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Abstract—Recent episodes of extreme natural events have
challenged the ability of power grids to supply demand. Given
the increase in the frequency and severity of these events, new
methods to evaluate the level of security of power systems are
needed. By introducing the emerging deep learning concepts
such as attention mechanism for graph neural networks (GNNs)
into the power system analysis, we develop a novel approach
that systematically classifies this level of security along multiple
dimensions. In particular, in contrast to the traditional risk-
neutral reliability assessment procedures which focus only the
impact of routine failures, our attention-based distribution grid-
level representation learning model (AP-GNN) also allows us
to simultaneously address the consequences of high impact
low probability (HILP) events and to perform unsupervised
classification of the distribution grid expansion plans in a
computationally efficient manner. Furthermore, we discuss a
new tractable resilience metric called Uniqueness Scores which
systematically accounts for the key topological characteristics
of the heterogeneous distribution grid networks. Our extensive
numerical experiments on 54-bus system indicate that the pro-
posed AP-GNN framework is highly competitive both in terms of
classification performance and computational efficiency, thereby
opening further paths for integration of the state-of-the-art deep
learning and artificial intelligence tools to resilience quantification
of power systems.

I. INTRODUCTION

Adverse natural events increasingly more often exhibit a
negative impact on power grids, challenging their ability to
supply demand. The significant rise in the frequency of these
events poses the need for new methods that can assess potential
expansion plans for distribution systems in terms of security.
In this context, we propose a novel method to classify the level
of security of potential expansion plans. This method measures
the consequences of high impact low probability (HILP) events
by computing the Conditional Value at Risk (CVaR) of the
system power imbalance, which can take into account the ef-
fects of HILP events despite their low probabilities. We present
a novel network resilience metric called Uniqueness Scores
and a Graph Neural Network (GNN)-based model which can
avoid the otherwise necessary solution of multiple computa-
tionally demanding optimal power flow (OPF) problems (each
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one associated with a given scenario of failure) to calculate
the CVaR of the system power imbalance corresponding to
each potential expansion plan. More specifically, we develop
a new attention-based distribution grid-level representation
learning model (AP-GNN) for unsupervised classification of
distribution grid expansion plans. We also introduce the at-
tention mechanism over the extracted distribution grid-level
representations of the distribution grids which allows us to
learn adaptive importance weights of the embeddings. We
illustrate the proposed method with a 54-bus system and the
results corroborate that our AP-GNN approach allows us to
improve classification performance, yielding significant gains
when compared to the existing state-of-the-art tools.
The key novelty of our contributions are:

o We propose a novel classification algorithm to evaluate
the security level of expansion plans for distribution grids,
based on a new GNN architecture with a power-based
graph convolutional layer and the attention mechanism
— Adaptive Power-based Graph Neural Networks (AP-
GNN).

e We discuss a new graph-theoretic resilience metric
Uniqueness Score that accounts for the intrinsic hetero-
geneity of distribution grid networks.

o In our expansive numerical experiments, we show that
AP-GNN yields substantial gains in computational effi-
ciency compared to the stochastic optimization bench-
marks from the power system community and also out-
performs seven state-of-the-art models from the deep
learning community by a significant margin in terms of
graph classification accuracy. We then discuss how AP-
GNN can be further integrated with power distributional
planning tools for operational use.

II. RELATED WORK

Graph Neural Networks for Power System Analysis A
wide variety of GNNs have been proposed in recent years
for the classification of non-Euclidean structures (see reviews
in [1], [2]). However, applications of GNNs in power system



analysis remain scarce for both transmission and distribution
systems, with only few papers considering GNNs for distribu-
tion networks. Such representative approaches include recur-
rent GCN by [3] for multi-task transient stability assessment of
power transmission systems, optimal power flow (OPF) opti-
mization problem in transmission systems [4], node classifica-
tion in transmission systems [5], and forecasting transmission
system responses to contingencies [6]. Taking into account the
hidden and complex topological information of distribution
systems, some studies [7]-[9] incorporate hypergraph struc-
tures and local topological features into GNN-based models
for supervised learning tasks. Another application of GNNs
to distribution systems include [10] who develop a GCN for
fault location in distribution systems, and prove that GCN is
more robust to measurement errors compared to the prevailing
ML approaches. Compared to these existing techniques, our
approach brings multiple new research directions. First, we
represent graphical properties of the power distribution grid by
local topological signatures and propose a new unsupervised
GNN-based model with an attention mechanism. This is a
novel application of GNNs not only in power systems but
graph learning, in general. Our AP-GNN is inspired by current
GNNs but is carefully designed to capture node information
with different spatial scopes from a topology distribution grid.

Methods for Distribution Grid Planning Distribution grid
planning exercises aim to determine appropriate expansion
plans according to the requirements of the system planner,
which could be to improve the security of the system or
to address future load growth. Distribution system planners
usually follow an often empirical process based on codes to
update their grids. This process involves electrical installation
rules, and a continuous dialog with the regulators to justify
the real need for the proposed investments, which can have
an impact on the rates paid by consumers [11]. This is
usually the case because, in the US, the largest portion of
investments made by investor-owned utilities in power systems
is associated with distribution grid assets [12].

The power systems research community has proposed a
number of relevant methods based on mathematical optimiza-
tion to improve the distribution grid planning process while
considering either reliability or resilience. For example, [13]
proposes a linear programming method to determine invest-
ments in storage devices with the aim to make the distribution
system resilient against earthquakes. In addition, the work
developed in [14] has the objective of selecting investments
in generation and lines while taking reliability into account.
Moreover, [15] considers investments in substations, lines, and
transformers within a mixed-integer optimization problem to
reduce the cost of loss of load. Finally, [16] presents a mixed-
integer stochastic model to optimize investments in distributed
generation, line hardening, and line switches so as to reduce
costs of expected loss of load and operation of distribution
grids. The main advantage of this class of models is its optimal
prescriptive nature which allows for a clear justification of
the quality of the obtained solutions. However, due to the
associated computational burden, it is not straightforward

to develop generalizable and standardized industry solutions
based on these models for large-scale planning of distribution
grids.

Simulation-based methods are often applied to evaluate the
quality of potential expansion plans once they are available.
Essentially, these methods assess the behavior of the distri-
bution system (or a future system) under the realization of
several scenarios (which can be characterized by different
failures, load profiles, etc) so as to ensure the technical and
economic viability of a given grid planning solution, which
could have been obtained either empirically or via an approach
based on mathematical optimization. In this context, reliability
indices are usually obtained as a result of these simulation
methods [17]. For the purpose of evaluating resilience, exist-
ing approaches include Monte Carlo methods that comprise
a probabilistic characterization of events aided by relevant
information about fragility curves, which is used to generate
network failures and evaluate their HILP-associated impacts
via the CVaR of loss of load [18]. Typically, every single state
of the system is evaluated in these simulations, considering
operational decisions to have the least amount of loss of
load each time under several scenarios. Given its nature, this
process is highly computationally demanding since it requires
the solution of a sequence of multiple optimization problems
for large-scale systems.

Hence, in this paper, we propose a computationally efficient
method based on GCN that computes the CVaR of loss of
load, as a resilience metric, associated with each potential
expansion plan. The proposed method, which is intended to
replace simulation-based evaluations, is a fast and efficient Al-
based evaluation model to assess the resilience of distribution
grids that can substantially benefit regulators in their decision
making process.

III. METHODS

In this work, our goal is to introduce the power of unsu-
pervised learning of the GNN-based model to classification
of distribution grid expansion plans in terms of resilience
performance. In particular, our analysis aims at assessing the
ability to approximate explicit risk-based resilience metrics,
such as the CVaR of load loss, through incorporating a
new local graph descriptor into a GNN-based model. Let
G =(V,€&, A) be a distribution grid, where V is a set of nodes
(V] = N), € is a set of edges, A € RN*N is a symmetric
adjacency matrix and X € RV*F is a node feature matrix
(where F' is the dimension of node features). In a distribution
grid, each node represents either a bus or a substation, and
each edge is a distribution line between nodes. The weight of
an edge between nodes u and v in G is denoted by e,,,, with
ewy = 0 if there exist no path connecting nodes » and v.

A. Base Resilience Evaluation Method

Methods that assess reliability and resilience are designed
to evaluate the capability of the power grid to withstand
multiple scenarios of outages while effectively supplying load.
To account for pre-defined sets of scenarios of routine failures



and HILP events, the resilience evaluation computes the dis-
tribution of total system loss of load (i.e., the sum of loss
of load across all nodes of the system) and then calculates
the CVaR of this distribution. This process is usually carried
out via Sequential Monte Carlo Simulation (SMCS) methods,
which perform simulations of loss of load over annual time
horizons. More specifically, to compute the annual CVaR of
loss of load, we simulate the operation of the distribution
system for several scenarios (e.g., 2000 scenarios), where each
scenario corresponds to 365 days and the system is operated
for each hour of each day. Due to its respective failures, each
annual scenario is then associated with a particular annual
loss of load. Given the amounts of loss of loads associated
with all the scenarios, we then calculate the annual CVaR of
loss of load. This procedure can take 24 hours for a 54-Bus
system to evaluate the annual CVaR for a single candidate
expansion plan. In practice, the power grid expansion plans
are noticeably larger, and hence, the associated computational
costs in operational settings are substantially higher. Hence,
one of the primary contributions of this paper is to replace
the computationally expensive simulation by a neural networks
framework that can efficiently classify distribution grids ac-
cording to their corresponding ranges of annual CVaR of loss
of load.

B. Uniqueness Scores

Traditional resilience metrics used for analyzing power grid
networks are based on graph theory, such as average clustering
coefficient, average path length, average betweenness central-
ity, diameter, and transitivity [19], [20]. Nevertheless, existing
metrics used in power grid analysis suffer from limitations as
they lack the ability to distinguish between different types of
nodes, such as substations and buses, and primarily emphasize
global network characteristics while neglecting crucial local
graph topology information. To address this gap, our study
aims to introduce a novel node feature for load analysis
based on an in-depth examination of simple paths connecting
loads and substations. Drawing inspiration from the concept
of average path length, we utilize a new network summary
to achieve this goal, i.e., Uniqueness Scores (U-scores) [7]
to capture the efficiency of information transport between
different loads and substations. The U-scores algorithm is
summarized in a framework for distribution system expansion
planning, as depicted in Algorithm 1. Specifically, the U-scores
framework consists of three main components: (1) extracting
simple paths from one source, (2) calculating scores, and (3)
finalizing uniqueness scores. Each component is discussed in
detail below. Given the original graph structure Ggys and the
expansion plan Ggyp, Geomb represents the combination of Gy
and Ggyp. The algorithm for U-scores calculation is shown in
Algorithm 1.

Furthermore, in order to effectively assess the robustness
of the distribution system, the introduced U-scores metric
provides invaluable insights into how each load impacts the
resilience of the complex network of the distribution system.
This quantitative evaluation offers several advantages. Firstly,
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Fig. 1. A toy example of the U-scores computation for load 1 on substation
3.

it enhances the understanding of load dynamics for power
system operators, enabling them to develop more efficient
and proactive risk mitigation strategies. Secondly, the U-scores
metric enables electrical engineers to accurately and reliably
evaluate potential expansion plans for existing distribution
systems, by comparing the summation of U-scores (i.e., higher
U-scores summation indicates more resilient distribution sys-
tems). Figure 1 illustrates a toy example of the computation
of U-scores for load 1 on substation 3 in a distribution grid.

Algorithm 1: Uniqueness Scores (U-scores)

Input: Bus system G = and expansion plan G
us Exp
Output: Uniqueness scores S € Rload*Nsubstation
1 Gcomp = GBus U GEXp
2 for i < 1 t0 Npsiation doO

3 for j < 1 to N do
4 simplePathsljysi < DFS(Gcomb; Iy, 8:)3
5 simplePaths?;"fff1 « sort(simplePaths;_ );
6 St s, 0 Uljpsi < ik L s, <
Py s, < 0;

7 for £+ 1 to len(simplePathsS"”edlj7&) do
8 if K == 1 then
9 Sl(,-l,)w =1;
10 Ulj,si = Ulj,si U mmplePaths?j’flse:i [k]’
1 P s, =

Py s + len(simplePaths?j_’ft,:id [k]);
12 end
13 else
14 I, = simplePaths??fff[k] NUL, s
15 Uy, ,s, = U5, U simplePathsSO”edlj,si [k];

(k) len(Il_.,si)—Q .
16 Sljasi =1- len(simplePa:hsj‘;”ffi [k])—2"
17 Plj,& =

P, + len(simplePaths‘z‘j’ffiGI (]);
18 end

§,. 5. ,axis=0
19 Slj,i] = sum iy o, 24=0) ;;]’ D );
Ljis4

20 end
21 end
22 end




Fig. 2. node the

Expanded systems with two expansion plans, where
represents the load, [J node represents the substation, the black edge represents
the existing line, and red edge represents the added candidate line.

C. Graph Neural Networks with a Power-based Layer and
Attention Mechanism

Graph-based semi-supervised learning (G-SSL) is arguably
the most popular approach for graph-based supervised learning
in recent years. G-SSL develops a generalized optimization
framework, which has three particular cases (i) the Standard
Laplacian (SL); (ii) the Normalized Laplacian (NL); (iii)
PageRank (PR). Optimization formulation with the following
expression is to find an N x K-matrix Z (i.e., prediction
matrix, or classification function; where K is the number of
classes):

min {2Z2"D° LD ' Z + wW(Z -Y)'D* N Z -Y)},

where p is a regularization parameter. Minimization of the
Ist term in the expression above corresponds to Laplacian
regularization; and by minimizing the 2nd term we aim to use
the least-square-fitting method. In turn, the optimization for-
mulation above allows us to obtain (i) the Standard Laplacian
based formulation (o = 1), (ii) the Normalized Laplacian for-
mulation (¢ = 1/2), and (iii) PageRank formulation (o = 0).
The objective of the generalized optimization framework for
G-SSL is a convex function and the corresponding the classi-
fication function, i.e., Z = (1—a) (I — ozD_”WD”_l)_l Y,
where o = 2/(2 4 p). From the above formulations, classifi-
cation function Z is a closed form solution based on the theory
of random walks on graphs, which in turn provides connection
to the probabilistic interpretation of G-SSL. Parameter «
controls the strength of the ground truth label matrix Y in
the generalized optimization framework.

Adaptive Power-based Graph Neural Networks Frame-
work Our proposed network is Adaptive Power-based Graph
Neural Networks (AP-GNN), because the power-based graph
convolution layer (PGCLayer) is able to incorporate the power
information from substations to load node representation
and the attention mechanism can adaptively learn the deep
correlation information between different node embeddings.
Algorithm 2 represents the operations in PGCLayer. After ¢-
th iteration, the node representation in graph G; can be defined
as (line 4 of Algorithm 2)

Wty = AGG (n ) Yu € Ny(v)),

where AGG(+) is the aggregation function that aggregates
the output of each neighbor (e.g., sum and mean), Ny (v)

refers to k-hop neighbors of node v including v itself (where
k > 1), and the neighborhood vector hgﬁigu) incorporates
node feature information from wv’s neighborhood into the
representation. Note that k-th power contains the spatial scope
from the k-th step of a random walk on the target distribution
grid. To capture the dependencies between load and substation,
PGCLayer also can gather information from substations via
ple=n

i,substations

= AGG (hz(ﬁ:l),VS S Nsubstation) )

that is, line 5 of Algorithm 2, i.e., for load node, we learn
the node embedding based on information from both 1-hop
neighborhood and all substations (line 7 of Algorithm 2).
The core ideas behind the new graph representation are to
(i) utilize U-scores information (which provides the quan-
titative measures between the load and all substations) and
(i1) assign more weights to nodes that have connections with
substations. To explore neighborhoods of nodes at different
depths, we consider K different steps of random walks (i.e.,
1 < k < K). Therefore, we can utilize PGCLayer to extract
K node embeddings from the target distribution grid G,,
ie., {Hy,...,Hg,...,Hx} where Hj, represents the node
embedding of PGCLayer with the k-th step of a random walk
(for the sake of simplicity, we omit ¢ that represents a layer
in the following discussion).

We employ the attention mechanism to dynamically
capture the intrinsic relationships between various node
embeddings, allowing us to focus on the crucial task-
relevant components of the learned representations,
thereby facilitating informed decision-making. More
specifically, we define the attention mechanism as follows
(OzHl,OtHQ, cee 7OZHK) = Attention(ZHl,ZHQ, ce 7ZHK)’
and ajgy, = softmax;(oay tanh (O Hy)), where pay is a linear
transformation, © is the trainable weight matrix, and the
softmax function is used to normalize the attention vector.
We then can obtain the final embedding H by combining all
embeddings with the attention weights

["I:(DLH1 XH1+04H2 XH2+-~'+04HK><HK.

Finally, the final embedding [ given by the AP-GNN is fed
into a multilayer perceptron (MLP) layer. Moreover, inspired
by [21], we use mutual information maximization for unsu-
pervised representation learning on the target distribution grid.

IV. EXPERIMENTAL STUDIES
A. Datasets

We consider learning CVaR of Annual Loss of Load through
multi-class classification. Each of these classes represents a
“degree” of system risk in relation to HILP events. The result-
ing classification could be then converted into regulatory plan-
ning standards, allowing to systematically compare resilience
between different plans of the same grid and potentially across
grids in similar geographical conditions [27]. Following a
standard statistical practice [28], we perform binning into
classes based on quantile ranges of annual CVaR of loss of
load (kWh) (see Table II). In particular, we get 3 classes
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Fig. 3. Overview of a power-based graph convolution layer. The red node wv is the target node, yellow nodes represent the 1-hop neighborhood of v, and
[ nodes represent substation. Traditional graph convolution learns the node representation via the node self and its neighbors, while our method can build
connections between specific nodes (i.e., load and substation) and avoid expansive neighborhood expansion.

Algorithm 2: Power-based Graph Convolution Layer

Input: Data X = {X;} and G = {G;}
1 for i-th graph {G;, X;} in mini-batch do

2 hEO) = fae(Xi)
3 for ¢ < 1 to nlayers do
4 hgf‘:gv) — AGG (hgfu‘”,vu € Nk(v)>
5 hz(’,ZS;;s)tations = AGG (hgyl‘:l)ﬂvs € NSUbStatiOﬂ)
6 if v ¢ -/\/substation then
[ -1 -1
7 ‘ hg,z =0 (W : @ (h’g,/\/(i)’ h’z(',subs)tation>>
8 end
9 else
@ _ (£-1)
10 ‘ nl) = (w-nlh,)
1 end
12 end
13 end
TABLE I

AVERAGE ACCURACY (%) COMPARISON WITH BASELINE METHODS.

Model 3 classes 4 classes
54-Bus System I 54-Bus System II 54-Bus System I 54-Bus System II

RF [22] 52.99 44.82 51.49 42.68
WL subtree [23] 53.00 43.39 4225 44.82
GCN [24] 66.50 61.43 71.50 49.46
GIN [25] 76.00 63.75 65.49 53.57
KCNN [26] 75.50 63.29 71.30 55.00
AP-GNN (ours) 77.49 63.93 72.50 56.43

(i.e., low-, moderate-, and high-risk) and 4 classes (i.e., low-
, moderate-, middle-, and high-risk). We have implemented
our proposed methodology on two distribution systems, i.e.,
54-Bus System I and 54-Bus System II, which are modified
versions of the 54-Bus system as described in [14]. In the 54-
Bus System I, there are a total of 72 lines, comprising of 50
existing lines and 22 candidate lines. Additionally, the system
consists of 4 substation nodes and 50 load nodes. On the other
hand, the 54-Bus System II includes 72 lines, with 52 existing

lines and 20 candidate lines. Furthermore, the system contains
2 substation nodes, 50 load nodes, and 2 non-load nodes. To
comprehensively evaluate the performance of our proposed
AP-GNN model, we generate multiple expansion plans for
these two systems, resulting in 200 networks for the 54-Bus
System I and 74 networks for the 54-Bus System II. These
expansion plans have been generated by selecting different
subsets of the available candidate lines. For more details of
datasets, please refer to [7].

TABLE 11
RANGES OF ANNUAL CVAR OF LOSS OF LOAD.

54-Bus System I ~ 54-Bus System II

# Classes Label Range (kWh) Range(kWh)
0: low-risk [0, 1.0e4] [0, 3.0e4]
# 3 classes 1: moderate-risk (1.0e4, 2.0e4] (3.0e4, 4.0e4]
2: high-risk (2.0e4, c0) (4.0e4, oo]
0: low-risk [0, 1.0e4] [0, 3.0e4]
1: moderate-risk (1.0e4, 2.0e4] (3.0e4, 3.5e4]
# 4 classes

2: middle-risk
3: high-risk

(2.0e4, 3.0e4]
(3.0e4, o]

(3.5¢4, 4.0e4]
(4.0e4, c0)

B. Experimental Settings and Baselines

We use the Adam optimizer for 100 epochs to train AP-
GNN. For both 54-Bus Systems, AP-GNN consists of 5
layers whose hidden feature dimension which varies with the
range {8, 16,32, 64, 128}, and each layer consists of two MLP
blocks. The learning rate is 0.01 the dropout is set as 0.5, and
the batch size is set as 16. For k-th step of a random walk,
we set the largest step of a random walk K € {2,3,4}. The
best results are in bold font. We implement our proposed AP-
GNN model using Pytorch on NVIDIA GeForceX 3090. We
compare our AP-GNN model with five state-of-the-art base-
lines, including (i) Random Forest [22] (RF), (ii) Weisfeiler-
Lehman subtree kernel [23] (WL subtree kernel), (iii) Graph
Convolutional Networks [24] (GCN), (iv) GIN [25], and (v)
Kernel Graph Convolutional Neural Networks [26] (KCNN).

C. Overall Results

Table I shows the comparison of our proposed AP-GNN and
state-of-the-art baselines for unsuerpvised graph classification



tasks. From Table I, we observe that our AP-GNN consistently
outperforms baselines on both 54-Bus System I and 54-Bus
System II. Moreover, our proposed AP-GNN outperforms the
runner-ups (GIN and GCN) with relative gains of 1.92% and
1.38% on 54-Bus System I with 3 classes and 4 classes
respectively. For 54-Bus System II, AP-GNN outperforms the
runner-ups (GIN and KCNN) with relative gains of 0.28% and
2.53% over 3 classes and 4 classes scenarios respectively.

V. CONCLUSION

Despite their high proliferation into a broad range of dis-
ciplines from social networks to bioinformatics to finance,
GNNs and more generally DL tools still remain largely under-
utilized in the context of analysis of electricity distribution
grids and distribution grid resilience planning, in particular. In
this paper we have introduced such emerging DL concepts as
attention mechanisms for graph learning into the unsupervised
classification of the future distribution grid expansion plans
in terms of their response to routine and HILP events. Our
numerical experiments have shown that the proposed GNN
tool with the attention-based mechanism delivers highly com-
petitive results both in terms of classification performance and
computational costs. These results suggest that the proposed
AP-GNN and similar DL methods for graph learning may
constitute a new promising alternative for automatic classi-
fication of future distribution grids as a pre-solver for the
computationally expensive stochastic expansion and planning
optimization methods.
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