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Anytime, Anywhere: Human Arm Pose from Smartwatch Data for

Ubiquitous Robot Control and Teleoperation

Fabian C Weigend, Shubham Sonawani, Michael Drolet and Heni Ben Amor

Abstract— This work devises an optimized machine learning
approach for human arm pose estimation from a single smart-
watch. Our approach results in a distribution of possible wrist
and elbow positions, which allows for a measure of uncertainty
and the detection of multiple possible arm posture solutions,
i.e., multimodal pose distributions. Combining estimated arm
postures with speech recognition, we turn the smartwatch into
a ubiquitous, low-cost and versatile robot control interface.
We demonstrate in two use-cases that this intuitive control
interface enables users to swiftly intervene in robot behavior,
to temporarily adjust their goal, or to train completely new
control policies by imitation. Extensive experiments show that
the approach results in a 40% reduction in prediction error
over the current state-of-the-art and achieves a mean error of
2.56 cm for wrist and elbow positions.

I. INTRODUCTION

The relationship between humans and robots is a central

question of artificial intelligence and robotics. As robots

become increasingly capable, there is growing interest for

human-robot collaboration in various domains, such as

healthcare, manufacturing, and daily activities. Many sce-

narios in these fields envision humans to teleoperate, assist,

or teach a robot counterpart. For example, a human expert

may demonstrate to a robot how to perform a new task or

how to manipulate a new object. Such scenarios, however,

require intuitive and robust interfaces for capturing human

body motion.

To date, motion capture cameras are the gold standard in

capturing human motion [1]±[3]. A setup of multiple cam-

eras can provide a high-fidelity recording of body postures

and positions over time. However, motion capture requires

an expensive and stationary setup. Easier consumer-grade

hardware, e.g., Microsoft Kinect, provides only low-fidelity

approximations of the body posture and is heavily affected

by line-of-sight issues and a limited field-of-view [3]. Al-

ternative motion capture approaches are based on Inertial

Measurement Units (IMU) and allow tracking without line-

of-sight issues. However, they typically require wearing two

or more IMUs on different limbs, e.g., strapped around lower

arm and upper arm or as a special suit [4]±[6]. Even though

research has investigated human arm posture estimations

from a single IMU, the authors in [7], [8] reported prediction

accuracy is of low fidelity.

In this paper, we devise a machine learning approach to

increase the accuracy for predicting human arm poses from
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Fig. 1. Top: The avatar shows predicted elbow and wrist positions from
smartwatch sensor data. Our approach results in a distribution of solutions.
The mean of a distribution is depicted as a green sphere All individual
predictions of a distribution are depicted as small cubes, colored according
to their proximity to the mean. Bottom: We also stream microphone data
to utilize speech recognition. This combination offers a versatile interface
to interact with and to control robots anytime and anywhere.

the single IMU of a smartwatch. As observable in the top in

Figure 1, our approach results in a distribution of predicted

postures, which allows to estimate a measure of uncertainty

and provides a range of possible solutions to pick from.

By combining the increased accuracy of our approach

with speech recognition, we turn the smartwatch into an

ubiquitous robot control interface. Smartwatches are widely

recognized as common consumer-grade devices that users are

already familiar with [9]. Without the need for a complicated

setup, a human expert can engage with the robot at any

time and anywhere. As depicted in Figure 1, they may move

the robot to a new target and issue commands via speech

recognition. We summarize our contributions as follows:

• We present a machine learning approach for real-time

estimation of upper and lower arm postures from a

single smartwatch.

• Our approach results in a distribution of possible arm

postures, which opens up opportunities for selecting

optimal solutions.

• We identify solutions to calibration, data representation,

and network design that yield higher accuracy than

previously reported results in the literature.

• We combine human arm posture estimations with

speech recognition and present two real-robot exam-
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ples that highlight the advantages of our smartwatch

approach for robotics.

II. RELATED WORK

Tracking one or multiple parts of the human body is an

essential step in approaches to robot control. For example,

techniques for teleoperation build upon the accurate detection

of human body pose [10]. In a similar vein, imitation

learning [11] or programming-by-demonstration (PbD) [12]

requires a human expert to provide one or more demon-

strations of target motions. These are distilled into a policy

that generalizes the observed behavior to new situations.

Traditionally, a large number of works for PbD have relied

on costly motion capture setups for recording high-fidelity

data [13]±[15]. Other approaches try to strike a balance

between the cost of data collection and the fidelity by

leveraging Inertial Measurement Units (IMUs) or camera-

based setups. For example, the works in [6] use multiple

IMUs attached to different parts of the body to transfer

human motions onto a robot. However, approaches based

on multiple IMUs require a careful placement of sensors on

the human body along with a (potentially time-consuming)

calibration process.

More recently, consumer-grade hardware for virtual and

augmented reality (VR/AR) is becoming an alternative for

motion tracking in robotics [16]±[18]. For example, the work

in [16] uses a HTC Vive VR system for robot teleoperation

in a manipulation task. HTC Vive controller estimate their

positions from infrared signals from so-called base stations,

which have to be carefully placed and calibrated. In a similar

vein, the work in [19] uses an Oculus Quest device for upper

body tracking. However, Oculus controllers are tracked via

cameras within the VR headset [20]. Headsets can cause

ergonomic discomfort and reduce the situational awareness.

On the contrary, wearable devices like a smartwatch can

only provide comparably low-fidelity position data. Instead,

they offer a combination of low-cost, ease-of-use and a

broad range of additional sensors, e.g., magnetometer, atmo-

spheric pressure sensor, microphone or Photoplethysmogra-

phy (PPG) sensor [9]. For example, these on-body sensors

enable advances in emotion sensing [9]. In robot control,

smartwatches are mostly used to control robots with roll,

pitch, and yaw estimates from IMU and magnetometer [21].

Research has also investigated methods for human pose

estimations from smartwatch data [7], [8], however, these

are of low precision and have mostly been intended for

recreational purposes or physical therapy [8]. To open up

more opportunities to utilize the advantages of wearable

devices in robot control, we propose a solution to improve

real-time arm pose estimations in such settings.

III. METHODOLOGY

In this work, we address the problem of estimating human

arm poses from a single smartwatch. We cast the process as

a supervised learning task, in which postural information is

predicted from a set of multimodal sensors. A challenging

aspect is the inherent one-to-many mapping imposed by

redundant human kinematics. Readings obtained from smart-

watch sensors may not correspond to a single arm movement

or position, but rather, can indicate various possibilities.

Another challenge emerges from natural variability in the

sensor data. Sensor readings for pressure and orientation

need to be adjusted before usage. In the following section,

we discuss how to train deep learning models that are

particularly well-suited to the requirements of the task.

A. Data Collection

We collect motion capture data as ground truth prediction

targets and match these with recorded smartwatch sensor

measurements. To this end, we develop a Wear OS app to

record and stream sensor measurements. The app is tested

on a Samsung Galaxy Watch 5. It records data from a set of

multimodal sensors. These include gyroscope measurements

(φ) with φ ∈ R
3, which represent the rotation angles with

respect to the coordinate axes. Further, it records measure-

ments of the gravity sensor (γ) and linear acceleration sensor

(α) with γ,α ∈ R
3, which represent the acceleration with

respect to the X, Y and Z axis. Linear acceleration is the

raw acceleration (αraw) minus the gravity measurements

such that α = αraw − γ. In addition, the app records

the virtual rotation vector sensor (θ), which is provided by

Wear OS. The rotation vector sensor estimates the global

smartwatch rotation from the magnetometer, accelerometer

and gyroscope as a quaternion, thus, θ ∈ R
4. Together with

the reading from the atmospheric pressure sensor (ρ) with

ρ ∈ R, one observation s from the smartwatch consists of

the following values s = [θ,α,γ,φ, ρ]⊤, with s ∈ R
14. In

addition, the app also streams the microphone data, which

we use for speech recognition. However, because we do not

utilize microphone data for arm pose estimations, it is not

included in s.

As ground truth, we collect upper-body motion capture

data. We use the research-grade optical motion capture sys-

tem OptiTrack [2]. The motion capture environment features

12 cameras. We recorded data from 6 participants, who wore

a 25-marker-upper-body suit along with the smartwatch on

their left wrist (See Figure 2). We collect the hip rotation

(q
h
), lower arm rotation (q

l
) and upper arm rotation (q

u
)

as quaternions. We further store the lower arm length (ll)

and upper arm length (lu) of the participant to estimate

wrist and elbow positions from recorded rotations. There-

fore, a motion capture ground truth observation g contains

g = [q
h
, q

l
, q

u
, ll, lu]

⊤, with g ∈ R
14.

Once the motion capture system and our smartwatch app

started recording, participants were instructed to keep their

chest and hip stationary while moving their left arm in any

possible way. The smartwatch recorded at around ∼ 50Hz

which resulted in a set of 381 535 observations. The motion

capture system recorded at ∼ 120Hz which resulted in a

set of 926 164 motion capture observations. Data collection

was conducted in accordance with Arizona State University

(ASU) guidelines. Written informed consent was obtained

under and approved by the institutional review board (IRB)

of ASU under the ID STUDY00017558.
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Fig. 2. Left: We collected ground truth data with an optical motion
capture system and a 25-marker upper body suit. Right: Our two-step
calibration process. First, the user holds the watch at chest height to estimate
relative atmospheric pressure. Then, the user stretches the arm forward for
an estimate of body orientation.

Fig. 3. This figure depicts two examples for data before and after
calibration. Each plot contains all of our 381 535 data points.

B. Data Processing

Recorded smartwatch and motion capture data requires

alignment and preprocessing since (a) motion capture data

was recorded at a higher frequency, and (b) the data was

collected in distinct coordinate systems. This subsection

defines steps to merge smartwatch observations with our

ground truth data. Additionally, we present a calibration

procedure to further enhance correlations within the data and

aid the training of predictive models for arm posture.

Merging data sets We retrospectively merged the set of

collected smartwatch observations and the set of ground truth

motion capture data by pairing observations according to

their timestamps. Every smartwatch observation s was paired

with the motion capture data observation g that was recorded

closest in time.

Calibrating atmospheric pressure A critical smartwatch

sensor provides measurements of the atmospheric pressure

ρ. As depicted in the top left plot in Figure 3, these mea-

surements suffer from day-by-day variations due to changing

weather conditions and temperature. Data that was collected

in the same experiment or on the same day are recognizable

as vertical lines when plotted against the corresponding

Y-position (elevation) of the wrist.

We propose a calibration procedure to remove the day-by-

day variations and create a relative pressure measurement.

It is depicted on the right in Figure 2. The user presses

ªcalibrateº and holds the smartwatch at chest height. The

watch records atmospheric pressure measurements for three

seconds and then vibrates to signal that the step is completed.

The average recorded pressure is saved as the atmospheric

pressure at chest height (ρc) used to estimate relative atmo-

spheric pressure (ρr) as ρr = ρ− ρc.

The Kendall’s Tau correlation coefficient between the ρ

and wrist Y-position in the top left plot of Figure 3 is

-0.009. In contrast, the Kendall’s Tau correlation coefficient

of ρr and the wrist Y-position is -0.308, confirming that

there is a higher correlation between the variables. We asked

our participants to perform this calibration step before data

collection and replaced the ρ measurement in s with ρr.

Calibrating rotation Due to the kinematic structure un-

derlying human anatomy, arm orientations are affected by the

body orientation. However, no information about the body

forward-facing direction is available from the smartwatch

sensors. Although a universal solution is preferable, we

introduce a constraint to overcome this hurdle: the forward-

facing direction of the user must be constant and known. We

explore future opportunities in this area in Section VI, but

for now, we will highlight the advantages of this imposed

constraint in our approach.

We incorporate the constraint of a constant body forward-

facing direction with the second step of our proposed two-

step calibration procedure. The step is depicted under number

two in Figure 2. After completing the first step for the relative

pressure measurement, the user stretches their arm forward.

The watch records its rotation measurements for three sec-

onds and saves their average as the calibration forward-

facing direction (θc). This allows us to estimate the relative

smartwatch rotation (θr) as the quaternion θr = θ−1
c

θ.

To transform our ground truth motion capture data into

the same local coordinate system, we use the collected q
h

as the ground-truth forward-facing direction and estimate

the relative lower arm rotation (qr

l
) and relative upper arm

rotation (qr

u
) as qr

l
= q−1

h
q
l

and qr

u
= q−1

h
q
u
. Together

with the saved lower and upper arm lengths, this information

also allows us estimate wrist and elbow positions from these

orientations in the same local coordinate system and relative

to the shoulder.

The example in the bottom plots of Figure 3 shows

the benefit of using rotations relative to the forward-facing

direction of the user. The rotation is denoted in Euler angles

for easier interpretation. The body coordinate system in this

example has the Z-axis tangential to the ground pointing

forward and the X-axis along the right arm in T-pose. The

Y-axis is orthogonal to the ground pointing upwards. As

observable in the bottom-right plot of Figure 3, when the

user extends their left arm wearing the smartwatch to the

left, the lower arm Z-rotation from the T-pose is 0 and

the distance from wrist X-position to shoulder X-position is

around -0.5 m. In contrast, in the bottom-left plot, the global

smartwatch rotation provides less information because users

were not always facing the same direction during data collec-

tion. Thus, the relative rotation after our calibration allows to

narrow down possible wrist positions from observed lower

arm rotations.



C. Predictive Models

Building upon presented data merging and calibration

steps, we devise an optimized predictive model that benefits

from previously presented data preprocessing steps. To this

goal, we investigate two distinct neural network architectures

and four distinct representations of prediction targets. This

allows us to compare and choose among a range of design

choices which we present in the following.

Architectures and Inputs We train two neural network

architectures on two similar sets of inputs. The first archi-

tecture is a feedforward network, which receives as inputs

[ρr,θr,α,φ,γ, ll, lu]
⊤. The second architecture is an Long

Short-Term Memory (LSTM) network which receives the

same input data with two additions: The data is stacked into

a sequence of length 6 and it receives the time delta from

each sequence step to the next.

Prediction Targets By human arm pose estimation from

smartwatch data, more specifically, we refer to predicting

ground truth relative lower and upper arm rotation, i.e.,

qr

l
and qr

u
, or predicting ground truth wrist and elbow

positions which were estimated from these rotations. The

naive way to predict wrist and elbow positions is to train a

network to generate positions in Cartesian XYZ coordinates.

However, since lower and upper arm lengths are constants,

i.e. ll and lu, we know that positions lie on a manifold,

which allows to narrow down the search space. The elbow

position has to lie on a sphere around the shoulder with

radius lu. The wrist position has to lie on the manifold

defined by spheres with a radius of ll around all possible

elbow positions [7]. Therefore, as an alternative, we train

our network architectures to predict upper and lower arm

rotations and estimate positions from using known ll and

lu. Intuitively, polar coordinates come to mind as a suitable

representation. When using lu as the radius, the position of

the elbow relative to the shoulder is well-described by two

angles. Further, rotations can be represented in quaternions.

However, these representation spaces do not have a con-

tinuous mapping to their the rotation space, e.g., Euler angles

jump from 359 to 0 degrees, which can cause complications

during the training process due to discontinuity [22]. A 6-

dimensional rotation representation (6DRR) has been pro-

posed by [22], with which the authors achieved promising

results for training neural networks on a human pose inverse

kinematics test. In the case of the 3-dimensional (3D) ro-

tation group SO(3) in the 3D Euclidean space, their 6DRR

space consists of the first two columns (a1 and a2) of the 3D

rotation matrix. A mapping g from rotation matrix to 6DRR

is therefore:

g

( 



| | |
a1 a2 a3

| | |





︸ ︷︷ ︸

Rotation Matrix

)

=





| |
a1 a2
| |





︸ ︷︷ ︸

6DRR

. (1)

The neural network is then trained to predict these two

columns. For a mapping f to recover the full 3D rotation

matrix, [22] propose to normalize and orthogonalize the

predicted two columns and estimate the last one with the

cross product as:

f









| |
a1 a2

| |







 =





| | |
b1 b2 b3

| | |





=





| | |
N(a1) O(a2, b1) b1 × b2

| | |





(2)

where N(a) = a
||a|| and O(a, b) = N(a− (b · a)b). Note the

repeated use of N(a1) as b1 here.

We investigate prediction accuracy for all discussed posi-

tion and rotation representations: elbow and wrist positions

in polar coordinates (Polar) and Cartesian coordinates (XYZ)

a well as upper and lower arm rotations in 6DRR and

quaternions (Quat).

Activation Function Also the choice for the activation

function of a network has an effect on performance. Nor-

malization of our IMU, pressure or arm length inputs is

cumbersome because of likely outliers. For example, extreme

movements, like hitting an obstacle, can cause large spikes

in accelerometer data. Additionally, it is difficult to define

a minimum or maximum arm length since possible values

vary between body proportions, children and adults.

To mitigate the possible impact of out-of-distribution ob-

servations, we opted to employ the scaled exponential linear

units (SELU) activation function by [23], which is reported

to induce self-normalizing properties. It is estimated as

SELU(x) = λ

{

x ifx > 0

αex − α ifx ≤ 0
, (3)

where [23] derived α as 1.6733 and λ as 1.0507. As

summarized by [23], these values enable necessary properties

of the SELU activation to allow for self normalization by,

firstly, having positive and negative values for controlling

the mean. Secondly, by featuring regions where the slope

approaches zero and regions where the slope is larger than

one. These regions allow to dampen the variance if it is

too large or to increase the variance if it is too low. With

these properties, [23] showed that there are upper and lower

bounds on the variance, thereby making learning robust even

under the presence of noise and perturbations.

Other Hyperparameters For both architectures all layers

consist of 128 neurons. The feedforward network features

five layers and the LSTM architecture four LSTM layers.

Both networks are trained for 200 epochs with the Adam

[24] optimizer, a learning rate of 0.001 and a Mean Absolute

Error (MAE) loss function. Early stopping is applied when

the minimal loss does not improve for 10 epochs.

D. Multimodality and Prediction Uncertainty

Even after incorporating the constraint of known body

direction, still, the same smartwatch sensor recordings may

have multiple possible arm posture solutions. To address this

issue, we integrate dropout layers into our network archi-

tecture and utilize them for generating multiple stochastic
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Fig. 4. A comparison of prediction accuracy for combined wrist and elbow
positions on test data. Both network architectures are trained to predict wrist
and elbow positions in polar coordinates or Cartesian coordinates (XYZ) as
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Fig. 5. Error histograms of wrist position predictions of three distinct
combinations of network architecture and prediction targets.

forward passes through the network [25], i.e., Monte Carlo

(MC) dropout predictions.

More specifically, MC dropout predictions involve keeping

the dropout activated for predictions outside of the training

process and repeating every prediction multiple times. Pro-

ducing repeated outputs with dropout results in a distribution

of predictions for the same input. The standard deviation of

the distribution serves a measure of the prediction uncer-

tainty [25]. Such a distribution allows us to identify cases

where smartwatch sensor readings lead to multiple possible

arm postures. In such instances, the distribution can become

multi-modal, and we can detect and choose the most likely

mode based on additional constraints, such as the safest

trajectory for the robot.

E. Speech recognition

To further expand the teleoperation capabilities of our

smartwatch approach, we incorporate the streaming of mi-

crophone data. The recorded audio signal is transcribed

into voice commands utilizing the Google Cloud speech-to-

text service1. This additional interface proves effective and

detects commands even when the arm of the user is hanging

down. We demonstrate the usability of the speech recognition

interface in Section V.

IV. RESULTS

This section discusses and compares overall prediction

accuracy of trained models. Further, we relate our findings

to reported results in previous related work.

A. Predictive Model Accuracy

The feedforward and LSTM network architectures are

scrutinized by their prediction error on the test datasets via

a 10-fold cross validation with each of our four introduced

1https://cloud.google.com/speech-to-text
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prediction targets Polar, XYZ, 6DRR and Quat. We derive

the prediction error by calculating the combined distance

from the predicted to the ground truth wrist and elbow

positions divided by two. In Figure 4, we compare the mean,

the median error and root mean squared error (RMSE) of

those combined prediction errors.

Overall, the LSTM models achieved lower errors than the

feedforward models. This is an expected result given that

arm movements are inherently a time series data set. The

LSTM architecture has an advantage since it maintains an

internal state of previous rotations or accelerations thereby

providing additional information to the prediction step.

Both network architectures achieved the lowest errors

when trained on the 6DRR targets. This finding confirms that

continuous rotation representations are more suitable training

targets when compared to quaternions or Euler angles [22].

Further, this finding validates our approach of optimizing

the search space by utilizing the constraint that upper and

lower arm lengths are constant. Using the Polar, 6DRR and

Quat targets, predictions are limited to the value ranges of

the respective rotation spaces. The confirmed findings of [22]

together with fixed arm lengths are plausible reasons for why

6DRR prediction targets achieve better performance.

To investigate if reported average accuracy measurements

hide extreme errors, Figure 5 depicts histograms of wrist

position prediction errors. Each histogram summarizes the

prediction errors for wrist positions of one fold during

the conducted 10-fold cross validation. On the left in this

comparison, the error distribution for the LSTM with 6DRR

combination shows the highest peak at the lowest error. The

LSTM with XYZ combination produces on average a higher

prediction error, which is noticeable in a more right-shifted

and wider error distribution. The combination of feedforward

network with quaternion targets features a comparably flat

error distribution and more than 4 000 predictions with an

error above 20 cm. These observations coincide with our

above findings that the LSTM with 6DRR combination

makes the most accurate predictions while the feedforward

with quaternion combination is the least accurate.

Figure 6 summarizes prediction errors for wrist and elbow

positions independently. In general, it is observable that

elbow predictions are more accurate than wrist predictions.

This is plausible since the elbow has to lie on a sphere around

the shoulder, while the wrist lies on a manifold defined by

spheres around all possible elbow positions, allowing more

room for error. Further, in case of the Polar, 6DRR and Quat

targets, wrist positions are estimated by adding a vector with



lower arm magnitude and with the predicted rotation onto the

predicted elbow position. Thus, the error of the predicted

elbow position potentially adds to the error of the predicted

wrist position.

Altogether, the combination of LSTM architecture and

6DRR targets outperforms other combinations with regards

to prediction accuracy for wrist and elbow positions.

B. Comparison to Related Work

The work of [7] follows the the same objective as our

paper, namely, the prediction of wrist and elbow positions

from smartwatch data. Similar to our approach, they assume

a fixed shoulder position and require the body facing direc-

tion to be known. In their evaluation they reported median

errors of 9.2 cm for predicted wrist positions and 7.9 cm for

elbow positions. Also [8] used a recurrent neural network

to predict wrist and elbow positions. They predict wrist and

elbow positions in Cartesian coordinates and report an error

of 7.2 cm and 7.1 cm for wrist elbow.

The LSTM with 6DRR and coupled with MC dropout

predictions presented in our work is also suitable for real-

time applications. Our Wear OS app allows to stream sensor

data from the smartwatch to any reasonably well equipped

system via UDP at 50Hz. For example, with an Intel® Xeon®

W-2125 CPU and a GeForce RTX 2080 Ti GPU we were

able to make 150 MC dropout predictions targets at a rate

of ∼ 40Hz. Regarding the prediction accuracy, as reported

in Figure 4, our best performing model achieves a more

than 4 cm reduction in median prediction errors compared to

results reported by [7], [8]. Specifically, our model resulted

in a median error of 2.33 cm for wrist position predictions

and 1.61 cm for elbow predictions.

Another related approach was proposed in [4]. However,

their approach used two IMUs; one IMU on the lower

arm and the second on the upper arm. In their real-world

experiment they reported a RMSE and standard deviation of

6.9±2.7 cm for wrist and 5.2±2.6 cm for elbow predictions.

Their real-world experiment also required a short calibration

procedure for their IMUs based on the work of [26].

As shown in Figure 4, our LSTM with 6DRR achieves

a ∼ 40% lower RMSE on our motion capture data while

relying only on a single IMU. Specifically, it predicts wrist

positions with an RMSE and standard deviation of 3.71 ±
2.49 cm and elbow positions with an error of 2.99±2.19 cm

on test data. In conclusion, our approach appears to result

in a reduction of prediction error by at least ∼ 40% when

compared to previous works by [4], [7], [8] while it remains

to be as real-time capable as the approach of [7].

V. USABILITY DEMONSTRATIONS

We combine the increased accuracy of our approach with

speech recognition through the microphone of the smart-

watch and present two tasks which highlight the advantages

of our approach.

Fig. 8. Step 1: The robot picks up cubes and puts them into the tray.
Step 2: The user says ªstopº. The smartwatch recognizes the command and
stops the robot mid-task. Step 3: The user raises their arm and says ªfollow
meº. The robot moves its end effector to match the wrist position. Step 4:

The user guides the end effector to a marked position. Step 5: The user
says ªopen gripperº and the robot drops the cube. Step 6: The user says
ªgo backº and the robot returns to Step 1.

A. Intervention Task

This tasks demonstrates that the smartwatch allows for

swift and intuitive human-robot-interaction at any time. A

schematic of the intervention task is depicted in Figure 7.

The robot autonomously picks the blue cubes one-by-one

and places them in the red area. The user can intervene at

any time to place one of the cubes in the green area instead.

Triggering an intervention is done via a voice command.

Thereafter, the robot will mimic the human wrist motions.

Fig. 7. The intervention task: The
robot picks the blue cubes one after
the other and places them in the red
area. The user utilizes the smartwatch
to stop the robot mid-task and to move
one cube to the green area instead.

The entire procedure is

subdivided into six steps,

which are depicted and

summarized in Figure 8.

The tray in this real-

world example is the red

area from Figure 7, the

black square on the left

of the robot is the green

area and the white cubes

are arranged in front of

the tray as the blue cubes

in Figure 7.

Three users performed

the task 10 times each.

We measured the times from when the participant said

ªstopº until the ªopen gripperº command was received.

The distances from the placed cube to the target marked

positions were measured with retroreflective markers and the



Fig. 9. Left: A virtual concept of our learning task. We record six
smartwatch trajectories for placing the blue cube onto the red locations.
Then, we train a policy to generate new trajectories for placing the cube
on the highlighted green positions. Right: The red training trajectories are
recorded smartwatch data. The green trajectories were generated using our
trained policy for the green target positions on the shelf.

OptiTrack system which we used for our motion capture

ground truth data. These distance and time measurements

provided us with an estimate of how precisely the users could

control the robot with the smartwatch and how quickly they

could complete the task.

TABLE I

INTERVENTION TASK RESULTS

Part. Time (s) Dist. (cm)

1 19.5± 2.6 1.87± 0.62

2 28.9± 8.7 2.21± 1.11

3 20.1± 4.7 2.19± 1.07

All 22.8± 7.3 2.09± 0.97

The results are

summarized in Table I.

The average measured

time from interrupting

the robot until sending it

back to its original task

was 22.8 ± 7.3 s. On

average, all participants

placed their cubes within

2.09± 0.97 cm from the

target position. Every

run was successful, which confirms that our smartwatch

approach is a suitable tool for the designed intervention

task. Further, considering the time and position error,

these findings confirm the reported accuracy and real-time

capability of our smartwatch approach.

B. Learning Task

The goal of the second task is to show an application

to the problem of learning from demonstration [12]. In

particular, we learn a policy for placing a cube on a shelf,

as depicted on the left in Figure 9. A human wearing a

smartwatch demonstrates six training trajectories. The human

holds the cube in heir hand at the start position and starts

recording. Then, the human moves the cube in an arch to

one of the six red marked positions on the shelf and repeats

the procedure for the remaining goal positions. Since the

human can demonstrate the trajectories without moving the

robot, data collection is swift and uncomplicated. All training

trajectories for this task were recorded within two minutes.

The smartwatch trajectories are depicted in red on the right

in Figure 9. We then leverage these trajectories to train a

movement policy using the Generative Adversarial Imitation

Learning (GAIL) [27] method. As a result, we obtain a

movement policy for letting a robot place cubes at any

target position on the shelf. To visualize the generalization

capabilities of the resulting policy, four generated example

trajectories are depicted in Figure 9 on the right. They place

Fig. 10. Left: The user wears the smartwatch on their left arm and holds
the left hand next to their head. The smartwatch predicts the correct position.
Middle: The user rotates their wrist back and forth while keeping the hand
in the same position. This causes the predicted positions to alternate between
positions left or right of the head. Right: The predicted wrist position is at
the wrong side of the head.

the cube in-between the target positions, which are marked

as green squares on the left in Figure 9.

This use-case demonstrates that the smartwatch can be

leveraged to train new movement policies to a robot at any

time by swiftly recording a set of demonstrations in the same

environment. The smartwatch trajectories in this example

were collected within two minutes and enable a robot to

place a cube anywhere on a shelf given a target placement

position.

VI. LIMITATIONS AND FUTURE WORK

Our approach requires the completion of a two-step cal-

ibration procedure whenever there is a change in body

orientation or location of the user. This is a limitation in

comparison to the work of [4]. Their approach utilizes a

second IMU which allows users to move and rotate their

hip and chest. This limitation can be addressed by adding a

second IMU to our smartwatch approach too. To maximize

familiarity and ease-of-use, this work presents approaches

to leverage the possibilities of the smartwatch to their full

extend without adding additional devices. However, promis-

ing opportunities for future work can utilize the fact that a

smartwatch is typically connected to a smartphone, which

the user also wears on their body. The smartphone can serve

as a second IMU and enable the tracking of arm movements

while the user changes their body orientation or location.

A further limitation is that fast wrist rotations or uner-

gonomic arm motions affect the accuracy of our approach.

Figure 10 illustrates an example where the user wears the

smartwatch on their left arm and estimated arm postures are

visualized with an avatar. The final predicted wrist and elbow

positions are the mean of 300 individual MC dropout forward

passes. Individual predicted positions are marked as small

cubes colored according to their distance to the mean.

The user raised their hand to their ear and, as shown on the

left in Figure 10, the position was predicted correctly. Then,

the user rotated their wrist back and forth while keeping their

wrist position constant. The resulting unusual wrist angles

and rapid movements caused predicted positions to alternate

between the left and right side of the head. In the middle

of Figure 10 it is observable that predictions manifested in

bimodal distributions with their modes on the left an right

side of the head. The mean, and therefore the predicted elbow



and wrist positions, moved into the middle causing the arm

of the avatar to go through its head.

The detection and handling of such scenarios shapes

promising opportunities for future work. The distributions

obtained through the MC dropout predictions allow to detect

such scenarios and to dynamically adjust estimated joint

positions. If a multimodal distribution occurs, we can consult

additional cost functions, i.e., distance to previous positions

or risk for the teleoperated robot. It will also be possible

to determine the most likely arm posture by consulting

additional predictive models, which were trained on different

inputs. Having a measure of uncertainty and a distribution of

possible solutions is a promising base to improve prediction

accuracy in the future.

VII. CONCLUSIONS

This work presents a solution to the problem of estimating

human arm poses from a single smartwatch. We propose

a simple yet effective two-step calibration procedure to

mitigate variability in sensor data and to leverage information

about the forward-facing direction of the user. This allows

us to devise an optimized model architecture, which achieves

a ∼ 40% reduction in prediction error compared to results

reported in previous works. Furthermore, our approach gen-

erates a distribution of posture predictions, which allows

to estimate a measure of uncertainty and to select the

best solution from several options in cases of multimodal

distributions. By combining arm posture estimations with

speech recognition we turn the smartwatch into a ubiquitous,

low-cost and versatile robot control interface.
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