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Abstract—Recent episodes of extreme natural events have
challenged the ability of power grids to supply demand. Given
the increase in the frequency and severity of these events, new
methods to evaluate the level of security of power systems are
needed. By introducing the emerging deep learning concepts
such as attention mechanism for graph neural networks (GNNs)
into the power system analysis, we develop a novel approach
that systematically classifies this level of security along multiple
dimensions. In particular, in contrast to the traditional risk-
neutral reliability assessment procedures which focus only the
impact of routine failures, our attention-based distribution grid-
level representation learning model (AP-GNN) also allows us
to simultaneously address the consequences of high impact
low probability (HILP) events and to perform unsupervised
classification of the distribution grid expansion plans in a
computationally efficient manner. Furthermore, we discuss a
new tractable resilience metric called Uniqueness Scores which
systematically accounts for the key topological characteristics
of the heterogeneous distribution grid networks. Our extensive
numerical experiments on 54-bus system indicate that the pro-
posed AP-GNN framework is highly competitive both in terms of
classification performance and computational efficiency, thereby
opening further paths for integration of the state-of-the-art deep
learning and artificial intelligence tools to resilience quantification
of power systems.

I. INTRODUCTION

Adverse natural events increasingly more often exhibit a

negative impact on power grids, challenging their ability to

supply demand. The significant rise in the frequency of these

events poses the need for new methods that can assess potential

expansion plans for distribution systems in terms of security.

In this context, we propose a novel method to classify the level

of security of potential expansion plans. This method measures

the consequences of high impact low probability (HILP) events

by computing the Conditional Value at Risk (CVaR) of the

system power imbalance, which can take into account the ef-

fects of HILP events despite their low probabilities. We present

a novel network resilience metric called Uniqueness Scores

and a Graph Neural Network (GNN)-based model which can

avoid the otherwise necessary solution of multiple computa-

tionally demanding optimal power flow (OPF) problems (each

one associated with a given scenario of failure) to calculate

the CVaR of the system power imbalance corresponding to

each potential expansion plan. More specifically, we develop

a new attention-based distribution grid-level representation

learning model (AP-GNN) for unsupervised classification of

distribution grid expansion plans. We also introduce the at-

tention mechanism over the extracted distribution grid-level

representations of the distribution grids which allows us to

learn adaptive importance weights of the embeddings. We

illustrate the proposed method with a 54-bus system and the

results corroborate that our AP-GNN approach allows us to

improve classification performance, yielding significant gains

when compared to the existing state-of-the-art tools.

The key novelty of our contributions are:

• We propose a novel classification algorithm to evaluate

the security level of expansion plans for distribution grids,

based on a new GNN architecture with a power-based

graph convolutional layer and the attention mechanism

– Adaptive Power-based Graph Neural Networks (AP-

GNN).

• We discuss a new graph-theoretic resilience metric

Uniqueness Score that accounts for the intrinsic hetero-

geneity of distribution grid networks.

• In our expansive numerical experiments, we show that

AP-GNN yields substantial gains in computational effi-

ciency compared to the stochastic optimization bench-

marks from the power system community and also out-

performs seven state-of-the-art models from the deep

learning community by a significant margin in terms of

graph classification accuracy. We then discuss how AP-

GNN can be further integrated with power distributional

planning tools for operational use.

II. RELATED WORK

Graph Neural Networks for Power System Analysis A

wide variety of GNNs have been proposed in recent years

for the classification of non-Euclidean structures (see reviews

in [1], [2]). However, applications of GNNs in power system



analysis remain scarce for both transmission and distribution

systems, with only few papers considering GNNs for distribu-

tion networks. Such representative approaches include recur-

rent GCN by [3] for multi-task transient stability assessment of

power transmission systems, optimal power flow (OPF) opti-

mization problem in transmission systems [4], node classifica-

tion in transmission systems [5], and forecasting transmission

system responses to contingencies [6]. Taking into account the

hidden and complex topological information of distribution

systems, some studies [7]–[9] incorporate hypergraph struc-

tures and local topological features into GNN-based models

for supervised learning tasks. Another application of GNNs

to distribution systems include [10] who develop a GCN for

fault location in distribution systems, and prove that GCN is

more robust to measurement errors compared to the prevailing

ML approaches. Compared to these existing techniques, our

approach brings multiple new research directions. First, we

represent graphical properties of the power distribution grid by

local topological signatures and propose a new unsupervised

GNN-based model with an attention mechanism. This is a

novel application of GNNs not only in power systems but

graph learning, in general. Our AP-GNN is inspired by current

GNNs but is carefully designed to capture node information

with different spatial scopes from a topology distribution grid.

Methods for Distribution Grid Planning Distribution grid

planning exercises aim to determine appropriate expansion

plans according to the requirements of the system planner,

which could be to improve the security of the system or

to address future load growth. Distribution system planners

usually follow an often empirical process based on codes to

update their grids. This process involves electrical installation

rules, and a continuous dialog with the regulators to justify

the real need for the proposed investments, which can have

an impact on the rates paid by consumers [11]. This is

usually the case because, in the US, the largest portion of

investments made by investor-owned utilities in power systems

is associated with distribution grid assets [12].

The power systems research community has proposed a

number of relevant methods based on mathematical optimiza-

tion to improve the distribution grid planning process while

considering either reliability or resilience. For example, [13]

proposes a linear programming method to determine invest-

ments in storage devices with the aim to make the distribution

system resilient against earthquakes. In addition, the work

developed in [14] has the objective of selecting investments

in generation and lines while taking reliability into account.

Moreover, [15] considers investments in substations, lines, and

transformers within a mixed-integer optimization problem to

reduce the cost of loss of load. Finally, [16] presents a mixed-

integer stochastic model to optimize investments in distributed

generation, line hardening, and line switches so as to reduce

costs of expected loss of load and operation of distribution

grids. The main advantage of this class of models is its optimal

prescriptive nature which allows for a clear justification of

the quality of the obtained solutions. However, due to the

associated computational burden, it is not straightforward

to develop generalizable and standardized industry solutions

based on these models for large-scale planning of distribution

grids.

Simulation-based methods are often applied to evaluate the

quality of potential expansion plans once they are available.

Essentially, these methods assess the behavior of the distri-

bution system (or a future system) under the realization of

several scenarios (which can be characterized by different

failures, load profiles, etc) so as to ensure the technical and

economic viability of a given grid planning solution, which

could have been obtained either empirically or via an approach

based on mathematical optimization. In this context, reliability

indices are usually obtained as a result of these simulation

methods [17]. For the purpose of evaluating resilience, exist-

ing approaches include Monte Carlo methods that comprise

a probabilistic characterization of events aided by relevant

information about fragility curves, which is used to generate

network failures and evaluate their HILP-associated impacts

via the CVaR of loss of load [18]. Typically, every single state

of the system is evaluated in these simulations, considering

operational decisions to have the least amount of loss of

load each time under several scenarios. Given its nature, this

process is highly computationally demanding since it requires

the solution of a sequence of multiple optimization problems

for large-scale systems.

Hence, in this paper, we propose a computationally efficient

method based on GCN that computes the CVaR of loss of

load, as a resilience metric, associated with each potential

expansion plan. The proposed method, which is intended to

replace simulation-based evaluations, is a fast and efficient AI-

based evaluation model to assess the resilience of distribution

grids that can substantially benefit regulators in their decision

making process.

III. METHODS

In this work, our goal is to introduce the power of unsu-

pervised learning of the GNN-based model to classification

of distribution grid expansion plans in terms of resilience

performance. In particular, our analysis aims at assessing the

ability to approximate explicit risk-based resilience metrics,

such as the CVaR of load loss, through incorporating a

new local graph descriptor into a GNN-based model. Let

G = (V, E , A) be a distribution grid, where V is a set of nodes

(|V| = N ), E is a set of edges, A ∈ R
N×N is a symmetric

adjacency matrix and X ∈ R
N×F is a node feature matrix

(where F is the dimension of node features). In a distribution

grid, each node represents either a bus or a substation, and

each edge is a distribution line between nodes. The weight of

an edge between nodes u and v in G is denoted by euv , with

euv = 0 if there exist no path connecting nodes u and v.

A. Base Resilience Evaluation Method

Methods that assess reliability and resilience are designed

to evaluate the capability of the power grid to withstand

multiple scenarios of outages while effectively supplying load.

To account for pre-defined sets of scenarios of routine failures



and HILP events, the resilience evaluation computes the dis-

tribution of total system loss of load (i.e., the sum of loss

of load across all nodes of the system) and then calculates

the CVaR of this distribution. This process is usually carried

out via Sequential Monte Carlo Simulation (SMCS) methods,

which perform simulations of loss of load over annual time

horizons. More specifically, to compute the annual CVaR of

loss of load, we simulate the operation of the distribution

system for several scenarios (e.g., 2000 scenarios), where each

scenario corresponds to 365 days and the system is operated

for each hour of each day. Due to its respective failures, each

annual scenario is then associated with a particular annual

loss of load. Given the amounts of loss of loads associated

with all the scenarios, we then calculate the annual CVaR of

loss of load. This procedure can take 24 hours for a 54-Bus

system to evaluate the annual CVaR for a single candidate

expansion plan. In practice, the power grid expansion plans

are noticeably larger, and hence, the associated computational

costs in operational settings are substantially higher. Hence,

one of the primary contributions of this paper is to replace

the computationally expensive simulation by a neural networks

framework that can efficiently classify distribution grids ac-

cording to their corresponding ranges of annual CVaR of loss

of load.

B. Uniqueness Scores

Traditional resilience metrics used for analyzing power grid

networks are based on graph theory, such as average clustering

coefficient, average path length, average betweenness central-

ity, diameter, and transitivity [19], [20]. Nevertheless, existing

metrics used in power grid analysis suffer from limitations as

they lack the ability to distinguish between different types of

nodes, such as substations and buses, and primarily emphasize

global network characteristics while neglecting crucial local

graph topology information. To address this gap, our study

aims to introduce a novel node feature for load analysis

based on an in-depth examination of simple paths connecting

loads and substations. Drawing inspiration from the concept

of average path length, we utilize a new network summary

to achieve this goal, i.e., Uniqueness Scores (U-scores) [7]

to capture the efficiency of information transport between

different loads and substations. The U-scores algorithm is

summarized in a framework for distribution system expansion

planning, as depicted in Algorithm 1. Specifically, the U-scores

framework consists of three main components: (1) extracting

simple paths from one source, (2) calculating scores, and (3)

finalizing uniqueness scores. Each component is discussed in

detail below. Given the original graph structure GBus and the

expansion plan GExp, GComb represents the combination of GBus

and GExp. The algorithm for U-scores calculation is shown in

Algorithm 1.

Furthermore, in order to effectively assess the robustness

of the distribution system, the introduced U-scores metric

provides invaluable insights into how each load impacts the

resilience of the complex network of the distribution system.

This quantitative evaluation offers several advantages. Firstly,

Fig. 1. A toy example of the U-scores computation for load 1 on substation
3.

it enhances the understanding of load dynamics for power

system operators, enabling them to develop more efficient

and proactive risk mitigation strategies. Secondly, the U-scores

metric enables electrical engineers to accurately and reliably

evaluate potential expansion plans for existing distribution

systems, by comparing the summation of U-scores (i.e., higher

U-scores summation indicates more resilient distribution sys-

tems). Figure 1 illustrates a toy example of the computation

of U-scores for load 1 on substation 3 in a distribution grid.

Algorithm 1: Uniqueness Scores (U-scores)

Input: Bus system G
Bus

and expansion plan G
Exp

Output: Uniqueness scores S ∈ R
N load×N substation

1 GComb = G
Bus
∪G

Exp

2 for i← 1 to Nsubstation do

3 for j ← 1 to Nload do

4 simplePathslj ,si ← DFS(GComb, lj , si);

5 simplePathssorted
lj ,si

← sort(simplePathslj ,si);

6 ~Slj ,si ← (); Ulj ,si ← {}; Ilj ,si ← ∅;

Plj ,si ← 0;

7 for k ← 1 to len(simplePathssorted
lj ,si) do

8 if k == 1 then

9 S
(1)
lj ,si

= 1;

10 Ulj ,si = Ulj ,si ∪ simplePathssorted
lj ,si

[k];

11 Plj ,si =

Plj ,si + len(simplePathssorted
lj ,si

[k]);

12 end

13 else

14 Ilj ,si = simplePathssorted
lj ,si

[k] ∩ Ulj ,si ;

15 Ulj ,si = Ulj ,si ∪ simplePathssorted
lj ,si [k];

16 S
(k)
lj ,si

= 1−
len(Ilj ,si )−2

len(simplePathssorted
lj ,si

[k])−2
;

17 Plj ,si =

Plj ,si + len(simplePathssorted
lj ,si

[k]);

18 end

19 S[j, i] =
sum(~Slj ,si ,axis=0)

Plj ,si

;

20 end

21 end

22 end



Fig. 2. Expanded systems with two expansion plans, where node the
represents the load, � node represents the substation, the black edge represents
the existing line, and red edge represents the added candidate line.

C. Graph Neural Networks with a Power-based Layer and

Attention Mechanism

Graph-based semi-supervised learning (G-SSL) is arguably

the most popular approach for graph-based supervised learning

in recent years. G-SSL develops a generalized optimization

framework, which has three particular cases (i) the Standard

Laplacian (SL); (ii) the Normalized Laplacian (NL); (iii)

PageRank (PR). Optimization formulation with the following

expression is to find an N × K-matrix Z (i.e., prediction

matrix, or classification function; where K is the number of

classes):

min
Z

{

2ZTDσ−1LDσ−1Z + µ(Z − Y )TD2σ−1(Z − Y )
}

,

where µ is a regularization parameter. Minimization of the

1st term in the expression above corresponds to Laplacian

regularization; and by minimizing the 2nd term we aim to use

the least-square-fitting method. In turn, the optimization for-

mulation above allows us to obtain (i) the Standard Laplacian

based formulation (σ = 1), (ii) the Normalized Laplacian for-

mulation (σ = 1/2), and (iii) PageRank formulation (σ = 0).

The objective of the generalized optimization framework for

G-SSL is a convex function and the corresponding the classi-

fication function, i.e., Z = (1−α)
(

I − αD−σWDσ−1
)−1

Y ,

where α = 2/(2 + µ). From the above formulations, classifi-

cation function Z is a closed form solution based on the theory

of random walks on graphs, which in turn provides connection

to the probabilistic interpretation of G-SSL. Parameter α
controls the strength of the ground truth label matrix Y in

the generalized optimization framework.

Adaptive Power-based Graph Neural Networks Frame-

work Our proposed network is Adaptive Power-based Graph

Neural Networks (AP-GNN), because the power-based graph

convolution layer (PGCLayer) is able to incorporate the power

information from substations to load node representation

and the attention mechanism can adaptively learn the deep

correlation information between different node embeddings.

Algorithm 2 represents the operations in PGCLayer. After ℓ-
th iteration, the node representation in graph Gi can be defined

as (line 4 of Algorithm 2)

h
(ℓ−1)
i,Nk(v)

= AGG
(

h
(ℓ−1)
i,u , ∀u ∈ Nk(v)

)

,

where AGG(·) is the aggregation function that aggregates

the output of each neighbor (e.g., sum and mean), Nk(v)

refers to k-hop neighbors of node v including v itself (where

k ≥ 1), and the neighborhood vector h
(ℓ−1)
i,Nk(v)

incorporates

node feature information from v’s neighborhood into the

representation. Note that k-th power contains the spatial scope

from the k-th step of a random walk on the target distribution

grid. To capture the dependencies between load and substation,

PGCLayer also can gather information from substations via

h
(ℓ−1)
i,substations = AGG

(

h
(ℓ−1)
i,s , ∀s ∈ N substation

)

,

that is, line 5 of Algorithm 2, i.e., for load node, we learn

the node embedding based on information from both 1-hop

neighborhood and all substations (line 7 of Algorithm 2).

The core ideas behind the new graph representation are to

(i) utilize U-scores information (which provides the quan-

titative measures between the load and all substations) and

(ii) assign more weights to nodes that have connections with

substations. To explore neighborhoods of nodes at different

depths, we consider K different steps of random walks (i.e.,

1 ≤ k ≤ K). Therefore, we can utilize PGCLayer to extract

K node embeddings from the target distribution grid Gi,
i.e., {H1, . . . , Hk, . . . , HK} where Hk represents the node

embedding of PGCLayer with the k-th step of a random walk

(for the sake of simplicity, we omit ℓ that represents a layer

in the following discussion).

We employ the attention mechanism to dynamically

capture the intrinsic relationships between various node

embeddings, allowing us to focus on the crucial task-

relevant components of the learned representations,

thereby facilitating informed decision-making. More

specifically, we define the attention mechanism as follows

(αH1
, αH2

, · · · , αHK
) = Attention(ZH1

, ZH2
, · · · , ZHK

),
and αHk

= softmaxi(̺Att tanh (ΘHk)), where ̺Att is a linear

transformation, Θ is the trainable weight matrix, and the

softmax function is used to normalize the attention vector.

We then can obtain the final embedding H by combining all

embeddings with the attention weights

H = αH1
×H1 + αH2

×H2 + · · ·+ αHK
×HK .

Finally, the final embedding H given by the AP-GNN is fed

into a multilayer perceptron (MLP) layer. Moreover, inspired

by [21], we use mutual information maximization for unsu-

pervised representation learning on the target distribution grid.

IV. EXPERIMENTAL STUDIES

A. Datasets

We consider learning CVaR of Annual Loss of Load through

multi-class classification. Each of these classes represents a

“degree” of system risk in relation to HILP events. The result-

ing classification could be then converted into regulatory plan-

ning standards, allowing to systematically compare resilience

between different plans of the same grid and potentially across

grids in similar geographical conditions [27]. Following a

standard statistical practice [28], we perform binning into

classes based on quantile ranges of annual CVaR of loss of

load (kWh) (see Table II). In particular, we get 3 classes



Fig. 3. Overview of a power-based graph convolution layer. The red node v is the target node, yellow nodes represent the 1-hop neighborhood of v, and
� nodes represent substation. Traditional graph convolution learns the node representation via the node self and its neighbors, while our method can build
connections between specific nodes (i.e., load and substation) and avoid expansive neighborhood expansion.

Algorithm 2: Power-based Graph Convolution Layer

Input: Data X = {Xi} and G = {Gi}
1 for i-th graph {Gi, Xi} in mini-batch do

2 h
(0)
i = fMLP(Xi)

3 for ℓ← 1 to nlayers do

4 h
(ℓ−1)
i,Nk(v)

= AGG

(

h
(ℓ−1)
i,u , ∀u ∈ Nk(v)

)

5 h
(ℓ−1)
i,substations = AGG

(

h
(ℓ−1)
i,s , ∀s ∈ N substation

)

6 if v /∈ Nsubstation then

7 h
(ℓ)
i,v = σ

(

W ·
⊕

(

h
(ℓ−1)
i,N (v), h

(ℓ−1)
i,substation

))

8 end

9 else

10 h
(ℓ)
i,v = σ

(

W · h
(ℓ−1)
i,Nk(v)

)

11 end

12 end

13 end

TABLE I
AVERAGE ACCURACY (%) COMPARISON WITH BASELINE METHODS.

Model
3 classes 4 classes

54-Bus System I 54-Bus System II 54-Bus System I 54-Bus System II

RF [22] 52.99 44.82 51.49 42.68
WL subtree [23] 53.00 43.39 42.25 44.82
GCN [24] 66.50 61.43 71.50 49.46
GIN [25] 76.00 63.75 65.49 53.57
KCNN [26] 75.50 63.29 71.30 55.00

AP-GNN (ours) 77.49 63.93 72.50 56.43

(i.e., low-, moderate-, and high-risk) and 4 classes (i.e., low-

, moderate-, middle-, and high-risk). We have implemented

our proposed methodology on two distribution systems, i.e.,

54-Bus System I and 54-Bus System II, which are modified

versions of the 54-Bus system as described in [14]. In the 54-

Bus System I, there are a total of 72 lines, comprising of 50

existing lines and 22 candidate lines. Additionally, the system

consists of 4 substation nodes and 50 load nodes. On the other

hand, the 54-Bus System II includes 72 lines, with 52 existing

lines and 20 candidate lines. Furthermore, the system contains

2 substation nodes, 50 load nodes, and 2 non-load nodes. To

comprehensively evaluate the performance of our proposed

AP-GNN model, we generate multiple expansion plans for

these two systems, resulting in 200 networks for the 54-Bus

System I and 74 networks for the 54-Bus System II. These

expansion plans have been generated by selecting different

subsets of the available candidate lines. For more details of

datasets, please refer to [7].

TABLE II
RANGES OF ANNUAL CVAR OF LOSS OF LOAD.

# Classes Label
54-Bus System I 54-Bus System II

Range (kWh) Range(kWh)

# 3 classes

0: low-risk [0, 1.0e4] [0, 3.0e4]

1: moderate-risk (1.0e4, 2.0e4] (3.0e4, 4.0e4]

2: high-risk (2.0e4, ∞) (4.0e4, ∞]

# 4 classes

0: low-risk [0, 1.0e4] [0, 3.0e4]

1: moderate-risk (1.0e4, 2.0e4] (3.0e4, 3.5e4]

2: middle-risk (2.0e4, 3.0e4] (3.5e4, 4.0e4]

3: high-risk (3.0e4, ∞] (4.0e4, ∞)

B. Experimental Settings and Baselines

We use the Adam optimizer for 100 epochs to train AP-

GNN. For both 54-Bus Systems, AP-GNN consists of 5

layers whose hidden feature dimension which varies with the

range {8, 16, 32, 64, 128}, and each layer consists of two MLP

blocks. The learning rate is 0.01 the dropout is set as 0.5, and

the batch size is set as 16. For k-th step of a random walk,

we set the largest step of a random walk K ∈ {2, 3, 4}. The

best results are in bold font. We implement our proposed AP-

GNN model using Pytorch on NVIDIA GeForceX 3090. We

compare our AP-GNN model with five state-of-the-art base-

lines, including (i) Random Forest [22] (RF), (ii) Weisfeiler-

Lehman subtree kernel [23] (WL subtree kernel), (iii) Graph

Convolutional Networks [24] (GCN), (iv) GIN [25], and (v)

Kernel Graph Convolutional Neural Networks [26] (KCNN).

C. Overall Results

Table I shows the comparison of our proposed AP-GNN and

state-of-the-art baselines for unsuerpvised graph classification



tasks. From Table I, we observe that our AP-GNN consistently

outperforms baselines on both 54-Bus System I and 54-Bus

System II. Moreover, our proposed AP-GNN outperforms the

runner-ups (GIN and GCN) with relative gains of 1.92% and

1.38% on 54-Bus System I with 3 classes and 4 classes

respectively. For 54-Bus System II, AP-GNN outperforms the

runner-ups (GIN and KCNN) with relative gains of 0.28% and

2.53% over 3 classes and 4 classes scenarios respectively.

V. CONCLUSION

Despite their high proliferation into a broad range of dis-

ciplines from social networks to bioinformatics to finance,

GNNs and more generally DL tools still remain largely under-

utilized in the context of analysis of electricity distribution

grids and distribution grid resilience planning, in particular. In

this paper we have introduced such emerging DL concepts as

attention mechanisms for graph learning into the unsupervised

classification of the future distribution grid expansion plans

in terms of their response to routine and HILP events. Our

numerical experiments have shown that the proposed GNN

tool with the attention-based mechanism delivers highly com-

petitive results both in terms of classification performance and

computational costs. These results suggest that the proposed

AP-GNN and similar DL methods for graph learning may

constitute a new promising alternative for automatic classi-

fication of future distribution grids as a pre-solver for the

computationally expensive stochastic expansion and planning

optimization methods.
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