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Abstract

We introduce JAX FDM, a differentiable solver
to design mechanically efficient shapes for 3D
structures conditioned on target architectural, fab-
rication and structural properties. Examples of
such structures are domes, cable nets and tow-
ers. JAX FDM solves these inverse form-finding
problems by combining the force density method,
differentiable sparsity and gradient-based opti-
mization. Our solver can be paired with other
libraries in the JAX ecosystem to facilitate the
integration of form-finding simulations with neu-
ral networks. We showcase the features of JAX
FDM with two design examples. JAX FDM
is available as an open-source library at this
URL: https://github.com/arpastrana/jax fdm

1. Introduction

The force density method (FDM) (Schek, 1974) is a
form-finding method that generates shapes in static equi-
librium for meter-scale 3D structures, such as masonry
vaults (Panozzo et al., 2013), cable nets (Veenendaal et al.,
2017) and tensegrity systems (Zhang & Ohsaki, 2006). A
structure in static equilibrium carries loads like its self-
weight or wind pressure only through internal tension and
compression forces (Adriaenssens et al., 2014). This axial-
dominant mechanical behavior enables a form-found struc-
ture to span long distances with low material usage com-
pared to a structure that is not form-found (Schlaich, 2018;
Rippmann et al., 2016).

The FDM is a forward physics solver expressed as a function
f(✓, G) = U . Given a structure modeled as a sparse graph
G and a set of continuous design parameters ✓, the FDM
computes a state of static equilibrium U for G (Fig. 2).
By inputting different values of ✓, the FDM generates a
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Figure 1: Plan view of cable net with equalized edge lengths.

variety of shapes in static equilibrium (Fig. 3). However,
in engineering practice, it is necessary to generate not any
mechanically efficient 3D shape, but a feasible one that
satisfies constraints arising from architectural, fabrication,
or other structural requirements.

Consider the case shown in Fig. 4 where it is of interest
to find a shape in equilibrium that is as close as possible
to a target surface Û . This surface may express architec-
tural intent for a new roof or can represent the geometry
of a historical masonry vault that needs to be analyzed for
restoration purposes (Panozzo et al., 2013; Marmo et al.,
2019). Practical structural design, therefore, requires the
solution of an inverse form-finding problem, a mapping
from Û ! ✓, where the goal is to estimate adequate values
for the parameters ✓? that are conducive to an equilibrium
state with prescribed characteristics Û .

The design space of all possible shapes in static equilib-
rium parametrized by ✓ is vast, particularly as the dimen-
sionality of these parameters grows proportionally to the
hundreds or thousands of cables, bricks and blocks that com-
pose a real-world structure. Numerical approaches based
on geometric heuristics (Lee et al., 2016) or genetic algo-
rithms (Koohestani, 2012) offer limited support to navi-
gate this high-dimensional design space towards feasible
designs. The current surge of differentiable physics solvers
and physics-informed neural networks in structural engi-
neering (Cuvilliers, 2020; Chang & Cheng, 2020; Xue et al.,
2023; Wu, 2023; Pastrana et al., 2023) provide insights to
develop new approaches to tackle inverse form-finding.

In this paper, we present JAX FDM, a differentiable solver
to perform inverse form-finding on 3D structures modeled as
pin-jointed bar networks. JAX FDM implements the FDM in
JAX (Bradbury et al., 2018) and solves inverse form-finding
problems by estimating adequate inputs to the FDM via
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Figure 2: The FDM is a forward form-finding method that com-
putes a state of static equilibrium U on an input graph G given
input parameters ✓ = (q,P,Xs).

gradient-based optimization. The required forward and back-
ward calculations are executed efficiently by running a differ-
entiable sparse solver on a CPU or a GPU. After presenting
the theory behind our work in Section 2, we use our solver
to address two inverse form-finding problems: the design of
a shell structure that matches an arbitrary target shape (Sec-
tion 3.1) and the design of cable net with prescribed edge
lengths (Section 3.2). JAX FDM is open-source software ac-
cessible at this URL: https://github.com/arpastrana/jax fdm.

2. Auto-differentiable and sparsified FDM

2.1. The force density method (FDM)

The FDM models a structure as a pin-jointed, force net-
work (Schek, 1974). Let G = (V,E) be a graph with n
vertices V connected by m edges E encoding this network.
One portion of V of size ns is defined as the supported
vertices of the structure Vs, i.e., the locations in the structure
that are fixed and transfer reaction forces to its anchors. The
remaining nu unsupported vertices are denoted Vu.

A connectivity matrix C 2 {�1, 0, 1}m⇥n encodes the
relationship between the edges and the vertices of G. Entry
cij of C is equal to 1 if vertex j is the start node of edge i and
equal to �1 if vertex j is the end node of edge i. Otherwise,
cij = 0. Submatrices Cu and Cs are formed by the columns
of C corresponding to the unsupported and the supported
vertices of G, respectively.

Figure 3: The FDM generates different static equilibrium config-
urations for variations of ✓. From left to right: q 2 {�0.1,�1},
q = 1, and q ⇠ U(�0.1,�1). Colors indicate the internal axial
forces: blue denotes compression and red tension.

Figure 4: JAX FDM solves inverse form-finding problems esti-
mating parameters ✓? that fit a prescribed equilibrium state Û via
gradient-based optimization. Here, we calculate the force densities
q? needed to solve a shape approximation problem on a creased
shell modeled as graphs G and GII .

The FDM is a function f that computes a state of static
equilibrium U on a fixed graph G given input parameters ✓.
The input parameters ✓ = (q,P,Xs) are features defined
on the elements of G:

• A diagonal matrix Q 2 Rm⇥m with the force densi-
ties of the edges, q 2 Rm⇥1. The force density qi of
edge i is the ratio between the internal force ti and the
length li of the edge, qi = ti/li. A negative qi indicates
compression while a positive one indicates tension.

• A matrix P 2 Rn⇥3 with the 3D vectors denoting the
external loads applied to all the vertices of G. Subma-
trices Pu 2 Rnu⇥3 and Ps 2 Rns⇥3 correspond to
the rows of P with the loads applied to the vertices Vu

and Vs, respectively.
• A matrix Xs 2 Rns⇥3 containing the 3D coordinates

of the supported vertices, Vs.

The state U = (Xu,Rs, t, l) characterizes the static equi-
librium configuration of G:

• A matrix Xu 2 Rnu⇥3 containing the 3D coordinates
in static equilibrium of the unsupported vertices, Vu.

• A matrix Rs 2 Rns⇥3 with the reaction forces incident
to the supported vertices, Vs.

• A vector t 2 Rm⇥1 containing the tensile or compres-
sive internal force of the edges.

• A vector l 2 Rm⇥1 with the edge lengths.

The key step in the FDM is to find the 3D coordinates in
static equilibrium of the free vertices Xu with Eq. 1:

Xu = (CT
uQCu)

�1(Pu �CT
uQCsXs) (1)
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The remaining components of U are computed as:

Rs = Ps �CT
sQCX (2)

t = qTL (3)

The matrix of 3D coordinates X results from concatenating
Xu and Xs. The diagonal matrix of edge lengths L can be
calculated taking the row-wise L2 norm of the inner product
of the connectivity matrix C and X, L = diag(kCXk2).

2.2. Solving inverse form-finding problems

The desideratum is to design structures in static equilib-
rium that attain additional architectural, fabrication, or other
target properties.

The FDM parametrizes form-finding in terms of ✓, simpli-
fying the computation of a state of static equilibrium U to
the solution of a linear system. However, the relationship
between ✓ and U is non-linear as linear perturbations in ✓ do
not correspond to linear changes in U . Moreover, the force
densities q are not interpretable quantities: they express a
ratio between the expected forces and lengths in the edges
of a structure, but neither of them concretely. Both issues
complicate tackling inverse form-finding problems without
an automated approach.

To address these challenges, we solve an unconstrained
optimization problem w.r.t. parameters ✓. Let g(f(✓, G))
be a non-linear goal function that computes a property of
interest. One inverse form-finding problem may contain K
different goal functions that are individually scaled by a
weight factor wk and aggregated in a loss function L(✓):

L(✓) =
KX

k=1

wk gk(f(✓, G))) (4)

We minimize Eq. 4 by estimating optimal parameters ✓?

via gradient descent, iteratively updating ✓ in the negative
direction of the gradient r✓L. We conveniently estimate
the required value of r✓L with reverse-mode automatic
differentiation (Bradbury et al., 2018).

2.3. Differentiable sparse solver

A bottleneck in our solver is the solution of the linear system
in Eq. 1. Although for small problems we can materialize
and invert the full dense coefficient matrix CT

uQCu, for
larger problems we want to take advantage of the inherent
sparsity of Cu to get computational speedup, especially as
the linear solve is called many times during inverse design.

As sparse solvers have limited support on JAX at the time
of writing, we use implicit differentiation to derive a custom
differentiable sparse linear solver. Given that the sparsity
pattern only depends on C, which is fixed from the begin-
ning for a given graph G, we implement a differentiable

Figure 5: Inverse form-found structures generated with JAX FDM.
Left: two compression-only structures, a monkey saddle (top) and
a dome (bottom). Right: a tensegrity tower.

map from force densities into the entries of the coefficient
matrix in compressed sparse-row (CSR) format. We then
use the adjoint method to implement a custom gradient
for scipy.sparse.linalg.spsolve on CPU, and
jax.experimental.sparse.linalg.spsolve
on GPU. On CPU, we use a jax.pure callback to
ensure the sparse solve is compatible with JIT compilation.

3. Examples

JAX FDM features a rich bank of goal functions that sim-
plify the modeling of inverse-form-finding problems on
various structural systems (Fig. 5). Here, we present two
specific use cases with the current version of the library.

3.1. Shape approximation for shell structures

We want to calculate a network in static equilibrium
for a shell that approximates the geometry Û pictured
in Fig. 4 (Panozzo et al., 2013). This target shape is
supplied by the project architect as a COMPAS net-
work (Van Mele & many others, 2017). JAX FDM offers
functions to convert such a network into a JAX-friendly
jfe.EquilibriumStructure. This structure en-
codes the graph representation G of the shell and its connec-
tivity matrix C (Section 2.1).

import jax_fdm.equilibrium as jfe
from jax_fdm.datastructures import FDNetwork

# load a structure from a COMPAS network

net = FDNetwork.from_json("shell.json")
eqs = jfe.EquilibriumStructure
structure = eqs.from_network(net)

To compute a state of static equilibrium eq state with
the FDM, we instantiate an jfe.EquilibriumModel
and define ✓ as a tuple of design parameters, params.
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import jax.numpy as jnp

# set the initial force densities

q = jnp.ones(structure.num_edges) * -1.0

# compute an equilibrium state

fdm = jfe.EquilibriumModel()
params = (q, xyz_fixed, loads)
eq_state = fdm(params, structure)

The fdm model is a callable object that expresses f(✓, G)
and implements Eqs. 1-3. The initial vector of force den-
sities is set to q = �1. The negative values denote com-
pressive internal forces in the edges of G. The other arrays,
xyz fixed and loads, store the 3D coordinates of the
supports Xs, and the loads P applied to the vertices of G, re-
spectively. Next, we set up an inverse form-finding problem
in terms of q with two functions:

def goal_fn(eq_state):
dist = (eq_state.xyz - xyz_target)**2
return jnp.sum(dist)

def loss_fn(q):
params = (q, xyz_fixed, loads)
eq_state = fdm(params, structure)
return goal_fn(eq_state)

The first one is a goal function g(f(✓, G)), which quantifies
the fitness of the shape approximation by measuring the
cumulative distance between the xyz coordinates in static
equilibrium of the vertices V produced by fdm, and the
xyz target coordinates on the objective surface. The
second function represents Eq. 4, which we minimize with
an optax optimizer (Babuschkin et al., 2020):

import optax
from jax import jit
from jax import value_and_grad

@jit
def opt_step(q, o_state):

loss, grad = value_and_grad(loss_fn)(q)
upd, o_state = opt.update(grad, o_state)
q = optax.apply_updates(q, upd)
return q, o_state, loss

# optimization loop

opt = optax.adam(learning_rate=0.01)
o_state = opt.init(q)

for i in range(5000):
q, o_state, loss = opt_step(q, o_state)

The object abstractions and equilibrium calculations in JAX
FDM are compatible with JAX transformations, such as
jit and value and grad. This compatibility allows us
to write the optimization step for q with the same code
blocks conventionally used to train neural networks.

Figure 6: A cable net roof. The cables of this inverse form-found,
tension-only structure have a target length of 0.15 m.

Post-optimization, the distance between the solution pro-
vided by q? and the target shape decreases by four orders
of magnitude. The fit is comparable with an input graph
GII that has three times more edges and design parameters
(Fig. 4). This example is available in a Colab notebook at
https://tinyurl.com/25czahvh.

3.2. Equalizing edge lengths in a cable net

We design a self-stressed cable net inspired by the roof
of the Rhön Klinikum (Oval, 2019). Building cable nets
from standardized components is important for fabrication
efficiency. Therefore, we calculate a tension-only shape for
the net that has a target edge length of 0.15 m. Fig. 6 displays
the solution to the inverse form-finding problem. The goal
function g(f(✓, G)) in this problem is:

def goal_fn(eq_state):
diff = (eq_state.lengths - 0.15)**2
std = jnp.std(eq_state.lengths)
return jnp.sum(diff) + 0.01 * std

After modeling the connectivity of the cable net as a
structure, we can reuse the code blocks presented in
Section 3.1 to obtain q?. The only requirement is to swap
goal fn in the body of the loss function loss fn. The
composition and interchangeability of such atomic goal
functions simplify the formulation of custom inverse form-
finding problems with JAX FDM. We applied a similar
approach to generate the planar cable net shown in Fig. 1.

4. Conclusion

We presented JAX FDM, an open-source solver that stream-
lines the design of 3D structures in static equilibrium con-
ditioned on target properties. Future work will include our
solver as a differentiable layer in neural networks to build
accurate surrogate models that further accelerate inverse
form-finding.
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