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Abstract

A Bayesian Network is a directed acyclic graph (DAG) on a set of n random variables (the vertices);
a Bayesian Network Distribution (BND) is a probability distribution on the random variables that is
Markovian on the graph. A finite k-mixture of such models is graphically represented by a larger
graph which has an additional “hidden” (or “latent”) random variable U, ranging in {1,...,k},
and a directed edge from U to every other vertex. Models of this type are fundamental to causal
inference, where U models an unobserved confounding effect of multiple populations, obscuring
the causal relationships in the observable DAG. By solving the mixture problem and recovering
the joint probability distribution with U, traditionally unidentifiable causal relationships become
identifiable. Using a reduction to the more well-studied “product” case on empty graphs, we give
the first algorithm to learn mixtures of non-empty DAGs.

Keywords: mixture models, Bayesian networks, causal DAGs, hidden confounder, population
confounder, clobal confounding, causal identifiability

1. Introduction

The distinction between causation and correlation is paramount to the development of scientific
knowledge. While learning spurious correlations is sufficient for predicting outcomes, causal
inference seeks the effect of intervening on a system. This fortification is an essential step towards
using data to recommend courses of action, whether they are medical treatments or a changes in
economic policy.

Interventional effects are often explored in experimental settings via “Randomized Controlled
Trials” (RCTs), which decouple intervened variables from potential confounding. Unfortunately,
experiments are impossible or prohibitively expensive in a wide range of complex natural and artificial
systems. In such settings researchers often have to resort to collecting samples of an assortment
of measurements from a joint distribution governed by causal relations. Such relations define a
structural causal model (SCM), described by a Bayesian network (Pearl, 1985).

The assumption of causal sufficiency describes the often unrealistic case in which all relevant
variables in the causal system are observed. Under causal sufficiency, the consequences of all
interventions on the system are identifiable by adjusting for the confounders described by the SCM. If
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causal sufficiency is relaxed, unobserved confounders cannot be adjusted for using observed statistics,
limiting the identifiability of some interventional distributions. The graphical conditions under which
causal relationships are identifiable are well studied (Shpitser and Pearl, 2006; Huang and Valtorta,
2008; Pearl, 2009; Spirtes et al., 2000a; Peters et al., 2017; Koller and Friedman, 2009). There has
been little exploration into the identifiability of causal relationships using numerical conditions.

This paper will address a setting in which an unobserved multiplicity of populations that con-
founds an entire system - often called a mixture model. The setting emerges when combining data
from many setting or laboratories, whose environments may exert a confounding influence. Adjusting
for the observed confounder in such settings would involve considering each data source separately.
To make full use of the merged dataset, we may want to instead assume that some simpler unobserved
U (taking on fewer states than the number of datasets) is sufficient to control for the confounding
induced by the merging. Examples of such a U could include private attributes like health status or
artificially constructed classes such as individual price sensitivity.

Such a setting satisfies neither observability of the “backdoor adjustment set” nor the sparsity
requirements on the connection of U for the “frontdoor criterion” (Pearl, 2009). As a result, the causal
relationships within the SCM are considered unidentifiable in the traditional framework. This worst
case analysis ignores the fact that limited cardinality of U would also limit U’s ability to completely
hide the causal dynamics. We will show that mild additional assumptions in conjunction with a
known DAG structure allow identification of the joint probability distribution with the previously
unobservable U, a sufficient condition for applying the backdoor adjustment.

1.1. Problem Statement

A Bayesian network is a directed acyclic graph G = (V, E), on a set of |V| = n random variables.
A corresponding Bayesian network distribution (BND) is a probability distribution on the random
variables that is Markovian on the graph. That is to say, the joint distribution on the variables can
be factored as [ [, P[V; = v; | pa(V;)] where pa(V;) is the assignment to the parents of V;. A
k-MixBND on G is a convex combination, or “mixture”, of K BNDs. We represent this situation
graphically by a single unobservable random variable U with edges to each of the variable V' € G.
Here, U is referred to as a “source” variable with range 1, ..., k and the variables in G are referred to
as the “observables.” The main complexity parameter of the problem is &, representing the number
of mixture constituents or “sources.”

The extremely special case where G is empty has been of longstanding interest in the theory
literature. Such a distribution is a mixture of k£ product distributions or k-MixProd. See Fig. 1.
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Figure 1: (a) A small Bayesian Network, with latent variable U. (b) In the empty graph, a k-MixBND
is a k-MixProd (mixture of product distributions).

In this paper we study the identification problem for k-MixBNDs. Specifically, given the graph
G, and given a joint distribution P on the variables (vertices), recover up to small statistical error
(a) the mixture weights (probability of each source), up to a permutation of the constituents, and
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(b) for every mixture source and for every vertex V/, its conditional distribution given each possible
setting to the parents of V. This task identifies the joint probability distribution P (U, V') up to the k!
permutations in the label U. Identification will be shown by giving an algorithm that reduces the
k-MixBND problem into a series of calls to a k-MixProd oracle. k-MixBND models are not always
identifiable, as further discussed in Assumptions below. Thus, another contribution of our paper is to
establish a sufficient setting to guarantee identifiability.

Assumptions The following assumptions are used throughout this paper.

1.

We have access to a k-MixProd oracle requiring O(k) variables that are independent within
each source. As different algorithms have different requirements for the number of independent
variables, we will keep our results agnostic to these requirements. The most efficient published
algorithm is given in Gordon et al. (2021), which requires Ny, = 3k — 3 variables and time
complexity exp(k?). Recent unpublished work improves the complexity bound to exp(k log k).

. The observable variables in our BND are binary and discrete. While a number of papers have

focused on continuous or large-alphabet settings, we restrict our focus to the simplest setting of
binary, discrete variables. Appendix C.2 gives a reduction from alphabets of any size d to the
binary case, incurring a mild cost in complexity.

The mixture is supported on < k sources. If the hidden variable U has unrestricted range
(Specifically, range k = 2™ would be enough), the model is rich enough to describe any probability
distribution on V', making identification impossible. The question is therefore one of trading k
against the sample and computational complexity of an algorithm (and the degree of the network).
The underlying Bayesian DAG is sufficiently sparse. In order to reduce k-MixBND to k-MixProd
we need sufficiently many variables that can be separated from each other by conditioning on
disjoint Markov boundaries (example in Fig. 2, definition in Sec. 1.4). As a result, the complexity
of the algorithm is exponential in the size of a Markov boundary. Both for complexity and in order
to keep n small, a bound on the maximum degree A is required. We require n > (A + 1)4Nmp.l

. The resulting product mixtures are non-degenerate. Even in mixtures of graphs with sparse

structure (in particular the empty graph—the k-MixProd problem), the k-MixBND can be uniden-
tifiable if the mixture components are insufficiently distinct. (E.g., trivially, a mixture of identical
sources generates the same statistics as a single source.) Past work has used conditions such as
(-separation Gordon et al. (2021) to ensure that matrices representing the parameters for each
source are well-conditioned. These are not always necessary conditions; characterizing necessary
conditions is a difficult question tackled in part in Gordon and Schulman (2022).

The DAG structure representing conditional independence properties within each source, or a
common supergraph of these structures, is known. It is often the case that domain knowledge
provides an understanding of the causal DAG. If the causal DAG is unknown, we are faced with
a different problem commonly known as “Causal Discovery”(see Glymour et al. (2019a) for a
recent survey.) A method for causal discovery in the presence of a universal confounder has been
suggested in Anandkumar et al. (2012a) by substituting independence tests with rank tests. In
our motivating example of dataset merging, it is likely that the structure can be learned from an
individual dataset. Like in Anandkumar et al. (2012a), the presented algorithm will actually only
require a supergraph of the true structure. Hence, some uncertainty in knowledge of the graph can

1. If the skeleton of G happens to be a path, then we only need a milder condition that n > 2/Ny,. For details see
Appendix C.1.
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Figure 2: The reduction process of conditioning on COND to create an instance of k-MixProd.
A Bayesian network with four vertices Vi, Vi, Vo, Vi3 and their corresponding disjoint
Markov boundaries are indicated.

be tolerated. In fact, the algorithm also works even if the different components of the £-MixBND
use slightly different causal graphs.

1.2. Summary of contributions

Theorem 1 Our algorithm identifies a k-MixBND distribution with on a graph of maximum degree
A and of size n > Q(NypA?b), using O(n22%) calls to an oracle for the k-MixProd problem. For
an exact statement see Theorem 17.

The algorithm will be built on the insight that conditioning on a set of Markov boundaries COND C
V of I C V induces within-source independence (that is, V; 1L V; | U, COND for all V;, V; € I).
This describes an instance of k-MixProd for which we can identify the joint probability distribution
P(I,U | COND). See Figure 2 for an illustration.

Recovering P(I,U | COND) for some I C V is insufficient to recover the full joint probability
distribution P(V', U). Hence, we execute a set of O(n22”) “runs” of a k-MixProd oracle on differing
I, COND and assignments to their Markov boundaries and synthesize information gained from these
runes into the joint probability distribution.

The first challenge is to handle symmetries in permutation of the output labels of U by “aligning”
the outcomes of these runs. The second challenge is to remove the conditioning of C' from each run.
We do this by synthesizing the results of many runs with a procedure we call “Bayesian unzipping.”
Our key contributions can be summarized by these “alignment” and “unzipping” procedures, as
well as the notion of a “good collection of runs” that allows for the successful application of these
sub-processes
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Organization The rest of the paper is organized as follows. In Section 1.3 we outline the literature
background of the problem. In Section 1.4 we give some Bayesian network notation. In Section 2
we formally develop the notion of a “run,” which calls a k-MixProd oracle. In Section 3 we explain
how the output of the “runs” is combined to get the desired mixture parameters. This section details
the processes of alignment and Bayesian unzipping. Section 4 explains what is necessary in a group
of runs in order for the algorithm to succeed, which provides a framework for defining algorithms in
terms of sets of runs.

In Appendix A we define the k-MixBND algorithm in pseudo-code. In Appendix C we analyze
the k-MixBND algorithm. In Appendix B we prove the existence of a good collection of runs. In
Appendix C.2 we generalize our algorithms to handle non-binary observations.

1.3. Background

There are two problems within mixture models: (1) Learning the model, namely, producing any
model consistent with (or close to) the observations; (2) Identifying the model, namely, producing
the true model (or one close to it) up to permutations in the source label. The feasibility of the
identification problem hinges on a one-to-one mapping between the observed statistics and the
model’s parameters. When using the resulting model to deconfound causal relationships, it is
imperative that that the joint probability distribution with the confounder be identified.

The idea of using mixture models to identify parameters in latent variables dates back to E. S. All-
man (2009), who use algebraic methods from Kruskal (1976, 1977) to exploit within-source inde-
pendence. Anandkumar et al. (2012b) follows a similar strategy using tensor decomposition. Both
of these works rely on within-source independence between three variables with support on large
alphabets (i.e. large cardinality) to achieve generic? identifiablility. Specifically, the alphabet size
of the independent variables must scale linearly with k. Such a requirement can be achieved by
combining variables of smaller variables, i.e. two binary variables can be combined to make up an
alphabet size of 4. E. S. Allman (2009) showed that identifiability holds generically for smaller
alphabets with O(log(k)) independent variables via these combinations.

A different line of work in the theory community seeks full identifiability, requiring O(k)
independent variables in conjunction with separation conditions to ensure that the visible variables
behave differently in different mixture components 3. This problem, referred to as k-MixProd, and
has been studied for nearly 30 years (Kearns et al., 1994; Cryan et al., 2001; Freund and Mansour,
1999; Feldman et al., 2008; Chaudhuri and Rao, 2008; Tahmasebi et al., 2018; Chen and Moitra,
2019; Gordon et al., 2021).* In Feldman et al. (2008) a seminal algorithm for k-MixProd was
given with running time nO**) for mixtures on n binary variables (n sufficiently large). This
was improved in Chen and Moitra (2019) to kO*)nO*) - The most recent algorithm, Gordon
et al. (2021) identifies a mixture of k£ product distributions on at least 3k — 3 variables in time
20(k*)n0(*) ynder a mild “separation” condition that excludes unidentifiable instances. Under
somewhat stricter separation, the time complexity improves to 20(k*)p,. One can choose between the
generic identifiability and full identifiability approaches when reducing Bayesian network mixtures
to mixtures of products. The same complexity bottlenecks appear in both strategies, but the number
of independent variables that must be instantiated differs.

2. Here, “generic” identifiability means that the set of unidentifiable models makes up a Lebesgue measure 0 subset in
the parameter space.

3. Separation conditions can be thought of as a form of faithfulness of edges from U to V'

4. We do not even try to list the extensive analogous literature for parametrized distributions over R.
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To our knowledge, the only other attempt at detailing a multiple-run reduction to k-MixProd
is Anandkumar et al. (2012a), which gives an algorithm for mixtures of Markov random fields—
i.e., undirected graphical models. As both papers make use of boundary conditioning to induce
independence and a form of “alignment,” our paper can be thought of as both an improvement and an
extension to the directed graph case. While Anandkumar et al. (2012a) require a single variable that is
independent from the rest of the structure for allignment, our algorithm develops the notion of “good
collections of runs” to eliminate this restriction — a contribution which may have implications in the
Markov random field setting as well. Additional complications arise for directed graphs because the
outputs of the k-MixProd subroutine are conditioned on their Markov boundaries while the desired
parameters are only conditioned on their parents. Finally, we note that Anandkumar et al. (2012a)
only guarantees identification of second order marginal probabilities, which is insufficient for causal
identification. >

Other related work Kivva et al. (2021) contains as a special case a reduction to the k-MixProd
problem. Their goal is to learn a causal graphical model with latent variables, but with a very different
structure on the visible and latent variables. They allow for a DAG of latent variables with visible
children (which is learned as part of their algorithm); on the other hand, they require that there be
no causal relations between visible variables. In our work, the structure on the latent variables is
trivial (since there is a single latent variable), but the structure on the visible variables is arbitrary.
Characterizing identifiability in the generalization of both these settings in which we allow structure
on both the visible and latent portion of the graph is a nice problem beyond the scope of this paper.

Another paper with kindred motivation to ours is Kumar and Sinha (2021), which studies
inference of a certain kind of MixBND, in which the structure of the Bayesian network is known,
but the data collected is a mixture over some m unknown interventional distributions. The authors
give sufficient conditions for identifiability of the network and of the intervention distributions. At
a technical level, the papers are not closely related. k is not a parameter in their work, and instead
what is essential is an “exclusion” assumption which says that each variable has some value to which
it is not assigned by any of the interventions.

Some other loosely related work includes learning hidden Markov models (Hsu et al., 2012;
Anandkumar et al., 2012b; Sharan et al., 2017), an incomparable line of work to our question, but
with somewhat similar motivation. In the same vein, some papers study learning mixtures of Markov
chains from observations of random paths through the state space Batu et al. (2004); Gupta et al.
(2016). These models, too, differ substantially from the models addressed in this paper, and pose
very different challenges. Literature on causal structure learning (Spirtes et al., 2000b; Glymour
et al., 2019b) answers the question of identifying the presence of hidden confounders. Fast Causal
Inference (FCI) harnesses observed conditional independence to learn causal structure, which can
detect the presence of unobserved variables when the known variables are insufficient to explain the
observed behavior. This literature includes the MDAG problem in which the DAG structure may
depend upon the hidden variable; see Thiesson et al. (1998) for heuristic approaches to this problem.
Other related works study causal inference in the presence of visible “proxy” variables which are
influenced by a latent confounder (Miao et al., 2018; Kuroki and Pearl, 2014; Mazaheri et al., 2023).
This has more recently given rise to attempts at deconfounding using multiple causes (Heckerman,

5. We also mention that Anandkumar et al. (2010) and Anandkumar et al. (2012a) introduce the idea of a sparse local
separator; if this can be adapted to the directed-graph case one might be able to somewhat relax assumption 4. We do
not attempt this in this paper.
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2018; Ranganath and Perotte, 2018; Wang and Blei, 2019). The initial assumptions of Wang and
Blei (2019) were shown to be insufficient for deconfounding in Ogburn et al. (2019). This illustrates
the necessity of identifying of the joint probability distribution with the confounder. ©

Finite mixture models have been the focus of intense research for well over a century, since
pioneering work in the late 1800s (Newcomb, 1886; Pearson, 1894), and doing justice to the vast
literature that emanated from this endeavor is impossible within the scope of this paper. See, e.g., the
surveys Everitt and Hand (1981); Titterington et al. (1985); Lindsay (1995); McLachlan et al. (2019).

1.4. Notation

A Bayesian network consists of a directed acyclic graph (DAG) G = (V, E) and a probability
distribution P over V- = {V1, ..., V,} factoring according to G, i.e.,

P, Va,..., Vo) = [ [ P(Vi | PA(VD)),
i=1

where PA(V) is the set of parents of V' € V. (Similarly, let CH(V') denote the children of V.)
Equivalently, P must satisfy that for any V' € V', V' is independent of its non-descendants, given its
parents.

Generally, we will use bold letters to denote sets of variables. For a matrix M, we will use M;;
to identify entries. We use M; _ to denote the vector (M; 1, M; 2, .. Mlk)

Conditioning on the “Markov boundary” of a vertex MB (1) makes V' conditionally independent
from everything else in the graph (Pearl, 2014).

Definition 2 (Markov Boundary) For a vertex Y in a DAG G = (V, E), the Markov boundary
of Y, denoted MB(Y'), is defined by

MB(Y) :=PA(Y)UCH(Y)UPA(CH(Y))\ {Y}.

Lemma 3 (See Pearl (2014)) For any vertex V. € V and subset S C V \ (MB(V) U {V}),
PV |MB(V),S)=PV |MB(V)).

Observation 4 Forany X,Y ¢ V, X e MB(Y) <— Y € MB(X)

Uppercase/lowercase conventions Following notation in causal inference literature, we will use
lowercase letters to denote assignments. For example P(v | u) = P(V = v | U = u). Following
this convention, we will write pa(V'), ch(V'), and mb(X) to denote assignment to the parents PA(V),
children CH(V), and Markov boundary MB(V).

Within-source probabilities It will be easier to write P, (v) = P(v | u) to give the probability
distribution within a source.
Finally, here are a few more definitions that will make the upcoming sections simpler.

Definition 5 (Top) We will use TOP(V') to denote MB(V') \ CH(V).

Definition 6 (Depth of a vertex) Given a DAG G = (V, E) and any vertex V€ V., let dg(V') be
the depth of V' in G, i.e. the length of the shortest path from a degree-0 vertex in G. When G is clear
from context, we’ll omit the subscript.

6. Thanks to Betsy Ogburn for her thoughts on this topic.
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Definition 7 We’ll introduce a parameter v(G) which will appear in the complexity of the identifica-
tion procedure, which is defined by v(G) := maxycyv [MB(V)]|.

2. Applying a k-MixProd run

Our algorithm will induce instances of k-MixProd through post-selected conditioning. A significant
portion of this paper will be accounting for multiple calls (or “runs”) of a k-MixProd oracle and
explaining how their results can be combined.

2.1. Describing runs

We will need to keep track of two crucial elements of each “run” of a k-MixProd oracle.
1. Which variables € V are passed to our k-MixProd oracle as independent variables (the
independent set).
2. Which variables € V' we have conditioned on (the conditioning set) and what values we have
post-selected these variables to take.
A sufficient conditioning set to induce within-source independence among the independent set is
the union of their Markov boundaries. This will be further refined in Subsection 4.2.

Definition 8 (Run) A run over a graph G = (V, E) is a tuple a = (I%, f*) where I* C 'V are
variables that we will d-separate (within each source) by conditioning on assignments to the set

COND“ := | | MB(I)
S

The value of the assignment is given by f* : COND® — {0,1}. We’ll call I* the independent set
for a, and COND* the conditioning set.

We will restrict our attention to well-formed runs, i.e. runs for which I N COND® = ().
Definition 9 An individual run a = (I*, f*) is N-independent if |[I*| > N.

Superscript notation We’ll write mb*(V'), pa®(V'), ch®(V) to refer to the assignment to the
Markov boundary of V, parents of V, and children of V' as set by run a.” In a similar spirit, we’ll
occasionally write v¥ to denote the assignment V' = 0.

Definition 10 (Distribution induced by a run) For any well-formed run a, the induced distribution
on the variables in 1% is denoted by

P() = P(- | cond®),
where cond® is the assignment to COND* in keeping with our conventions.

The outputs of applying a k-MixProd oracle to P%(I) are a matrix M € [0,1]1“** and a
vector of mixture weights, 7@ € [0, 1]¥ (satisfying Yy e = 1) given by

M, =P X! =1|U, =u) =P(X; =1|U" = u, COND?), VX; eI ue k] (1)
7y = PY(U* =u) = P(U, = u | COND?), Vielk] ()

u

7. Any quantities parameterized by a run will take the parameter as a superscript.
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where U® is the mixture source distributed over [k] according to P(U | COND?). Note that
because mixtures are invariant to permutations of mixture component labels, we cannot guarantee
correspondence between the labels for the source variables from different runs. Hence the labels of
U* to an unknown permutation of the labels in U. Alignment of these labels is handled in Section 3.1.

3. Combining Runs

A single run of the k-MixProd oracle will not contain sufficient information to learn the parameters
of the k-MixBND problem. Instead we must synthesize information across multiple runs.

3.1. Aligning source labels across different runs

Each run of the k-MixProd oracle will return P*(V | U, = w) for some arbitrary permutation
U, of the variable. We need to align all of the outputs to the same permutation of the source, U.
If the runs overlap on at least one variable with the same mixture probabilities, we can use that
“alignment variable” to identify which source corresponds to which set of parameters. In our setup,
we will guarantee these alignment variables exist by ensuring that runs have shared vertices in their
independent sets whose Markov boundaries have identical assignments.

Definition 11 X € V is separated if for all u; # u; € [k], Py, (z) # Pu; ().

Definition 12 (Aligned runs) A pair of runs a, b over independent sets I, I” is alignable if there
exists a separated X € I'W 0 I® such that PE(V (@) = P2 (V@) for all u € [k). We’ll call any
such random variable X an alignment variable, and use AV (a,b) to denote the set of all alignment
variables for P* and P®. We sometimes say a and b are “aligned at” X.

Definition 13 (Alignment spanning tree) We say a set of { runs is alignable if there exists an
undirected spanning tree over the graph with vertices a1, .. .ay and an edge {a;,a;} whenever
AV(ai, aj) # 0. We call this the alignment spanning tree.

The alignment step will take the output from alignable runs and permute the mixture labels until
the parameters match along each alignment variable. Pseudocode for this procedure is given in
Algorithm 1.

3.2. Bayesian unzipping: recovering parameters per source

Recall that our algorithm conditions on Markov boundaries to induce independent variables. Hence,
after aligning the sources in runs of the k-MixProd oracle we will have access to P, (Y | MB(Y"))
foreach Y € V. Our goal is to obtain P, (V'), which is described by the parameters P, (Y | PA(Y"))
foreach Y € V. Note that

Pu(ylv mb(Y))
Pu(y*, mb(Y)) + Pu(y?, mb(Y))’

The terms in this fraction are all of the same form and can be factored according to the DAG into

Puly, mb®(Y)) = Py(top(Y))Pu(y | pa®(Y)) [ Pu(v®| f*PA(V)\{Y}),0).
VECH(Y)

Puly | mb(Y)) =

3)

Pu(ch®(Y)[top (Y),y)
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See Figure 3 for a concrete example of this decomposition. After substituting this factorization into
Equation (3) we see that P, (top(Y")) appears in both the numerator and denominator because it is
independent of the assignment to Y. Simplification leaves only the following terms:

1. Pu(y° | pa®(Y)) and P, (y' | pa®(Y)), which must sum to 1.

2. Pu(ch®(Y) | top®(Y),4°) and P, (ch®(Y) | top®(Y),y') which are both the product of the
desired parameters of variables later in the topological ordering. We can ensure we have access
to these terms by solving for the parameters of V' € V in a reverse-topological ordering.®

We can substitute 1 — P, (y* | pa®(Y)) for P, (y" | pa®(Y)) in the expanded version of Equation (3)
to obtain a single equation with only P, (y' | pa®(Y’)) as an unknown, which we can then solve. The

pseudocode for this process is given in Algorithm 2.

Figure 3: We can decompose P, (v1, V2, v3,Y,04,05) = Pu(v1,v2,03)Puly | vi,v2)Pu(vs |
y,v3)Pu(vs | y,v4). U and any other variables in the graph are omitted for clarity.

3.2.1. RECOVERING THE DISTRIBUTION ON SOURCES

Now consider some arbitrary run a with conditioning cond®. Since P,(V) = [[cy Pu(V |
PA(V)), knowing P, (V | PA(V')) grants us full access to the within-source probability distribution
P, (V') after Bayesian unzipping. From this we can we obtain P, (cond*) = P(cond® | u). The
k-MixProd oracle will also return P*(U) = P(U | cond®) when run on a (after source alignment).
Finally, P(cond®) is directly observable. Combining these terms in Bayes’ rule lets us compute the
distribution on U (under the assumption of positivity),

P(u | cond*)P(cond®)
P(cond” | u) ’

P(u) =

3.3. Outline of the combination process

Combining a set of runs .4 has four steps.
1. Use a k-MixProd oracle on P(I* | COND®) for each run ¢ € A to compute P(V |
MB(V),U, = u) for all variables V € V.
2. Align the parameters obtained from the previous step to ensure that U means the same thing
across different runs, giving P,,(V | MB(Y)).
3. Recover P, (V | PA(V)) for each vertex V' € V' via Bayesian unzipping.
4. Compute P(U) by applying Bayes’ law.
The full procedure appears as Algorithm 3.

8. We will want to ensure that we only need to unzip parameters from vertices of a bounded depth, which bounds the
iterations of this step. Details on how this is done appear in Section 4.2.

10
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4. Collections of runs

With the main concepts of source alignment and Bayesian unzipping now defined, our algorithm
will primarily consist of finding a good collection of these runs so that these subroutines can be
successfully applied to recover the k-MixBND mixture.

Observation 14 Two runs a, b are aligned at X € 'V if and only if
1. XeInI’
2. mb*(X) = mb®(X), i.e, f*(MB(X)) = f*(MB(X)), and
3. X is separated given mb®(X) (equivalently, given mb®(X)).

Definition 15 A collection of runs A covers X € V if for every assignment pa(X ) to PA(X) there
exists arun a € Awith X € I and pa(X) = pa®(X).

Definition 16 (A good collection of runs) A collection of well-formed runs A is good if it is (i)
alignable via an alignment spanning tree, (ii) every run is N,-independent, and (iii) the collection
covers every vertex in V.

The following is our main result on good collections of runs:

Theorem 17 Given a graph with max degree A satisfying n > Ny, X O(A%Y), we can find a set of
centers X = {Xl, ... ,XNmp} C V of size N, and depth at most 3N,,,, such that Algorithm 4

succeeds in finding a good collection of runs A of size 0(2A2 n).

While any good collection of runs will suffice for our algorithm, Theorem 17 represents conditions
under which we can provably obtain such a collection of runs. In Appendix C.1, we give a good
collection of runs for mixture of paths which is more efficient than the one found by Algorithm 4.

4.1. A generic good collection of runs

To prove Theorem 17, we will sketch the collection of good runs, leaving some details to Appendix B.
To ensure alignment is possible, we will construct a set of central runs, Ac which we can align to
each other and which all other runs will be alignable to.

Definition 18 (Centers, Central Runs) A set of vertices X = {X1,..., Xn,, } C V will be called
centers if the Markov boundaries of the vertices in X are disjoint. Given a set of centers X, a run a
is called a central run if I¢ = X.

To build these central runs, we will start with a set of N, vertices X = { X1, Xo,... Xy, } with
disjoint Markov boundaries and a maximum depzth of 3/N,p, whose existence is implied by our
degree bounds (see Appendix B). An example of four such vertices is given in Figure 2.

First, we fix a run ag with I = X and mb“°(X) being chosen arbitrarily where MB(X ) :=
Ux,ex MB(X;). We will refer to this assignment mb® (X) as the defaulr assignment. Each run in
a € Ac will have the same independent set I = X and will agree with ag on the assignment to all
of the conditioning set other than the Markov boundary of some X; € X, i.e.

f1V) = f*(V) vV e MB(X) \ MB(X;). )

The central runs will span over all assignments mb(X;) to MB(X;) for each X; € X. We’ll write
each such run as ap[mb(X;)].

11
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Definition 19 A- = {ag} U {ao[mb(Xi)] 1i € [3k — 3], mb(X;) € {0, 1}MB(X1')}.

See Figure 4 for an example of a set of central runs and a visualization of how they are alignable.

Q@
/

4

Aligned at X @ z Aligned at Xo

MB(X;) MB(X;) « 2 Default Assignment Run ag 40 MB(X;) MB(X)
s (s
<. &
A &

o ©-o
o ©-o
@

MB(X/) O’”\ MB(X;) MB(Xs) ﬂ/{é MB(X;) MB(Xs)
> %
& ‘o
Q\eé‘ U N

o @0 ‘ede

o ®o
o®eo
-®

MB(X,) MB(X,) MB(X,) MB(X,)

Figure 4: An alignment spanning tree of the default assignment ay (COND® arbitrarily assigns
all Markov boundaries to 0) and six other central runs. The runs on the left cover all
possible assignments to MB(X3) € {(0,0),(0,1),(1,0)}, while maintaining the default
assignment to MB(X) to allow alignment with ag. The right runs similarly cover all
possible assignments to MB(X7), aligned at Xo.

The central runs provide a backbone for easily guaranteeing alignment. The runs in .4y made up
of the following two types of perturbations to the independent set (with COND“ always defined as
the union of the Markov boundaries of the independent set, as in Definition 8):

1. For each Y € MB(Xj;) for some X; € X, we exclude X; from the independent set to form
I = X u{Y}\{x;}.}
2. ForeachY ¢ MB(X)N X, I = X U{Y}.

For either independence set we will form 2PA®)| runs each associated with a single assignment to
pa’(Y), with the remaining variables in COND* N COND® conditioned on their defaults given by
f. Any other assignments to variables in COND® can be chosen arbitrarily. The pseudocode for
this construction is in Appendix B, as well as justification for why our degree bounds imply that Ny,
disjoint Markov boundaries can be found.

9. This is a well-formed run since Y € MB(X;) = X; ¢ MB(Y') for any j # ¢ by Observation 4.

12
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4.2. Limiting the depth of unzipping

As currently given, our algorithm may require Bayesian unzipping parameters up to the depth of the
graph. We can bound accumulated errors from this process by limiting the depth of the vertices that
need to be unzipped.

Recall that the goal of the conditioning set of each run is to d-separate each of the vertices in
the independent set. For a topological ordering on the independence set, notice that we need not
condition on the descendants of the deepest vertices in order to d-separate them from the others.
Conveniently, avoiding conditioning on these vertices descendants leaves the output of the k-MixProd
oracle in the desired form. We call these deepest vertices “bottom” vertices.

Definition 20 (Bottom vertices in a run) Given vertices I, we’ll define the set of bottom vertices
of the run to be the subset BOT(I) C I of vertices with maximal depth among the vertices in I. That
is d(B) = maxjey d([I) forall B € BOT(I).

We can now update the conditioning sets for our definition of runs:

COND* := J w™B(UI) [ PAB) 5)
IeI*\BOT(I%) BeBOT(I%)

We append two additional requirements for a good collection of runs (Definition 16).

* no vertex appears both as a bottom vertex and a non-bottom vertex, and

e every non-bottom vertex has depth at most 3 Npyp.
Note that because we only need independent sets of size Ny, it is trivial to limit the depth of our
non-bottom vertices t0 3 Npp.

5. Conclusion

We have developed the first algorithm for identifying the parameters of £-MixBND mixtures. This
algorithm allows us to access the probability distributions within each source - equivalent to the
probability distribution conditioned on a universal and unobserved confounder. With access to this
conditional distribution, the confounding of U can be adjusted for, opening up the opportunity for
causal inference despite universal confounding.

The algorithm presented here is intended as an identifiability result. Instead, we hope this
algorithm and framework can serve as a springboard for understanding how solutions to the k-
MixProd and £-MixBND problems are intimately related.

The alignment process is highly nontrivial and a likely reason why papers such as Anandkumar
et al. (2012a) made crude assumptions (such as a conveniently independent variable) to simplify
this process. The formal development of a notion of a run, while tedious, will allow for further
improvements to give better “good sets of runs.” Graph-specific sets of runs can be optimized further,
as demonstrated in Appendix C.1.
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Appendix A. £-MixBND algorithm pseudocode

Algorithm 1: Alignment
Input: A set of runs A = {ay, ..., a;} with outputs M*, @ for each a € A. In addition, we have a
spanning tree 7 = (A, E) and alignment variables AV (a;, a;) C 1 nr?,
Output: P%(I*) and P%(u) for each a € A and u € [k].
Let P (u) < 70 and Pgo (1) < M2°, for an arbitrary choice of ag
for each edge (a;, a;) along a breadth first traversal of T from ag do
Choose some Xay € AV(a;, a;).
Let g, r give the indices for the alignment variable, i.e. Xpay = X gi and Xy = X7,
Find o, the permutation on the sources that minimizes HM ;f_ — O’MZ a HOO
Assign P% (U) «+ on% and Py’ (I?) < o M%.
end

Algorithm 2: Bayesian Unzipping

Input: A collection of runs A of size at most 2¢ and their aligned output. For each V; and
assignment to its parents pa(V;) there must be some run with V; in its independent set with
parents conditioned to pa(V;).

Output: P, (Y | PA(Y))

Fix a topological ordering on the vertices in V', (X1, Xo,...,X,);fori =n,n—1,...,1do

for each assignment pa(X;) to PA(X;) do

Let a be arun in A with pa®(X;) = pa(X;). foru=1,...,k do

for b =0,1do

(A%)

if X, is a bottom vertex then
| Set Py(al | pa®(Xy))  Pi(ah).
else
~ Ba(,.b\D a(y. a(x.) p1—b
‘ SetPulwy | pa(Xi) + 75:;(zf)ﬁachﬂxopﬁéﬁ?gﬁ,(;?—E’fig;?mi(ﬁ;%(ch)ﬂ<Xi>|mpa(Xn,w‘;);
end
end
end
end

end
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Algorithm 3: The k-MixBND algorithm
Input: A good collection of runs A of size at most 20(A%)
Output: P,(Y | PA(Y)) and P(U).
Estimate P%(I%) for all runs a € A.
for each run a € A do

| Set (M?,m®) <~ LEARNPRODUCTMIXTURE(P?(I%))
end
Run Algorithm 1 to align the sources in the output of all the runs in A.
Run Algorithm 2 to unzip the parameters.
Fix any run a € A.
foru=1,...,kdo

o~ P(u|cond®)P(cond®)
Set P(u) Bo(cond®)

end

Appendix B. Finding good collections of runs

In this section we prove Theorem 17 and give a few different sufficient conditions for the existence
of a good collection of runs.

B.1. Constructing a good collection of runs from Ny, centers

One sufficient condition for the existence of a good collection of runs is the presence of Ny, variables
with disjoint Markov boundaries. We will now present a good collection of runs for this case.

Lemma 21 Given a set X = {Xl, e XN,,,p} C V of Ny, variables with depth at most 3N,,, and
disjoint Markov boundaries, Algorithm 4 finds a good collection of runs A, satisfying | A| = O(27n)
where v = maxycy |MB(V)

ye

Claim 22 By construction, Ac covers X and is alignable.

Claim 23 Ay covers V' \ X and each run in Ay can be aligned with some run in Ac.

Proof The fact that Ay covers V' \ X follows immediately from Ay containing a run assigning
for independent variable Y € V' \ X each possible assignment pa(Y’). Fix any run a € Ay with
I" = X - X;+Y or I = X + Y depending on whether Y overlaps with MB(X'). Now if
MB(Y) NMB(X;) = 0 for any j # i, a and a are aligned at X;. If instead MB(Y) N MB(X) #

() for all j # i, pick any j and consider the central run agmb®(X;)] € Ac. Clearly, a and
ag[mb®(X;)] are aligned at X ;. In either case, we’ve aligned a to a run in Ac¢. [ |

Claim 24 Every run a € A is at least N,y,-independent.

Proof [Proof of Lemma 21] This follows immediately from Claims 22, 23, and 24 |
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Algorithm 4: Building a good collection of runs
Input: Vertices X = {X1,..., X3;_3} € V having disjoint Markov boundaries with maximum
depth 3Npp.
Output: A good collection of runs A.
Let ag be a run with I = {X1, ..., X3;_3} and COND? chosen arbitrarily.
Set A {ao}.
fori=1,...,3k—3do
A AU {aglmb(X,)] : mb(X;) € {0,1} X)L for Y € V' \ X do
if Y € MB(X) for some X € X then
I e XU\ (X}
end
else
| I°« X U{Y}
end
for pa(Y) € {0, 1}IPA0)I do
ifY € AN(I® —Y) then
| COND® « MB(I*)
end
else
| COND“ +~ MB(I*\ {Y})UPA(Y)
end
COND* + MB(I?)
F4(PA(Y)) < pa(Y)
Defaults +— COND N COND* \ PA(Y')
f*(Defaults) « f(Defaults)
f*(COND*\ COND? \ PA(Y")) are chosen arbitrarily.
A+ AU {a}, where a is given by a = (I, f%).

end

end
end
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B.2. Degree bounds

We can ensure that Ny, centers can be found on certain degree-bounded graphs, which in turn bound
~. Let Aj, upper bound on the in-degree of any vertex in G and let Ay upper bound the out-degree.
Then

v < Ain + Aout + Aout(Ain - 1) = Ain + AoutAin-

If we have a bound A on the degree of the undirected skeleton of G, we get that

Y<AA—1)=A2 - A,

Corollary 25 If either of the following conditions hold, we can find Ny, centers for G with depth at

most 3N,,p:
1. 0> Nup(AZ + 205 Aiy + A2, 02 — Njy — Apr + 1) = Ny - O(AZ,A2).
2. 1> Nyp(AT —2A3 + A+ 1) = N, - O(AD).
Proof [Proof of Lemma 17] This follows immediately from Corollary 25 and Lemma 21. |

Appendix C. Analyzing Bayesian Unzipping

In this section, we will analyze the numerical stability of the Bayesian unzipping process.

Lemma 26 Let a be a run with Y € I°. Then we can compute P, (y° | pa®(Y)) for b € {0,1} as
follows:

1. If Y € BOT(I%), then
Pu(y’ | pa®(Y)) = PL(y").

2. IfY ¢ BOT(I1), then

_ Pa(y")Pulch®(y) | top“(y),y' ")
Pa(y*)Pu(ch®(y) | top®(y), y1 =) + P2y ~°)Pulch(y) | tOP“(y),y(%))

Pu(y’ | pa’(y))

Proof In the following we’ll fix ch® := ch?(Y’), mb® := mb*(Y), pa® := pa®(Y’), and top® =
top?(Y). If Y € BOT(I), then P%(y*) = Pu(y° | pa®(Y)), so the claim is trivially true. If
Y ¢ BOT(I%), then

b a b a
PG,(yb) — Pa(yb ‘ mba) — Pu(y ’mb ) — Pu(yv)mb )
“ “ u(mba) Zb'ZO,l Pu (yb/, mba)

and we can expand P, (y’, mb?) as

Pu(yb,mb“) = Pu(yb | pa®)P,(ch® | topa,yb)Pu(top“).
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Substituting this back into the preceding equation, we obtain
b Puly” | pa®)Pu(ch® | top®, )P, (top?)
Y weiony Puly? | pac(Y))Pu(ch? | top®,y¥ )Py (top®)
_ Pu(y” | pa®)P(ch? | top®, y°)
Ypeqoy Pu(y? | pa®)Py(ch® | top® y?)

We now multiply both sides by the denominator (which is non-zero since all terms are strictly
positive by assumption) and then simplify to obtain

Puly

Puly | pa) (Ply'"YP(ch | top?, ") ) +Pu(y” | pa?) (—Pi(y'")Pu(ch® | top?,y' ")) =0.
When augmented with the equation
Puly’ | pa”) + Puly' ™" [ pa®) =1
we have a system of two equations in P, (y” | pa®), P, (y'~° | pa®) which is non-singular whenever
(Pay'")P(ch® | top®,5")) # (—Pi(y'")Pulch® | top®, 5" "))

Since all probabilities occurring are strictly positive, this will always be the case and we can solve
the system for P, (y” | pa®). The resulting equation is

( | a) Pg(yb>P(Cha’topaayl_b)
YIPE) = pa(yF)P(ch? | top®, y'-b) + P2(y1-5)P(ch? | top?, yb)’

proving the claim. |

The following standard inequalities will be useful throughout the analysis:

Observation 27
1 1—
1j§g1+3x and 1—3$§1+§ forz € (0,1/4);
1-2re<(1—xz)" and (I+2)" <1+42rx forxz e (0,1),r > 1,re <1
Lemma 28 Given access to {753(1’)} Al for a good collection of runs A from a distribution
acA,je

P satisfying ’ﬁg(yb) —Pﬂ(yb)‘ JPUY?) < eforallY € V, b € {0,1}, u € [K] for ¢ suffi-
ciently small (and the estimated probabilities used as input to k-MixProd oracles), the procedure in
Algorithm 2 will output P, (y° | PA(Y)) and P(u) for all Y € V, b € {0,1} ,u € [k] satisfying

Pu(y” | pa(Y)) = Puly’ | pa(Y))
Pu(y’ | pa(Y'))

where { is the distance from Y to the nearest bottom vertex if Y doesn’t appear as a bottom vertex
and is 0 if'Y is a bottom vertex.

< (6(A+ 1))
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Proof We fix a topological ordering on V, let’s say X, Xo,..., X,,. Now startNing with the last
vertex in topological order, X,,, and proceeding in decreasing order, we’ll compute P, (X; | PA(X;)).
For bottom vertices, we set P, (z? | pa(X;)) = Po (g %) for some run a with pa(X;) = pa®(X;). It
immediately follows that P, (X; | PA(X;)) satisfies the desired relative error bound. Inductively,
assume we’ve already com@ted Pu(Vin | PA(V;,)) for all m > i satisfying the stated bounds, and
that we also have access to P2 (V;) = Py (V; | COND?) for a subset of the runs a € A that cover V;.
To streamline notation, let Y := V;. Now fixaruna € Awith Y € I°.

Now we can bound each term above and below using the inductive hypothesis to get the desired
result. In particular, we know that

(1-9)Pi(y") < Pa(y’) < (1 +2)Pi(y")
forb € {0,1} and
(1=(6(A+1)) o) Pu(0” | pa®(v?)) < Pu(v” | pa®(v?)) < (14(6(A+1))"'e)Pu(v” | pa®(v”))

forall V€ CH(Y') and b € {0, 1} which implies that both the numerator and denominator of (6) are
within a factor of (1 +¢)(1 + (6(A + 1))~ 1&)2 of the correct value for those terms. It immediately
follows that P, (3° | pa®(Y)) is bounded by

e/l N\
P o)1 (15 a e ) < Pule? (1)

14+e \1+ (6(A+1))°
c 2716
<P o) (TR T )

We now use the inequalities from Observation 27 to simplify the bounds as follows:

1+5< + (6 A+1))€ 15>A

Puly’ | pa®(Y)) < Pu(y® | pa(Y))

(
1 —(6(A+1))

< Puly” | pa(Y)) (1 +3)(1 + 3(6(A + 1)) 'e)®

< Puly” | pa(Y))(1+3(6(A + 1)) 1e)>H!

< Pu(y’ [ pa®(Y))(1+2-3(A+1)(6(A + 1)) e)

< Puly” [ pa(Y))(1 + (6(A +1))‘e).
The lower bound is analogous. |
Lemma 29 Given access to {75“(3/)} for a good collection of runs A from a distribution

N acA,jelk]

P satisfying |P2(y°) — ’/73“ ) <eforallY € I% b€ {0,1}, u € [k] for € sufficiently

small, the procedure in Algorlthm 2 will output Py(y* | PA(Y)) and P(u) forall Y € V, b €
{0,1},u € [k] satisfying

Puly® | pa(Y)) — Pu(y® | pa(Y))
Pu(y? | pa(Y))
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and B
[P(w) - P(w)|
P(u?)
Since Py (y° | pa(Y)), P(u!) < 1, we also have that

Pu(y’ | pa(Y)) = Puly’ IPa(Y))‘ < (6(A+1))%e and |P(u)) - P(u))| < 5A%.

< 5A%e.

Proof The error bound on P, (y? | pa(Y)) follows from Lemma 28 above and the depth bound of
9k on non-bottom vertices.
For the error bound on P(u/) we write

Plul) = ﬁ(ujlcond“)ﬁ(§ond“)
P(cond” | u?)
and analyze each term separately. First, define Z := AN(COND®) \ COND“ to be all ancestors of

vertices conditioned upon in a minus COND*. Fix a topological order on the vertices in Z U COND?,
(X1,...,X.m). We can write

P(cond® | u’) Z HP i) | 2(X1,...,Xi_1),cond?)

zE{O,l}Z i=1

> [I PG| 2(PAX)),pa’(Xy))

26{0’1}Z X;€ZUCOND*

= > | I] P(xX0) | 2(PA(X)), pa®( X))

ze{0,1}? \X:€Z

[I PGE)|=(PAX)), pa’ (X))

X;€COND*

Now let C, denote the value in the first grouped product for a given z € {0,1}Z. Since Yo (0.1}7 C, =
1, we can bound the error in the result by the error in the second grouped product:

(1 — )ICONDUID(cond? | u?) < P(cond® | v/) < (1 4 ¢)/CONPIP(cond® | /).
Finally using the bound [COND?| < 2A? and the inequalities from Observation 27 we obtain
(1 —2A%)P(cond® | v/) < P(cond® | v/) < (1 + 2A%)P(cond® | u?).

By assumption P(u | cond®) € (1+¢)P(u? | cond®); P(cond?) is also known up to multiplicative
accuracy ¢ since the sampling needed to estimate the distributions that are input to k-MixProd oracles
far exceed that needed to get an € estimate of this quantity. Thus, the resulting bound on P (u/) is

(1 —2A%)(1 — 3e)P(u!) < P(econd® | w/) < (14 2A%)(1 + 3¢)P(cond® | u!)
which can be simplified to
(1 —2A% —3¢)P(u!) < P(econd® | w’) < (1 4 2A% + 3¢)P(cond® | v/)
using (1 —z)(1 —y) > (1 — 2 —y) forz,y € [0,1) and 2A%¢ + 3¢ < 5A%e for A > 1. [
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C.1. Mixtures of paths

Special cases do not require the condition of Ny, disjoint Markov boundaries. One of these special
cases is a mixture of paths v; — vo — vg — - - - v, over k. We will will give a good set of runs for
n > 2Npp.

First, we will specify three default runs, which we will call ODD, EVEN, and LINK.

Definition 30 (ODD default run for Markov chains) Run ODD is specified by an independence
set of vertices with odd indices J9PD — {V1,W3,V5,...,Van,,—1}. The conditioning set is given
by the evenly indexed vertices CONDOPP = Vo, Vi, Vi, ..., Van,,—2}- PP may be chosen
arbitrarily, but for simplicity we will give fOPP(V;) = 0 for all V; € CONDOPP.

Definition 31 (EVEN default run for Markov chains) Run EVEN is defined the same way for

evenly indexed vertices. That is, [FVEN = Vo, Vi, Vg, ..., Van,, 1 CONDEVEN — {1, V3, V5,...,Van,,—1},
and fEVEN(v;) = 0 for all V; € CONDEVEN,

Definition 32 (LINK default run for Markov chains) Run LINK is part evenly indexed vertices

and part oddly indexed vertices. T-NK = TEVEN U {vi1\ {V). Similarly, we condition on the
complement CONDYNK = (v, Vs Vs, ... Van,,—1} being 0.

Claim 33 Ifn > 2N,,,, then ODD, EVEN, and LINK are well-formed runs.

Claim 34 ODD and LINK are aligned at V1. EVEN and LINK are aligned at evenly indexed
vertices beyond V5.

Now, we enumerate a set of runs that cover all possible entries to parents of vertices.
Definition 35 Let ODDJv;] denote a run on I1°PPVil = 190 coNDOPPVil — CONDOPP with
fODD[m(T/j) = 1ifi = jand0ifi # j. Similarly define EVEN[V;] to be a run on TEVENV:] —
IEVEN cONDEVENY — CONDEVEN with fEVENVIl (v,) = 1 ifi = j and 0 if i # j.

Claim 36 Any run ODD[V;] is aligned with ODD at V; for j < i — 1 or j > i + 1. Similarly, any
run EVEN[V}] is aligned with EVEN at V for j <i—1orj > i+ 1.

Definition 37 Let TA/Lb[V;] fori > 2N,,, give runs which have

ITAIL[Vi] = {‘/M ‘/37 ‘/:5; ceey ‘/QN,n,,—la V;,}
COND™!Vil = (V5 Vi, ..., Van,,—2, Vi1 }
with
STV () — 0 fi—1#j
boifi-1=j

Claim 38 Any run LINK]V;] is aligned with ODD at V; for j < 2N,,, with even j.
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Claim 39 The set
{ODD[VZ-] L € IODD}U{EVEN[Vj] LV € IEVEN}U{TA/LO[V]»}, TAIL'[V;] : j > 6k — 6}
covers V.

Proof For all V; with i > 6k — 6 we have LINK’[V;] and LINK'[V;] to cover both possible
assignments to V;_.

Consider V; with i < 2Np,. If i > 11is odd, then fEVENViIl(V,_;) = 0 and fEVEN(V,_1) = 1,50
all possible assignments to the parent of V; are covered. Similarly, if 7 is even, then fOPPIV:] (Vic) =
0and f ODD(Vi,l) =1, so all possible assignments to the parent of V; are covered. Finally, if i = 1,
then V; has no parents. |

We give the following example to illustrate this construction. Consider £ = 2 and n = 8. We
will express a run a as sequences of values 0, 1 or x. A « in the ith location indicates V; € I and a
0 or 1 indicates f*(V;) = 0 or f*(V;) = 1, respectively. Finally, — indicates that the variable is not
conditioned on and not in the independent set (not in COND and not in I). The default runs are:

EVEN = 0x0x0%——

ODD = «x0x0%+——
LINK = »00%0+——
In addition to these runs, we have:

ODD[V}] = 1%0%0%——
ODD[V},] =0x1x0%——
ODDI[V5] = 0%0%1%——
EVEN[V,] = x1%0%——-
EVEN[V4] = 0% 1%——-
EVEN[V5] = 0 0%———
TAIL[V7] = «0%0-0%-
TAILY V7] = «0%0-1 %~
TAIL’[Vg] = x0%0——0x
TA|L1[V8] = %x0%x0——1x

The construction of a good set of runs given does not use disjoint Markov boundaries, yielding
greater efficiency than our more general algorithm for degree bounded graphs.

While similar in name and structure, this setting is different from that of hidden Markov models.
Hidden Markov models are Bayesian networks consisting of a chain of unobserved variables, each
affecting a unique observed variable, with no causal relations among the observed variables. For
instance, in Gupta et al. (2016), all chains in the mixture have the same state space. The sampling

26



CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

process selects a chain and a starting state from the mixture distribution, then generates a short
observable path through the chain. In their model, under some conditions, a sufficiently large
collection of paths of length 3 suffices to recover the parameters of the mixture, using spectral
methods. A different model is considered in Batu et al. (2004). There, the constituents of the mixture
have disjoint state spaces and the observation is a long sequence of interleaved paths in the separate
chains. The primary challenge is to cluster the observable states into the k constituents. This model
can be viewed as a special case of the hidden Markov model problem.

The natural extension of EVEN and ODD vertices is a two-coloring on a tree which denotes
sets that are of even or odd distance from the root. One can construct a good set of runs for learning
mixtures of trees of size n > 2Ny, that is very similar to the one given for mixtures of paths.

C.2. Larger alphabets for mixtures of DAGs

The simplest reduction for larger alphabets is to replace each vertex with a clique of d binary vertices
which represent the value of the nonbinary vertex. The pseudocode for this process is given in
Algorithm 5.

Algorithm 5: Reduction for larger alphabets
Input: A DAG (V,€) on n variables V1, ..., V,, € [d].
Output: A DAG (W, &) on dn binary variables Wi, ... W ... W} ... W e {0,1}.
Start with &y < 0 for each vertex i € [n] do

Form a clique among W}, ... W¢ by adding directed edges (W, W) to Ey for all pairs a < b
with a,b € [d].

end
for each directed edge (V;, V;) € £ do

| Add W], W x {W] ... Wi to &
end

Observation 40 The maximum degree of (W, Eyw ) outputted by Algorithm 5 is now at least A > d.
Observation 41 The number of vertices |W| = nd.

We now give the function that translates data from the original graph to the new graph.

Definition 42 (One-hot encoding) We define x(v) = (1o(v),...,14-1(v)) to give the one-hot
encoding of the value of a variable V.

This allows us to give the full algorithm.

Theorem 43 If P(V') = >, Pu(V)P(u) is a mixture of k distributions over a DAG G = (V , E)
with V € {0, ...,d — 1} and there exists a set of N, centers, then there is an algorithm to compute
estimates of all parameters to accuracy . If D = max(d, A) then the algorithm uses O(nd2P”)
calls to the k-MixProd oracle.

Proof The algorithm uses the reduction in Algorithm 6. This involves running the algorithm on a
larger graph with nd vertices and A > d, which modifies the run-time and sample complexity as
given. |
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Algorithm 6: DAG reduction for larger alphabets
Input: A DAG (V,€) on n variables Vi,...,V,, € [d]. And data with entries of the form
(v1,v2,...,0n).
Output: Parameters P, (v; | PA(V;)) fori € [n].
Use Algorithm 5 to create a larger DAG on binary variables, called G'.
One-hot encode data on each V; into binary variables £(V) = (W1, ..., W¥).
Run the Mixture of DAGs algorithm for G’ on the one-hot encoded data.
for each parameter P, (v; | PA(V;)) do
Let Z indicate zero assignments to Wib for b # v;.
One-hot encode each parent V; € PA(V;) to obtain assignments to PA(W;") \ {w® : b # v;},
denoted pa®H(1W").
Assign Py, (v; | PA(V;)) = Pu (W = 1| Z, pa®H(W ).
end
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