R+ is an increasing function and LS = max{LS,φ1 ,LS,φ2} with LS,φ defined
in (51).

Proof Denote by θφi(s; t) the solutions to (50) with φ = φi, and suppose that the initial
conditions match, that is,

θφ1(0; t) = θφ2(0; t) .
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Similar to the previous subsection, we translate the study of ϕi to the study of θφi . Define

∆t(s) = |θφ1(s; t)− θφ2(s; t)| ,

we have
d2(TS(φ1), TS(φ2)) ≤ sup

(t,s)∈[0,1]×[0,S]
E
(
∆2
t (s)

)
.

Using (50), we have

d(∆t(s))
2

ds
≤ 4(∆t(s))

2 + 4

∣∣∣∣∇θ δEs(φ1(s))

δρ
(θφ1 , t)−∇θ

δEs(φ2(s))

δρ
(θφ2 , t)

∣∣∣∣2
≤ 4(∆t(s))

2 + 8

∣∣∣∣∇θ δEs(φ1(s))

δρ
(θφ1 , t)−∇θ

δEs(φ1(s))

δρ
(θφ2 , t)

∣∣∣∣2
+ 8

∣∣∣∣∇θ δEs(φ1(s))

δρ
(θφ2 , t)−∇θ

δEs(φ2(s))

δρ
(θφ2 , t)

∣∣∣∣2 .
(59)

The second term on the right-hand side concerns the continuity addressed in Lemma 15 (44).
To bound the last term, we use (45) to obtain∣∣∣∣∇θ δEs(φ1(s))

δρ
(θφ2 , t)−∇θ

δEs(φ2(s))

δρ
(θφ2 , t)

∣∣∣∣
≤ C(LS)d1(φ1(s), φ2(s)) (|θφ2 |+ 1) ≤ C(LS)d2(φ1, φ2) (|θφ2 |+ 1) ,

where we use (12), (22a), (33a) in the first inequality and (22b), (33b) in the second inequality,
with d2 defined in Definition 3. By substituting into (59), we obtain

d(∆t(s))
2

ds
≤ C(LS)

[
(∆t(s))

2 + d2
2(φ1, φ2)

(
|θφ2 |2 + 1

)]
,

Using the Grönwall inequality, we then have

E
(
(∆t(s))

2
)
≤ C(LS)

(∫ s

0
E|θφ2(u; t)|2du+ s

)
d2

2(φ1, φ2)

≤ C(LS)d2
2(φ1, φ2)(S exp(5S)(Lsup

ini + SC(LS)) + s) ,

completing the proof.

We are now ready to run the contraction-map argument that justifies the existence and
uniqueness of the local solution. According to the contraction mapping theorem, we need to
verify two conditions in order to show that there is a φ∗ = TS(φ∗):

• There is a closed subset in C([0, S];C([0, 1],W2)) so that TS maps it to itself; and

• TS is a contraction map in this subset.

We define the closed subset next.
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Definition 18

Bρ0 =

{
φ ∈ C([0, S]; C([0, 1];P2))

∣∣∣∣∣ sup
t∈[0,1],0≤s≤S

∫
Rk
|θ|2 dφ(θ, t, s) ≤ 4Lsup

ini

}
.

We now claim that for small enough S, TS is a contraction map in Bρ0 .

Proposition 19 Suppose that S is small enough that

exp(5S)(Lsup
ini + SQ(4Lsup

ini )) < 4Lsup
ini ,

Q(4Lsup
ini )(S exp(5S)(Lsup

ini + SQ(4Lsup
ini )) + S)1/2 < 1

2 ,
(60)

where Q comes from Proposition 17. Then the following are true.

• If φ ∈ Bρ0 , then TS(φ) ∈ Bρ0 , that is,

sup
t∈[0,1],0≤s≤S

∫
Rk
|θ|2 dT (φ)(θ, t, s) ≤ 4Lsup

ini (61)

• TS is a contraction map in this subset, meaning that for any φ1, φ2 ∈ Bρ0 , we have

d2(TS(φ1), TS(φ2)) ≤ 1
2d2(φ1, φ2) . (62)

Proof First, using Corollary D.1 (57), we have∫ 1

0

∫
Rk
|θ|2 dT (φ1)(θ, t, s)dt ≤ exp(5S)(Lsup

ini + SQ(4Lsup
ini )) ≤ 4Lsup

ini ,

which proves (61). Then, using (58), we have

d2(TS(φ1), TS(φ2)) ≤ Q(4Lsup
ini )(S exp(5S)(Lsup

ini +SQ(4Lsup
ini ))+S)1/2d2(φ1, φ2) < 1

2d2(φ1, φ2),

which proves (62).

Using the contraction mapping theorem, we can obtain directly that TS(φ) has a fixed
point in Bρ0 when S is small enough.

Corollary D.2 If S satisfies (60), then there exists φ∗(θ, t, s) ∈ Bρ0 ⊂ C([0, S]; C([0, 1];P2))
such that φ∗(θ, t, s) is a solution to (20) with initial condition ρini(θ, t) and admissible for
each s.

Proof According to Proposition 19, TS is a contraction map in Bρ0 . The result then follows
immediately from the contraction mapping theorem and the admissibility of TS(φ) by its
definition.

Finally, we prove that the cost function decays along the flow.
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Lemma 20 Fix S > 0. If φ∗(θ, t, s) ∈ C([0, S]; C
(
[0, 1];P2)

)
such that φ∗(θ, t, s) is a solution

to (20) with initial condition ρini(θ, t), then for 0 < s < S, we have

dEs(φ
∗(·, ·, s))
ds

≤ 0 .

Proof Denote by θ∗(s; t) the solution to (50) with φ = φ∗. Then since φ∗ is the unique
solution up to s ≤ S, the probability distribution of θ∗ is φ∗ itself.

According to (20), we obtain formally that

dEs(φ
∗(·, ·, s))
ds

= −
∫ 1

0

∫
Rk

∣∣∣∣∇θ δEs(φ∗(s))δρ
(θ, t)

∣∣∣∣2 dφ∗(θ, t, s) dt− exp−s
∫ 1

0

∫
Rk
|θ|2 dφ∗(θ, t, s) dt

= −
∫ 1

0
E

(∣∣∣∣∇θ δEs(φ∗(s))δρ
(θ∗(s; t), t)

∣∣∣∣2
)

dt− exp−s
∫ 1

0
E(|θ∗(s; t)|2) dt

≤ 0 ,

(63)

which proves the result. We note that the rigorous proof of (63) is in Appendix J.

D.3 Step 3:

In this final step of the proof, we extend the local solution of Corollary D.2 to a global
solution. Since Lemma 20 shows that Es is decaying with s, we can then improve the bound
for the second moment of the solution (57). We have the following corollary.

Corollary D.3 For fixed S > 0, denote by φ∗(θ, t, s) ∈ C
(
[0, S]; C([0, 1];P2)

)
the solution

to (20) with initial condition ρini(θ, t). Then for any (t, s) ∈ [0, 1]× [0, S], we have∫
Rk
|θ|2 dφ∗(θ, t, s) ≤ exp(5s)(Lsup

ini + C(s)) , (64)

where the quantity C depends only on s.

Proof Using Es(φ∗(θ, t, s)) < E0(φ∗(θ, t, 0)), we first have

sup
0≤u≤s

∫ 1

0

∫
Rk
|θ|2 dφ∗(θ, t, s) dt ≤ exp(s)E0(ρini(θ, t)) .

Then, using (57), we obtain that∫
Rk
|θ|2 dT (φ∗)(θ, t, s) ≤ exp(5s)(Lsup

ini + sC(exp(s)E0(ρini(θ, t)))) ,

proving (64).
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This corollary takes an important step. By contrast with (57), it removes the dependence
of the bound on LS,φ, so the fixed-point argument need no longer depend on the initial guess
φ.

We are now are ready to prove the Theorem 12.
Proof [Proof of Theorem 12]

From Corollary D.2, if S1 satisfies (60), we obtain a local solution φ∗ ∈ C([0, S1]; C([0, 1];P2))
to (20), which is admissible for any s.

Denote by S∗ the supremum of such constants for which the solution exists. We hope
to show that S∗ = ∞. If not, then denote the solution by φ∗ ∈ C

(
[0, S∗); C([0, 1];P2)

)
.

According to (64), for any s < S∗ and t ∈ [0, 1], we have∫
Rk
|θ|2 dφ∗(θ, t, s) ≤ exp(5S∗)(Lsup

ini +Q2(S∗)) = L∗,sup .

Let us choose ∆S∗ small enough to satisfy

exp(5∆S∗)(L∗,sup + ∆S∗Q(4L∗,sup)) < 4L∗,sup,

Q(4L∗,sup)(∆S∗ exp(5∆S∗)(L∗,sup + ∆S∗Q(4L∗,sup)) + ∆S∗)
1/2 < 1

2 .

Then, using Proposition 19 and Corollary D.2, we can further extend φ∗ to be supported on
C
(
[0, S∗ + ∆S∗); C([0, 1];P2)

)
. This contradicts the assumption that we have to stop at a

finite value of S∗. Thus S∗ =∞.
Finally, (23) is a direct result of Lemma 20.

D.4 Proof of Theorem 11

In this section, we consider the finite layer case (1) and prove Theorem 11. In (2),
∇ΘL,ME(ΘL,M ) can also be written as

∂E(ΘL,M )

∂θl,m
=

1

ML
Ex∼µ

(
∂θf(ZΘL,M (l;x), θl,m)pΘL,M (l;x)

)
, (65)

where pΘL,M (l;x) can be solved by the following iteration formula:
p>ΘL,M (l;x) = p>ΘL,M (l + 1;x)

(
I +

1

ML

M∑
m=1

∂zf
(
ZΘL,M (l + 1;x), θl+1,i

))
pΘL,M (L− 1;x) =

(
g(ZΘL,M (L;x))− y(x)

)
∇g(ZΘL,M (L;x))

, (66)

for 0 ≤ l ≤ L− 2. Similar to Definitions 2 and 3, we make the following definition.

Definition 21 ΘL,M = {θl,m}L−1,M
l=0,m=1 ∈ L

∞
L,M if and only if

sup
l,m
|θl,m| <∞ .

The metric in L∞L,M is defined as

d1,L,M

(
ΘL,M , Θ̃L,M

)
= max

l

(
1

M

M∑
m=1

|θl,m − θ̃l,m|2
)1/2

.
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Definition 22 For s ≥ 0, we have ΘL,M (s) = {θl,m(s)}L−1,M
l=0,m=1 ∈ C([0,∞);L∞L,M ) if and

only if

1. For fixed s ∈ [0,∞), ΘL,M (s) ∈ L∞L,M , and

2. For any s0 ∈ [0,∞), we have

lim
s→s0

d1,L,M (ΘL,M (s),ΘL,M (s0)) = 0 ,

where d1,L,M is defined in Definition 21.

The metric in C([0,∞);L∞L,M ) is defined by

d2,L,M

(
ΘL,M , Θ̃L,M

)
= sup

s
d1,L,M (ΘL,M (s), Θ̃L,M (s)) .

Theorem 11 is a corollary of the following result.

Theorem 23 Suppose that Assumption 3.1 holds. If ΘL,M (0) ∈ L∞L,M then (18) has a
unique solution in C([0,∞);L∞L,M ).

Before proving the Theorem 23, we first prove boundedness and stability of ZΘL,M and
pΘL,M , similarly to Theorem 10 and Lemma 14.

Lemma 24 Suppose that Assumption 3.1 holds and that x in the support of µ. Let

Θ̃L,M =
{
θ̃l,m

}L−1,M

l=0,m=1

be a set of parameters, in addition to ΘL,M , and denote

LΘL,M =
1

LM

L−1∑
l=0

M∑
m=1

|θl,m|2, L
Θ̃L,M

=
1

LM

L−1∑
l=0

M∑
m=1

|θ̃l,m|2 .

Then there exist constants C(LΘL,M ) depending on LΘL,M and C(LΘL,M ,LΘ̃L,M
) depending

on LΘL,M ,LΘ̃L,M
such that for all 0 ≤ l ≤ L− 1, we have the following bounds:∣∣ZΘL,M (l + 1;x)

∣∣ ≤ C(LΘL,M ) , (67a)∣∣∣ZΘL,M (l + 1;x)− Z
Θ̃L,M

(l + 1;x)
∣∣∣ ≤ C(LΘL,M ,LΘ̃L,M

)d1,L,M

(
ΘL,M , Θ̃L,M

)
, (67b)

∣∣pΘL,M (l;x)
∣∣ ≤ C(LΘL,M ) , (68a)∣∣∣pΘL,M (l;x)− p

Θ̃L,M
(l;x)

∣∣∣ ≤ C(LΘL,M ,LΘ̃L,M
)d1,L,M

(
ΘL,M , Θ̃L,M

)
. (68b)
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Proof Using (1) and (27), we obtain that

(∣∣ZΘL,M (l + 1;x)
∣∣+ 1

)
≤ C1

(
1 +

1

LM

M∑
m=1

|θl,m|

)
(
∣∣ZΘL,M (l;x)

∣∣+ 1)

≤ C1 exp

(
1

LM

M∑
m=1

|θl,m|

)
(
∣∣ZΘL,M (l;x)

∣∣+ 1) ,

which proves (67a) by iteration.
Similarly, using (12), we obtain that

1

ML

M∑
m=1

|∂zf
(
ZΘL,M (l + 1;x), θl,m

)
| ≤ C1

ML

M∑
m=1

|θl,m| ,

which by (66) implies that

|pΘL,M (l;x)| ≤

(
1 +

C1

LM

M∑
m=1

|θl,m|

)
|pΘL,M (l + 1;x)| .

From this bound, together with |pΘL,M (x, L− 1)| ≤ C|ZΘL,M (L;x)| ≤ C(LΘL,M ), we prove
(68a) by iteration.

To prove (67b), similarly to (30), we use (1), (12), and (67a) to obtain∣∣∣ZΘL,M (l + 1;x)− Z
Θ̃L,M

(l + 1;x)
∣∣∣

≤

(
1 +

C1

ML

M∑
m=1

|θl,m|

)∣∣∣ZΘL,M (l;x)− Z
Θ̃L,M

(l;x)
∣∣∣+

C(LΘL,M ,LΘ̃L,M
)

ML

M∑
m=1

|θl,m − θ̃l,m| .

By using this bound iteratively in conjunction with the boundary condition |ZΘL,M (0;x)−
Z

Θ̃L,M
(0;x)| = 0, we prove (67b).

To prove (68b), similarly to the proof of Lemma 14 (37)-(42), we use (12) and (66)-(68a)
to obtain∣∣∣pΘL,M (l;x)− p

Θ̃L,M
(l;x)

∣∣∣
≤

∣∣∣∣∣(pΘL,M (l + 1;x)− p
Θ̃L,M

(l + 1;x))>

(
I +

1

ML

M∑
m=1

∂zf
(
ZΘL,M (l + 1;x), θl+1,m

))∣∣∣∣∣
+

∣∣∣∣∣p>Θ̃L,M (l + 1;x)

(
1

ML

M∑
m=1

(
∂zf

(
ZΘL,M (l + 1;x), θl+1,i

)
− ∂zf

(
Z

Θ̃L,M
(l + 1;x), θ̃l+1,m

)))∣∣∣∣∣
≤ C(LΘL,M ,LΘ̃L,M

)

(
1

ML

M∑
m=1

|θl,m|+ 1

)∣∣∣pΘL,M (l + 1;x)− p
Θ̃L,M

(l + 1;x)
∣∣∣

+ C(LΘL,M ,LΘ̃L,M
)

(
1

ML

M∑
m=1

|θl,m|2 + |θ̃l,m|2 +
1

L

)
d1,L,M

(
ΘL,M , Θ̃L,M

)
.

(69)
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Similarly to (36), we have

|pΘL,M (L− 1;x)− p
Θ̃L,M

(L− 1;x)| ≤ C|ZΘL,M (L;x)− Z
Θ̃L,M

(L;x)|

≤ C
(
LΘL,M ,LΘ̃L,M

)
d1,L,M

(
ΘL,M , Θ̃L,M

)
.

By combining with (69), we prove (68b) by iteration.

We are now ready to prove Theorem 23, and thus also its corollary, Theorem 11.
Proof [Proof of Theorem 23] The proof is quite similar to that of Theorem 12, so we omit
some details.

Recall (18):

dΘL,M (s)

ds
= −ML∇ΘL,ME(ΘL,M (s))− 2e−sΘL,M (s) = −ML∇ΘL,MEs(ΘL,M (s)).

Similarly to Lemma 15, using (65) and Lemma 24, we have the following bound and stability
inequalities for ML∇ΘL,MEs(ΘL,M ):∣∣ML∇ΘL,MEs(ΘL,M )

∣∣ ≤ 2|ΘL,M |+ C (L) (70a)∣∣∣ML∇ΘL,MEs(ΘL,M )−ML∇
Θ̃L,M

Es(Θ̃L,M )
∣∣∣ ≤ C (L) |ΘL,M − Θ̃L,M | , (70b)

where

L = max

{
1

LM

L−1∑
l=0

M∑
m=1

|θl,m|2,
1

LM

L−1∑
l=0

M∑
m=1

|θ̃l,m|2
}
.

Similarly to Step 1 of the proof in Section D, we can first construct a map induced by (18).
Using (70a) and (70b), similar to Step 1 in the earlier proof, we can show that this map is
well-defined. Further, similar to Step 2 in Section D, we can show that this map is locally
contracted in C([0,∞);L∞L,M ). Finally, for a local solution to (18), dEs

ds ≤ 0 is clearly true,
which implies that the proof in Step 3 of Section D can also be applied here. Thus, we obtain
a global solution.

Appendix E. Long-time Equilibrium and the Convergence to the Global
Minimizer

We prove Theorem 7 in this section. The strategy is as follows. First, we show that for
any ρ for which E(ρ) > 0, we can find a direction ν so that the Fréchet derivative of E(·)
along this direction is negative, meaning that an infinitesimal change to ρ in direction ν
will decrease E. This fact suggests that any stable point ρ, which has δE(ρ)

δρ = 0, must be a
global minimizer of E, with E(ρ) = 0. This part of the discussion presented in Section E.1,
Proposition 26. Second, in Section E.2, we show that such a minimizer of E can be obtained
as the long-time equilibrium of (20).

Note that we assume throughout this section that Assumption 3.1 holds (it being one of
the assumptions in Theorem 7).
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E.1 δE(ρ)
δρ = 0 vs. E(ρ) = 0

We prove here that if ρ is a stable point for E, then it is actually a global minimizer. We
start by proving a lower bound for pρ.

Lemma 25 Suppose that ρ ∈ C([0, 1];P2) and that pρ is a solution to (11). Denoting

Lρ =

∫ 1

0

∫
Rk
|θ|2 dρ(θ, t) ,

then for any t ∈ [0, 1] we have

Ex∼µ
(
|pρ(t;x)|2

)
≥ Q2(Lρ)E(ρ) , (71)

where Q2 : R+ → R+ is a decreasing function.

Proof Recall the initial condition for pρ in (11):

pρ(1;x) = (g(Zρ(1;x))− y(x))∇g(Zρ(1;x)) .

According to Assumption 3.1 (part 3) and the definition (8) we therefore have

Ex∼µ
(
|pρ(1;x)|2

)
≥ δ2

1E(ρ) .

Further, since the equation (11) is linear, that is,

∂p>ρ
∂t

= −p>ρ
∫
Rk
∂zf(Zρ, θ) dρ(θ, t) , (72)

we have
d|pρ(t;x)|2

dt
≤
(

2C1

∫
Rk
|θ| dρ(θ, t)

)
|pρ(t;x)|2 ,

where we used (34) to bound
∣∣∫

Rk ∂zf(Zρ(t;x), θ) dρ(θ, t)
∣∣. By solving this equation, we

obtain

|pρ(t;x)|2 ≥ |pρ(1;x)|2 exp

(
−2C1

∫ 1

t

∫
Rk
|θ| dρ(θ, t)

)
≥ C(Lρ)|pρ(1;x)|2 .

We finalize the proof by taking expectation of both sides. (Monotonicity is a consequence of
the format of the exponential term.)

The following proposition shows existence of a descent direction from any ρ for which
E(ρ) > 0.

Proposition 26 Suppose that ρ ∈ C([0, 1];P2). If E(ρ) > 0, then for any t0 ∈ [0, 1], there
exists a measure ν(θ) of Rk such that

∫
Rk dν(θ) = 0 and∫

Rk

δE(ρ)

δρ
(θ, t0) dν(θ) < 0 . (73)
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Proof Denote

Lρ =

∫ 1

0

∫
Rk
|θ|2 dρ(θ, t) dt .

According to the existence and uniqueness of solution to (7), for any t ∈ [0, 1], we can
construct a map Zt such that

Zt(x) = Zρ (t;x) .

Since the trajectory can be computed backwards in time, Z−1
t is well-defined. Furthermore,

we denote µ∗t = (Zt)]µ the pushforward of µ under map Zt and let:

p∗(t;x) = pρ
(
t;Z−1

t (x)
)
.

By Assumption 3.1 and classical ODE theory, Zt and Z−1
t are both continuous maps in x,

and so are pρ(t;x) and p∗(t;x). With the change of variables, for all t ∈ [0, 1]

δE(ρ)

δρ
(θ, t) =

∫
Rd
p>ρ (t;x)f(Zt(x), θ) dµ =

∫
Rd

(p∗(t;x))>f(x, θ) dµ∗t . (74)

For a fixed t0 ∈ [0, 1], calling Lemma 14, we have the boundedness of the Jacobian, meaning

supx∈supp(µ)

∥∥∥∥ dµ∗t0
(Z−1
t (x))

dµ(x)

∥∥∥∥
2

≤ C(Lρ). As a consequence, µ∗t0(x) has a compact support since

µ(x) has one. We denote the size of the support R∗, meaning supp
(
µ∗t0(x)

)
⊂ {x : |x| < R∗}.

We now derive a general formula for
∫ δE(ρ)

δρ (θ, t) dν. Recall (74), we have:∫
Rk

δE(ρ)

δρ
(θ, t0) dν(θ)

=

∫
Rd

(p∗(t0;x))>
(∫

Rk
f(x, θ) dν(θ)

)
dµ∗t0(x)

=

∫
Rd

(p∗(t0;x))>
(∫

Rk
f(x, θ) dν(θ) + p∗(t0;x)

)
dµt0(x)

−
∫
Rd

(p∗(t0;x))>p∗(t0;x) dµ∗t0(x)

=

∫
Rd

(p∗(t0;x))>
(∫

Rk
f(x, θ) dρ(θ) + p∗(t0;x)−

∫
Rk
f(x, θ) d(ρ− ν)(θ)

)
dµt0(x)

−
∫
Rd

(p∗(t0;x))>p∗(t0;x) dµ∗t0(x) .

(75)

Noticing that according to Lemma 25, if E(ρ) 6= 0, the second term above is strictly
negative (< −Q2(Lρ)E(ρ)), the goal then is to find ν so that

∫
dν = 0 and that the first

term is rather small. This makes the full term
∫
Rk

δE(ρ)
δρ (θ, t0) dν(θ) negative.

Denote a continuous function

h(x) =

∫
Rk
f(x, θ) dρ(θ, t0) + p∗ (t0;x) ,

then according to Assumption 3.1, for arbitrarily small ε, there is a ν̂ so that
∫
ν̂ = 0 and∥∥∥∥h(x)−

∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

∥∥∥∥
L∞|x|<R∗

≤ ε .
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This implies∫
Rd

(p∗(t0;x))>
(∫

Rk
f(x, θ) dρ(θ) + p∗(t0;x)−

∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

)
dµt0(x)

=

∫
Rd

(p∗(t0;x))>
(
h(x)−

∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

)
dµt0(x)

≤
∫
Rd
|p∗(t0;x)|

∣∣∣∣h(x)−
∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

∣∣∣∣ dµ∗t0(x)

≤‖p∗(t0;x)‖L∞|x|<R∗

∥∥∥∥h(x)−
∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

∥∥∥∥
L∞|x|<R∗

≤ ε ‖p∗(t0;x)‖L∞|x|<R∗

. (76)

Choose ε small enough so that∫
Rd

(p∗(t0;x))>
(∫

Rk
f(x, θ) dρ(θ) + p∗(t0;x)−

∫
Rk
f(x, θ) d(ρ− ν̂)(θ)

)
dµt0(x)

≤ε ‖p∗(t0;x)‖L∞|x|<R∗ ≤
1

2
Q(Lρ)E(ρ) .

(77)

Let ν = ν̂. Plugging (77) into (75) and using Lemma 25 (71), we have∫
δE(ρ)

δρ
(θ, t0) dν(θ) < 0 ,

which finishes the proof.

E.2 Proof of Theorem 7

Proof [Proof of Theorem 7] If ρ(θ, t, s) converges to ρ∞(θ, t) in C([0, 1];P2), then we have

sup
s≥0,t∈[0,1]

∫
Rk
|θ|2 dρ(θ, t, s) <∞ .

Since ρ(θ, t, s) is a weak solution to (20) and it converges to ρ∞(θ, t), we obtain that
∂sρ|ρ∞ = 0, so that3

∇ ·
(
ρ∞∇

δE(ρ∞)

δρ
(θ, t)

)
= 0 , a.e. (78)

From (12), (27), and (33a),∣∣∣∣δE(ρ∞)

δρ
(θ, t)

∣∣∣∣ ≤ C(|θ|+ 1),

∣∣∣∣∇δE(ρ∞)

δρ
(θ, t)

∣∣∣∣ ≤ C .
3. This statement can be made rigorous. Since lims→∞ d1(ρ(θ, t, s), ρ∞(θ, t)) = 0, we have from (45) that

lims→∞∇ δEs(ρ)
δρ(s)

(θ, t) = ∇ δE(ρ)
δρ∞

(θ, t). Due to the bound (45), the convergence is uniform in (θ, t) ∈
Br × [0, 1] for any r > 0. Following the protocol for weak solution, we multiply smooth compact support
test functions on both sides of (20) and integrate. As s→∞, the integrand converges uniformly, leading
to (78).
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Multiplying δE(ρ∞)
δρ (θ, t) on the left hand-side of (78) and integrating by parts, since ρ∞(θ, t)

in C([0, 1];P2), the boundary term vanishes. And we obtain∫ 1

0

∫
Rk

∣∣∣∣∇δE(ρ∞)

δρ
(θ, t)

∣∣∣∣2 dρ∞ dt = 0 ,

From continuity of ∇ δE(ρ∞)
δρ and ρ∞(θ, t) in C([0, 1];P2),

∫
Rk

∣∣∣∇ δE(ρ∞)
δρ (θ, t)

∣∣∣2 dρ∞ is contin-
uous in t. Thus, we finally have

ρ∞(θ, t)∇δE(ρ∞)

δρ
(θ, t) = 0 , ∀t ∈ [0, 1]

When the support of ρ∞(θ, t0) is Rk, we have from continuity of ∇ δE(ρ∞)
δρ in (44) that

∇δE(ρ∞)

δρ
(θ, t0) = 0 , ∀θ ∈ Rk ,

implying that there is a constant c such that

δE(ρ∞)

δρ
(θ, t0) = c , ∀θ ∈ Rk .

When E(ρ) > 0, then according to Proposition 26, we can find a measure ν(θ) so that∫
Rk

dν(θ) = 0 and
∫
Rk

δE(ρ∞)

δρ
(θ, t0) dν(θ) < 0 .

We thus have a contradiction, since

0 >

∫
Rk

δE(ρ∞)

δρ
(θ, t0) dν(θ) = c

∫
Rk

dν(θ) = 0 .

We conclude that E(ρ∞) = 0, proving the theorem.

Appendix F. Discussion of the Fully-supported Condition in Theorem 7

In this section we give two examples where the fully-supported condition holds true.

Proposition 27 Suppose that Assumption 3.1 holds and that ρini(θ, t) is admissible. Let
ρ(θ, t, s) ∈ C([0,∞); C([0, 1];P2)) be the solution to (20). If the support of ρini(θ, t0) is Rk
for some t0 ∈ [0, 1], then for any finite s, the support of ρ(θ, t0, s) is Rk.

This proposition suggests that if the initial probability distribution ρini is supported on the
whole domain, this property is preserved for all finite s. A second example is as follows.
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Proposition 28 Suppose that Assumption 3.1 holds, that ρini(θ, t) is admissible, and that
the support of ρini(θ, t0) is Rk for some t0 ∈ [0, 1]. Let ρ(θ, t, s) ∈ C([0,∞); C([0, 1];P2)) be
the solution to (20), and θρ(s; t, θ0) be the solution to corresponding particle presentation:

∂θρ(s; t, θ0)

∂s
= −∇θ

δEs(ρ(s))

δρ
(θρ(s; t, θ0), t) , ∀s > 0, t ∈ [0, 1]

θρ(0; t, θ0) = θ0 .

(79)

If lims→∞ θρ(s; t, θ0) = θρ(∞; t, θ0) uniformly in θ0, t, then there exists ρ∞(θ, t) so that
lims→∞ ρ(θ, t, s) = ρ∞(θ, t) in C([0, 1];P2) and the support of ρ∞(θ, t0) is the full space Rk.

This proposition validates the condition required in Theorem 6, thus allowing E(ρ∞) = 0 in
the prescribed situation.

We prove the two propositions here.
Proof [Proof of Proposition 27] According to Section D.1, ρ(θ, t, s) has a particle representa-
tion from the solution of the ODE (50). Let S > 0 be fixed. According to Lemma 15, we
have for any s ∈ [0, S] that ∇θ δEs(ρ(s))

δρ is Lipschitz in θ. Therefore, the following ODE also
has a unique solution for s ∈ [0, S] for any t ∈ [0, 1] and θS ∈ Rk:

∂θ(s; t)

∂s
= −∇θ

δEs(ρ(s))

δρ
(θ(s; t), t)

θ(S; t) = θS

.

This fact suggests that (50) produces a bijection from θ(0; t) ∈ Rk to θ(S; t) ∈ Rk. Because
the solution to (50) also depends continuously on initial data and the support of ρini(θ, t0) is
Rk, we obtain that the support of ρ(θ, t0, s) is also Rk for any s <∞, proving the result.

Proof [Proof of Proposition 28] According to Section D.1, ρ(θ, t, s) has a particle representa-
tion from the solution of the ODE (79), where θ0 is replaced by θ0(t) and θ0(t) ∼ ρini(θ, t).
We define ρ∞(θ, t) as the distribution of θρ(∞; t, θ0(t)). Since

lim
s→∞

θρ(s; t, θ) = θρ(∞; t, θ)

uniformly in θ, t, we obtain that

lim
s→∞

sup
t∈[0,1]

W2 (ρ∞(θ, t), ρ(θ, t, s)) ≤ lim
s→∞

sup
t∈[0,1]

E
(
|θρ(s; t, θ0(t))− θρ(∞; t, θ0(t))|2

)
= 0 ,

which proves the convergence condition of Theorem 7.
Next, consider any small ball Br

(
θ̃
)
⊂ Rk, where θ̃ ∈ Rk and r > 0. According to

Proposition 27, we obtain that∫
Br/2(θ̃)

dρ(θ, t0, s) > 0 , for all s > 0,

which implies that

P
(
θρ(s; t, θ0(t)) ∈ Br/2

(
θ̃
))

> 0 , for all s > 0.
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Because of the uniformly convergence, we can choose S large enough so that

sup
t∈[0,1], θ∈Rk

|θρ(S; t, θ)− θρ(∞; t, θ)| ≤ r

2
.

We then obtain∫
Br(θ̃)

dρ∞(θ, t0) = P
(
θρ(∞; t, θ0(t)) ∈ Br

(
θ̃
))
≥ P

(
θρ(S; t, θ0(t)) ∈ Br/2

(
θ̃
))

> 0 .

Since Br
(
θ̃
)
is a arbitrary ball in Rk, this proves that the support of ρ∞(θ, t0) is Rk.

Appendix G. Proof of Theorem 6

We start by giving the full definition of limit-admissible ρ.

Definition 29 For an admissible ρ(θ, t), we say ρ(θ, t) is limit-admissible if the average
of a large number of particle presentations is bounded and Lipschitz with high probability.
That is, for an admissible ρ(θ, t), there are two constants C3 and C4, both greater than
supt∈[0,1]

∫
Rk |θ|

2dρ(θ, t) such that, for any M stochastic process presentation {θm(t)}Mm=1

that are i.i.d. drawn from ρ(θ, t), the following properties are satisfied for any η > 0 and
M > C3

η :

1. Second moment boundedness in time:

P

(
sup
t∈[0,1]

1

M

M∑
m=1

|θm(t)|2 ≤ C4

)
≥ 1− η . (80)

2. For all L > 0, we have

P

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

∣∣∣∣θm(t)− θm
(
l

L

)∣∣∣∣2 dt ≤ C4

L2

)
≥ 1− η . (81)

Remark 30 We note that it is relatively easy to have ρ(θ, t) be limit-admissible and satisfy
(80) and (81). For example, if ρ(θ, t) = ρ(θ) and θ(t) = θ, then (81) is directly satisfied.
Furthermore, if

∫
Rk |θ|

4 dρ(θ) is finite, then using Chebyshev’s inequality, we have

P

(∣∣∣∣∣ sup
t∈[0,1]

1

M

M∑
m=1

|θm(t)|2 −
∫
Rk
|θ|2 dρ(θ)

∣∣∣∣∣ ≤
(∫

Rk
|θ|4 dρ(θ)

)1/2
)

= P

(∣∣∣∣∣ 1

M

M∑
m=1

(
|θm|2 −

∫
Rk
|θ|2dρ(θ)

)∣∣∣∣∣ ≤
(∫

Rk
|θ|4 dρ(θ)

)1/2
)

≥ 1−
E
(∣∣∣ 1

M

∑M
m=1

(
|θm|2 −

∫
Rk |θ|

2 dρ(θ)
)∣∣∣2)∫

Rk |θ|4 dρ(θ)

≥ 1− 1

M
.

.
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Since
∫
Rk |θ|

2 dρ(θ) ≤
(∫

Rk |θ|
4 dρ(θ)

)1/2, this implies (80) with

C3 = 1, C4 = 2

(∫
Rk
|θ|4 dρ(θ)

)1/2

.

Theorem 6 addresses the convergence in both M and L. We organize the discussion into
the following two theorems, which are subsequently proved in the latter two sections.

The first theorem addresses the limit in M , specifically, the setup in which ResNet has
infinite layers L =∞ and finite width M <∞, but we are interested in the limiting loss for
lager M . We refer this part of analysis as “mean-field analysis.”

Theorem 31 Suppose that Assumption 3.1 holds, ρini(θ, t) is limit-admissible, and {θm(0; t)}Mm=1

are i.i.d drawn from ρini(θ, t). Suppose too that

• ρ(θ, t, s) solves (20) with the initial condition ρini(θ, t), and

• θm(s; t) solves (19) with the initial condition θm(0; t).

Then for any positive values of ε, η, and S, there exists a constant C(ρini(θ, t), S) > 0
depending on ρini(θ, t) and S such that when

M >
C(ρini(θ, t), S)

ε2η
,

we have
P (|E(Θ(s; ·))− E(ρ(·, ·, s))| ≤ ε) ≥ 1− η , ∀s < S .

Proof See Appendix H.

The conclusion of this result suggests that for a 1 − η confidence of an ε accuracy, M
grows polynomially with respect to 1/ε and 1/η.

The second result considers the convergence of discrete ResNet (1) to continuous ResNet
(4) as L→∞. This part of analysis is called “continuous limiting analysis.”

Theorem 32 Suppose that Assumption 3.1 holds, ρini(θ, t) is limit-admissible, and {θm(0; t)}Mm=1

are i.i.d drawn from ρini(θ, t). Suppose too that

• θm(s; t) solves (19) with initial condition θm(0; t), and

• θl,m(s) solves (18) with initial condition θm
(
0; lL

)
.

Then for any positive ε, η, and S, there exists a constant C(ρini(θ, t), S) > 0 depending on
ρini(θ, t) and S such that when

M ≥ C(ρini(θ, t), S)

η
, L ≥ C(ρini(θ, t), S)

ε

we have for all s < S that

P (|E(Θ(s; ·))− E(ΘL,M (s))| ≤ ε) ≥ 1− η .
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Proof See Appendix I.

This theorem shows that when the width M is large enough, then with high probability,
the difference of loss functions between the discrete ResNet and its continuous limit decreases
to 0 as L→∞.

Remark 33 According to the proof in Appendix I, the result of Theorem 32 can be strength-
ened: In particular, the lower bound of M could be relaxed. If one incorporates η dependence
in C4 (in (80)) and let it be large enough, the lower bound in M in Definition 29 can be
removed, relaxing the requirement on M in the previous theorem.

Appendix H. Convergence to the Mean-field PDE

This section is dedicated to mean-field analysis and the proof of Theorem 31. We first present
some intuition.

H.1 An Intuitive Argument for the Equivalence

To intuitively see the equivalence between (19) and (20), we test them on the same smooth
function h(θ). Testing (20) amounts to multiplying h on both sides and performing integration
by parts:

d

ds

∫
Rk
h dρ(θ) = −

∫
Rk
∇θh∇θ

δEs(ρ(s))

δρ
dρ .

This is to say d
dsE(h) = E(∇θh∇θ δEs(ρ(s))

δρ ). Testing h on (19), we should expect the same
equivalence.

Setting ρ = 1
M

∑M
m=1 δθm , we have from (19) that

d

ds
E(h) =

1

M

M∑
m=1

∇θh(θm)
d

ds
θm = −

M∑
m=1

∇θh(θm)
δEs
δθm

.

The right hand side is also E(∇θh∇θ δEs(ρ(s))
δρ ) if and only if

M
δEs(Θ(s))

δθm
= ∇θ

δEs(ρ(s))

δρ
(θm, t) ,

a fact that we show rigorously below.

Lemma 34 For a list of continuous trajectories Θ(t) = {θm(t)}Mm=1, denote

ρΘ =
1

M

M∑
m=1

δθm(t)(θ)

then for all 1 ≤ m ≤M and t ∈ [0, 1], we have

δEs(Θ)

δθm
(t) =

1

M
∇θ

δEs(ρΘ)

δρ
(θm(t), t) . (82)
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Proof For every fixed m with 1 ≤ m ≤M , we denote by θ̃m(t) the direction of perturbation,
and define the new system

Θ̃ε(t) =
{
θ̃i,ε(t)

}M
i=1

,

by setting θ̃i,ε(t) = θi(t) for i 6= m and θ̃m,ε(t) = θm(t) + εθ̃m(t) for small ε > 0. Using the
definition of the Fréchet derivative, we have∫ 1

0

δEs(Θ)

δθm
(t)θ̃m(t) dt = lim

ε→0

Es

(
Θ̃ε

)
− Es(Θ)

ε

= lim
ε→0

Es

(
ρ

Θ̃,ε

)
− Es(ρΘ)

ε

(I)
= lim

ε→0

1

ε

[∫ 1

0

∫
Rk

δEs(ρΘ)

δρ

(
dρ

Θ̃,ε
− dρΘ

)]
= lim

ε→0

1

Mε

[∫ 1

0

(
δEs(ρΘ)

δρ
(θ̃m,ε(t), t)−

δEs(ρΘ)

δρ
(θm(t), t)

)
dt

]
=

1

M

∫ 1

0
∇θ

δEs(ρΘ)

δρ
(θm(t), t)θ̃m(t) dt .

In (I), we use d1(ρ
Θ̃,ε
, ρΘ,ε) = O(ε) and a property of Fréchet derivative ((Lu et al., 2020,

Theorem 2)) to obtain that∣∣∣∣Es(ρΘ̃,ε
)− Es(ρΘ)−

[∫ 1

0

∫
Rk

δEs(ρΘ)

δρ
(θ, t)

(
dρ

Θ̃,ε
− dρΘ

)
dt

]∣∣∣∣ ≤ o(d1(ρ
Θ̃,ε
, ρΘ,ε)) = o(ε) .

Because θ̃m(t) is an arbitrary perturbation, the result (82) is proved.

Remark 35 As a direct consequence of this result, we can verify Remark 13 rigorously as
well.
Proof [Proof of Remark 13] From Lemma 34, we see that (19) can be written as

dθm(s; t)

ds
= −∇θ

δEs(ρ
dis
Θ )

δρ
(θm(s; t), t) , m = 1, 2, . . . ,M . (83)

For any smooth test function h and t ∈ [0, 1], we have

d

ds

(∫
Rk
h(θ) dρdis

Θ (θ, t, s)

)
=

d

ds

(
1

M

M∑
m=1

h(θm(s; t))

)

=
1

M

M∑
m=1

−∇h(θm(s; t)) · ∇θ
δEs(ρ

dis
Θ )

δρ
(θm(s; t), t)

= −
∫
Rk
∇h(θ) · ∇θ

δEs(ρ
dis
Θ )

δρ
(θ, t) dρdis

Θ (θ, t, s) ,

which implies from integration by parts that ρdis
Θ (θ, t, s) is a weak solution to (20).
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H.2 Discussion of Stability in the Mean-field Regime

We first provide a priori estimates to show the stability of Z and p. Let ρ(θ, t) ∈ C([0, 1];P2),

and
{
θ̃m(t)

}M
m=1

and {θm(t)}Mm=1 be two distinct paths. Defining

ρdis(θ, t) =
1

M

M∑
m=1

δθm(t)(θ), ρ̃dis(θ, t) =
1

M

M∑
m=1

δ
θ̃m(t)

(θ) , (84)

we have the following lemma.

Lemma 36 Let ρdis and ρ̃dis be as defined in (84). Suppose that Zρ and Zρdis are the
solutions of (7) using ρ and ρdis, respectively, and pρ and pρdis solve (11) using ρ and ρdis,
respectively. Denote

Lsup = sup
t∈[0,1]

{∫
Rk
|θ|2 dρ(θ, u) du,

1

M

M∑
m=1

|θm(t)|2, 1

M

M∑
m=1

∣∣∣θ̃m(t)
∣∣∣2} . (85)

There exists a constant C(Lsup) that depends only on Lsup such that for all t ∈ [0, 1], we have∣∣Zρ(t;x)− Zρdis(u;x)
∣∣

≤ C(Lsup)

(
1

M

M∑
m=1

∫ 1

0

∣∣∣θm(τ)− θ̃m(τ)
∣∣∣2 dτ

)1/2

+ C(Lsup)

(∫ 1

0

∣∣∣∣∫
Rk
f (Zρ(τ ;x), θ) d(ρ(θ, τ)− ρ̃dis(θ, τ))

∣∣∣∣2 dτ

)1/2

,

(86)

and ∣∣pρ(t;x)− pρdis(t;x)
∣∣

≤ C(Lsup)

(
1

M

M∑
m=1

∫ 1

0

∣∣∣θm(τ)− θ̃m(τ)
∣∣∣2 dτ

)1/2

+ C(Lsup)

(∫ 1

0

∣∣∣∣∫
Rk
f (Zρ(τ ;x), θ) d(ρ(θ, τ)− ρ̃dis(θ, τ))

∣∣∣∣2 dτ

)1/2

+ C(Lsup)

(∫ 1

0

∣∣∣∣∫
Rk
∂zf (Zρ(τ ;x), θ) d(ρ(θ, τ)− ρ̃dis(θ, τ))

∣∣∣∣2 dτ

)1/2

.

(87)

Proof For ease of notation, we define

Z(t;x) = Zρ(t;x), Zdis(t;x) = Zρdis(t;x), Z̃dis(t;x) = Zρ̃dis(t;x) ,

p(t;x) = pρ(t;x), pdis(t;x) = pρdis(t;x), p̃dis(t;x) = pρ̃dis(t;x) ,

and denote

∆̃(t;x) = Z(t;x)− Z̃dis(t;x), ∆(t;x) = Z̃dis(t;x)−Zdis(t;x), ∆p(t;x) = p(t;x)−pdis(t;x) .
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To prove (86), we have by similar reasoning to (30) that

d
∣∣∣∆̃(t;x)

∣∣∣2
dt

≤

(
2C1

M

M∑
m=1

∣∣∣θ̃m(t)
∣∣∣+ 1

)∣∣∣∆̃(t;x)
∣∣∣2+

∣∣∣∣∫
Rk
f (Z(t;x), θ) d(ρ(θ, t)− ρ̃dis(θ, t))

∣∣∣∣2 .
Using the Grönwall inequality and the fact that |∆̃(0;x)| = 0, we obtain the following, for
all t ∈ [0, 1]:

∣∣∣∆̃(t;x)
∣∣∣ ≤ C(Lsup)

(∫ 1

0

∣∣∣∣∫
Rk
f (Z(τ ;x), θ) d(ρ(θ, τ)− ρ̃dis(θ, τ))

∣∣∣∣2 dτ

)1/2

. (88)

Similarly, we have

d |∆(t;x)|2

dt
≤

(
2C1

M

M∑
m=1

|θm(t)|2 + 1

)
|∆(t;x)|2

+

∣∣∣∣∫
Rk
f
(
Z̃dis(t;x), θ

)
d(ρdis(θ, t)− ρ̃dis(θ, t))

∣∣∣∣2
≤ C(Lsup) |∆(t;x)|2 + C2

1

(∣∣∣Z̃dis(t;x)
∣∣∣+ 1

)2
(

1

M

M∑
m=1

∣∣∣θm(t)− θ̃m(t)
∣∣∣)2

≤ C(Lsup)

[
|∆(t;x)|2 +

(
1

M

M∑
m=1

∣∣∣θm(t)− θ̃m(t)
∣∣∣2)] ,

where we use Assumption 3.1 (12) in the second inequality and (22a) in the last inequality.
Since ∆(0;x) = 0, we use the Grönwall’s inequality to obtain the following, for all t ∈ [0, 1]:

|∆(t;x)| ≤ C(Lsup)

(
1

M

M∑
m=1

∫ 1

0

∣∣∣θm(τ)− θ̃m(τ)
∣∣∣2 dτ

)1/2

. (89)

We obtain (86) by adding (88) and (89).
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To prove (87), we recall (11) to obtain

d|∆p(t;x)|2

dt

= 2

〈
∆p(t;x), p>ρ

∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)− p>ρdis

∫
Rk
∂zf(Zdis(t;x), θ) dρdis(θ, t))

〉
= 2

〈
∆p(t;x), (p>ρ − p>ρdis)

∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)

〉
+ 2

〈
∆p(t;x), p>ρdis

(∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)−

∫
Rk
∂zf(Zdis(t;x), θ) dρdis(θ, t))

)〉
≤ 2

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)

∣∣∣∣ |∆p(t;x)|2

+ 2|∆p(t;x)||pρdis |
∣∣∣∣∫

Rk
∂zf(Z(t;x), θ) dρ(θ, t)−

∫
Rk
∂zf(Zdis(t;x), θ) dρdis(θ, t))

∣∣∣∣
≤ C(Lsup)|∆p(t;x)|2

+ 2

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)−

∫
Rk
∂zf(Zdis(t;x), θ) dρdis(θ, t)

∣∣∣∣2
≤ C(Lsup)|∆p(t;x)|2

+ 6

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)−

∫
Rk
∂zf(Z(t;x), θ) dρ̃dis(θ, t)

∣∣∣∣2
+ 6

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρ̃dis(θ, t)−

∫
Rk
∂zf(Z(t;x), θ) dρdis(θ, t)

∣∣∣∣2︸ ︷︷ ︸
(I)

+ 6

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρdis(θ, t)−

∫
Rk
∂zf(Zdis(t;x), θ) dρdis(θ, t)

∣∣∣∣2︸ ︷︷ ︸
(II)

,

(90)
where we use (12) from Assumption 3.1 along with (22a) and (33a) in the second inequality.
We then bound the last two terms. To bound (I), we use (12) from Assumption 3.1 along
with (22a), and an analysis similar to (41) to obtain

(I) ≤

(
1

M

M∑
m=1

∣∣∣∂zf(Z(t;x), θm(t))− ∂zf(Z(t;x), θ̃m(t))
∣∣∣)2

≤ C(Lsup)

(
1

M

M∑
m=1

(
|θm(t)|+ |θ̃m(t)|

)
|θm(t)− θ̃m(t)|

)2

≤ C(Lsup)

(
1

M

M∑
m=1

(
|θm(t)|+ |θ̃m(t)|

)2
)(

1

M

M∑
m=1

∣∣∣θm(t)− θ̃m(t)
∣∣∣2)

≤ C(Lsup)

(
1

M

M∑
m=1

∣∣∣θm(t)− θ̃m(t)
∣∣∣2) ,

(91)
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where we use Hölder’s inequality in the second inequality. For (III), we use (12) from
Assumption 3.1 along with (85), to obtain

(II) ≤

(
1

M

M∑
m=1

|∂zf(Z(t;x), θm(t))− ∂zf(Zdis(t;x), θm(t))|

)2

≤

(
C1

M

M∑
m=1

|θm(t)|2 |Z(t;x)− Zdis(t;x)|

)2

≤ C(Lsup)|Z(t;x)− Zdis(t;x)|2 .

(92)

By substituting (91) and (92) into (90), we obtain

d|∆p(t;x)|2

dt
= C(Lsup)|∆p(t;x)|2

+ C(Lsup)

((
1

M

M∑
m=1

∣∣∣θm(t)− θ̃m(t)
∣∣∣2)+ |Z(t;x)− Zdis(t;x)|2

)

+ 6

∣∣∣∣∫
Rk
∂zf(Z(t;x), θ) dρ(θ, t)−

∫
Rk
∂zf(Z(t;x), θ) dρ̃dis(θ, t)

∣∣∣∣2 .
(93)

Considering the initial condition, we obtain in a similar fashion to (36) that

|∆p(1;x)| ≤ C(Lsup)|Z(1;x)− Zdis(1;x)| ,

By substituting (86) into (93) and using Grönwall’s inequality, we arrive at (87).

H.3 Proof of Theorem 31

According to the statement of the theorem, ρ(θ, t, s) solves (20) with admissible initial
condition ρini(θ, t), and θm(s; t) solves (19) with initial conditions {θm(t, 0)}Mm=1 that are
i.i.d. drawn from ρini(θ, t). We now define

ρdis
Θs(θ, t) =

1

M

M∑
m=1

δθm(s;t)(θ) ,

with

dθm(s; t)

ds
= −∇θ

δEs(ρ
dis
Θs

)

δρ
(θm(s; t))− 2e−sθm(s; t) , s > 0, t ∈ [0, 1] , (94)

where
δEs(ρdis

Θs
)

δρ is defined in (10).
Throughout this section, we denote

Ldis,sup
ini = sup

t∈[0,1]

1

M

M∑
m=1

|θm(0; t)|2, Lsup
ini = sup

t∈[0,1]

∫
Rk
|θ|2 dρini(θ, t) .

We note that when M is large, Ldis,sup
ini is close to Lsup

ini (which has no randomness) with high
probability. We have the following lemma.
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Lemma 37 For fixed S > 0, any s ∈ [0, S], |x| < R, and t ∈ [0, 1], there exists a constant
C
(
S,Ldis,sup

ini

)
such that

∫ 1

0

∫
Rk
|θ|2 dρdis

Θs(θ, t) dt < C
(
S,Ldis,sup

ini

)
. (95)

Further, for any x with |x| < R, the ODE solution is bounded as follows:∣∣∣Zρdis
Θs

(t;x)
∣∣∣ ≤ C (S,Ldis,sup

ini

)
, (96)

while the following bound holds on pρdis
Θs
:∣∣∣pρdis

Θs
(t;x)

∣∣∣ ≤ C (S,Ldis,sup
ini

)
. (97)

Proof First, using (16) and (22a), we have that

E0

(
ρdis

Θ0

)
< C

(
Ldis,sup

ini

)
.

According to the definition of ρdis
Θs

and Es(ρ) in (24) and (17), and recalling decay of energy,
we have as shown in (23) that∫ 1

0

∫
Rk
|θ|2 dρdis

Θs(θ, t) dt =

∫ 1

0

1

M

M∑
m=1

|θm(s; t)|2 dt ≤ exp(s)Es

(
ρdis

Θs

)
≤ exp(S)E0

(
ρdis

Θ0

)
< C

(
S,Ldis,sup

ini

)
,

for s ∈ [0, S], proving (95).
We obtain (96) and (97) from the same argument that shows (22a) and (33a), with the

L1 term replaced by the bound (95).

We are now ready to prove Theorem 31.
Proof [Proof of Theorem 31] To start, we define a new system Θ̃s = {θ̃m(s; t)}Mm=1 where
each θ̃m solves

∂θ̃m(s; t)

∂s
= −∇θ

δEs(ρ(s))

δρ

(
θ̃m(s; t)

)
, ∀(t, s) ∈ [0, 1]× [0,∞) , (98)

with initial conditions θ̃m(t, 0) = θm(t, 0). As a consequence, we have

θ̃m(s; t) ∼ ρ(θ, t, s) , ∀(t, s) ∈ [0, 1]× [0,∞) .

We further denote

ρ̃dis(θ, t, s) =
1

M

M∑
m=1

δ
θ̃m(s;t)

(θ) , Lsup
0 = max

{
Lsup

ini ,L
dis,sup
ini

}
<∞ , (99)

45



Ding, Chen, Li, and Wright

We first bound the second moment of ρ̃dis(θ, t, s) for all t ∈ [0, 1] and s ∈ [0, S] with initial
condition ρ̃dis(θ, t, 0) = 1

M

∑M
m=1 δθ̃m(0;t)

(θ). Similar to the proof of Proposition 16, we

multiply (98) by θ̃m(s; t) on both sides, and utilize the bound (43) from Lemma 15, where L
in (43) is replaced by C(Lsup

ini , S) according to (64) in Corollary D.3. We thus obtain

|θ̃m(s; t)| ≤ C(Lsup
ini , S)

(
|θ̃m(0; t)|+ 1

)
,

which implies that

sup
t∈[0,1],0≤s≤S

1

M

M∑
m=1

∣∣∣θ̃m(s; t)
∣∣∣2 ≤ C(Lsup

0 , S) .

By combining this bound with (64) and (95), we obtain that there is a constant C(Lsup
0 , S)

depending only on Lsup
0 and S such that

sup
t∈[0,1],0≤s≤S

{∫
Rk
|θ|2dρ(θ, t, s),

1

M

M∑
m=1

|θm(s; t)|2, 1

M

M∑
m=1

∣∣∣θ̃m(s; t)
∣∣∣2} ≤ C(Lsup

0 , S) .

To prove the theorem, we have from the definition (8) of E that∣∣∣E(ρ(s))− E(ρdis
Θs)
∣∣∣

= Ex∼µ
[

1

2

(
g(Zρ(s)(1;x))− y(x)

)2 − 1

2

(
g(Zρdis

Θs
(1;x))− y(x)

)2
]

≤ Ex∼µ
[∣∣∣g(Zρ(s)(1;x))− g(Zρdis

Θs
(1;x))

∣∣∣ (∣∣∣g(Zρ(s)(1;x)) + g(Zρdis
Θs

(1;x))
∣∣∣+ |y(x)|

)]
≤ C(Lsup

0 , S)Ex∼µ
(∣∣∣g(Zρ(s)(1;x))− g(Zρdis

Θs
(1;x))

∣∣∣)
≤ C(Lsup

0 , S)Ex∼µ
(∣∣∣Zρ(s)(1;x)− Zρdis

Θs
(1;x)

∣∣∣) ,
(100)

where the second inequality arises from boundedness of Z in (22a) and local boundedness of
g and y, by Assumption 3.1.

To estimate
∣∣∣Zρ(s)(t;x)− Zρdis

Θs
(t;x)

∣∣∣, we recall (86) to obtain∣∣∣Zρ(s)(t;x)− Zρdis
Θs

(t;x)
∣∣∣

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

∫ 1

0

∣∣∣θm(s; τ)− θ̃m(s; τ)
∣∣∣2 dτ

)1/2

+ C(Lsup
0 , S)

(∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ

)1/2

.

(101)

Since θ̃m(s; t) ∼ ρ(θ, t, s), the second term of (101) can be bounded by law of large numbers,
with high probability. Thus we need only to control the first term. In the analysis below we
control this term in Step 1 and utilize the law of large numbers in Step 2.

46



Convergence of gradient descent for overparameterized multi-layer ResNets

Step 1: Estimating 1
M

∑M
m=1

∫ 1
0

∣∣∣θm(s; t)− θ̃m(s; t)
∣∣∣2 dt. Defining

∆t,m(s) = θm(s; t)− θ̃m(s; t) ,

we note that |∆t,m(0)| = 0. By taking the difference of (94) and (98), we obtain

d|∆t,m(s)|2

ds
= −2 exp(−s)|∆t,m(s)|2

− 2
〈

∆t,m(s),Ex∼µ
(
∂θf(Zρ(s)(t;x), θ̃m)pρ(s)(t;x)− ∂θf(Zρdis

Θs
(t;x), θm)pρdis

Θs
(t;x)

)〉
= −2 exp(−s)|∆t,m(s)|2

− 2

〈
∆t,m(s),Ex∼µ

(
∂θf(Zρ(s)(t;x), θ̃m)pρ(s)(t;x)− ∂θf(Zρ(s)(t;x), θ̃m)pρdis

Θs
(t;x)

)
︸ ︷︷ ︸

(I)

〉

− 2

〈
∆t,m(s),Ex∼µ

(
∂θf(Zρ(s)(t;x), θ̃m)pρdis

Θs
(t;x)− ∂θf(Zρdis

Θs
(t;x), θm)pρdis

Θs
(t;x)

)
︸ ︷︷ ︸

(II)

〉
.

(102)
For term (I), we have from the bound on Zρ(s) in (22a) that

|(I)| ≤ C(Lsup
0 , S)Ex∼µ

(∣∣∣pρ(s)(t;x)− pρdis
Θs

(t;x)
∣∣∣) .

For (II), we have

|(II)| ≤ C(Lsup
0 , S)Ex∼µ

(∣∣∣∂θf(Zρ(s)(t;x), θ̃m)− ∂θf(Zρdis
Θs

(t;x), θm)
∣∣∣)

≤ C(Lsup
0 , S)

[(∣∣∣θ̃m∣∣∣+ |θm|
)
Ex∼µ

(∣∣∣Zρ(s)(t;x)− Zρdis
Θs

(t;x)
∣∣∣)+ |θ̃m − θm|

]
.

In both estimates we used the property of f in (12), and the bound on Zρ,ρdis
Θ

By substituting
these estimates into (102), we obtain

d|∆t,m(s)|2

ds
≤ C(Lsup

0 , S)|∆t,m(s)|2

+ C(Lsup
0 , S)|∆t,m(s)|Ex∼µ

((∣∣∣θ̃m∣∣∣+ |θm|
) ∣∣∣Zρ(s)(t;x)− Zρdis

Θs
(t;x)

∣∣∣+
∣∣∣pρ(s)(t;x)− pρdis

Θs
(t;x)

∣∣∣) ,

47



Ding, Chen, Li, and Wright

which implies

1

M

M∑
m=1

d|∆t,m(s)|2

ds

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)

+ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|
(∣∣∣θ̃m∣∣∣+ |θm|

))
Ex∼µ

(∣∣∣Zρ(s)(t;x)− Zρdis
Θs

(t;x)
∣∣∣)

+ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|

)
Ex∼µ

(∣∣∣pρ(s)(t;x)− pρdis
Θs

(t;x)
∣∣∣)

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)

+ C(Lsup
0 , S)Ex∼µ

(∣∣∣pρ(s)(t;x)− pρdis
Θs

(t;x)
∣∣∣2)

+ C(Lsup
0 , S)Ex∼µ

(∣∣∣Zρ(s)(t;x)− Zρdis
Θs

(t;x)
∣∣∣2) ,

where we used the Hölder’s inequality and(
1

M

M∑
m=1

|∆t,m(s)|
(∣∣∣θ̃m∣∣∣+ |θm|

))2

≤

(
1

M

M∑
m=1

|∆t,m(s)|2
)(

1

M

M∑
m=1

(∣∣∣θ̃m∣∣∣+ |θm|
)2
)

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)
.

Noting the estimate in Lemma 36, we obtain that

d
(

1
M

∑M
m=1 |∆t,m(s)|2

)
ds

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)

+ C(Lsup
0 , S)Ex∼µ

(∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ

)

+ C(Lsup
0 , S)Ex∼µ

(∫ 1

0

∣∣∣∣∫
Rk
∂zf

(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ

)
,
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which implies, using Grönwall’s inequality, that

1

M

M∑
m=1

∫ 1

0
|∆t,m(s)|2 dt

≤ C(Lsup
0 , S)Ex∼µ

(∫ S

0

∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ ds

)

+ C(Lsup
0 , S)Ex∼µ

(∫ S

0

∫ 1

0

∣∣∣∣∫
Rk
∂zf

(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ ds

)
.

(103)

Step 2: Complete the proof. Since ρini satisfies the limit-admissible condition, according
to (80), there is a constant C4 ≥ Lsup

ini such that P
(
Ldis,sup

ini ≤ C4

)
≥ 1−η/2 forM sufficiently

large. Using the definition of Lsup
0 in (99), and for some constant C3 ≥ Lsup

ini , this translates
to:

P (Lsup
0 ≤ C4) ≥ 1− η/2 , for M >

2C3

η
, (104)

so that Lsup
0 is bounded with high probability.

By substituting (103) into (86), we obtain∣∣∣Zρ(s)(t;x)− Zρdis
Θs

(t;x)
∣∣∣

≤ C(Lsup
0 , S)

Ex∼µ

(∫ S

0

∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ ds

)
︸ ︷︷ ︸

(I)


1/2

+ C(Lsup
0 , S)

Ex∼µ

(∫ S

0

∫ 1

0

∣∣∣∣∫
Rk
∂zf

(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ ds

)
︸ ︷︷ ︸

(II)


1/2

+ C(Lsup
0 , S)


∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ︸ ︷︷ ︸
(III)


1/2

.

(105)
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All terms (I), (II), and (III) can be controlled. We have

E(I) = Ex∼µ

(
E

(∫ S

0

∫ 1

0

∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2 dτ ds

))

= Ex∼µ

(∫ S

0

∫ 1

0
E

(∣∣∣∣∫
Rk
f
(
Zρ(s)(τ ;x), θ

)
d(ρ(θ, τ, s)− ρ̃dis(θ, τ, s))

∣∣∣∣2
)

dτ ds

)

≤
C(Lsup

ini , S)

M
Ex∼µ

(∫ S

0

∫ 1

0

∫
Rk
|f
(
Zρ(s)(τ ;x), θ

)
|2dρ(θ, τ, s) dτ ds

)
≤
C(Lsup

ini , S)

M

∫ S

0

∫ 1

0

∫
Rk

(|θ|2 + 1)dρ(θ, τ, s) dτ ds ≤ C(C4, S)

M
,

where we use θ̃m(s; t) ∼ ρ(θ, t, s) in the first inequality, (27) with |Zρ(s)| ≤ C(Lsup
ini , S) in the

second inequality, and Lsup
ini ≤ C4 in the third inequality. By similar reasoning, we obtain

E(II) ≤ C(C4, S)

M
, E(III) ≤ C(C4, S)

M
.

From Markov’s inequality, these bounds imply that when M > C(C4,S)
ε2η

, we have

P
({

(I) < ε2
}
∩
{
(II) < ε2

}
∩
{
(III) < ε2

})
> 1− η/2 . (106)

By substituting (104) and (106) into (105), we see that there exists a constant C(C4, S)

such that for any ε, η > 0, when M > C(C4,S)
ε2η

we obtain that

P
(∣∣∣Zρ(s)(1;x)− Zρdis

Θs
(1;x)

∣∣∣ < ε
)
> 1− η .

The proof is completed by substituting this bound into (100).

Appendix I. Convergence to the Continuous Limit

This section is dedicated to the continuous limit and proof of Theorem 32.

I.1 Stability with Discretization

Before proving Theorem 32, and similarly to Appendix H.2, we first consider the stability Z
and p under discretization. Defining the path of parameters Θ(t) = {θm(t)}Mm=1 and the set
of parameters ΘL,M = {θl,m}L−1,M

l=0,m=1, we have the following lemma.

Lemma 38 Suppose that Assumption 3.1 holds and that x is in the support of µ. Denoting

Lsup = sup
t∈[0,1],l

{
1

M

M∑
m=1

|θm(t)|2, 1

M

M∑
m=1

|θl,m|2
}
, (107)
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there exists a constant C(Lsup) depending only on Lsup such that for any 0 ≤ l ≤ L− 1, we
have

sup
l
L
≤t≤ l+1

L

{∣∣ZΘ(t;x)− ZΘL,M (l;x)
∣∣ , ∣∣ZΘ(t;x)− ZΘL,M (l + 1;x)

∣∣}

≤ C(Lsup)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

+
C(Lsup)

L
,

(108)

and
sup

l
L
≤t≤ l+1

L

∣∣pΘ(t;x)− pΘL,M (l;x)
∣∣

≤ C(Lsup)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

+
C(Lsup)

L
.

(109)

Proof Define
Z(t;x) = ZΘ(t;x), p(t;x) = pΘ(t;x)

and

Z̃(t;x) =

L−1∑
l=0

ZΘL,M (l;x)1 l
L
≤t< l+1

L
, p̃(t;x) =

L−1∑
l=0

pΘL,M (l;x)1 l
L
<t≤ l+1

L
,

with
Z̃(1;x) = ZΘL,M (L;x), p̃(0;x) = pΘL,M (0;x) .

Using (1), (66), and Lemma 24, we obtain

∣∣ZΘL,M (l + 1;x)− ZΘL,M (l;x)
∣∣ < C(Lsup)

L
,∣∣pΘL,M (l + 1;x)− pΘL,M (l;x)

∣∣ < C(Lsup)

L
,

(110)

for 0 ≤ l ≤ L− 1. Now define ∆t by

∆t = Z(t;x)− Z̃(t;x) .

For t ∈
[
l
L ,

l+1
L

]
, we have from (4) that

|∆t| ≤
∣∣∣∆ l

L

∣∣∣+
1

M

M∑
m=1

∫ t

l
L

|f(Z(τ ;x), θm(τ))| dτ

≤
∣∣∣∆ l

L

∣∣∣+
C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

(|θm(τ)|+ 1) dτ

≤
∣∣∣∆ l

L

∣∣∣+
C(Lsup)

L
,

(111)
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where we use (27) and (96) in the second inequality and (107) in the third inequality. From
(1) and (4), we obtain further that∣∣∣∆ l+1

L

∣∣∣ =
∣∣∣∆ l

L

∣∣∣+

∣∣∣∣∣ 1

M

M∑
m=1

∫ l+1
L

l
L

f(Z(τ ;x), θm(τ))− f
(
Z̃(τ ;x), θl,m

)
dτ

∣∣∣∣∣
≤
∣∣∣∆ l

L

∣∣∣+

∣∣∣∣∣ 1

M

M∑
m=1

∫ l+1
L

l
L

f(Z(τ ;x), θm(τ))− f (Z(τ ;x), θl,m) dτ

∣∣∣∣∣
+

∣∣∣∣∣ 1

M

M∑
m=1

∫ l+1
L

l
L

f(Z(τ ;x), θl,m)− f
(
Z̃(τ ;x), θl,m

)
dτ

∣∣∣∣∣
(I)
≤
∣∣∣∆ l

L

∣∣∣+ C(Lsup)

(
1

M

M∑
m=1

∫ l+1
L

l
L

|θm(τ)− θl,m| dτ

)
+ C1|∆ξ|

(
1

ML

M∑
m=1

|θl,m|

)
(II)
≤
(

1 +
C(Lsup)

L

) ∣∣∣∆ l
L

∣∣∣+
C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

|θm(τ)− θl,m| dτ +
C(Lsup)

L2

where ξ ∈ [ lL ,
l+1
L ], and using (12), (96) in (I), and (107) and (111) in (II). By applying this

bound iteratively, we obtain∣∣∣∆ l
L

∣∣∣ ≤ C(Lsup) |∆0|+
C(Lsup)

M

l−1∑
j=0

M∑
m=1

∫ j+1
L

j
L

|θl,m − θm(τ)| dτ +
C(Lsup)

L
,

where |∆0| = 0. Combining this with (111) and using Hölder’s inequality, we obtain that

|∆t| ≤ C(Lsup)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

+
C(Lsup)

L
.

By combining this bound with (110), we prove (108).
To prove (109), we define

∆p(t;x) = p(t;x)− p̃(t;x) .

Similarly to (36), we obtain

|∆p(1;x)| ≤ C(Lsup)
∣∣∣Z̃(1;x)− Z(1;x)

∣∣∣
≤ C(Lsup)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

+
C(Lsup)

L
.

(112)

For t ∈
(
l
L
l+1
L

]
, using (11), we obtain that

|∆p (t;x) | ≤
∣∣∣∣∆p

(
l + 1

L
;x

)∣∣∣∣+
1

M

M∑
m=1

∫ l+1
L

t
|∂zf(Z(τ ;x), θm(τ))| |p(τ ;x)| dτ

≤
∣∣∣∣∆p

(
l + 1

L
;x

)∣∣∣∣+
C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

|θm(τ)| dτ

≤
∣∣∣∣∆p

(
l + 1

L
;x

)∣∣∣∣+
C(Lsup)

L
,

(113)
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where we use (12) and (97) in the second inequality, and Hölder’s inequality togerther with
the definition of L from (107) in the third inequality.

From (11), we obtain that

p>
(
l

L
;x

)
= p>

(
l + 1

L
;x

)
+

1

M

M∑
m=1

∫ l+1
L

l
L

p> (τ ;x) ∂zf(Z(τ ;x), θm(τ)) dτ ,

and from (66) that

p̃>
(
l

L
;x

)
= p̃>

(
l + 1

L
;x

)
+

1

M

M∑
m=1

∫ l+1
L

l
L

p̃>
(
l + 1

L
;x

)
∂zf(ZΘL,M (l;x), θl,m) dτ .

By bounding differences of these two expressions, we have∣∣∣∣∆p

(
l

L
;x

)∣∣∣∣
≤
∣∣∣∣∆p

(
l + 1

L
;x

)∣∣∣∣+
1

M

M∑
m=1

∫ l+1
L

l
L

∣∣∣∣p> (τ ;x) ∂zf(Z(τ ;x), θm(τ)) dτ − p̃>
(
l + 1

L
;x

)
∂zf(Z(τ ;x), θm(τ))

∣∣∣∣ dτ︸ ︷︷ ︸
(I)

+
1

M

M∑
m=1

∫ l+1
L

l
L

∣∣∣∣p̃>( l + 1

L
;x

)
∂zf(Z(τ ;x), θm(τ))− p̃>

(
l + 1

L
;x

)
∂zf(ZΘL,M (l;x), θm(τ))

∣∣∣∣ dτ︸ ︷︷ ︸
(II)

+
1

M

M∑
m=1

∫ l+1
L

l
L

∣∣∣∣p̃>( l + 1

L
;x

)
∂zf(ZΘL,M (l;x), θm(τ))− p̃>

(
l + 1

L
;x

)
∂zf(ZΘL,M (l;x), θl,m)

∣∣∣∣ dτ︸ ︷︷ ︸
(III)

.

(114)
We bound (I), (II), and (III) as follows.

(I): Using (12) and (107), we obtain that

(I) ≤ |∆p(t;x)|C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

|θm(τ)| dτ ≤ C(Lsup)

L
|∆p(t;x)|.

(II): Using (12), (68a), and (107), we obtain

(II) ≤ C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

|Z(τ ;x)− ZΘL,M (l;x)||θm(τ)|2 dτ

≤ C(Lsup)

L

( 1

M

L−1∑
l′=0

M∑
m=1

∫ l′+1
L

l′
L

|θl′,m − θm(τ)|2 dτ

)1/2

+
1

L

 ,

where we make use of (108) in the final inequality.
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(III): Using (12), (67a), (68a), and (107), we obtain that

(III) ≤ C(Lsup)

M

M∑
m=1

∫ l+1
L

l
L

(|θm(τ)|+ |θl,m|) |θm(τ)− θl,m| dτ

≤ C(Lsup)

∫ l+1
L

l
L

(
1

M

M∑
m=1

(|θm(τ)|+ |θl,m|)2

)1/2(
1

M

M∑
m=1

|θm(τ)− θl,m|2
)1/2

dτ

≤ C(Lsup)

∫ l+1
L

l
L

(
1

M

M∑
m=1

|θm(τ)− θl,m|2
)1/2

dτ .

By substituting these three inequalities and (113) into (114), we obtain∣∣∣∣∆p

(
l

L
;x

)∣∣∣∣ ≤ (1 +
C(Lsup)

L

) ∣∣∣∣∆p

(
l + 1

L
;x

)∣∣∣∣
+
C(Lsup)

L

( 1

M

L−1∑
l′=0

M∑
m=1

∫ l+1
L

l
L

|θl′,m − θm(τ)|2 dτ

)1/2

+
1

L


+ C(Lsup)

∫ l+1
L

l
L

(
1

M

M∑
m=1

|θm(τ)− θl,m|2
)1/2

dτ .

By applying this bound iteratively, and using (112) and (113), we obtain

|∆p(t;x)| ≤ C(Lsup)

( 1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

+
1

L

 , (115)

where we also use Hölder’s inequality to write

C(Lsup)
L−1∑
l=0

∫ l+1
L

l
L

(
1

M

M∑
m=1

|θm(τ)− θl,m|2
)1/2

dτ

≤ C(Lsup)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|θl,m − θm(τ)|2 dτ

)1/2

.

We obtain (109) by combining (115) with (113).

I.2 Proof of Theorem 32

We denote by θm(s; t) the solution to (19) with initial {θm(0; t)}Mm=1 i.i.d. drawn from ρini(θ, t) .
Further, θl,m(s) is a solution to (18) with initial θl,m(0) = θm

(
0; lL

)
for 0 ≤ l ≤ L− 1 and

1 ≤ i ≤M . Denoting

Ldis,sup
ini = sup

t∈[0,1]

1

M

M∑
m=1

|θm(0; t)|2 , ΘL,M (s) = {θl,m(s)}L−1,M
l=0,i=0 ,

we have the following lemma.
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Lemma 39 For fixed S > 0, any s ∈ [0, S], x in the support of µ, and integer l with
0 ≤ l ≤ L− 1, there exists a constant C

(
S,Ldis,sup

ini

)
depending only on S and Ldis,sup

ini such
that

sup
s∈[0,S],l

1

M

M∑
m=1

|θl,m(s)|2 < C
(
S,Ldis,sup

ini

)
. (116)

Further, the ODE solution and pΘL,M (s) are bounded as follows:∣∣∣ZΘL,M (s)(l + 1;x)
∣∣∣ ≤ C (S,Ldis,sup

ini

)
, (117)

∣∣∣pΘL,M (s)(l;x)
∣∣∣ ≤ C (S,Ldis,sup

ini

)
. (118)

Proof Since the proof is quite similar to Lemma 37, we omit it.

We are now ready to prove Theorem 32.
Proof [Proof of Theorem 32] Define

Lsup
0 = max

{
sup
t∈[0,1]

∫
Rk
|θ|2 dρini(θ, t),Ldis,sup

ini

}
<∞ .

From (95) and (116), we obtain

sup
(t,s)∈[0,1]×[0,S],l

{
1

M

M∑
m=1

|θm(s; t)|2, 1

M

M∑
m=1

|θl,m(s)|2
}
≤ C(Lsup

0 , S) , (119)

where C(Lsup
0 , S) is a constant depends on Lsup

0 , S.
Using a similar derivation to (100), we have

|E(Θ(s; ·))− E(ΘL,M (s))| ≤ C(Lsup
0 , S)

∣∣∣ZΘ(s)(1;x)− ZΘL,M (s)(L;x)
∣∣∣ . (120)

Thus, to prove the theorem, it suffices to prove that
∣∣∣ZΘL,M (s)(L;x)− ZΘ(s)(1;x)

∣∣∣ is small.
According to (108), this requires us to bound the quantity

1

M

M∑
m=1

∫ l+1
L

l
L

|∆t,m(s)|2 dt , where ∆t,m(s) = θl,m(s)− θm(s; t) . (121)

The next part of the proof obtains the required bound.
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First, using (18) and (19), we obtain that

d|∆t,m(s)|2

ds
= −2 exp(−s)|∆t,m(s)|2

− 2
〈

∆t,m(s),Ex∼µ
(
∂θf(ZΘL,M (s)(l;x), θl,m)pΘL,M (s)(l;x)− ∂θf(ZΘ(s)(t;x), θm)pΘ(s)(t;x)

)〉
= −2 exp(−s)|∆t,m(s)|2

− 2

〈
∆t,m(s),Ex∼µ

(
∂θf(ZΘL,M (s)(l;x), θl,m)pΘL,M (s)(l;x)− ∂θf(ZΘ(s)(t;x), θm)pΘL,M (s)(l;x)

)
︸ ︷︷ ︸

(I)

〉

− 2

〈
∆t,m(s),Ex∼µ

(
∂θf(ZΘ(s)(t;x), θm)pΘL,M (s)(l;x)− ∂θf(ZΘ(s)(t;x), θm)pΘ(s)(t;x)

)
︸ ︷︷ ︸

(II)

〉

(122)
To bound (I), we use (118) to obtain

|(I)| ≤ C(Lsup
0 , S)Ex∼µ

(∣∣∣∂θf(ZΘL,M (s)(l;x), θl,m)− ∂θf(ZΘ(s)(t;x), θm)
∣∣∣)

≤ C(Lsup
0 , S)

[
(|θl,m|+ |θm|)Ex∼µ

(∣∣∣ZΘL,M (s)(l;x)− ZΘ(s)(t;x)
∣∣∣)+ |θl,m − θm|

]
,

(123)
where we use (12), (96), and (117) in the second inequality. To bound (II), we use (12) and
(96) to obtain

|(II)| ≤C(Lsup
0 , S)Ex∼µ

(∣∣∣pΘL,M (s)(l;x)− pΘ(s)(t;x)
∣∣∣) . (124)

By substituting (124) and (123) into (122), we obtain

d|∆t,m(s)|2

ds
≤ C(Lsup

0 , S)|∆t,m(s)|2

+ C(Lsup
0 , S)|∆t,m(s)|Ex∼µ

(
(|θl,m|+ |θm|)

∣∣∣ZΘL,M (s)(l;x)− ZΘ(s)(t;x)
∣∣∣+
∣∣∣pΘL,M (s)(l;x)− pΘ(s)(t;x)

∣∣∣) ,
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which implies that

d
(

1
M

∑M
m=1 |∆t,m(s)|2

)
ds

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)

+ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)| (|θl,m|+ |θm|)

)
Ex∼µ

(∣∣∣ZΘL,M (s)(l;x)− ZΘ(s)(t;x)
∣∣∣)

+ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|

)
Ex∼µ

(∣∣∣pΘL,M (s)(l;x)− pΘ(s)(t;x)
∣∣∣)

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)

+ C(Lsup
0 , S)Ex∼µ

(∣∣∣pΘL,M (s)(t;x)− pΘ(s)(t;x)
∣∣∣2)

+ C(Lsup
0 , S)Ex∼µ

(∣∣∣ZΘL,M (s)(t;x)− ZΘ(s)(t;x)
∣∣∣2) .

(125)
The second inequality above uses Hölder’s inequality together with the bound 2ab ≤ a2 + b2

and(
1

M

M∑
m=1

|∆t,m(s)| (|θl,m|+ |θm|)

)2

≤

(
1

M

M∑
m=1

|∆t,m(s)|2
)(

1

M

M∑
m=1

(|θl,m|+ |θm|)2

)

≤ C(Lsup
0 , S)

(
1

M

M∑
m=1

|∆t,m(s)|2
)
.

By substituting (108) and (109) into (125), we obtain

d 1
M

∑L−1
l=0

∑M
m=1

∫ l+1
L
l
L

|∆t,m(s)|2 dt

ds
≤ C(Lsup

0 , S)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(s)|2 dt+
1

L2

)
,

which implies that

1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(s)|2 dt ≤ C(Lsup
0 , S)

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(0)|2 dt+
1

L2

)
(126)

by Grönwall’s inequality. This is the bound we were seeking on (121). Here, we also have

1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(0)|2 dt =
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

∣∣∣∣θm(0;
l

L

)
− θm(0; t)

∣∣∣∣2 dt . (127)

To complete the proof, we first use (80) and (81), and take M ≥ 2C3
η , to obtain

P

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(0)|2 dt ≤ C4

L2

)
≥ 1− η/2 . (128)
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Similarly to (104), we also have

P (Lsup
0 ≤ C4) ≥ 1− η/2 . (129)

Using (128), (129) to substitute 1
M

∑L−1
l=0

∑M
m=1

∫ l+1
L
l
L

|∆t,m(0)|2, Lsup
0 in (126), we find that

there exists a constant C ′(C4, S) depending on C4 and S such that if

M ≥ 2C3

η
, L ≥ C ′(C4, S)

ε
,

then we have

P

(
1

M

L−1∑
l=0

M∑
m=1

∫ l+1
L

l
L

|∆t,m(s)|2 dt ≤ ε

)
≥ 1− η . (130)

Using (130), (119) and (129) to bound the right hand side of (108), we find that there exists
another constant C ′′(C4, S) depending on C4 and S such that if

M ≥ 2C3

η
, L ≥ C ′′(C4, S)

ε
,

then we have
P
(∣∣∣ZΘ(s)(1;x)− ZΘL,M (s)(L;x)

∣∣∣ ≤ ε) ≥ 1− η ,

By using this result in conjunction with (120), we complete the proof.

Appendix J. Rigorous Proof of Lemma 20

Proof [Proof of Lemma 20] According to the brief proof in Appendix D.3, it suffices to prove

dEs(φ
∗(s))

ds
= −

∫ 1

0
E

(∣∣∣∣∇θ δEs(φ∗(s))δρ
(θ∗(s; t), t)

∣∣∣∣2
)

dt− exp−s
∫ 1

0
E(|θ∗(s; t)|2) dt .

(131)
To show (131), we essentially need to show:

|Es(φ∗(s))− Es0(φ∗(s0)) +D(s0)(s− s0)| = o(|s− s0|) , (132)

where

D(s0) =

∫ 1

0
E

(∣∣∣∣∇θ δEs(φ∗(s0))

δρ
(θ∗(s0; t), t)

∣∣∣∣2
)

dt+ exp−s0
∫ 1

0
E(|θ∗(s0; t)|2) dt (133)

Noticing that according to (43),

E

(∣∣∣∣∇θ δEs(φ∗(s))δρ
(θ∗(s; t), t)

∣∣∣∣2
)
≤ 8E|θ∗(s; t)|2 + 2C(LS,φ∗) <∞ ,
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the term (133) is finite and well-defined. To prove (132), recall (17), we first write

Es(φ
∗(s))− Es0(φ∗(s0))

=Ex∼µ
(

1

2

(〈
w,Zφ∗(s)(1;x)

〉
− y(x)

)2 − 1

2

(〈
w,Zφ∗(s0)(1;x)

〉
− y(x)

)2)
︸ ︷︷ ︸

(I)

+ exp−s
∫ 1

0
E(|θ∗(s; t)|2) dt− exp−s0

∫ 1

0
E(|θ∗(s0; t)|2) dt︸ ︷︷ ︸

(II)

.

Then we consider (I) and (II) seperately:

(I): First, (I) can be written as

(I) =Ex∼µ
((〈

w,Zφ∗(s0)(1;x)
〉
− y(x)

) 〈
w,Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)

〉)
+ o(|Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)|)

=Ex∼µ
((〈

w,Zφ∗(s0)(1;x)
〉
− y(x)

) 〈
w,Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)

〉)
+ o(s− s0)

where we use |Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)| ≤ C(LS,φ∗)|s− s0| according to (22b) and (53).
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Similar to (Lu et al., 2020), using (12), (22b), and (53), we have
d(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

dt
=E

(
f(Zφ∗(s)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
=E

(
f(Zφ∗(s)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s; t))

)
+ E

(
f(Zφ∗(s0)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
=
{
E
(
f(Zφ∗(s)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s; t))

)
−E

(
f(Zφ∗(s)(t;x), θ∗(s0; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)}
+ E

(
f(Zφ∗(s)(t;x), θ∗(s0; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
+ E

(
f(Zφ∗(s0)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
(a)
=
{[
E
(
∂zf(Zφ∗(s0)(t;x), θ∗(s; t))

)]
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

−
[
E
(
∂zf(Zφ∗(s0)(t;x), θ∗(s0; t))

)]
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

}
+
[
E
(
∂zf(Zφ∗(s0)(t;x), θ∗(s0; t))

)]
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

+ E
(
f(Zφ∗(s0)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
+ o(|s− s0|)

(b)
=
[
E
(
∂zf(Zφ∗(s0)(t;x), θ∗(s0; t))

)]
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

+ E
(
f(Zφ∗(s0)(t;x), θ∗(s; t))− f(Zφ∗(s0)(t;x), θ∗(s0; t))

)
+ o(|s− s0|)

(c)
=E

(
∂zf(Zφ∗(s0)(t;x), θ∗(s0; t))

)
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

+ E
(
∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))(θ∗(s; t)− θ∗(s0; t))

)
+ o(|s− s0|)

(d)
=E

(
∂zf(Zφ∗(s0)(t;x), θ∗(s0; t))

)
(Zφ∗(s)(t;x)− Zφ∗(s0)(t;x))

− E
(
∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)(s− s0)

)
+ o(|s− s0|) ,

(134)

where we use |∂2
xf | ≤ C1|θ|2 by (12) and E(|θ∗(s; t)|2) < C(LS,φ∗) by (57) in (a). In (b), we use

|∂z∂θf | ≤ C1|θ|(|x|+ 1) by (12), |Zφ∗(s0)| < C(LS,φ∗) by (22a), and E(|θ∗(s; t)− θ∗(s0; t)|) <
C(LS,φ∗)(s − s0) by (53) to obtain that first two terms are o(s − s0). In (c), we also use
|∂θf | ≤ C1(|x| + 1) by (12), |Zφ∗(s0)| < C(LS,φ∗) by (22a), and E(|θ∗(s; t) − θ∗(s0; t)|) <
C(LS,φ∗)(s− s0) by (53). In (d), we first use (44), (59), and (45) to obtain∣∣∣∣∇θ δEs(φ∗(s))δρ

(θ∗(s; t), t)−∇θ
δEs(φ

∗(s0))

δρ
(θ∗(s0; t), t)

∣∣∣∣
≤C (|θ∗(s; t)− θ∗(s0; t)|+ d2(φ∗(s), φ∗(s0))(|θ∗(s0; t)|+ 1))

which implies

E
∣∣∣∣θ∗(s; t)− θ∗(s0; t)−∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)(s− s0)

∣∣∣∣ = o(|s− s0|) (135)
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because E(|θ∗(s; t)|2) < C(LS,φ∗) by (57). Combining (135) with |∂θf | ≤ C1(|x|+ 1) by (12)
and |Zφ∗(s0)| < C(LS,φ∗), we obtain (d). Since Zφ∗(s)(0;x) = Zφ∗(s0)(0;x), using the last
equality, we obtain that

Zφ∗(s)(1;x)− Zφ∗(s)(1;x)

= −
∫ 1

0
e
∫ 1
t [E(∂zf(Zφ∗(s0)(τ ;x),θ∗(s0;τ))) dτ

· E
(
∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)

)
dt(s− s0)

(136)

Using (11), we also have

pφ∗(t;x) =e
∫ 1
t E(∂zf(Zφ∗(s0)(τ ;x),θ∗(s0;τ))) dτpφ∗(1;x)

=e
∫ 1
t E(∂zf(Zφ∗(s0)(τ ;x),θ∗(s0;τ))) dτ

(〈
w,Zφ∗(s0)(1;x)

〉
− y(x)

)
w

(137)

Combine (136) and (137), we obtain that

Ex∼µ
((〈

w,Zφ∗(s0)(1;x)
〉
− y(x)

) 〈
w,Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)

〉)
=Ex∼µ

(〈
pφ∗(1;x), Zφ∗(s)(1;x)− Zφ∗(s0)(1;x)

〉)
=− Ex∼µ

(∫ 1

0
pφ∗(t;x)E

(
∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)

)
dt

)
(s− s0)

+ o(|s− s0|) ,

which implies

(I) =−
∫ 1

0
E
(
Ex∼µ

(
pφ∗(t;x)∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))

)
∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)

)
dt(s− s0)

+ o(|s− s0|)
(138)
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(II): Similar to before, using (53) and (135), we obtain that

(II) = exp−s
∫ 1

0
E(|θ∗(s; t)|2) dt− exp−s

∫ 1

0
E(|θ∗(s0; t)|2) dt

+ exp−s
∫ 1

0
E(|θ∗(s0; t)|2) dt− exp−s0

∫ 1

0
E(|θ∗(s0; t)|2) dt

= exp−s
∫ 1

0
E(|θ∗(s; t)|2) dt− exp−s

∫ 1

0
E(|θ∗(s0; t)|2) dt

− exp−s0
∫ 1

0
E(|θ∗(s0; t)|2) dt(s− s0) + o(|s− s0|)

(a)
= exp−s0

∫ 1

0
E(|θ∗(s; t)|2) dt− exp−s0

∫ 1

0
E(|θ∗(s0; t)|2) dt

− exp−s0
∫ 1

0
E(|θ∗(s0; t)|2) dt(s− s0) + o(|s− s0|)

(b)
= − 2 exp−s0

∫ 1

0
E
(
θ∗(s0; t)∇θ

δEs(φ
∗(s0))

δρ
(θ∗(s0; t), t)(s− s0)

)
dt

− exp−s0
∫ 1

0
E(|θ∗(s0; t)|2) dt(s− s0) + o(|s− s0|)

. (139)

In (a), we use similar calculations as the third to the fifth equality in (134). In (b), we use
similar calculations as the last equality in (134).

Noticing that

∇θ
δEs(φ

∗(s0))

δρ
(θ∗(s0; t), t) = Ex∼µ

(
∂θf(Zφ∗(s0)(t;x), θ∗(s0; t))pφ∗(t;x)

)
+2 exp−s0 θ∗(s0; t) ,

we finally have
(I) + (II) = −D(s0) + o(|s− s0|)

by (133), (138), and (139). This proves (132) and the lemma.
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