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Abstract
We study the classic problem of minimizing the expected total completion time of jobs on m identical

machines in the setting where the sizes of the jobs are stochastic. Specifically, the size of each job is a random
variable whose distribution is known to the algorithm, but whose realization is revealed only after the job
is scheduled. While minimizing the total completion time is easy in the deterministic setting, the stochastic
problem has long been notorious: all known algorithms have approximation ratios that either depend on the
variances, or depend linearly on the number of machines.

We give an Õ(
√
m)-approximation for stochastic jobs which have Bernoulli processing times. This is the

first approximation for this problem that is both independent of the variance in the job sizes, and is sublinear in
the number of machines m. Our algorithm is based on a novel reduction from minimizing the total completion
time to a natural makespan-like objective, which we call the weighted free time. We hope this free time objective
will be useful in further improvements to this problem, as well as other stochastic scheduling problems.

1 Introduction

Consider the problem of scheduling n jobs on m identical machines to minimize the total completion time of the
jobs. If we assume the job lengths are known, we can solve the problem optimally using the shortest processing
time (SPT) algorithm [BJS74]. But what if the jobs durations are not known precisely? In practical scheduling
settings, the job sizes are typically unknown. However, we can often give good stochastic predictions based on
jobs features and past data. In this work, we consider the setting where the job are stochastic, so the processing
time of each job j is an independent random variable Xj which is distributed according to a known probability
distribution πj , but whose realized value we observe only after scheduling it irrevocably on some machine. Now
the completion time Cj of job j is a random variable, which depends on the random job sizes (and on any random
decisions our algorithm may make). Our goal is to minimize

∑
j E[Cj ], the sum of expected completion times Cj

of the jobs (or equivalently, their average).

Since the randomness in the job sizes is revealed as they are scheduled, the decision of which job to schedule
next (and on which machine) can depend on the outcomes of already-scheduled jobs. Such scheduling policies are
called adaptive. Formally, for each idle machine, the adaptive scheduling policy must choose which job to schedule
next on this machine—or it may choose to idle the machine for some time period. In making this decision, it is
allowed to use any information it has gained from previously-scheduled jobs. In particular, the policy knows the
sizes Xj of all completed jobs j, and if a job j has currently been run for τ time the policy knows that the jobs
size is distributed as (Xj | Xj ≥ τ).

In this work we want to find near-optimal adaptive schedules, ones that result in the total expected completion
time being close to that achieved by the optimal adaptive schedule. Note this is an apples-to-apples comparison
where we relate the performance of our solution to the best solution of the same type, and not to a clairvoyant
optimum that knows the future. This problem has been of significant interest in both the theoretical computer
science and operations research communities for almost three decades now [WP80, WVW86, MSU99, SU05, JS18,
Sch08, SSU16, GMUX20, IMP15, EFMM19].

While the deterministic problem can be solved optimally (using the shortest processing time policy), the stochastic
setting is significantly more challenging. Early results for stochastic completion time minimization focused on
giving optimal policies only for restricted classes of instances, e.g., the case where all job distributions were
exponentials, or where the jobs could be stochastically ordered [WP80, WVW86]. Then, starting with the
ground-breaking work of Möhring, Schulz, and Uetz [MSU99], approximation algorithms were given that worked
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for all stochastic instances. However, almost all such algorithms have approximation ratios with at least linear

dependence on the squared coefficient of variation ∆ := maxj
Var(Xj)
(EXj)2

[MSU99, SU05, JS18, Sch08, SSU16,

GMUX20]. Since this squared coefficient of variation could be very large in general (even for Bernoulli jobs),
we want to obtain approximations which are distribution-independent, and in particular, do not depend on the
coefficient of variation.

There are significant roadblocks to obtaining such distribution-independent guarantees: the known algorithmic
toolkit for deterministic jobs relies on greedy policies and linear program-based algorithms [HSSW97, PST04,
Pin08]. For the former, the natural Shortest Expected Processing Time (SEPT) policy has an approximation ratio
no better than Ω(n1/4) [IMP15]. Moreover, even for instances consisting of only two types of jobs—identical
unit-sized deterministic jobs and identical Bernoulli jobs Xj ∼ s ·Ber(p), no index policy (which assigns each job
an “index” depending only on its size distribution, and then schedules the jobs in order of their indices) can have
bounded approximation ratio [EFMM19]. Approaches based on linear programming also do not seem to extend
to the stochastic setting: the most expressive time-indexed linear program commonly used for such settings has
an integrality gap of Ω(∆) [SSU16]. Finally, we know that adaptivity gap—the gap between the optimal adaptive
and fixed-assignment policies1—is Ω(∆) [SSU16]. Taken together, these lower bounds rule out most of the tools
that work for the setting of deterministic jobs.

The only distribution-independent approximations for stochastic completion time minimization have approxima-
tion ratios at least linear in m [IMP15, EFMM19]. In fact, nothing better than an O(m) approximation is known
even for instances consisting of only two types of jobs: identical unit-sized deterministic jobs and identically dis-
tributed Bernoulli jobs Xj ∼ s · Ber(p) [EFMM19]. For general job distributions, the best known approximation
is O(m poly log n) [IMP15].

Again, there are barriers to obtaining approximations that are sublinear in m: these previous works use “volume”
lower bounds, which rely on the fact that the processing capacity of m machines is m times larger than that
of a single machine. Indeed, the objective is extremely sensitive to the number of machines m: decreasing the
number of machines from m to m

2 can change the optimal adaptive policy’s objective value by an exponential in
m factor. (This is in stark contrast to the deterministic setting, where the optimal solution’s objectives for m
and m

2 machines differ by at most a constant factor.) See Appendix A for proofs of these two claims. This gives a
sense for why lower bounds on the optimal objective value based on the number of machines m do not generalize
well to the stochastic setting, except with a loss of a factor of m.

In summary, the main question we ask is:

Can we break through both the ∆- and m-barriers for the basic problem of completion time minimization
for stochastic jobs?

Despite the difficulty in obtaining improved approximations for this problem, it is possible that the problem has
a constant-factor approximation!

1.1 Our Results In this paper, we consider the case of (non-identical) Bernoulli jobs, i.e., with independent
processing times Xj ∼ sj ·Ber(pj) for size sj ≥ 0 and probability pj ∈ [0, 1]. Our main result is the first algorithm

that is both distribution-independent and has an approximation ratio sublinear in m. We use the notation Õ(·)
to hide poly log n-factors.

Theorem 1.1. (Main Theorem) There exists an efficient deterministic algorithm for completion time mini-

mization for Bernoulli jobs that computes a list schedule that Õ(
√
m)-approximates the optimal adaptive policy.

By list schedule, we mean our algorithm produces a list (i.e., an ordering) of all the jobs, and whenever a machine
is free, it schedules the next job according to this ordering. Bernoulli jobs already are a significant generalization of
the setting of [EFMM19], and our result improves (up to poly log n-factors) the O(m)-approximation of [EFMM19]

and the Õ(m)-approximation of [IMP15] for this special case of Bernoulli jobs. A corollary of our result is an

upper-bound of Õ(
√
m) on the adaptivity gap between the optimal adaptive policy and list schedules for the

special case of Bernoulli jobs.

1Such a policy non-adaptively assigns jobs to machines and runs each machines’ jobs in a fixed order.
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We view Bernoulli jobs as an important testbed for new techniques for this central problem in stochastic scheduling.
Progress on this problem has stalled since the the Õ(m)-approximation of [IMP15], and our work gives develops
new analysis techniques towards a o(m)-approximation for general distributions. In particular, we refine the
weighted free time objective (which was implicitly considered in [IMP15]) by incorporating the batch constraint
in our algorithm and analysis. We remark that a consequence of our techniques is a simple Õ(m)-approximation
for Bernoulli jobs, matching (up to poly log n-factors) the result of [IMP15] in this special case (see Section 4.2
for details.)

Considering Bernoulli jobs has been an important stepping-stone in other stochastic problems (e.g., for stochastic
makespan minimization [KRT00]), where algorithms for Bernoulli jobs could be extended to general distributions.
While we do not see how to get the extension yet, we hope that our technical framework will soon lead to such
extensions via our new proxy objective – weighted free time (which is valid for general distributions) – and the
techniques we develop to optimize it.

1.2 Technical Overview Our algorithm design will be informed by a proxy objective function, which we call
the weighted free time. We first observe that to bound the completion time of a job, it suffices to bound its
starting time, Sj . This is because on identical machines, we have Cj = Sj +Xj , where

∑
j Xj is a lower-bound

on the optimal total completion time. The key idea of our proxy objective is to relate the per-job starting times
to a more global quantity, which we call the free time.

Definition 1.1. (Free Time) Consider any fixed schedule. The ith free time of the schedule, which we denote
by F (i) is the first time when i jobs have been started and at least one machine is free to start the (i+ 1)st job.

For schedules that do not idle machines, the ith free time is the load of the least-loaded machine after starting i
jobs. By definition of free time, there are Θ(n/2k) jobs with starting times in [F (n − n/2k−1), F (n − n/2k)] for
all k = 1, . . . , log n (all logarithms are base 2 in this paper.) Thus we have:

∑
j

Sj =

logn∑
k=1

Θ(n/2k)F (n− n/2k).(1.1)

We call this final expression,
∑logn

k=1 n/2k · F (n− n/2k), the weighted free time of the schedule. We can view this
objective as defining log n work checkpoints for our algorithm. These checkpoints are the time that we have n/21

jobs left to start (i.e. F (n − n/21)), n/22 left to start (i.e. F (n − n/22)), and so on. Roughly, the goal of our
algorithm is to ensure that at each work checkpoint, our free time is comparable with the optimal schedule’s free
time at the same checkpoint.

We can now illustrate the reason for considering free times rather than the completion time directly. Indeed, let
C(i) be the time that we complete i jobs (and note the difference with Cj , which is the time at which we finish
a specific job j). We analogously have

∑
j Cj = Θ(

∑
k n/2

k · C(n− n/2k)). However, one difficulty of stochastic

jobs is we cannot easily control what are the first n − n/2k jobs to complete. On the other hand, for free times,
we have complete control over what n−n/2k jobs we decide to start first, which then contribute to F (n−n/2k).
This suggests two natural informal subproblems for our algorithm design:

� Subset Selection: Compute nested sets of jobs J1 ⊂ J2 ⊂ . . . such that for all k, Jk is comparable to the
first n− n/2k jobs of the optimal adaptive policy (i.e. the jobs contributing to F (n− n/2k) for opt.)

� Batch Free Time Minimization: Given nested sets of jobs J1 ⊂ J2 ⊂ . . . , schedule the Jk’s such that
our free time after scheduling Jk is comparable to F (n−n/2k) for opt. Our schedule must satisfy the batch
constraint that we schedule Jk (i.e. start every job in Jk) before Jk+1 \ Jk for all k.

The main technical challenge in both subproblems is the interaction between the free time and the batch constraint.
Since our final algorithm will be a list schedule, the Jk-sets are chosen non-adaptively. However, the optimal policy
chooses its first n−n/2k jobs adaptively, so it is not clear that there even exist good sets Jk. Our first contribution
is that we can indeed efficiently find good Jk sets non-adaptively by delaying slightly more jobs than opt.

Theorem 1.2. (Subset Selection, Informal) Given Bernoulli jobs, we can efficiently find nested sets of jobs

J1 ⊂ · · · ⊂ Jlogn such that |Jk| = n− Õ(n/2k) and Jk is a subset of the first n−n/2k jobs of the optimal adaptive
policy for all realizations.
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Our subset selection algorithm is a simple greedy algorithm: to construct Jk, for each possibly Bernoulli size
parameter (which we may assume there are O(log n) of by standard discretization techniques) we remove the
n/2k jobs with largest probability parameters. Thus, for each size, we keep the “smallest possible” jobs. The
analysis relies on the following structural characterization of the optimal adaptive policy for Bernoulli jobs.

Lemma 1.1. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the optimal adaptive
completion time schedule for these jobs starts the jobs with this size parameter in increasing order of their
probabilities for all realizations of the job sizes.

In light of Theorem 1.2, it remains to compute good list schedule of the Jk’s subject to the batch constraint. Our
free time minimization algorithm is also greedy: For each batch Jk \ Jk−1, we list-schedule them in increasing
order of size parameter.

Theorem 1.3. (Batch Free Time Minimization, Informal) Given the nested sets of Bernoulli jobs J1 ⊂
· · · ⊂ Jlogn guaranteed by Theorem 1.2, list scheduling them in increasing order of size parameter (subject to the

batch constraint) is Õ(
√
m)-approximate for weighted free time.

Combining Theorems 1.2 and 1.3 gives our desired Õ(
√
m)-approximation for completion time minimization for

Bernoulli jobs. We now give an overview of our analysis.

For a moment, suppose that we could list-schedule the batches output by Theorem 1.2, J1 ⊂ . . . Jlogn, optimally
subject to the batch constraint (i.e. for each Jk \ Jk−1, we compute an ordering of the jobs and start the jobs
in this order for all k = 1, . . . , log n) to minimize the weighted free time. At first glance, it might seem like we
are done, because Jk is always a subset of opt’s first n− n/2k jobs, so we are only scheduling fewer jobs than opt
at every work checkpoint. However, this reasoning fails because of the batch constraint. Indeed, let us contrast
the classic makespan minimization problem (schedule deterministic jobs to minimize the load of the most-loaded
machine) with its free time analogue (schedule n deterministic jobs to minimize the nth free time). While an
arbitrary list schedule is O(1)-approximate for makespan, it is Ω(m)-approximate for nth free time:

Lemma 1.2. For all m > 1, there exists a set of n jobs J and a list-schedule of J whose nth free time Ω(m)-
approximates the optimal nth free time.

Proof. Consider m “small” jobs of size 1 and m − 1 “big” jobs of size m. The optimal free time schedule is to
first schedule one small job on each machine, and then one big job on m − 1 machines. Thus the optimal nth
free time is 1. Now consider the list-schedule of all big jobs before small jobs. Then each big job is scheduled on
a separate machine, and all m small jobs are scheduled on the remaining machine. This gives nth free time m.

The instances from the above lemma suggest that we should schedule small jobs before bigger ones so that the big
jobs do not clog up the machines and delay the starting times of the small jobs. Implicitly, this is why previous
work loses a m-factor: While opt has m machines to schedule small jobs before the machines are clogged by big
ones, it can be the case that alg first clogs all but one machine with big jobs and then schedules all small jobs
on a single machine. For our algorithm, because of the batch constraint, it could be the case that opt does some
small jobs in Jk \ Jk−1 much earlier than our algorithm when fewer machines are clogged by big jobs. This is the
main technical challenge that we overcome to obtain our improvement.

Concretely, consider scheduling Jk subject to the batch constraint. For this subproblem, we say a job is big if
its realized size is larger than opt’s (random) n − n/2kth free time. Scheduling such jobs effectively turns off a
machine for the remainder of the schedule. We call such machines clogged. One should imagine that afterwards
we are averaging the volume of the remaining small jobs over one less machine. Our first insight is a stronger
lower bound on the rate that opt clogs machines using Lemma 1.1. We let J∗

k be the adaptively-chosen set of
the first n− n/2k jobs started by opt. Because Jk′ ⊂ J∗

k′ for every batch k′ for every realization of job sizes, the
number of big jobs in J ′

k is at most the number of big jobs in J∗
k′ . This implies that our algorithm clogs machines

at a slower rate than opt for every realization.

Similarly, Lemma 1.1 also implies that the total size of small jobs in Jk′ is at most the total size of small jobs in
J∗
k′ for every k′ ≤ k. However, this does not guarantee that the total size of small jobs in Jk′ \ Jk′−1 is at most

that in J∗
k′ \ J∗

k′−1, so although our algorithm has more unclogged machines, we may also be trying to average
more small jobs over these machines. Our second insight is a delicate charging argument that characterizes how
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the free times of previous batches affect the current one. Roughly, we argue that for our particular batches, while
moving a small job to an earlier batch allows us to average it over more unclogged machines, this also delays the
free time of all later batches. This ensures that there is not much benefit to moving small jobs to earlier batches.
To achieve this, we initiate a systematic study of the free time.

1.3 Comparison to prior work Prior O(∆)-approximations rely on bounding with respect to an LP solution,
e.g. [MSU99, SSU16]. These have an integrality gap of Ω(∆). On the other hand, our algorithm is combinatorial
and avoids this gap by comparing directly to the optimal adaptive policy.

The distribution-independent approximation of [IMP15] also partitions jobs into batches (as in our subset
selection problem). Roughly, they guarantee that their batches are “better” than the optimal solution’s jobs
“in expectation.” However, we will show that our algorithm’s batches are better than the optimal solution’s jobs
for every realization (using our structural characterization of the optimal policy Lemma 1.1.)

Further, their algorithm schedules jobs within batches in arbitrary order (i.e. they give a trivial solution to the
subproblem we call free time minimization). It seems likely that a loss of Ω(m) is necessary if one considers
an arbitrary list schedule because of the lower bound in Lemma 1.2. To overcome this, we choose a particular
list schedule (i.e. in increasing order of size parameter), which we show is Õ(

√
m)-approximate. To summarize,

using a deeper technical understanding, we give more refined guarantees for both subset selection and free time
minimization than [IMP15].

The only other work is [EFMM19], which considers even more restricted instances: those with only two types
of jobs, identical deterministic and identical Bernoulli. Their algorithm is to schedule either all deterministic
jobs first or all Bernoullis first (depending on the relative number of each type of jobs.) Our subset selection
algorithm vastly generalizes this idea to arbitrary Bernoulli jobs with varying size and probability parameters.
Further, while our algorithm in Theorem 1.3 runs an index policy within each Jk \ Jk−1-batch, we overcome the
lower bound on index policies due to [EFMM19] because our subset selection algorithm constructs the batches by
taking into account the relative number of different types of jobs—not only the distributions of individual jobs.

1.4 Related Work Many stochastic combinatorial optimization problems have been studied from an ap-
proximation perspective; the previous results closest to this work are packing problems including those on
stochastic versions of knapsack [DGV04, GKMR11, BGK11, LY13], orienteering [GKNR12], multi-armed bandits
[GMS10, Ma14], generalized assignment [AHL13], and packing integer programs [DGV05]. Some stochastic ver-
sions of covering problems include k-TSP [ENS17, JLLS20] and submodular cover [AAK19, GGN21]. Another
important class of stochastic problems is probing/selection problems [GGM10, GNS16, GNS17, FLX18].

For stochastic scheduling problems, approximations are known for load balancing [GI99, KRT00, GKNS18,
DKLN20] and completion time minimization with precedence constraints [SU01], preemption [MV14], release
dates and online arrivals [MUV06]; however the latter works have approximations that depend on the variance of
job sizes.

2 Subset Selection

The goal of this section is to solve the subset selection subproblem for Bernoulli jobs: we want to find nested sets
of jobs J1 ⊂ · · · ⊂ Jlogn such that Jk is comparable to the first n− n/2k jobs of the optimal adaptive completion
time schedule. Formally, let J∗

k be the random set consisting of the first n− n/2k jobs scheduled by the optimal
completion time schedule. Our main theorem here is the following:

Theorem 2.1. (Subset Selection) Let L be the number of distinct Bernoulli size parameters. There is an
algorithm ChooseJobs that outputs sets Jk satisfying:

(i) J1 ⊂ · · · ⊂ Jlogn ⊂ J
(ii) |Jk| ∈ [n− L · n/2k, n− n/2k]
(iii) Jk ⊂ J∗

k for all k and all realizations.

We show later how to use standard rescaling and discretization techniques to assume L = O(log n) while losing
only an extra constant factor in our final approximation ratio.
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b

TL TR

p̄b pb

T T ′ a

TR(a → b)

p̄a pa
q̄ q

TL(a → b)

b

p̄b pb

TL(−a) TR(−a)

Figure 1: Original decision tree T and modified decision tree T ′

It is convenient to think of the n/2k jobs that the optimal schedule excludes from J∗
k rather than the jobs it

chooses to start. Similarly, we specify our algorithm’s set of jobs also by the exclusions. The next lemma gives
our structural characterization for the optimal adaptive completion time schedule for Bernoulli jobs, which allows
us to characterize which jobs the optimal schedule chooses to exclude.

Because jobs are Bernoullis, upon scheduling a job j, the scheduler immediately learns the realized size of Xj

because it is either 0 or sj . Thus, the optimal schedule can be represented by a decision tree, where each node
is labeled by a job j, corresponding to the decision to schedule j on the currently least loaded machine, and has
a left- and right child, corresponding to the realized size of j being 0 or sj , respectively. Every root-leaf path on
this tree gives an ordering to schedule the jobs for a particular realization of job sizes.

Lemma 1.1. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the optimal adaptive
completion time schedule for these jobs starts the jobs with this size parameter in increasing order of their
probabilities for all realizations of the job sizes.

Proof Sketch. Our proof is an exchange argument. Consider the optimal decision tree (as described above), and
suppose there exists a root-leaf path that schedules job Xb ∼ s · Ber(pb) before Xa ∼ s · Ber(pa) with pa ≤ pb.
Then there exists a subtree T rooted at b such that a is scheduled on every root-leaf path in this subtree.

We now show how to modify T to start a before b while not increasing the expected completion time. Let TL

and TR be the left- and right subtrees (corresponding to the root job b coming up size 0 or s) of T , respectively.
We define TL(a → b) to be TL with the job a replaced by job b and TL(−a) to be TL, but at a’s node, we do not
schedule anything and instead go to a’s left child. The subtrees TR(a → b) and TR(−a) are defined analogously.
See Figure 1 for the modified tree T ′.

We choose the parameter q so that the probability that T ′ enters TL(a → b) or TL(−a) is exactly p̄b. This is our
replacement for the event that T enters TL. A calculation now shows that the expected completion time weakly
decreases from T to T ′. (See the proof in Appendix B for details.)

By definition opt can exclude only n/2k jobs from J∗
k . On the other hand, our algorithm will exclude n/2k jobs

of each Bernoulli size simultaneously. Lemma 1.1 suggests that we might as well exclude the jobs with largest
pj ’s. In particular, our algorithm to choose sets of jobs that are comparable to the J∗

k ’s is the following:

ChooseJobs: For each k = 1, . . . , log n, let Jk be the set of jobs constructed as follows:

i. Initialize Jk = J .
ii. For each Bernoulli size s, remove from Jk the n/2k jobs of size s with largest pj ’s.
iii. Output Jk.
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Proof of Theorem 2.1. It is immediate that the sets J1, . . . , Jlogn are nested and have the desired size. It remains
to show that Jk ⊂ J∗

k . Note that opt excludes at most n/2k jobs of the largest probabilities of each size by
Lemma 1.1. This holds for all realizations. On the other hand, we exclude n/2k jobs of largest probability of all
sizes simultaneously.

Morally, Theorem 2.1 states that we know the jobs that opt starts to achieve F ∗(n − n/2k) for all k (up to a
L-factor.) This suggests that we should first schedule J1 to get free time comparable to F ∗(n− n/21), and then
J2 \ J1 to get free time comparable to F ∗(n− n/22), and so on.

The goal of the next section is to show how to schedule the Jk’s subject to this batch constraint (we must schedule
all jobs in Jk−1 before any in Jk \ Jk−1 for all k) such that our weighted free time is comparable to that of opt.
Note that in general, even though Jk ⊂ J∗

k for all k, the optimal completion time schedule may not satisfy the
batch constraint—this is precisely is the main technical challenge that we have to overcome in the next section.

3 Batch Free Time Minimization

We now turn to the batch free time minimization problem. Our starting point is the nested sets of jobs
J1 ⊂ · · · ⊂ Jlogn ⊂ J output by ChooseJobs. Recall that J∗

k is the random set of the first n − n/2k jobs
scheduled by the optimal completion time policy opt.

3.1 Free Time Basics To motivate our final algorithm, we explore some basic properties of the free time. We
first recall the lower bound instance from Lemma 1.2: there are m small jobs of size 1 and m− 1 big jobs of size
m. The optimal nth free time is 1 by first scheduling all small jobs and then all big jobs. Observe that the final
m − 1 big jobs do not contribute to the optimal nth free time. This gave the intuition that we should schedule
small jobs before big ones clog up the machines. This intuition turns out to be correct, which we formalize in the
next lemma.

Lemma 3.1. List-scheduling deterministic jobs in increasing order of size is a 4-approximation for nth free time.

Proof. Let J be the set of input jobs and opt the optimal nth free time. We partition J into small and big jobs: a
job is big if its size is strictly greater than opt, and is small otherwise. This definition means that opt can schedule
at most one big job per machine. Moreover, there are strictly less than m big jobs, otherwise opt would need to
schedule at least one big job per machine, which contradicts the optimal nth free time.

On the other hand, our algorithm starts all small jobs before all big jobs. We claim that the nth free time of
our algorithm, which we denote by F (J), is at most the makespan of our algorithm after only scheduling the
small jobs, which we denote by M(S). To see this, consider the time right before we start the first big job. All
machines have loads within [M(S) − opt,M(S)] (the lower bound follows by noting that we list-scheduled only
jobs of size at most opt up until this point.) Thus, we schedule the at most m − 1 remaining big jobs each on
separate machines. All of the big jobs are started by time M(S), and there exists a machine that schedules no
big job, which is free by M(S) as well. It follows, F (J) ≤ M(S).

Now, because every list-schedule is 2-approximate for makespan, we have M(S) ≤ 2Mopt(S), where Mopt(S) is
the makespan of the small jobs under opt (i.e. when opt finishes its final small job.) To complete the proof,
we relate Mopt(S) with opt. It suffices to show Mopt(S) ≤ 2opt. To see this, consider time opt in the optimal
schedule. At this time, all machines are either free or working on their final job. In particular, any machine
working on a small job completes by time opt+ opt.

While we do not apply Lemma 3.1 directly for our algorithm, the ideas in the analysis will be crucial. In particular,
a key concept in our analysis is to differentiate between small and big jobs. Roughly, when we consider Jk, a job
is small if its size is at most F ∗(n− n/2k) and big otherwise. We are concerned about the volume (total size) of
the small jobs and number of big jobs. However, because of the batch constraint, we cannot ensure that all small
jobs are scheduled before all big jobs in general.

As we schedule batches J1, J2 \J1, . . . , Jk \Jk−1, more and more machines are getting clogged by big jobs. For the
purposes of scheduling Jk, these machines are effectively turned off. Thus, as we proceed through the batches, we
are averaging the volume of small jobs over fewer and fewer machines. The goal of our algorithm will be to ensure
that we do small jobs as early as possible (subject to the batch constraint) so that we have the most unclogged
machines available.
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3.2 Final Algorithm With the goal of §3.1 in mind, we are ready to describe our final algorithm, which is
the Õ(

√
m)-approximation guaranteed by Theorem 1.1. Although we cannot ensure that within a batch, jobs are

scheduled in increasing order of realized size as in the analysis of Lemma 3.1, because our jobs are Bernoullis, we
can ensure that all jobs that come up heads (have realized size sj) are scheduled in increasing order of realized
size. Here, we crucially use the fact that our jobs are Bernoullis, so if the come up tails (have size 0), they do
not affect the free time. For the rest of the description, we make the following assumption, which we justify in
Appendix C.

Assumption 3.1. We assume that there are L = O(log n) distinct Bernoulli size parameters sj, each at most n8.

By losing a constant factor in the final approximation ratio, we may assume Assumption 3.1 for the rest of the
analysis.

Lemma 3.2. Let m ≥ 2. Suppose there exists an algorithm for completion time minimization for Bernoulli jobs
on m machines satisfying Assumption 3.1 that outputs a list schedule with expected completion time at most
α
(
Eopt+O(1)

)
. Then there exists a O(α)-approximate algorithm for the same problem without the assumption.

Further, the resulting algorithm is also a list schedule, and it preserves efficiency and determinism.

The proof uses standard rescaling and discretization ideas, but it is more involved because of the stochastic jobs;
we justify it in Appendix C. Our final algorithm is now the following:

StochFree: Given input collection J of Bernoulli jobs:

i. Run ChooseJobs to obtain nested sets of jobs J1 ⊂ · · · ⊂ Jlogn ⊂ J

ii. List-schedule each batch Jk \ Jk−1 in increasing order of Bernoulli size parameter sj for all batches
k = 1, . . . , log n.

iii. List-schedule all remaining jobs J \ Jlogn in arbitrary order.

It is clear that StochFree outputs a list schedule in polynomial time and is deterministic. Our main
approximation guarantee for StochFree is the following.

Theorem 3.2. (Batch Free Time Minimization) Given Bernoulli jobs, if m ≥ 2 and Assumption 3.1 holds,

then StochFree outputs a list schedule with expected completion time at most Õ(
√
m) ·

(
E[opt] + O(1)

)
, where

opt is the optimal adaptive policy.

Note that composing Theorem 3.2 with Lemma 3.2 gives the desired Õ(
√
m) without the assumption for all

m ≥ 2. For the remaining case of m = 1, scheduling the jobs in increasing order of their expected processing
times is an optimal policy [Rot66]. This gives the desired Õ(

√
m)-approximation for all m, and completes the

proof of Theorem 1.1. In the remainder of the paper, we analyze StochFree (Theorem 3.2.)

4 Analysis of the StochFree Algorithm

The goal of this section is to prove Theorem 3.2, given Assumption 3.1. Our proof has four conceptual steps.

i. Bound the weighted free time of alg by averaging the volume of small jobs within each batch over the
unclogged machines—those that have not yet scheduled a big job. (§4.1)

ii. Show that StochFree is Õ(m)-approximate for all m ≥ 2. This serves as a warm-up to the improved

Õ(
√
m)-approximation, and it allows us to focus on the remaining case where m = Ω(1) is sufficiently large.

(§4.2)

iii. Control the rate that machines become clogged by a large job. We show that the rate that machines become
clogged for alg is slow enough so that opt cannot benefit much by putting small volume in earlier batches
than alg. (§4.3)

iv. Finally, bound the contribution of the volume of small jobs to the free time. Here we handle the main
challenge, which is that opt may schedule small volume “in the past” compared to alg. (§4.4-4.6)
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4.1 Weighted free time First, we pass from total completion time to our proxy objective of weighted free
time. We let opt denote the optimal adaptive completion time policy as well as its completion time. Recall that
J∗
k is the first n − n/2k jobs scheduled by this policy achieving free time F ∗(n − n/2k). Analogously, we let alg

denote the completion time of our algorithm, and F (Jk) the free time of our algorithm after scheduling Jk.

Lemma 4.1. We have alg = O(log n)(
∑

k n/2
k · F (Jk) + opt) and opt = Ω(

∑
k n/2

k · F ∗(n− n/2k)).

Proof. We rewrite alg =
∑

j Cj =
∑

j Sj +
∑

j Xj . First, note that
∑

j Xj ≤ opt. It remains to bound
∑

j Sj .
Recall that in StochFree, first we list-schedule Jlogn subject to the batch constraint and then J \ Jlogn. We
first handle the starting times of Jlogn. For all k, note that Jk \ Jk−1 consists of at most O(L) · n/2k jobs with
starting times in [F (Jk−1), F (Jk)] by Theorem 2.1. Thus we have

∑
j∈Jlog n

Sj = O(L) · (
∑

k n/2
k · F (Jk)) =

O(log n) · (
∑

k n/2
k · F (Jk)) using Assumption 3.1.

For the jobs in J \ Jlogn, by Theorem 2.1, there are at most O(L) = O(log n) such jobs. Each of these jobs
completes by the makespan of alg’s schedule. Further, alg is a list schedule, which is 2-approximate for makespan,
so the makespan of alg is at most twice the makespan of opt. The makespan of opt is a lower bound on opt
(because some job must complete at this time.) We conclude,

∑
j∈J\Jlog n

Sj = O(log n)opt. Combining our

bounds for Jlogn and J \ Jlogn gives the desired result for alg.

The bound on opt follows from Equation (1.1).

We refer to
∑

k n/2
k ·F (Jk) as alg’s weighted free time and

∑
k n/2

k ·F ∗(n−n/2k) as opt’s. The remainder of the
analysis will focus on bounding alg’s weighted free time with respect to opt’s. Our main result is the following:

Theorem 4.1. If m = Ω(1) is sufficiently large, then the weighted free time of alg satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[opt ]

)
+O(1).

Note that Theorem 4.1 along with Lemma 4.1 implies the desired guarantee in Theorem 3.2 for the case m = Ω(1)
sufficiently large.

We now introduce some notations. For all k, we call Ik = Jk \Jk−1 the kth batch of jobs. Recall that the Jk’s are
nested, so the batch constraint says we schedule in order I1, . . . , Ilogn. We define I∗k = J∗

k \J∗
k−1 analogously. For

any set of jobs, J ′ and τ ≥ 0, we define J ′(= τ) to be the random subset consisting of all jobs in J ′ with realized
size exactly τ . We define J ′(> τ) and J ′(≤ τ) analogously. Further, for a set of jobs J ′, we let Vol(J ′) =

∑
j∈J′ Xj

be the volume of J ′. Finally, we say job j is τ -big for τ ≥ 0 if Xj > τ . Otherwise j is τ -small.

As in the analysis for minimizing the free time for a single batch of deterministic jobs (Lemma 3.1), the key
concept is to differentiate between small and big jobs. To this end, for all k we define the random threshold
τk = 2 ·max(EF ∗(n−n/2k), F ∗(n−n/2k)). Morally, one should imagine that τk is F ∗(n−n/2k), but there is an
edge case where F ∗(n − n/2k) < EF ∗(n − n/2k) and a multiplicative factor for concentration. When bounding
F (Jk), we will take τk to be our threshold between small- and big jobs. This threshold has the following crucial
property that alg always has at least as many unclogged machines as opt. In particular, alg always has at least
one unclogged machine.

Proposition 4.2. For all k, the following holds per-realization: |Jk(> τk)| ≤ |J∗
k (> τk)| < m.

Proof. The first inequality follows from Theorem 2.1, because Jk(> τk) ⊂ J∗
k (> τk) per-realization. For the

second inequality, note that τk ≥ F ∗(n − n/2k), so by definition of free time, opt schedules strictly less than m
jobs bigger than τk to achieve F ∗(n− n/2k).

Using this threshold, we re-write F (Jk) by averaging the volume of small jobs over the unclogged machines (the
ones with no big job.)

Lemma 4.2. For all k, the following holds per-realization:

F (Jk) ≤ F (Jk−1) +
Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+ 2τk.
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Proof. First, we note by Proposition 4.2 that the denominator m−|Jk−1(> τk)| ≥ 1. Then consider time F (Jk−1).
There are at least m − |Jk−1(> τk)| machines that have not scheduled a τk-big job in Jk−1. At this time, each
machine is either free or working on its final job in Jk−1. In particular, each machine that has not scheduled a
τk-big job in Jk−1 is free to start working on Ik by time F (Jk−1) + τk, and there are at least m − |Jk−1(> τk)|
such machines.

We need the following monotonicity property of list schedules.

Lemma 4.3. Consider a set of deterministic jobs and a fixed list schedule of those jobs. Then increasing the
initial load or decreasing the number of machines weakly increase the free time of the schedule.

Proof. Let J be the set of jobs. Consider initial load vectors ℓ, ℓ′ ∈ Rm, where the ith entry of each vector denotes
the initial load on machine i. Now suppose ℓ ≤ ℓ′, entry-wise. It suffices to show that F (J, ℓ) ≤ F (J, ℓ′), where
F (J, ℓ) is the free time achieved by our list-schedule with initial load ℓ. This suffices, because we can decrease
the number of machines by making the initial loads of some machines arbitrarily large so that they will never be
used.

We prove F (J, ℓ) ≤ F (J, ℓ′) by induction on the number of jobs, |J |. In the base case, |J | = 0, so the claim is
trivial because ℓ ≤ ℓ′. For |J | > 0, let j be the first job in the list, which is scheduled, without loss of generality,
on the first machine for both initial loads ℓ and ℓ′. Then:

F (J, ℓ) = F (J \ {j}, ℓ+ sje1) ≤ F (J \ {j}, ℓ′ + sje1) = F (J, ℓ′),

where e1 is the first standard basis vector, so we have ℓ+sje1 ≤ ℓ′+sjei1 entry-wise. Then we assumed inductively
that F (J \ {j}, ℓ+ sje1) ≤ F (J \ {j}, ℓ′ + sje1).

By Lemma 4.3, we can upper-bound F (Jk) by list-scheduling Ik with initial load F (Jk−1)+τk on m−|Jk−1(> τk)|
machines that have not scheduled a τk-big job in Jk−1. Recall that alg list-schedules Ik in increasing order of size
parameter, so - ignoring jobs that come up tails with realized size 0 - we schedule all τk-small jobs in Ik before
any τk-big one. Further, |Ik(> τk)| < m − |Jk−1(> τk)| by Proposition 4.2, so there exists some machine that

schedules only τk-small jobs in Ik. This machine is free by time F (Jk) ≤ F (Jk−1)+τk+
Vol(Ik(≤τk))

m−|Jk−1(>τk)| +τk.

Using Lemma 4.2 and the exponentially decreasing weights, we can re-write alg’s weighted free time as:

(4.2)
∑
k

n/2k · F (Jk) = O

(∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+
∑
k

n/2k · τk
)

By definition of τk, the second sum is O(E
∑

k n/2
k ·F ∗(n−n/2k)) in expectation, which is exactly opt’s weighted

free time. It remains to bound the first sum.

4.2 Warm up: Õ(m)-approximation Before proceeding with the proof of Theorem 4.1, we observe that

Equation (4.2) along with our basic weighted free time properties is enough to give a Õ(m)-approximation.
Interestingly, this gives a simple proof that nearly matches the previously best-known guarantees for Bernoulli
jobs.

Lemma 4.4. Given Bernoulli jobs, if m ≥ 2 and Assumption 3.1 holds, then StochFree outputs a list schedule
whose expected completion time Õ(m)-approximates the optimal adaptive policy.

Proof. Starting from Equation (4.2):

∑
k

n/2k · F (Jk) = O

(∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+

∑
k

n/2k · τk
)
,

we note that Ik ⊂ J∗
k by Theorem 2.1 and m− |Jk−1(> τk)| ≥ 1 by Proposition 4.2. Thus, we can bound:

Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
≤ Vol(J∗

k (≤ τk)).
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We claim that Vol(J∗
k (≤ τk)) = O(m) · τk. To see this, observe that by averaging the volume of J∗

k (≤ τk) over the

m machines, after scheduling J∗
k , each machine in opt has load at least

Vol(J∗
k (≤τk))
m −τk. This gives F

∗(n−n/2k) ≥
Vol(J∗

k (≤τk))
m − τk. Noting that τk ≥ F ∗(n− n/2k) completes the proof that Vol(J∗

k (≤ τk)) = O(m) · τk.

Applying this to our above expression gives Vol(Ik(≤τk))
m−|Jk−1(>τk)| = O(m) · τk, so alg’s weighted free time satisfies:∑

k

n/2k · F (Jk) = O(m) · (
∑
k

n/2k · τk).

Taking expectations and applying Lemma 4.1 completes the proof.

The loss of m in the above proof was because alg averages the small volume over at least 1 unclogged machine,
but opt may average the same volume over at most m machines. Intuitively, this reasoning is why previous work
loses a m-factor as well.

Further, this is the main technical challenge that we will overcome to get our improvement. Indeed, even though
Jk ⊂ J∗

k for all k, it is not true that Ik ⊂ Ik∗ . This means that while we are averaging Vol(Ik(≤ τk)) over
m − |Jk−1(> τk)| machines (which is at least as many machines as opt has for batch k), it can be the case that
opt actually did jobs in Ik in much earlier batches. In the remainder of our analysis, we do a more fine-grained
analysis of the rate that alg and opt clog machines, and when they choose to do the same small volume. This
allows us to break through the linear dependence in m.

4.3 Bounding the unclogged machines In this section, we are interested in controlling the quantity
m − |Jk−1(> τk)|, which is the number of machines we have left to schedule Ik (the unclogged machines.) Note
that there are two sources of randomness: the realizations of jobs in Jk−1 and the threshold τk.

Our strategy is to control m − E|Jk−1(> τ)| for a fixed threshold τ . Then because |Jk−1(> τ)| is a sum of
independent {0, 1}-valued random variables, a Chernoff-union bound argument allows us to controlm−|Jk−1(> τ)|
as well.

However, we will see that concentration alone is not enough; this is because there is an unbounded difference
between |Jk−1(> τ)| = m and |Jk−1(> τ)| < m − 1. In the former case, all machines are clogged by big jobs,
whose size we cannot upper bound. Thus, we cannot make any progress towards reaching time F (Jk) (by starting
more jobs.) In the latter, we have at least one machine, so we can still make some progress towards F (Jk).
The situation to keep in mind is when E|Jk−1(> τ)| is close to m, so concentration around the mean will fail
to preserve this hard constraint that we need at least one unclogged machine. To remedy this, we will combine
concentration arguments with the per-realization properties of StochFree.

We begin with the concentration arguments, so we wish to understand m − E|Jk−1(> τ)|. We first use the
properties of ChooseJobs to bound E|Jk−1(> τ)|:

Proposition 4.3. For all fixed thresholds τ and batches k, we have E|Ik(> τ)| ≥ 1
2Eτ |Ik−1(> τ)|.

Proof. By summing over the relevant sizes, it suffices to prove E|Ik(= s)| ≥ 1
2E|Ik−1(= s)| for any Bernoulli size

parameter s. We may assume E|Ik−1(= s)| > 0 or else the proposition is trivial.

Then when ChooseJobs constructs Jk−1, it includes at least one job with size parameter s. It follows, there
exist n/2k−1 remaining jobs in J \ Jk−1 with size parameter s. When constructing Jk, ChooseJobs will include
n/2k of these remaining jobs. In conclusion, Ik−1 has at most n/2k−1 jobs with size parameter s, while Ik has at
least n/2k. The result follows because ChooseJobs includes jobs in increasing order of pj .

Proposition 4.3 allows us to relate the expected number of machines left (with respect to fixed threshold τ) at
batch k with the number of machines left at k′ ≤ k:

Lemma 4.5. For all fixed thresholds τ and batches k′ ≤ k, we have m′ − E|Jk−1(> τ)| ≥ 2−(k−k′+1) · (m′ −
E|Jk′−1(> τ)|), where m′ ≥ E|Jk(> τ)|.

Proof. We may assume E|Ik(> τ)| > 0 or else the lemma is trivial, because by definition of ChooseJobs, if
E|Ik(> τ)| = 0, then E|Jk−1(> τ)| = 0 and E|Jk′−1(> τ)| = 0.
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In particular, we may assume m′ − E|Jk−1(> τ)| ≥ E|Ik(> τ)| > 0. Then we compute:

m′ − E|Jk′−1(> τ)|
m′ − E|Jk−1(> τ)|

= 1 +
E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|

m′ − E|Jk−1(> τ)|
≤ 1 +

E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|
E|Ik(> τ)|

.

Repeatedly applying Proposition 4.3 to the numerator gives:

1 +
E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|

E|Ik(> τ)|
≤ 1 + (2k−k′

+ · · ·+ 21) ≤ 2k−k′+1.

To see the utility of Lemma 4.5, suppose E|Jk(> τ)| = m. Then roughly the lemma says in expectation, we lose
at most half of our remaining machines between each batch. However, in the weighted free time the coefficient
n/2k (corresponding to the number of jobs delayed by the current batch) also halves between each batch. Thus,
although we are losing half of our machines, only half as many jobs are affected by this loss.

First, we bound the expectation of |Jk(> τ)| when τ is sufficiently large (i.e. for all possible realizations of τk.)
The proof uses a Chernoff bound along with the definition of big jobs; see Appendix D for proof.

Lemma 4.6. Let m = Ω(1) be sufficiently large. Then there exists a constant c ≥ 0 such that for all batches k
and thresholds τ > 2EF ∗(n− n/2k), we have E|Jk(> τ)| ≤ m+ c

√
m.

Now, because E|Jk(> τ)| = O(m), we can bound the deviation of |Jk(> τ)| by Õ(
√
m) with high probability.

We define the notation |Jk(> τ)|
±∆
≈ E|Jk(> τ)| to denote the event

| |Jk(> τ)| − E|Jk(> τ)| | ≤ ∆.

The proof of the next lemma is a Chernoff-union argument; see Appendix D for proof.

Lemma 4.7. Let ∆ = O(
√
m log n) and m = Ω(1) be sufficiently large. Then with probability at least 1− 1

poly(n) ,

the following events hold:

(4.3) {|Jk(> τ)|
±∆
≈ E|Jk(> τ)| ∀ batches k and thresholds τ > 2EF ∗(n− n/2k)}.

Combining Lemma 4.5 and Lemma 4.7, we can show the number of remaining machines is concentrated as well.
Here we also need to bring in the per-realization properties of StochFree to handle the case where concentration
is not enough to ensure that we have at least one remaining machine. This is the main result of this section.
Recall that we defined τk = 2max(EF ∗(n− n/2k), F ∗(n− n/2k)), so in particular τk ≥ 2EF ∗(n− n/2k).

Lemma 4.8. Suppose Event (4.3) holds. Then for all pairs of batches k′ ≤ k, we have m − |Jk−1(> τk)| ≥
(3∆)−12−(k−k′+1)(m− |Jk′−1(> τk)|), where ∆ = O(

√
m log n).

Proof. Consider fixed batches k′ ≤ k, and let µk = E|Jk(> τk)| and µk′ = E|J ′
k(> τk)|. Note that

τk ≥ 2EF ∗(n − n/2k) ≥ 2EF ∗(n − n/2k
′
), so Event (4.3) gives |Jk(> τk)|

±∆
≈ µk and |Jk′(> τk)|

±∆
≈ µk′ .

Further, we may choose ∆ = O(
√
m log n) large enough so that µk ≤ m + ∆. Using these approximations with

Lemma 4.5 gives:

m− |Jk(> τk)| = m+∆− |Jk(> τk)| −∆

≥ m+∆− µk − 2∆

≥ 2−(k−k′+1)(m+∆− µk′)− 2∆

≥ 2−(k−k′+1)(m− |Jk(> τk)|)− 2∆.

Finally, by Proposition 4.2, m− |Jk(> τk)| ≥ 1, so rearranging gives:

3∆(m− |Jk(> τk)|) ≥ m− |Jk(> τk)|+ 2∆ ≥ 2−(k−k′+1)(m+ |Jk(> τk)|).

To summarize, we showed that up to a multiplicative Õ(
√
m)-factor, the number of unclogged machines with

respect to threshold τk at worst halves in each batch up to k.
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4.4 Bounding small-in-the-past jobs Recall that our goal is to bound
∑

k n/2
k · Vol(Ik(≤τk))

m−|Jk−1(>τk)| . To this end,

consider fixed k. Because Ik ⊂ J∗
k = ∪k′≤kI

∗
k (by Theorem 2.1), we can write:

Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
=

∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
+

∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

Thus, we split Ik depending on which batch opt decided to schedule that job in. Further, we split Ik∩I∗k′ (i.e. the
jobs our algorithm does in batch k that opt did in the past batch k′ ≤ k) into the jobs that are small-in-the-past
(size at most τk′) and big-in-the-past (size greater than τk′ and at most τk.)

The goal of this section is to bound the small-in-the-past jobs. This formalizes the idea that the rate at which
we lose machines, guaranteed by Lemma 4.8, is offset by the number of jobs opt is delaying, captured by the
exponentially decreasing weights n/2k. More precisely, if opt decides to do a small job from Ik in an earlier

batch, say I∗k′ , then opt is averaging this small volume over at most a Õ(
√
m) · 2k−k′

-factor more unclogged

machines. However, the weight of this term in opt’s weighted free time increased by a 2k−k′
-factor as well,

corresponding to the number of jobs delayed by batch k′. Thus, up to a Õ(
√
m)-factor, there is no benefit to

doing the small-in-the-past jobs any earlier. We show the following.

Lemma 4.9. Suppose Event (4.3) holds. Then the small-in-the-past jobs satisfy:

∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= Õ(

√
m) ·

∑
k

n/2k · τk.

Proof. Because there are O(log n) batches, it suffices to show for fixed k and k′ ≤ k that we have

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= O(∆) · 2k−k′

τk′ ,

where ∆ = O(
√
m log n). Summing over all k and k′ ≤ k would give the desired result.

We upper bound the numerator using Ik ∩ I∗k′ ⊂ I∗k′ and apply Lemma 4.8 to the denominator. This gives:

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= O(∆) · 2k−k′ Vol(I∗k′(≤ τk′))

m− |Jk′−1(> τk)|
= O(∆) · 2k−k′ Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

.

In the final step, we used Jk′−1 ⊂ J∗
k′−1 (by Theorem 2.1) and τk ≥ τk′ .

Finally, we show
Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

= O(τk′).

Recall that τk′ > F ∗(n−n/2k
′
), so opt schedules at most one τk′ -big job per machine in J∗

k′ . Further, opt schedules
I∗k′(≤ τk′) only on the m − |J∗

k′−1(> τk′)| machines that have not yet scheduled a τk′ -big job yet. By averaging,
after scheduling I∗k′(≤ τk′), every such machine in opt has load at least

Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

− τk′ .

One of these machines must achieve the free time F ∗(n−n/2k
′
), because every other machine has already scheduled

a τk′ -big job. This implies

F ∗(n− n/2k
′
) ≥ Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

− τk′ .

Rearranging and using τk′ > F ∗(n− n/2k
′
) give the desired result.

Thus, the contribution of the small-in-the-past jobs to alg’s weighted free time is comparable to opt’s weighted
free time, up to a Õ(

√
m)-factor.
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4.5 Bounding big-in-the-past jobs The goal of this section is to bound the big-in-the-past jobs, that is:∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

For convenience, we define Ikk′ = Ik ∩ I∗k′(> τk′ ,≤ τk). Note that we cannot apply volume arguments as in §4.4,
because the big-in-the-past jobs are τk′ -big. Instead, we will use the fact that opt schedules at most one Ikk′ -job
per machine.

There are two types of jobs in j ∈ Ikk′ : We say j is blocked if opt later schedules a τk-big job in Jk−1 on the
same machine as j (recall that Jk−1 ⊂ J∗

k−1 by Theorem 2.1.) Otherwise, j is unblocked. Further, a machine
is blocked/unblocked if the Ikk′ -job scheduled on that machine is blocked/unblocked. Thus we can partition
Ikk′ = Bkk′ ∪ Ukk′ into blocked and unblocked jobs, respectively.

By splitting the volume of jobs into unblocked and blocked, we can rewrite:∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
=

∑
k

n/2k ·
∑
k′≤k

Vol(Ukk′)

m− |Jk−1(> τk)|
+

∑
k

n/2k · Vol(Bkk′)

m− |Jk−1(> τk)|
.

Intuitively, the unblocked jobs are not problematic because there can be at most m− |Jk−1(> τk)| such jobs.

Lemma 4.10. The unblocked jobs satisfy
∑

k n/2
k ·

∑
k′≤k

Vol(Ukk′ )
m−|Jk−1(>τk)| ≤ O(log n) ·

∑
k n/2

k · τk.

Proof. Because there are O(log n) batches, it suffices to show for fixed k and k′ ≤ k that

Vol(Ukk′)

m− |Jk−1(> τk)|
≤ τk.

We recall that every job in Ukk′ is τk-small, so:

Vol(Ukk′)

m− |Jk−1(> τk)|
≤ τk · |Ukk′ |

m− |Jk−1(> τk)|
.

We note that every job in Ukk′ is τk′ -big, and opt schedules these jobs in batch I∗k′ . Thus, there is at most one
Ukk′ -job per unblocked machine. Further, there are at most m− |Jk−1(> τk)| unblocked machines, because each
τk-big job in Jk−1 must be scheduled on a separate machine of opt (because Jk−1 ⊂ J∗

k by Theorem 2.1.) We

conclude, |Ukk′ |
m−|J∗

k−1(>τk)| ≤ 1, as required.

It remains to handle the blocked jobs. Again, the central issue is that opt does blocked jobs in an earlier batch
before some machines get clogged. On the other hand, ChooseJobs puts these jobs in a later batch when we
have fewer machines.

Unlike our previous arguments, for the blocked jobs we will charge the volume of these jobs to the completion
time of opt directly. Because these jobs are blocked, opt must schedule a τk-big job later on the same machine.
In particular, opt must have kept scheduling Bernoulli jobs with size parameter at least τk until one comes up
heads. We will charge Bkk′ to the completion time of all of these coin flips.

As before, we consider a fixed threshold τ and later union bound over all relevant thresholds. In this section, for
any batch k and threshold τ , we define pkτ ∈ [0, 1] to be the largest probability parameter across all jobs j in
Jk−1 with sj > τ (if no such job exists, then we follow the convention pkτ = 0.) Note that pkτ is deterministic for
fixed τ . We first relate the number of remaining machines with the expected number of heads in the kth batch.

Proposition 4.4. Consider any batches k, k′ ≤ k and threshold τ ≥ 2EF ∗(n − n/2k). Suppose Event (4.3)
holds. Then we have m− |Jk−1(> τ)| ≥ pkτ · n/2k −O(∆), where ∆ = O(

√
m log n).

Proof. First, if pkτ = 0, then |Jk−1(> τ)| = 0, so the proposition is trivial. Thus, we may assume pkτ > 0. In
particular, ChooseJobs included at least one job j ∈ Jk−1 with sj > τ and pj = pkτ . It follows, ChooseJobs
will include n/2k further jobs in Ik with size parameter larger than τk and probability parameter at least pkτ .
Thus, we have E|Ik(> τ)| ≥ pkτ ·n/2k. Rewriting E|Ik(> τ)| = E|Jk(> τ)|−E|Jk−1(> τ)| and applying Lemma 4.6
and Event (4.3) to the first and second expectations, respectively gives:

pkτ · n/2k ≤ E|Ik(> τ)| = E|Jk(> τ)| − E|Jk−1(> τ)| ≤ (m+O(
√
m))− (|Jk−1(> τ)| −O(∆)).

Rearranging gives the desired result.
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To see the utility of Proposition 4.4, we assume for a moment that τk is deterministic and ignore the additive

O(∆) term in the proposition. Then we could rewrite n/2k · Vol(Bkk′ )
m−|Jk−1(>τk)| ≲

1
pkτ

·Vol(Bkk′).

To relate this expression with opt, we note that opt schedules a τk-big job on top of each job in Bkk′ . In particular,
opt must schedule enough Bernoulli jobs j with sj > τk until at one comes up heads on each such machine. Each
such job also satisfies pj ≤ pkτk , so - roughly - in opt we expect each blocked job to delay at least 1

pkτ
jobs in

order for that machine to become blocked. This would give 1
pkτk

·Vol(Bkk′) ≲ opt, as required.

4.6 Coin Game It remains to formalize this idea using a martingale argument. We begin by defining an
(artificial) game, which will model the process of a machine becoming blocked.

Definition 4.1. (Coin Game) The game is played with n coins and m machines by a single player. The coins
are independent such that coin j comes up heads with probability pj. Initially, all machines are available. At each
turn, the player can either choose to flip a previously unflipped coin on an available machine or to end the game.
In the former case, if the coin comes up heads, then the machine becomes unavailable. The game ends when the
player chooses to, or if we run out of unflipped coins or available machines.

Now we are ready to interpret opt as implicitly playing a coin game to block machines.

Definition 4.2. (Induced Coin Game) Consider pairs of batches k′ ≤ k and thresholds τ ′ ≤ τ . Then the
(k′, k, τ ′, τ)-induced coin game (with respect to policy opt) is a distribution over coin games defined as follows:

• The machines are the ones of opt whose final job in J∗
k′ has size exactly τ ′.

• For every job in j ∈ Jk−1 \ J∗
k′ with sj > τ , we have a coin with the same probability parameter.

The player of the coin game simulates opt as follows. Starting from after opt schedules J∗
k′ , if opt subsequently

schedules a job on a machine that is still available (in the coin game), then the player flips the corresponding coin
(if such a coin exists) on the same machine. The player decides to stop when it runs of out coins or all machines
are unavailable.

One should imagine that the machines in the induced coin game are exactly those that can become blocked.
Thus, a machine becoming unavailable in the coin game corresponds to it becoming blocked in opt, and the total
number of flipped coins records how many jobs were delayed by τ ′.

Using a martingale argument, we relate the number of machines that become unavailable with the number of
flipped coins. The next lemma formalizes the idea that to block a machine, we expect opt to flip 1

pkτk

coins

per blocked machine. Recall that for any batch k and threshold τ , we define pkτ to be the largest probability
parameter across all jobs j in Jk−1 with sj > τ .

Lemma 4.11. With probability 1− 1
poly(n) , the following event holds:

(4.4) {#(unavailable machines) ≤ pkτ ·#(flipped coins) + ∆ ∀ (k′, k, τ ′, τ)- induced coin games},

where ∆ = O(
√
m log n).

Proof. Because there are O(log n) batches and L = O(log n) relevant thresholds, by union-bounding over all pairs
of batches and thresholds, it suffices to show that a fixed (k′, k, τ ′, τ)-induced coin game satisfies:

P(#(unavailable machines) ≤ pkτ ·#(flipped coins) + ∆) = 1− 1

poly(n)
.

We will define a martingale to count the number of unavailable machines. For all t ≥ 0, let At be the (adaptively
chosen) set of the first t coins flipped by the player. If the player stops before flipping t coins, then we define
At = At−1. Now consider the sequence of random variables Mt =

∑
j∈At

Cj −
∑

j∈At
pj for all t ≥ 0, where

Cj ∼ Ber(pj) is the distribution of coin j. Note that
∑

j∈At
Cj is exactly the number of heads in the first t coin

flips, which is the number of unavaiable machines.

We claim that Mt is a martingale. Consider any t ≥ 0. There are two cases. If At = At−1, then Mt = Mt−1, so
trivially E[Mt | Mt−1, . . . ,M0] = Mt−1. Otherwise, At = At−1 ∪{j} for some adaptively chosen coin j. It suffices
to show the martingale property conditioned on the next coin being j for any fixed coin j:

E[Mt | Mt−1, . . . ,M0, At = At−1 ∪ {j}] = E[Mt−1 + Cj − pj | Mt−1, . . . ,M0, At = At−1 ∪ {j}]
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= Mt−1 + pj − pj = Mt−1,

as required.

To bound the deviation of Mt, we apply Freedman’s inequality [Fre75] to the martingale difference sequence of
Mt.

Proposition 4.5. (Freedman’s inequality) Consider a real-valued martingale sequence {Xt}t≥0 such that

X0 = 0 and |Xt| ≤ M almost surely for all t. Let Yt =
∑t

s=0 E[X2
s | Xs−1, . . . , X0] denote the quadratic variation

process of {Xt}t. Then for any ℓ ≥ 0, σ2 > 0 and stopping time τ , we have:

P(|
τ∑

t=0

Xt| ≥ ℓ and Yτ ≤ σ2) ≤ 2 · exp
(
− ℓ2/2

σ2 +Mℓ/3

)
.

We let Xt denote the martingale difference sequence of Mt, which is defined as X0 = 0 and Xt = Mt −Mt−1 for
all t > 0. Because Mt is a martingale, Xt is as well. Furthermore, we have |Xt| ≤ 1 almost surely for all t. For
any t ≥ 0, we let jt be the (adaptively chosen) tth coin flip. Then we can bound the quadratic variation process
by:

Yt =

t∑
s=0

E[X2
s | Xs−1, . . . , X0] =

t∑
s=0

E[(Cjs − pjs)
2 | Xs−1, . . . , X0]

≤
t∑

s=0

E[C2
js | Xs−1, . . . , X0]

=

t∑
s=0

E[Cjs | Xs−1, . . . , X0].

Note that the Cj1 + . . . Cjt ≤ m almost surely, because the induced coin game has at most m machines, and any
adaptive policy can flip at most one heads per machine. Thus, we have Yt ≤ m for all t.

Now let T be the stopping time when the induced coin game ends, so T is exactly the number of flipped coins.
Then Freedman’s inequality gives:

P(|
T∑

t=0

Xt| ≥ ∆) = P(|
T∑

t=0

Xt| ≥ ∆ and YT ≤ m) ≤ 2 · exp(− ∆2/2

m+∆/3
).

Taking ∆ = O(
√
m log n) gives P(|

∑T
t=0 Xt| ≥ ∆) ≤ 1

poly(n) .

Finally, we observe that #(unavailable machines) =
∑

j∈AT
Cj . Further, we have pkτ · #(flipped coins) ≥∑

j∈AT
pj , because every coin j corresponds to a job in Jk−1 with sj > τ , so pj ≤ pkτ for all coins. Thus,

we conclude:

P(#(unavailable machines) > pkτ ·#(flipped coins) + ∆) ≤ P(|
T∑

t=0

Xt| > ∆) ≤ 1

poly(n)
.

Combining Proposition 4.4 and Lemma 4.11, we can bound the blocked jobs:

Lemma 4.12. Suppose Events (4.3) and (4.4) hold. Then the blocked jobs satisfy:∑
k

n/2k ·
∑
k′≤k

Vol(Bkk′)

m− |Jk−1(> τk)|
= Õ(

√
m)(

∑
k

n/2k · τk + opt).

Proof. Because there are O(log n) batches k, it suffices to show for fixed k, k′ ≤ k that n/2k · Vol(Bkk′ )
m−|Jk−1(>τk)| =

O(∆ log n)(n/2k · τk + opt) for ∆ = O(
√
m log n). We consider two cases.
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First, on the event that pkτk = 0, we have m− |Jk−1(> τk)| = m. Recall that every job in Bkk′ is τk′ -big and in
I∗k′ , so there is at most one such job per machine in opt. Then we can bound:

n/2k · Vol(Bkk′)

m− |Jk−1(> τk)|
≤ n/2k · τk

m

m
= n/2k · τk.

Otherwise, we have pkτk > 0. Here we related the blocked jobs to the induced coin games:

Vol(Bkk′) =
∑

τ ′≤τk

τ ′ · |{j ∈ Bkk′ | Xj = τ ′}|

=
∑

τ ′≤τk

τ ′ ·#(unavailable machines in (k′, k, τ ′, τk)-induced coin game)

≤
∑

τ ′≤τk

τ ′ · (pkτk ·#(flipped coins in (k′, k, τ ′, τk)-induced coin game) + ∆)

≤ O(log n) · pkτk · opt+O(∆ log n) · τk.

where the first inequality follows from Event (4.4). The second follows because there are O(log n) relevant
thresholds τ ′ ≤ τk, and every flipped coin in the (k′, k, τ ′, τk)-induced coin game corresponds to opt scheduling a
job on a machine that already scheduled some job with size τ ′, so every such job has completion time at least τ ′.
It follows:

n/2k · Vol(Bkk′)

m− |Jk−1(> τk)|
≤ n/2k ·O(log n)

pkτk
m− |Jk−1(> τk)|

· opt+ n/2k ·O(∆ log n)
τk

m− |Jk−1|
.

By Proposition 4.4, we can bound the first term by:

n/2k ·O(log n)
pkτk

m− |Jk−1(> τk)|
· opt = O(log n)

m− |Jk−1(> τk)|+O(∆)

m− |Jk−1(> τk)|
· opt

= O(∆ log n) · opt.

We can bound the second term by:

n/2k ·O(∆ log n)
τk

m− |Jk−1(> τk)|
= O(∆ log n) · n/2k · τk.

Combining both bounds completes the proof.

We summarize our bounds for the unblocked and blocked jobs by the next lemma, which follows immediately
from Lemma 4.10 and Lemma 4.12.

Lemma 4.13. Suppose Events (4.3) and (4.4) hold. Then the big-in-the-past jobs satisfy:

∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
= Õ(

√
m) ·

(∑
k

n/2k · τk + opt

)
.

4.7 Putting it all together We are ready to prove Theorem 3.2 and Theorem 4.1, which we restate here for
convenience.

Theorem 3.2. (Batch Free Time Minimization) Given Bernoulli jobs, if m ≥ 2 and Assumption 3.1 holds,

then StochFree outputs a list schedule with expected completion time at most Õ(
√
m) ·

(
E[opt] + O(1)

)
, where

opt is the optimal adaptive policy.

Theorem 4.1. If m = Ω(1) is sufficiently large, then the weighted free time of alg satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[opt ]

)
+O(1).
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Theorem 4.1 follows from partitioning alg’s weighted free time into the contribution due to small-in-the-past and
big-in-the-past jobs (which we further partitioned into unblocked and blocked jobs.)

Proof of Theorem 4.1. We assume m = Ω(1) is sufficiently large. Then we complete the proof of Theorem 4.1 by
combining our bounds for the small-in-the-past- and big-in-the-past jobs. We bound alg’s weighted free time by
Lemma 4.2: ∑

k

n/2k · F (Jk) = O(
∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+

∑
k

n/2k · τk).

We recall τk = 2 · max(EF ∗(n − n/2k), F ∗(n − n/2k)), so Eτk = O(EF ∗(n − n/2k)). Thus, in expectation, the
second sum is at most:

E
∑
k

n/2k · τk = O(E
∑
k

n/2k · F ∗(n− n/2k)).

It remains to bound the first sum, which we split into the contribution due to small-in-the-past and big-in-the-past
jobs:

∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
=

∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
+

∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

On Events (4.3) and (4.4), we can apply Lemma 4.9 to the first term and Lemma 4.13 to the second to obtain:

∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
= Õ(

√
m)(

∑
k

n/2k · τk + opt).

Again, in expectation, this contributes Õ(
√
m)(E

∑
k n/2

k · F ∗(n− n/2k) +Eopt) to alg’s expected weighted free
time.

Finally, we consider the event that Event (4.3) or Event (4.4) does not hold. Recall that by Lemma 4.7 and
Lemma 4.11, this happens with probability at most 1

poly(n) because m = Ω(1) is sufficiently large. Further, on

this event, we can trivially upper bound
∑

k n/2
k · Vol(Ik(≤τk))

m−|Jk−1(>τk)| = poly(n), because there are n jobs each with

size at most poly(n) almost surely. Thus, the contribution of this event to the overall expectation is O(1). We

conclude, alg’s expected weighted free time is at most Õ(
√
m)(E

∑
k n/2

k · F ∗(n− n/2k) + Eopt) +O(1).

To complete the proof of Theorem 4.1, we relate the weighted free time to the completion time. We also use our
warm-up Õ(m)-approximation when m is too small to apply Theorem 3.2.

Proof of Theorem 3.2. First, suppose m = Ω(1) is sufficiently large. Then by Theorem 4.1, alg’s weighted free
time satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[opt ]

)
+O(1).

Applying Lemma 4.1 to relate weighted free time to completion time gives:

E[alg] = Õ(1) · E
[∑

k

n/2k · F (Jk)

]
+ Õ(E[opt]) = Õ(

√
m) ·

(
E[opt] +O(1)

)
.

This gives the desired guarantee if m = Ω(1).

Otherwise, if m = O(1), Lemma 4.4 immediately gives that StochFree is Õ(m) = Õ(1)-approximate, so

E[alg] = Õ(E[opt]).

This completes the analysis of StochFree. Since the proof had several conceptual parts, let us a give a quick
summary.
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Summary. Recall that our analysis began by passing from completion time to our new proxy objective: weighted
free time in §4.1. As we mentioned earlier, a key benefit of working with free times rather than completion times
was that we could completely control what jobs we started to achieve the ith free time, whereas we have far less
control over the first i jobs to finish. This allowed us to make the contribution of each job to the weighted free
time more modular: either the job contributed to the small volume in a batch, or it contributed to the clogged
machines—see Equation (4.2). We then controlled the rate at which alg and opt clog up machines in §4.3. Then
in §4.4-4.6 we compared the times at which alg and opt chose to do the same volume of small jobs. Since these
were the only two ways in which a job affected the weighted free time, we could combine these two ideas in §4.7
to complete our analysis.

5 Conclusion

We gave an improved approximation for stochastic completion times, which does not depend on the job size
variances, and has a sublinear dependence on the number of machines m. Observe that the weighted free time is
a valid proxy objective for any job size distributions, not just Bernoulli jobs, so extending our result to general
stochastic jobs requires us to solve subset selection and batch free time minimization for these settings.

Many interesting open problems remain: can we improve our approximation ratio even further? We also
do not have a good grasp on the complexity of this problem: is the stochastic problem provably hard to
solve/approximate? Can we use the idea of passing from completion times to free times more broadly? Can
we extend the results to other scheduling objectives, such as flow/response times? In general, stochastic
scheduling problems (apart from the makespan objective) are not well understood from a distribution-independent
approximation perspective, and we hope that our work will lead to further interesting developments.
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[JS18] Sven Jäger and Martin Skutella. Generalizing the Kawaguchi-Kyan bound to stochastic parallel machine scheduling.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 43:1–43:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.
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A Sensitivity of number of machines

For a fixed collection of jobs, and any number of machines m, we let opt(m) be the optimal completion time for
these jobs on m machines.

Lemma A.1. For any number of machines m sufficiently large, there exists a collection of identical Bernoulli
jobs with Eopt(m2 ) = eΩ(m) · Eopt(m).

Proof. We fix a number of machines m. Define L = ecm for a constant c > 0. Then consider the collection of
7
8mL Bernoulli jobs distributed as Ber( 1

L ). Note that because jobs are identically distributed, we may assume
opt list schedules jobs in arbitrary order.

We first claim that Eopt(m) = O(m). To see this, let H ∼ Binom( 78mL, 1
L ) be the number of jobs that come up

heads. On the event H ≤ m, each machine schedules some number of jobs with realized size zero and then at most
one job with realized size 1. Thus, on this event we have opt(m) ≤ H. Further, by Chernoff (Proposition D.1),
we have:

P(H > m) ≤ P(H ≥ E[H] +
m

8
) = e−Θ(m).

We conclude, the contribution of the event H ≤ m to Eopt(m) is at most EH = 7
8m, and the contribution of the

event H < m is at most poly(mL) · P(H > m) = poly(mecm) · e−Θ(m) = O(1) for c sufficiently small. This gives
Eopt(m) ≤ 7

8m+O(1) = O(m).

On the other hand, we have Eopt(m2 ) = Ω(mL). Let H ′ ∼ Binom( 34mL, 1
L ) be the number of heads among the

first 3
4mL jobs. Analogously by Chernoff we have P(H ′ < m

2 ) ≤ e−Θ(m). Thus, on the event H ′ ≥ m
2 (which

happens with probability (1 − o(1)), after scheduling the first 3
4mL jobs, each of the m

2 machines has a job of
realized size 1. It follows, the remaining Ω(mL) unscheduled jobs all have completion times at least 1. Thus, we
can lower bound Eopt(m2 ) = Ω(mL) · (1− o(1)). Taking m sufficiently large gives the desired gap.

Lemma A.2. For any collection of deterministic jobs and any m ≥ 2, we have opt(m2 ) ≤ 3 · opt(m).

Proof. Consider the schedule achieving opt(m), and let Cm
j be the completion time of job j in this schedule. We

construct a schedule on m
2 machines with completion time at most 3 · opt(m). Our algorithm is to list schedule

the jobs on m
2 machines in increasing order of Cm

j .

Let Cj be the completion time of job j in this schedule. We claim that Cj ≤ 3Cm
j for all jobs j, which gives the

desired result. Assume for contradiction that this is not the case, so let j be the first job with Cj > 3Cm
j . It must

be the case that up until time 2Cm
j , all m

2 machines are busy running jobs j′ with Cm
j′ ≤ Cm

j . The total size of
such j′ jobs is strictly larger than m

2 · 2Cm
j = m · Cm

j . However, opt(m) must complete all such j′ jobs by time
Cm

j . This is a contradiction.
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TL(a → b)

b

p̄b pb

TL(−a) TR(−a)

Figure 2: Original and modified decision trees

B Exchange Argument

Lemma 1.1. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the optimal adaptive
completion time schedule for these jobs starts the jobs with this size parameter in increasing order of their
probabilities for all realizations of the job sizes.

Proof. We suppose there exist jobs a, b such that Xa ∼ s ·Ber(pa) and Xb ∼ s ·Ber(pb) with pa ≤ pb such that the
optimal completion time policy schedules b before a in some realization. Consider the decision tree corresponding
to this policy (described in §2.) Thus, we assume this tree schedules b before a is some realization (i.e. some
root-leaf path.) It follows, there exists a subtree rooted at b such that a is scheduled on each root-leaf path of
this subtree. We denote this subtree by T . Entering this subtree, the machines have some fixed initial loads and
T schedules a fixed set of jobs J .

We will modify the subtree T so that we start a before b on each root-leaf path. Further, this will not increase
the expected completion time of the overall schedule. We construct the modified subtree T ′ as follows. Let the
left- and right subtrees (corresponding to the root job b coming up size 0 or s) of T be TL and TR, respectively.
T ′ is rooted at job a. In T ′, the right subtree of a is TR, but with job a replaced by job b. We denote this
modifed subtree by TR(a → b). On the left subtree of a, first, independently of all jobs, we flip a coin that comes
up heads with probability q. We will choose q later. If the coin is tails, then we schedule subtree TL with job a
replaced by job b, so TL(a → b). Otherwise, if the coin is heads, then we schedule b. The left- and right subtrees
of b are TL and TR, except the job a is replaced by a dummy job that is always zero. In particular, this job does
not contribute to the completion time, but upon reaching this node we will always follows the left subtree. We
denote these subtrees by TL(−a), TR(−a), respectively. This completes the description of T ′. See Figure 2 for the
modified tree T ′.

Note that T ′ schedules the same jobs as T and always starts a before b. It remains to choose q such that the
expected completion time of T ′ is the same as T . We choose q such that the probability of entering TR(a → b)
or TR(−a) is exactly pb. We conflate the name of a subtree (e.g. TR(a → b)) with the event that we enter the
subtree. Thus, we want P(TR(a → b)∨TR(−a)) = pb. The former probability is exactly pa+p̄aqpb, where we define
p̄ = 1−p for a probability p. This gives q = pb−pa

p̄apb
. Thus, we have chosen q such that P(TR(a → b)∨TR(−a)) = pb

and P(TL(a → b)∨TL(−a)) = p̄b. One should imagine that these two events are our replacements for the original
tree T entering TR and TL.

In both subtrees TL(a → b) and TL(−a), we replace the original job a from TL with b and a zero job, respectively.
Let X̃a denote the size of the the replacement job, which is supported on {0, s}. We compute the distribution of
X̃a:

P(X̃a = s | TL(a → b) ∨ TL(−a)) =
P(TL(a → b))

P(TL(a → b) ∨ TL(−a))
pb =

p̄aq̄

p̄b
pb = pa.

It follows, conditioned on TL(a → b) ∨ TL(−a), our replacement job for a has the same distribution as a. An
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analogous computation for the right subtree gives:

P(X̃a = s | TR(a → b) ∨ TR(−a)) =
P(TR(a → b))

P(TR(a → b) ∨ TL(−a))
pb =

pa
pb

pb = pa,

so the distribution of our replacement job conditioned on TR(a → b) ∨ TR(−a) has the same distribution as a as
well.

To summarize, we have constructed a tree T ′ that starts a before b. T ′ enters TL(a → b) or TL(−a) with
probability p̄b: exactly the same as the probability that T enters TL. Further, T ′ enters TL(a → b) or TL(−a)
with the same initial loads as T entering TL, because both correspond to all previous jobs in the subtree having
size 0. Finally, upon entering TL(a → b) or TL(−a), the job we replace a with has the same distribution as a.
The analogous properties hold for the right subtree as well. We conclude, for any job j ∈ J \ {a, b}, the expected
completion time of j in T ′ is the same as in T (subject to the same initial loads.)

It remains to show that the expected completion time of a and b weakly decreases from T to T ′. We define
ℓ′ ∼ TL to be the load of the least-loaded machine upon reaching the node a in subtree TL (we define ℓ′ ∼ TR

analogously.) This is well-defined, because a is scheduled on every root-leaf path in TL. Note that ℓ′ does not
depend on the job scheduled at node a. It follows, the expected completion time of a and b in T ′ are:

ET ′ Ca = ℓ+ spa

ET ′ Cb = P(TL(a → b))(Eℓ′∼TL
ℓ′ + spb) + P(TL(−a))ℓ+ P(TR(−a))(ℓ+ s) + P(TR(a → b))(Eℓ′∼TR

ℓ′ + spb).

Now we simplify the completion time of b. First, we consider the terms corresponding to the left subtree. We
have P(TL(a → b)) = p̄b

pa

pb
, P(TL(a → b)) + P(TL(−a)) = p̄b, and ℓ′ ≥ ℓ for ℓ′ ∼ TL. Combining these three

observations:

P(TL(a → b))(Eℓ′∼TL
ℓ′ + spb) + P(TL(−a))ℓ = P(TL(a → b))Eℓ′∼TL

ℓ′ + p̄bspa + P(TL(−a))ℓ

≤ p̄b(Eℓ′∼TL
ℓ′ + spa).

Now we consider the right subtree. Analogously, we have P(TR(a → b)) = pa, P(TR(a → b)) + P(TR(−a)) = pb,
and ℓ′ ≥ ℓ for ℓ′ ∼ TR. We compute:

P(TR(−a))(ℓ+ s) + P(TR(a → b))(Eℓ′∼TR
ℓ′ + spb) = (pb − pa)(ℓ+ s) + paEℓ′∼TR

ℓ′ + spb + paspb

≤ pb(Eℓ′∼TR
ℓ′ + pas) + (pb − pa)s.

Combining our expressions for the left- and right-subtrees gives our final bound on the completion time of a and
b:

ET ′ Ca + ET ′ Cb ≤ ℓ+ spb + p̄b(Eℓ′∼TL
ℓ′ + spa) + pb(Eℓ′∼TR

ℓ′ + pas) = ET Cb + ET Ca.

C Justification for Assumption 3.1

Lemma 3.2. Let m ≥ 2. Suppose there exists an algorithm for completion time minimization for Bernoulli jobs
on m machines satisfying Assumption 3.1 that outputs a list schedule with expected completion time at most
α
(
Eopt+O(1)

)
. Then there exists a O(α)-approximate algorithm for the same problem without the assumption.

Further, the resulting algorithm is also a list schedule, and it preserves efficiency and determinism.

Proof. Let A be the algorithm assumed by the lemma. We will run A on a subinstance of jobs satisfying
Assumption 3.1. Suppose we have a collection J of Bernoulli jobs of the form Xj ∼ sj ·Ber(pj) for arbitrary size
parameters sj .

First, we round up all size parameters to the nearest power of 2. This at most doubles opt. Then, we rescale
all sj ’s uniformly so that

∑
j EXj = 1. Note that now we have Eopt ≥

∑
j EXj = Ω(1). Finally, we partition

J = S∪M ∪L into small, medium, and large jobs, respectively such that S consists of the jobs j with sj <
1
n2 , M

the jobs j with 1
n2 ≤ sj < n8, and L the jobs j with sj ≥ n8. Thus, M is a collection of Bernoulli jobs satisfying

Assumption 3.1.

Our algorithm to schedule J is the following:
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i. List-schedule all large jobs L in arbitrary order.
ii. List-schedule all small jobs S in arbitrary order.
iii. Run A to schedule the medium jobs M .

It is clear that this algorithm is efficient, deterministic, and outputs a list schedule as long as A does as well. It
remains to bound the total completion time of this schedule, which we denote by alg. We let B be the event that
some large job comes up heads (i.e. has realized size at least n8.)

On the event B̄, every large job comes up tails, so they contribute 0 to alg. Then we list-schedule the small jobs
with initial load 0 on every machine. The total completion time of all jobs in S can be crudely upper-bounded
by the max load after S times the number of jobs, which is at most 1

n · n = O(Eopt).

After this, we schedule the medium jobs using A. After scheduling S, all machines are free by time 1
n . Let A

be the total completion time of running A on jobs M starting at time 0. We need the following monotonicity
property of list schedules, which is analogous to Lemma 4.3

Lemma C.1. Consider a set of deterministic jobs and a fixed list schedule of those jobs. Then increasing the
initial load or decreasing the number of machines weakly increase the total completion time of the schedule.

Proof. Let J be the set of jobs. Consider initial load vectors ℓ, ℓ′ ∈ Rm, where the ith entry of each vector denotes
the initial load on machine i. Now suppose ℓ ≤ ℓ′, entry-wise. It suffices to show that C(J, ℓ) ≤ C(J, ℓ′), where
C(J, ℓ) is the total completion time achieved by our list-schedule with initial load ℓ. This suffices, because we can
decrease the number of machines by making the initial loads of some machines arbitrarily large so that they will
never be used.

We prove C(J, ℓ) ≤ C(J, ℓ′) by induction on the number of jobs, |J |. In the base case, |J | = 0, so the claim is
trivial because C(J, ℓ) = 0 and C(J, ℓ′) = 0. For |J | > 0, let j be the first job in the list, which is scheduled,
without loss of generality, on the first machine for both initial loads ℓ and ℓ′. Then:

C(J, ℓ) = (ℓ1 + sj) + C(J \ {j}, ℓ+ sje1) ≤ (ℓ′1 + sj) + C(J \ {j}, ℓ′ + sje1) = C(J, ℓ′),

where e1 is the first standard basis vector, so we have ℓ+sje1 ≤ ℓ′+sjei1 entry-wise. Then we assumed inductively
that C(J \ {j}, ℓ+ sje1) ≤ C(J \ {j}, ℓ′ + sje1).

By the above lemma, we can upper-bound the total completion time of A on jobs M by starting once all machines
are free after scheduling S, so at time 1

n . This increases the completion time of each job by 1
n . To summarize, on

the event that every large job comes up tails, we have:

Ealg · 1B̄ ≤ 1

n
· n+

1

n
· n+ EA = O(Eopt) + α(Eopt+O(1)) = O(α) · Eopt,

where we used the guarantee of A and Eopt = Ω(1).

It remains to consider the event where some large job comes up heads. In this case, we will not use the guarantee
of A. Instead, we will upper bound alg by the cost of an arbitrary list schedule. We define S1 = maxj∈J Xj and
S2 to be the size of the second-largest job in J . On the event B ∩ {S2 ≤ 1

n2S1}, we note that no job is scheduled
after the largest job with size S1 on the same machine (using m ≥ 2.) Noting all other jobs have size at most
1
n2S1, we can upper bound alg by:

alg ≤ S1 + n · 1
n
S1 ≤ 2S1 ≤ 2opt,

so we have Ealg · 1B,S2≤ 1
n2 S1

= O(Eopt).

Finally, we bound Ealg · 1B,S2>
1
n2 S1

. We partition B = ∪∞
k=0Bk, where Bk = {maxj∈J Xj ∈ [2kn8, 2k+1n8)}. On

the event Bk ∩ {S2 > 1
n2S1}, there are at least two jobs of size at least 2kn6. Recall that

∑
j∈J EXj = 1, so

in particular EXj ≤ 1 for all j ∈ J . Thus by Markov’s inequality, P(Xj ≥ 2kn6) ≤ 2−kn−6 for all j ∈ J . By
union-bounding over all pairs of jobs in J :

P(Bk, S2 >
1

n2
S1) ≤ P(∃ two jobs in J with size at least 2kn6) ≤ O(n2)(2−kn−6)2.
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Further, on the event Bk∩{1B,S2>
1
n2 S1

}, every job has size at most 2k+1n8, so we have alg ≤ n·n2k+1n8 = 2k+1n10.

Thus, for each k, we have:

Ealg · 1Bk,S2>
1
n2 S1

≤ 2k+1n10 · P(Bk, S2 >
1

n2
S1)

= 2k+1n10 ·O(n2)(2−kn−6)2 = O(2−k).

To complete the proof, we partition B = ∪∞
k=0Bk to bound Ealg · 1B,S2>

1
n2 S1

:

Ealg · 1B,S2>
1
n2 S1

=

∞∑
k=0

Ealg · 1Bk,S2>
1
n2 S1

= O(

∞∑
k=0

2−k) = O(Eopt).

D Concentration arguments

We need the following standard Chernoff bound.

Proposition D.1. (Chernoff bound) Let X = X1 + . . . Xn be a sum of independent, {0, 1}-valued random
variables and µ = EX. Then we have:

� P(X ≤ (1− δ)µ) ≤ exp
(
− δ2µ

2

)
for all 0 ≤ δ ≤ 1.

� P(X ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

2+δ

)
for all 0 ≤ δ.

Lemma 4.6. Let m = Ω(1) be sufficiently large. Then there exists a constant c ≥ 0 such that for all batches k
and thresholds τ > 2EF ∗(n− n/2k), we have E|Jk(> τ)| ≤ m+ c

√
m.

Proof. Fix c ≥ 0 which we will choose sufficiently large later. Then assume for contradiction that there exists a
batch k and threshold τ > 2EF ∗(n− n/2k) such that E|Jk(> τ)| > m+ c

√
m.

To reach a contradiction, it suffices to show that P(|Jk(> τ)| ≤ m) < 1
2 . This is because on the complement event

|Jk(> τ)| > m (which we assume happens with probability strictly larger than 1
2 ), we also have |J∗

k (> τ)| > m
by Theorem 2.1. This implies F ∗(n − n/2k) > τ ≥ 2EF ∗(n − n/2k). This would contradict the definition of
EF ∗(n− n/2k).

For convenience, let µ = E|Jk(> τ)|. By Chernoff, we have:

P(|Jk(> τ)| ≤ m) = P(|Jk(> τ)| ≤ µ(1− µ−m

µ
)) ≤ exp

(
− (µ−m)2

2µ

)
.

There are two cases to consider. Recall that by assumption, we have µ > m + c
√
m. If µ ≥ 2m, then

P(|Jk(> τ)| ≤ m) ≤ exp (−µ
8 ) ≤ exp (−m

4 ) <
1
2 for m = Ω(1) sufficiently large. Otherwise, m+ c

√
m < µ < 2m.

Then P(|Jk(> τ)| ≤ m) ≤ exp (− c2m
2m ) < 1

2 for c = O(1) sufficiently large.

Lemma 4.7. Let ∆ = O(
√
m log n) and m = Ω(1) be sufficiently large. Then with probability at least 1− 1

poly(n) ,

the following events hold:

(4.3) {|Jk(> τ)|
±∆
≈ E|Jk(> τ)| ∀ batches k and thresholds τ > 2EF ∗(n− n/2k)}.

Proof. Note that there are O(log n) choices for k and L = O(log n) relevant choices for τ . Thus, by a standard
union bound argument it suffices to show that for fixed k and τ > 2EF ∗(n− n/2k), we have:

P(||Jk(> τ)| − E|Jk(> τ)|| > ∆) =
1

poly(n)
.

Now we may assume m is large enough so that E|Jk(> τ)| ≤ m+ c
√
m ≤ (c+ 1)m for sufficiently large constant

c ≥ 0 (guaranteed by Lemma 4.6.) Then we can bound the deviation of |Jk(> τ)| again with a Chernoff bound.
Let µ = E|Jk(> τ)|. We take ∆ = O(

√
µ log n) = O(

√
m log n).
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There are two cases to consider. If µ < ∆, then the lower tail is trivial:

P(|Jk(> τ)| ≤ µ−∆) ≤ P(|Jk(> τ)| < 0) = 0.

For the upper tail we use Chernoff:

P(|Jk(> τ)| ≥ µ+∆) = P(|Jk(> τ)| ≥ (1 +
∆

µ
)µ) ≤ exp (− ∆2

2µ+∆
) ≤ exp (−∆2

3∆
) =

1

poly(n)
.

Otherwise, µ ≥ ∆, so in particular ∆
µ ≤ 1. Then we use Chernoff for both the lower- and upper tails:

P(|Jk(> τ)| ≤ µ+∆) = P(|Jk(> τ)| ≤ (1 +
∆

µ
)µ) ≤ exp (−∆2

2µ
) =

1

poly(n)
.

P(|Jk(> τ)| ≥ µ+∆) = P(|Jk(> τ)| ≥ (1 +
∆

µ
)µ) ≤ exp (− ∆2

2µ+∆
) ≤ exp (−∆2

3µ
) =

1

poly(n)
.
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