
Proceedings of Machine Learning Research vol 213:1–27, 2023 2nd Conference on Causal Learning and Reasoning

Causal Inference Despite Limited Global Confounding via Mixture
Models

Spencer Gordon SLGORDON@CALTECH.EDU
California Institute of Technology

Bijan Mazaheri BMAZAHER@CALTECH.EDU
California Institute of Technology

Yuval Rabani YRABANI@CS.HUJI.AC.IL
Hebrew University in Jerusalem

Leonard Schulman SCHULMAN@CALTECH.EDU

California Institute of Technology

Editors: Mihaela van der Schaar, Dominik Janzing and Cheng Zhang

Abstract
A Bayesian Network is a directed acyclic graph (DAG) on a set of n random variables (the vertices);
a Bayesian Network Distribution (BND) is a probability distribution on the random variables that is
Markovian on the graph. A finite k-mixture of such models is graphically represented by a larger
graph which has an additional “hidden” (or “latent”) random variable U , ranging in {1, . . . , k},
and a directed edge from U to every other vertex. Models of this type are fundamental to causal
inference, where U models an unobserved confounding effect of multiple populations, obscuring
the causal relationships in the observable DAG. By solving the mixture problem and recovering
the joint probability distribution with U , traditionally unidentifiable causal relationships become
identifiable. Using a reduction to the more well-studied “product” case on empty graphs, we give
the first algorithm to learn mixtures of non-empty DAGs.
Keywords: mixture models, Bayesian networks, causal DAGs, hidden confounder, population
confounder, clobal confounding, causal identifiability

1. Introduction

The distinction between causation and correlation is paramount to the development of scientific
knowledge. While learning spurious correlations is sufficient for predicting outcomes, causal
inference seeks the effect of intervening on a system. This fortification is an essential step towards
using data to recommend courses of action, whether they are medical treatments or a changes in
economic policy.

Interventional effects are often explored in experimental settings via “Randomized Controlled
Trials” (RCTs), which decouple intervened variables from potential confounding. Unfortunately,
experiments are impossible or prohibitively expensive in a wide range of complex natural and artificial
systems. In such settings researchers often have to resort to collecting samples of an assortment
of measurements from a joint distribution governed by causal relations. Such relations define a
structural causal model (SCM), described by a Bayesian network (Pearl, 1985).

The assumption of causal sufficiency describes the often unrealistic case in which all relevant
variables in the causal system are observed. Under causal sufficiency, the consequences of all
interventions on the system are identifiable by adjusting for the confounders described by the SCM. If

© 2023 S. Gordon, B. Mazaheri, Y. Rabani & L. Schulman.

GORDON MAZAHERI RABANI SCHULMAN

causal sufficiency is relaxed, unobserved confounders cannot be adjusted for using observed statistics,
limiting the identifiability of some interventional distributions. The graphical conditions under which
causal relationships are identifiable are well studied (Shpitser and Pearl, 2006; Huang and Valtorta,
2008; Pearl, 2009; Spirtes et al., 2000a; Peters et al., 2017; Koller and Friedman, 2009). There has
been little exploration into the identifiability of causal relationships using numerical conditions.

This paper will address a setting in which an unobserved multiplicity of populations that con-
founds an entire system - often called a mixture model. The setting emerges when combining data
from many setting or laboratories, whose environments may exert a confounding influence. Adjusting
for the observed confounder in such settings would involve considering each data source separately.
To make full use of the merged dataset, we may want to instead assume that some simpler unobserved
U (taking on fewer states than the number of datasets) is sufficient to control for the confounding
induced by the merging. Examples of such a U could include private attributes like health status or
artificially constructed classes such as individual price sensitivity.

Such a setting satisfies neither observability of the “backdoor adjustment set” nor the sparsity
requirements on the connection of U for the “frontdoor criterion” (Pearl, 2009). As a result, the causal
relationships within the SCM are considered unidentifiable in the traditional framework. This worst
case analysis ignores the fact that limited cardinality of U would also limit U ’s ability to completely
hide the causal dynamics. We will show that mild additional assumptions in conjunction with a
known DAG structure allow identification of the joint probability distribution with the previously
unobservable U , a sufficient condition for applying the backdoor adjustment.

1.1. Problem Statement

A Bayesian network is a directed acyclic graph G = (V ,E), on a set of |V | = n random variables.
A corresponding Bayesian network distribution (BND) is a probability distribution on the random
variables that is Markovian on the graph. That is to say, the joint distribution on the variables can
be factored as

∏n
i=1 P[Vi = vi | pa(Vi)] where pa(Vi) is the assignment to the parents of Vi. A

k-MixBND on G is a convex combination, or “mixture”, of k BNDs. We represent this situation
graphically by a single unobservable random variable U with edges to each of the variable V ∈ G.
Here, U is referred to as a “source” variable with range 1, . . . , k and the variables in G are referred to
as the “observables.” The main complexity parameter of the problem is k, representing the number
of mixture constituents or “sources.”

The extremely special case where G is empty has been of longstanding interest in the theory
literature. Such a distribution is a mixture of k product distributions or k-MixProd. See Fig. 1.

(a)
V1 V2 V3 V4

U

(b)
V1 V2 V3 V4

U

Figure 1: (a) A small Bayesian Network, with latent variableU . (b) In the empty graph, a k-MixBND
is a k-MixProd (mixture of product distributions).

In this paper we study the identification problem for k-MixBNDs. Specifically, given the graph
G, and given a joint distribution P on the variables (vertices), recover up to small statistical error
(a) the mixture weights (probability of each source), up to a permutation of the constituents, and

2

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

(b) for every mixture source and for every vertex V , its conditional distribution given each possible
setting to the parents of V . This task identifies the joint probability distribution P(U,V) up to the k!
permutations in the label U . Identification will be shown by giving an algorithm that reduces the
k-MixBND problem into a series of calls to a k-MixProd oracle. k-MixBND models are not always
identifiable, as further discussed in Assumptions below. Thus, another contribution of our paper is to
establish a sufficient setting to guarantee identifiability.

Assumptions The following assumptions are used throughout this paper.
1. We have access to a k-MixProd oracle requiring O(k) variables that are independent within

each source. As different algorithms have different requirements for the number of independent
variables, we will keep our results agnostic to these requirements. The most efficient published
algorithm is given in Gordon et al. (2021), which requires Nmp = 3k − 3 variables and time
complexity exp(k2). Recent unpublished work improves the complexity bound to exp(k log k).

2. The observable variables in our BND are binary and discrete. While a number of papers have
focused on continuous or large-alphabet settings, we restrict our focus to the simplest setting of
binary, discrete variables. Appendix C.2 gives a reduction from alphabets of any size d to the
binary case, incurring a mild cost in complexity.

3. The mixture is supported on ≤ k sources. If the hidden variable U has unrestricted range
(Specifically, range k = 2n would be enough), the model is rich enough to describe any probability
distribution on V , making identification impossible. The question is therefore one of trading k
against the sample and computational complexity of an algorithm (and the degree of the network).

4. The underlying Bayesian DAG is sufficiently sparse. In order to reduce k-MixBND to k-MixProd
we need sufficiently many variables that can be separated from each other by conditioning on
disjoint Markov boundaries (example in Fig. 2, definition in Sec. 1.4). As a result, the complexity
of the algorithm is exponential in the size of a Markov boundary. Both for complexity and in order
to keep n small, a bound on the maximum degree ∆ is required. We require n ≥ (∆ + 1)4Nmp.1

5. The resulting product mixtures are non-degenerate. Even in mixtures of graphs with sparse
structure (in particular the empty graph—the k-MixProd problem), the k-MixBND can be uniden-
tifiable if the mixture components are insufficiently distinct. (E.g., trivially, a mixture of identical
sources generates the same statistics as a single source.) Past work has used conditions such as
ζ-separation Gordon et al. (2021) to ensure that matrices representing the parameters for each
source are well-conditioned. These are not always necessary conditions; characterizing necessary
conditions is a difficult question tackled in part in Gordon and Schulman (2022).

6. The DAG structure representing conditional independence properties within each source, or a
common supergraph of these structures, is known. It is often the case that domain knowledge
provides an understanding of the causal DAG. If the causal DAG is unknown, we are faced with
a different problem commonly known as “Causal Discovery”(see Glymour et al. (2019a) for a
recent survey.) A method for causal discovery in the presence of a universal confounder has been
suggested in Anandkumar et al. (2012a) by substituting independence tests with rank tests. In
our motivating example of dataset merging, it is likely that the structure can be learned from an
individual dataset. Like in Anandkumar et al. (2012a), the presented algorithm will actually only
require a supergraph of the true structure. Hence, some uncertainty in knowledge of the graph can

1. If the skeleton of G happens to be a path, then we only need a milder condition that n ≥ 2Nmp. For details see
Appendix C.1.

3

GORDON MAZAHERI RABANI SCHULMAN

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11 V12

V13

U

U | COND

V1 | V2, V3 V6 | V4, V8 V9 | V7, V10, V11 V13 | V12

COND :=

{
V2 , V3 , V4 , V7 ,

V8 , V10 , V11 , V12

}
I :=

{
V1 , V6 , V9 , V13

}”Conditioning set” ”Independent set”

Figure 2: The reduction process of conditioning on COND to create an instance of k-MixProd.
A Bayesian network with four vertices V1, V6, V9, V13 and their corresponding disjoint
Markov boundaries are indicated.

be tolerated. In fact, the algorithm also works even if the different components of the k-MixBND
use slightly different causal graphs.

1.2. Summary of contributions

Theorem 1 Our algorithm identifies a k-MixBND distribution with on a graph of maximum degree
∆ and of size n ≥ Ω(NMP∆4), using O(n2∆2

) calls to an oracle for the k-MixProd problem. For
an exact statement see Theorem 17.

The algorithm will be built on the insight that conditioning on a set of Markov boundaries COND ⊂
V of I ⊂ V induces within-source independence (that is, Vi ⊥⊥ Vj | U,COND for all Vi, Vj ∈ I).
This describes an instance of k-MixProd for which we can identify the joint probability distribution
P(I, U | COND). See Figure 2 for an illustration.

Recovering P(I, U | COND) for some I ⊂ V is insufficient to recover the full joint probability
distribution P(V , U). Hence, we execute a set ofO(n2∆2

) “runs” of a k-MixProd oracle on differing
I,COND and assignments to their Markov boundaries and synthesize information gained from these
runes into the joint probability distribution.

The first challenge is to handle symmetries in permutation of the output labels of U by “aligning”
the outcomes of these runs. The second challenge is to remove the conditioning of C from each run.
We do this by synthesizing the results of many runs with a procedure we call “Bayesian unzipping.”
Our key contributions can be summarized by these “alignment” and “unzipping” procedures, as
well as the notion of a “good collection of runs” that allows for the successful application of these
sub-processes

4

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

Organization The rest of the paper is organized as follows. In Section 1.3 we outline the literature
background of the problem. In Section 1.4 we give some Bayesian network notation. In Section 2
we formally develop the notion of a “run,” which calls a k-MixProd oracle. In Section 3 we explain
how the output of the “runs” is combined to get the desired mixture parameters. This section details
the processes of alignment and Bayesian unzipping. Section 4 explains what is necessary in a group
of runs in order for the algorithm to succeed, which provides a framework for defining algorithms in
terms of sets of runs.

In Appendix A we define the k-MixBND algorithm in pseudo-code. In Appendix C we analyze
the k-MixBND algorithm. In Appendix B we prove the existence of a good collection of runs. In
Appendix C.2 we generalize our algorithms to handle non-binary observations.

1.3. Background

There are two problems within mixture models: (1) Learning the model, namely, producing any
model consistent with (or close to) the observations; (2) Identifying the model, namely, producing
the true model (or one close to it) up to permutations in the source label. The feasibility of the
identification problem hinges on a one-to-one mapping between the observed statistics and the
model’s parameters. When using the resulting model to deconfound causal relationships, it is
imperative that that the joint probability distribution with the confounder be identified.

The idea of using mixture models to identify parameters in latent variables dates back to E. S. All-
man (2009), who use algebraic methods from Kruskal (1976, 1977) to exploit within-source inde-
pendence. Anandkumar et al. (2012b) follows a similar strategy using tensor decomposition. Both
of these works rely on within-source independence between three variables with support on large
alphabets (i.e. large cardinality) to achieve generic2 identifiablility. Specifically, the alphabet size
of the independent variables must scale linearly with k. Such a requirement can be achieved by
combining variables of smaller variables, i.e. two binary variables can be combined to make up an
alphabet size of 4. E. S. Allman (2009) showed that identifiability holds generically for smaller
alphabets with O(log(k)) independent variables via these combinations.

A different line of work in the theory community seeks full identifiability, requiring O(k)
independent variables in conjunction with separation conditions to ensure that the visible variables
behave differently in different mixture components 3. This problem, referred to as k-MixProd, and
has been studied for nearly 30 years (Kearns et al., 1994; Cryan et al., 2001; Freund and Mansour,
1999; Feldman et al., 2008; Chaudhuri and Rao, 2008; Tahmasebi et al., 2018; Chen and Moitra,
2019; Gordon et al., 2021).4 In Feldman et al. (2008) a seminal algorithm for k-MixProd was
given with running time nO(k3) for mixtures on n binary variables (n sufficiently large). This
was improved in Chen and Moitra (2019) to kO(k3)nO(k2). The most recent algorithm, Gordon
et al. (2021) identifies a mixture of k product distributions on at least 3k − 3 variables in time
2O(k2)nO(k), under a mild “separation” condition that excludes unidentifiable instances. Under
somewhat stricter separation, the time complexity improves to 2O(k2)n. One can choose between the
generic identifiability and full identifiability approaches when reducing Bayesian network mixtures
to mixtures of products. The same complexity bottlenecks appear in both strategies, but the number
of independent variables that must be instantiated differs.

2. Here, “generic” identifiability means that the set of unidentifiable models makes up a Lebesgue measure 0 subset in
the parameter space.

3. Separation conditions can be thought of as a form of faithfulness of edges from U to V
4. We do not even try to list the extensive analogous literature for parametrized distributions over R.

5

GORDON MAZAHERI RABANI SCHULMAN

To our knowledge, the only other attempt at detailing a multiple-run reduction to k-MixProd
is Anandkumar et al. (2012a), which gives an algorithm for mixtures of Markov random fields–
i.e., undirected graphical models. As both papers make use of boundary conditioning to induce
independence and a form of “alignment,” our paper can be thought of as both an improvement and an
extension to the directed graph case. While Anandkumar et al. (2012a) require a single variable that is
independent from the rest of the structure for allignment, our algorithm develops the notion of “good
collections of runs” to eliminate this restriction – a contribution which may have implications in the
Markov random field setting as well. Additional complications arise for directed graphs because the
outputs of the k-MixProd subroutine are conditioned on their Markov boundaries while the desired
parameters are only conditioned on their parents. Finally, we note that Anandkumar et al. (2012a)
only guarantees identification of second order marginal probabilities, which is insufficient for causal
identification. 5

Other related work Kivva et al. (2021) contains as a special case a reduction to the k-MixProd
problem. Their goal is to learn a causal graphical model with latent variables, but with a very different
structure on the visible and latent variables. They allow for a DAG of latent variables with visible
children (which is learned as part of their algorithm); on the other hand, they require that there be
no causal relations between visible variables. In our work, the structure on the latent variables is
trivial (since there is a single latent variable), but the structure on the visible variables is arbitrary.
Characterizing identifiability in the generalization of both these settings in which we allow structure
on both the visible and latent portion of the graph is a nice problem beyond the scope of this paper.

Another paper with kindred motivation to ours is Kumar and Sinha (2021), which studies
inference of a certain kind of MixBND, in which the structure of the Bayesian network is known,
but the data collected is a mixture over some m unknown interventional distributions. The authors
give sufficient conditions for identifiability of the network and of the intervention distributions. At
a technical level, the papers are not closely related. k is not a parameter in their work, and instead
what is essential is an “exclusion” assumption which says that each variable has some value to which
it is not assigned by any of the interventions.

Some other loosely related work includes learning hidden Markov models (Hsu et al., 2012;
Anandkumar et al., 2012b; Sharan et al., 2017), an incomparable line of work to our question, but
with somewhat similar motivation. In the same vein, some papers study learning mixtures of Markov
chains from observations of random paths through the state space Batu et al. (2004); Gupta et al.
(2016). These models, too, differ substantially from the models addressed in this paper, and pose
very different challenges. Literature on causal structure learning (Spirtes et al., 2000b; Glymour
et al., 2019b) answers the question of identifying the presence of hidden confounders. Fast Causal
Inference (FCI) harnesses observed conditional independence to learn causal structure, which can
detect the presence of unobserved variables when the known variables are insufficient to explain the
observed behavior. This literature includes the MDAG problem in which the DAG structure may
depend upon the hidden variable; see Thiesson et al. (1998) for heuristic approaches to this problem.
Other related works study causal inference in the presence of visible “proxy” variables which are
influenced by a latent confounder (Miao et al., 2018; Kuroki and Pearl, 2014; Mazaheri et al., 2023).
This has more recently given rise to attempts at deconfounding using multiple causes (Heckerman,

5. We also mention that Anandkumar et al. (2010) and Anandkumar et al. (2012a) introduce the idea of a sparse local
separator; if this can be adapted to the directed-graph case one might be able to somewhat relax assumption 4. We do
not attempt this in this paper.

6

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

2018; Ranganath and Perotte, 2018; Wang and Blei, 2019). The initial assumptions of Wang and
Blei (2019) were shown to be insufficient for deconfounding in Ogburn et al. (2019). This illustrates
the necessity of identifying of the joint probability distribution with the confounder. 6

Finite mixture models have been the focus of intense research for well over a century, since
pioneering work in the late 1800s (Newcomb, 1886; Pearson, 1894), and doing justice to the vast
literature that emanated from this endeavor is impossible within the scope of this paper. See, e.g., the
surveys Everitt and Hand (1981); Titterington et al. (1985); Lindsay (1995); McLachlan et al. (2019).

1.4. Notation

A Bayesian network consists of a directed acyclic graph (DAG) G = (V ,E) and a probability
distribution P over V = {V1, . . . , Vn} factoring according to G, i.e.,

P(V1, V2, . . . , Vn) =
n∏
i=1

P(Vi | PA(Vi)),

where PA(V) is the set of parents of V ∈ V . (Similarly, let CH(V) denote the children of V .)
Equivalently, P must satisfy that for any V ∈ V , V is independent of its non-descendants, given its
parents.

Generally, we will use bold letters to denote sets of variables. For a matrix M , we will use Mij

to identify entries. We use Mi,− to denote the vector (Mi,1,Mi,2, . . .Mi,k).
Conditioning on the “Markov boundary” of a vertex MB(V) makes V conditionally independent

from everything else in the graph (Pearl, 2014).

Definition 2 (Markov Boundary) For a vertex Y in a DAG G = (V ,E), the Markov boundary
of Y , denoted MB(Y), is defined by

MB(Y) := PA(Y) ∪ CH(Y) ∪ PA(CH(Y)) \ {Y }.

Lemma 3 (See Pearl (2014)) For any vertex V ∈ V and subset S ⊆ V \ (MB(V) ∪ {V }),
P(V | MB(V), S) = P(V | MB(V)).

Observation 4 For any X,Y ∈ V , X ∈ MB(Y) ⇐⇒ Y ∈ MB(X)

Uppercase/lowercase conventions Following notation in causal inference literature, we will use
lowercase letters to denote assignments. For example P(v | u) = P(V = v | U = u). Following
this convention, we will write pa(V), ch(V), and mb(X) to denote assignment to the parents PA(V),
children CH(V), and Markov boundary MB(V).

Within-source probabilities It will be easier to write Pu(v) = P(v | u) to give the probability
distribution within a source.

Finally, here are a few more definitions that will make the upcoming sections simpler.

Definition 5 (Top) We will use TOP(V) to denote MB(V) \ CH(V).

Definition 6 (Depth of a vertex) Given a DAG G = (V ,E) and any vertex V ∈ V , let dG(V) be
the depth of V in G, i.e. the length of the shortest path from a degree-0 vertex in G. When G is clear
from context, we’ll omit the subscript.

6. Thanks to Betsy Ogburn for her thoughts on this topic.

7

GORDON MAZAHERI RABANI SCHULMAN

Definition 7 We’ll introduce a parameter γ(G) which will appear in the complexity of the identifica-
tion procedure, which is defined by γ(G) := maxV ∈V |MB(V)|.

2. Applying a k-MixProd run

Our algorithm will induce instances of k-MixProd through post-selected conditioning. A significant
portion of this paper will be accounting for multiple calls (or “runs”) of a k-MixProd oracle and
explaining how their results can be combined.

2.1. Describing runs

We will need to keep track of two crucial elements of each “run” of a k-MixProd oracle.
1. Which variables ∈ V are passed to our k-MixProd oracle as independent variables (the

independent set).
2. Which variables ∈ V we have conditioned on (the conditioning set) and what values we have

post-selected these variables to take.
A sufficient conditioning set to induce within-source independence among the independent set is

the union of their Markov boundaries. This will be further refined in Subsection 4.2.

Definition 8 (Run) A run over a graph G = (V ,E) is a tuple a = (Ia, fa) where Ia ⊆ V are
variables that we will d-separate (within each source) by conditioning on assignments to the set

CONDa :=
⋃
I∈Ia

MB(I)

The value of the assignment is given by fa : CONDa → {0, 1}. We’ll call Ia the independent set
for a, and CONDa the conditioning set.

We will restrict our attention to well-formed runs, i.e. runs for which Ia ∩ CONDa = ∅.

Definition 9 An individual run a = (Ia, fa) is N -independent if |Ia| ≥ N .

Superscript notation We’ll write mba(V), paa(V), cha(V) to refer to the assignment to the
Markov boundary of V , parents of V , and children of V as set by run a.7 In a similar spirit, we’ll
occasionally write v0 to denote the assignment V = 0.

Definition 10 (Distribution induced by a run) For any well-formed run a, the induced distribution
on the variables in Ia is denoted by

Pa(·) = P(· | conda),

where conda is the assignment to CONDa in keeping with our conventions.

The outputs of applying a k-MixProd oracle to Pa(Ia) are a matrix Ma ∈ [0, 1]|I
a|×k and a

vector of mixture weights, πa ∈ [0, 1]k (satisfying
∑

u π
a
u = 1) given by

Ma
i,u := Pa(Xa

i = 1 | Ua = u) = P(Xi = 1 | Ua = u,CONDa), ∀Xi ∈ Ia, u ∈ [k] (1)

πau := Pa(Ua = u) = P(Ua = u | CONDa), ∀j ∈ [k] (2)

7. Any quantities parameterized by a run will take the parameter as a superscript.

8

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

where Ua is the mixture source distributed over [k] according to P(U | CONDa). Note that
because mixtures are invariant to permutations of mixture component labels, we cannot guarantee
correspondence between the labels for the source variables from different runs. Hence the labels of
Ua to an unknown permutation of the labels in U . Alignment of these labels is handled in Section 3.1.

3. Combining Runs

A single run of the k-MixProd oracle will not contain sufficient information to learn the parameters
of the k-MixBND problem. Instead we must synthesize information across multiple runs.

3.1. Aligning source labels across different runs

Each run of the k-MixProd oracle will return Pa(V | Ua = u) for some arbitrary permutation
Ua of the variable. We need to align all of the outputs to the same permutation of the source, U .
If the runs overlap on at least one variable with the same mixture probabilities, we can use that
“alignment variable” to identify which source corresponds to which set of parameters. In our setup,
we will guarantee these alignment variables exist by ensuring that runs have shared vertices in their
independent sets whose Markov boundaries have identical assignments.

Definition 11 X ∈ V is separated if for all ui 6= uj ∈ [k], Pui(x) 6= Puj (x).

Definition 12 (Aligned runs) A pair of runs a, b over independent sets Ia, Ib is alignable if there
exists a separated X ∈ I(a) ∩ I(b) such that Pau(V (ab)) = Pbu(V (ab)) for all u ∈ [k]. We’ll call any
such random variable X an alignment variable, and use AV(a, b) to denote the set of all alignment
variables for Pa and Pb. We sometimes say a and b are “aligned at” X .

Definition 13 (Alignment spanning tree) We say a set of ` runs is alignable if there exists an
undirected spanning tree over the graph with vertices a1, . . . a` and an edge {ai, aj} whenever
AV(ai, aj) 6= ∅. We call this the alignment spanning tree.

The alignment step will take the output from alignable runs and permute the mixture labels until
the parameters match along each alignment variable. Pseudocode for this procedure is given in
Algorithm 1.

3.2. Bayesian unzipping: recovering parameters per source

Recall that our algorithm conditions on Markov boundaries to induce independent variables. Hence,
after aligning the sources in runs of the k-MixProd oracle we will have access to Pu(Y |MB(Y))
for each Y ∈ V . Our goal is to obtain Pu(V), which is described by the parameters Pu(Y | PA(Y))
for each Y ∈ V . Note that

Pu(y1 | mb(Y)) =
Pu(y1,mb(Y))

Pu(y1,mb(Y)) + Pu(y0,mb(Y))
. (3)

The terms in this fraction are all of the same form and can be factored according to the DAG into

Pu(y,mba(Y)) = Pu(top(Y))Pu(y | paa(Y))
∏

V ∈CH(Y)

Pu(va | fa(PA(V) \ {Y }), y)

︸ ︷︷ ︸
Pu(cha(Y)|topa(Y),y)

.

9

GORDON MAZAHERI RABANI SCHULMAN

See Figure 3 for a concrete example of this decomposition. After substituting this factorization into
Equation (3) we see that Pu(top(Y)) appears in both the numerator and denominator because it is
independent of the assignment to Y . Simplification leaves only the following terms:

1. Pu(y0 | paa(Y)) and Pu(y1 | paa(Y)), which must sum to 1.
2. Pu(cha(Y) | topa(Y), y0) and Pu(cha(Y) | topa(Y), y1) which are both the product of the

desired parameters of variables later in the topological ordering. We can ensure we have access
to these terms by solving for the parameters of V ∈ V in a reverse-topological ordering.8

We can substitute 1−Pu(y1 | paa(Y)) for Pu(y0 | paa(Y)) in the expanded version of Equation (3)
to obtain a single equation with only Pu(y1 | paa(Y)) as an unknown, which we can then solve. The
pseudocode for this process is given in Algorithm 2.

Y

V1 V2

V5 V4

V3 Y

V1 V2

V5 V4

V3
Y

V1 V2

V5 V4

V3 Y

V1 V2

V5 V4

V3

Figure 3: We can decompose Pu(v1, v2, v3, y, v4, v5) = Pu(v1, v2, v3)Pu(y | v1, v2)Pu(v4 |
y, v3)Pu(v5 | y, v4). U and any other variables in the graph are omitted for clarity.

3.2.1. RECOVERING THE DISTRIBUTION ON SOURCES

Now consider some arbitrary run a with conditioning conda. Since Pu(V) =
∏
V ∈V Pu(V |

PA(V)), knowing Pu(V | PA(V)) grants us full access to the within-source probability distribution
Pu(V) after Bayesian unzipping. From this we can we obtain Pu(conda) = P(conda | u). The
k-MixProd oracle will also return Pa(U) = P(U | conda) when run on a (after source alignment).
Finally, P(conda) is directly observable. Combining these terms in Bayes’ rule lets us compute the
distribution on U (under the assumption of positivity),

P(u) =
P(u | conda)P(conda)

P(conda | u)
.

3.3. Outline of the combination process

Combining a set of runs A has four steps.
1. Use a k-MixProd oracle on P(Ia | CONDa) for each run a ∈ A to compute P (V |

MB(V), Ua = u) for all variables V ∈ V .
2. Align the parameters obtained from the previous step to ensure that U means the same thing

across different runs, giving Pu(V |MB(Y)).
3. Recover Pu(V | PA(V)) for each vertex V ∈ V via Bayesian unzipping.
4. Compute P(U) by applying Bayes’ law.

The full procedure appears as Algorithm 3.

8. We will want to ensure that we only need to unzip parameters from vertices of a bounded depth, which bounds the
iterations of this step. Details on how this is done appear in Section 4.2.

10

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

4. Collections of runs

With the main concepts of source alignment and Bayesian unzipping now defined, our algorithm
will primarily consist of finding a good collection of these runs so that these subroutines can be
successfully applied to recover the k-MixBND mixture.

Observation 14 Two runs a, b are aligned at X ∈ V if and only if
1. X ∈ Ia ∩ Ib,
2. mba(X) = mbb(X), i.e, fa(MB(X)) = f b(MB(X)), and
3. X is separated given mba(X) (equivalently, given mbb(X)).

Definition 15 A collection of runs A covers X ∈ V if for every assignment pa(X) to PA(X) there
exists a run a ∈ A with X ∈ Ia and pa(X) = paa(X).

Definition 16 (A good collection of runs) A collection of well-formed runs A is good if it is (i)
alignable via an alignment spanning tree, (ii) every run is Nmp-independent, and (iii) the collection
covers every vertex in V .

The following is our main result on good collections of runs:

Theorem 17 Given a graph with max degree ∆ satisfying n ≥ Nmp ×O(∆4), we can find a set of
centers X =

{
X1, . . . , XNmp

}
⊆ V of size Nmp and depth at most 3Nmp, such that Algorithm 4

succeeds in finding a good collection of runs A of size O(2∆2
n).

While any good collection of runs will suffice for our algorithm, Theorem 17 represents conditions
under which we can provably obtain such a collection of runs. In Appendix C.1, we give a good
collection of runs for mixture of paths which is more efficient than the one found by Algorithm 4.

4.1. A generic good collection of runs

To prove Theorem 17, we will sketch the collection of good runs, leaving some details to Appendix B.
To ensure alignment is possible, we will construct a set of central runs, AC which we can align to
each other and which all other runs will be alignable to.

Definition 18 (Centers, Central Runs) A set of vertices X =
{
X1, . . . , XNmp

}
⊆ V will be called

centers if the Markov boundaries of the vertices in X are disjoint. Given a set of centers X , a run a
is called a central run if Ia = X .

To build these central runs, we will start with a set of Nmp vertices X =
{
X1, X2, . . . XNmp

}
with

disjoint Markov boundaries and a maximum depzth of 3Nmb, whose existence is implied by our
degree bounds (see Appendix B). An example of four such vertices is given in Figure 2.

First, we fix a run a0 with Ia0 = X and mba0(X) being chosen arbitrarily where MB(X) :=
∪Xi∈X MB(Xi). We will refer to this assignment mba0(X) as the default assignment. Each run in
a ∈ AC will have the same independent set Ia = X and will agree with a0 on the assignment to all
of the conditioning set other than the Markov boundary of some Xi ∈X , i.e.

fa(V) = fa0(V) ∀V ∈MB(X) \MB(Xi). (4)

The central runs will span over all assignments mb(Xi) to MB(Xi) for each Xi ∈X . We’ll write
each such run as a0[mb(Xi)].

11

GORDON MAZAHERI RABANI SCHULMAN

Definition 19 AC := {a0} ∪
{
a0[mb(Xi)] : i ∈ [3k − 3],mb(Xi) ∈ {0, 1}MB(Xi)

}
.

See Figure 4 for an example of a set of central runs and a visualization of how they are alignable.

MB(X1) MB(X2)

0

X1

0

0

X2

0

MB(X1) MB(X2)

1

X1

0

0

X2

0

MB(X1) MB(X2)

1

X1

1

0

X2

0

MB(X1) MB(X2)

0

X1

1

0

X2

0

MB(X1) MB(X2)

0

X1

0

1

X2

0

MB(X1) MB(X2)

0

X1

0

1

X2

1

MB(X1) MB(X2)

0

X1

0

0

X2

1

Alig
ned

at
X 2

Aligned at X2

Aligned at X
2

Aligned at X
1

Aligned at X1

Alig
ned

at
X 1

Default Assignment Run a0

Figure 4: An alignment spanning tree of the default assignment a0 (CONDa0 arbitrarily assigns
all Markov boundaries to 0) and six other central runs. The runs on the left cover all
possible assignments to MB(X2) ∈ {(0, 0), (0, 1), (1, 0)}, while maintaining the default
assignment to MB(X1) to allow alignment with a0. The right runs similarly cover all
possible assignments to MB(X1), aligned at X2.

The central runs provide a backbone for easily guaranteeing alignment. The runs in AY made up
of the following two types of perturbations to the independent set (with CONDa always defined as
the union of the Markov boundaries of the independent set, as in Definition 8):

1. For each Y ∈ MB(Xi) for some Xi ∈ X , we exclude Xi from the independent set to form
IaY = X ∪ {Y } \ {Xi}.9

2. For each Y /∈MB(X) ∩X , Ia = X ∪ {Y }.
For either independence set we will form 2|PA(Y)| runs each associated with a single assignment to
paa(Y), with the remaining variables in CONDa ∩CONDa0 conditioned on their defaults given by
fa0 . Any other assignments to variables in CONDa can be chosen arbitrarily. The pseudocode for
this construction is in Appendix B, as well as justification for why our degree bounds imply that Nmp
disjoint Markov boundaries can be found.

9. This is a well-formed run since Y ∈ MB(Xi) =⇒ Xj /∈ MB(Y) for any j 6= i by Observation 4.

12

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

4.2. Limiting the depth of unzipping

As currently given, our algorithm may require Bayesian unzipping parameters up to the depth of the
graph. We can bound accumulated errors from this process by limiting the depth of the vertices that
need to be unzipped.

Recall that the goal of the conditioning set of each run is to d-separate each of the vertices in
the independent set. For a topological ordering on the independence set, notice that we need not
condition on the descendants of the deepest vertices in order to d-separate them from the others.
Conveniently, avoiding conditioning on these vertices descendants leaves the output of the k-MixProd
oracle in the desired form. We call these deepest vertices “bottom” vertices.

Definition 20 (Bottom vertices in a run) Given vertices I , we’ll define the set of bottom vertices
of the run to be the subset BOT(I) ⊆ I of vertices with maximal depth among the vertices in I . That
is d(B) = maxI∈I d(I) for all B ∈ BOT(I).

We can now update the conditioning sets for our definition of runs:

CONDa :=
⋃

I∈Ia\BOT(Ia)

MB(I)
⋃

B∈BOT(Ia)

PA(B) (5)

We append two additional requirements for a good collection of runs (Definition 16).
• no vertex appears both as a bottom vertex and a non-bottom vertex, and
• every non-bottom vertex has depth at most 3Nmp.

Note that because we only need independent sets of size Nmp, it is trivial to limit the depth of our
non-bottom vertices to 3Nmp.

5. Conclusion

We have developed the first algorithm for identifying the parameters of k-MixBND mixtures. This
algorithm allows us to access the probability distributions within each source - equivalent to the
probability distribution conditioned on a universal and unobserved confounder. With access to this
conditional distribution, the confounding of U can be adjusted for, opening up the opportunity for
causal inference despite universal confounding.

The algorithm presented here is intended as an identifiability result. Instead, we hope this
algorithm and framework can serve as a springboard for understanding how solutions to the k-
MixProd and k-MixBND problems are intimately related.

The alignment process is highly nontrivial and a likely reason why papers such as Anandkumar
et al. (2012a) made crude assumptions (such as a conveniently independent variable) to simplify
this process. The formal development of a notion of a run, while tedious, will allow for further
improvements to give better “good sets of runs.” Graph-specific sets of runs can be optimized further,
as demonstrated in Appendix C.1.

13

GORDON MAZAHERI RABANI SCHULMAN

References

A. Anandkumar, V. Tan, and A. Willsky. High dimensional structure learning of ising models on
sparse random graphs. 2010.

A. Anandkumar, D. Hsu, F. Huang, and S. M. Kakade. Learning high-dimensional mixtures of
graphical models. arXiv preprint arXiv:1203.0697, 2012a.

A. Anandkumar, D. J. Hsu, and S. M. Kakade. A method of moments for mixture models and hidden
Markov models. In Proc. 25th Ann. Conf. on Learning Theory - COLT, volume 23 of JMLR
Proceedings, pages 33.1–33.34, 2012b. URL http://proceedings.mlr.press/v23/
anandkumar12/anandkumar12.pdf.

T. Batu, S. Guha, and S. Kannan. Inferring mixtures of Markov chains. In Proc. 17th Conf. on
Learning Theory, pages 186–199, 2004. doi: 10.1007/978-3-540-27819-1 13.

K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and indepen-
dence. In Proc. 21st Ann. Conf. on Learning Theory - COLT, pages 9–20. Omnipress, 2008. URL
http://colt2008.cs.helsinki.fi/papers/7-Chaudhuri.pdf.

S. Chen and A. Moitra. Beyond the low-degree algorithm: mixtures of subcubes and their applications.
In Proc. 51st Ann. ACM Symp. on Theory of Computing, pages 869–880, 2019. doi: 10.1145/
3313276.3316375.

M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial time
in the two state general Markov model. SIAM J. Comput., 31(2):375–397, 2001. doi: 10.1137/
S0097539798342496.

J. A. Rhodes E. S. Allman, C. Matias. Identifiability of parameters in latent structure models with
many observed variables. Ann. Statist., 37(6A):3099–3132, 2009. doi: 10.1214/09-AOS689.

B. S. Everitt and D. J. Hand. Mixtures of discrete distributions. In Finite Mixture Distributions,
pages 89–105. Springer Netherlands, Dordrecht, 1981.

J. Feldman, R. O’Donnell, and R. A. Servedio. Learning mixtures of product distributions over
discrete domains. SIAM J. Comput., 37(5):1536–1564, 2008. doi: 10.1137/060670705.

Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proc. 12th Ann.
Conf. on Computational Learning Theory, pages 53–62, July 1999. doi: 10.1145/307400.307412.

C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in Genetics, 10, 2019a. ISSN 1664-8021. doi: 10.3389/fgene.2019.00524. URL
https://www.frontiersin.org/article/10.3389/fgene.2019.00524.

C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in Genetics, 10:524, 2019b. doi: 10.3389/fgene.2019.00524.

S. L. Gordon and L. J. Schulman. Hadamard extensions and the identification of mixtures of product
distributions. IEEE Transactions on Information Theory, 2022. to appear.

14

http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://proceedings.mlr.press/v23/anandkumar12/anandkumar12.pdf
http://colt2008.cs.helsinki.fi/papers/7-Chaudhuri.pdf
https://www.frontiersin.org/article/10.3389/fgene.2019.00524

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

S. L. Gordon, B. Mazaheri, Y. Rabani, and L. J. Schulman. Source identification for mixtures of
product distributions. In Proc. 34th Ann. Conf. on Learning Theory - COLT, volume 134 of Proc.
Machine Learning Research, pages 2193–2216. PMLR, 2021. URL http://proceedings.
mlr.press/v134/gordon21a.html.

R. Gupta, R. Kumar, and S. Vassilvitskii. On mixtures of Markov chains. In Advances in Neural
Information Processing Systems, volume 29, 2016. URL https://proceedings.neurips.
cc/paper/2016/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf.

D. Heckerman. Accounting for hidden common causes when inferring cause and effect from
observational data. (NIPS 2017 causal inference workshop), 2018. URL https://arxiv.
org/abs/1801.00727.

D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models. J.
Comput. Syst. Sci., 78(5):1460–1480, September 2012. doi: 10.1016/j.jcss.2011.12.025.

Y. Huang and M. Valtorta. On the completeness of an identifiability algorithm for semi-
Markovian models. Ann. Math. Artif. Intell., 54(4):363–408, December 2008. doi: /10.1007/
s10472-008-9101-x.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Proc. 26th Ann. ACM Symp. on Theory of Computing, pages 273–282,
1994. doi: 10.1145/195058.195155.

Bohdan Kivva, Goutham Rajendran, Pradeep Kumar Ravikumar, and Bryon Aragam. Learning
latent causal graphs via mixture oracles. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=f9mSLa07Ncc.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,
2009.

Joseph B Kruskal. More factors than subjects, tests and treatments: an indeterminacy theorem for
canonical decomposition and individual differences scaling. Psychometrika, 41(3):281–293, 1976.

Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with applica-
tion to arithmetic complexity and statistics. Linear algebra and its applications, 18(2):95–138,
1977.

A. Kumar and G. Sinha. Disentangling mixtures of unknown causal interventions. In C. de Campos
and M. H. Maathuis, editors, Proc. Thirty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, volume 161 of Proc. Machine Learning Research, pages 2093–2102. PMLR, 27–30 Jul
2021. URL https://proceedings.mlr.press/v161/kumar21a.html.

M. Kuroki and J. Pearl. Measurement bias and effect restoration in causal inference. Biometrika, 101
(2):423–437, 2014. doi: 10.1093/biomet/ast066.

B. G. Lindsay. Mixture models: theory, geometry and applications. 1995.

15

http://proceedings.mlr.press/v134/gordon21a.html
http://proceedings.mlr.press/v134/gordon21a.html
https://proceedings.neurips.cc/paper/2016/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8b5700012be65c9da25f49408d959ca0-Paper.pdf
https://arxiv.org/abs/1801.00727
https://arxiv.org/abs/1801.00727
https://openreview.net/forum?id=f9mSLa07Ncc
https://openreview.net/forum?id=f9mSLa07Ncc
https://proceedings.mlr.press/v161/kumar21a.html

GORDON MAZAHERI RABANI SCHULMAN

Bijan Mazaheri, Atalanti Mastakouri, Dominik Janzing, and Mila Hardt. Causal information splitting:
Engineering proxy features for robustness to distribution shifts, 2023.

G. J. McLachlan, S. X. Lee, and S. I. Rathnayake. Finite mixture models. Annual Review of Statistics
and Its Application, 6(1):355–378, 2019. doi: 10.1146/annurev-statistics-031017-100325.

W. Miao, Z. Geng, and E. T. Tchetgen. Identifying causal effects with proxy variables of an
unmeasured confounder. Biometrika, 105(4):987–993, 2018. doi: 10.1093/biomet/asy038.

S. Newcomb. A generalized theory of the combination of observations so as to obtain the best result.
American Journal of Mathematics, 8(4):343–366, 1886.

Elizabeth L Ogburn, Ilya Shpitser, and Eric J Tchetgen Tchetgen. Comment on “blessings of multiple
causes”. Journal of the American Statistical Association, 114(528):1611–1615, 2019.

J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. Technical
Report CSD-850021, R-43, UCLA Computer Science Department, June 1985.

J. Pearl. Causality. Cambridge, 2nd edition, 2009.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier,
2014.

K. Pearson. Contributions to the mathematical theory of evolution III. Philosophical Transactions of
the Royal Society of London (A.), 185:71–110, 1894.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference. MIT Press, 2017.

R. Ranganath and A. Perotte. Multiple causal inference with latent confounding. 2018. URL
https://arxiv.org/abs/1805.08273.

V. Sharan, S. M. Kakade, P. Liang, and G. Valiant. Learning overcomplete HMMs. In Advances in
Neural Information Processing Systems, pages 940–949, 2017. URL https://arxiv.org/
abs/1711.02309.

I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-Markovian
causal models. In Proc. 20th AAAI Conference on Artifical Intelligence, pages 1219–1226, 2006.
doi: 10.5555/1597348.1597382.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, second
edition, 2000a.

P. Spirtes, C. Glymour, R. Scheines, S. Kauffman, V. Aimale, and F. Wimberly. Constructing
Bayesian network models of gene expression networks from microarray data. 2000b.

B. Tahmasebi, S. A. Motahari, and M. A. Maddah-Ali. On the identifiability of finite mixtures
of finite product measures. (Also in “On the identifiability of parameters in the population
stratification problem: A worst-case analysis,” Proc. ISIT’18 pp. 1051-1055), 2018. URL https:
//arxiv.org/abs/1807.05444.

16

https://arxiv.org/abs/1805.08273
https://arxiv.org/abs/1711.02309
https://arxiv.org/abs/1711.02309
https://arxiv.org/abs/1807.05444
https://arxiv.org/abs/1807.05444

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman. Learning mixtures of DAG models.
In Proc. 14th Conf. on Uncertainty in Artificial Intelligence, page 504–513, 1998. doi: 10.5555/
2074094.2074154.

D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite Mixture
Distributions. John Wiley and Sons, Inc., 1985.

Y. Wang and D. M. Blei. The blessings of multiple causes. Journal of the American Statistical
Association, 114(528):1574–1596, 2019. doi: 10.1080/01621459.2019.1686987.

17

GORDON MAZAHERI RABANI SCHULMAN

Appendix A. k-MixBND algorithm pseudocode

Algorithm 1: Alignment
Input: A set of runs A = {a0, . . . , a`} with outputs Ma, πa for each a ∈ A. In addition, we have a

spanning tree T = (A,E) and alignment variables AV(ai, aj) ⊆ Ia
(i) ∩ Ia

(j)
.

Output: Pau(Ia) and Pa(u) for each a ∈ A and u ∈ [k].
Let Pa0(u)← πa0u and Pa0u (Ia0)←Ma0

−,u for an arbitrary choice of a0

for each edge (ai, aj) along a breadth first traversal of T from a0 do
Choose some XAV ∈ AV(ai, aj).
Let q, r give the indices for the alignment variable, i.e. XAV = Xai

q and XAV = X
aj
r .

Find σ, the permutation on the sources that minimizes
∥∥Mai

q,− − σM
aj
r,−
∥∥
∞.

Assign Paj (U)← σπaj and Paju (Ia)← σMaj .
end

Algorithm 2: Bayesian Unzipping
Input: A collection of runs A of size at most 2O(∆2) and their aligned output. For each Vi and

assignment to its parents pa(Vi) there must be some run with Vi in its independent set with
parents conditioned to pa(Vi).

Output: P̃u(Y | PA(Y))
Fix a topological ordering on the vertices in V , 〈X1, X2, . . . , Xn〉; for i = n, n− 1, . . . , 1 do

for each assignment pa(Xi) to PA(Xi) do
Let a be a run in A with paa(Xi) = pa(Xi). for u = 1, . . . , k do

for b = 0, 1 do
if Xi is a bottom vertex then

Set P̃u(xbi | paa(Xi))← P̃au(xbi).
else

Set P̃u(xbi | pa(Xi))←
P̃a
u(xbi)P̃u(cha(Xi)|topa(Xi),x

1−b
i)

P̃a
u(xbi)P̃u(cha(Xi)|topa(Xi),x

1−b
i)+P̃a

u(x1−b
i)P̃u(cha(Xi)|topa(Xi),xbi)

;

end
end

end
end

end

18

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

Algorithm 3: The k-MixBND algorithm
Input: A good collection of runs A of size at most 2O(∆2).
Output: P̃u(Y | PA(Y)) and P̃(U).
Estimate P̃a(Ia) for all runs a ∈ A.
for each run a ∈ A do

Set (Ma, πa)← LEARNPRODUCTMIXTURE(Pa(Ia))
end
Run Algorithm 1 to align the sources in the output of all the runs in A.
Run Algorithm 2 to unzip the parameters.
Fix any run a ∈ A.
for u = 1, . . . , k do

Set P̃(u)← P̃(u|conda)P̃(conda)

P̃u(conda)
.

end

Appendix B. Finding good collections of runs

In this section we prove Theorem 17 and give a few different sufficient conditions for the existence
of a good collection of runs.

B.1. Constructing a good collection of runs from Nmp centers

One sufficient condition for the existence of a good collection of runs is the presence ofNmp variables
with disjoint Markov boundaries. We will now present a good collection of runs for this case.

Lemma 21 Given a set X =
{
X1, . . . , XNmp

}
⊆ V of Nmp variables with depth at most 3Nmp and

disjoint Markov boundaries, Algorithm 4 finds a good collection of runs A, satisfying |A| = O(2γn)
where γ = maxV ∈V |MB(V)|,.

Claim 22 By construction, AC covers X and is alignable.

Claim 23 AY covers V \X and each run in AY can be aligned with some run in AC .

Proof The fact that AY covers V \X follows immediately from AY containing a run assigning
for independent variable Y ∈ V \X each possible assignment pa(Y). Fix any run a ∈ AY with
Ia = X − Xi + Y or Ia = X + Y depending on whether Y overlaps with MB(X). Now if
MB(Y) ∩MB(Xj) = ∅ for any j 6= i, a and a0 are aligned at Xj . If instead MB(Y) ∩MB(Xj) 6=
∅ for all j 6= i, pick any j and consider the central run a0[mba(Xj)] ∈ AC . Clearly, a and
a0[mba(Xj)] are aligned at Xj . In either case, we’ve aligned a to a run in AC .

Claim 24 Every run a ∈ A is at least Nmp-independent.

Proof [Proof of Lemma 21] This follows immediately from Claims 22, 23, and 24

19

GORDON MAZAHERI RABANI SCHULMAN

Algorithm 4: Building a good collection of runs
Input: Vertices X = {X1, . . . , X3k−3} ⊆ V having disjoint Markov boundaries with maximum

depth 3Nmp.
Output: A good collection of runs A.
Let a0 be a run with Ia0 = {X1, . . . , X3k−3} and CONDa0 chosen arbitrarily.
Set A ← {a0}.
for i = 1, . . . , 3k − 3 do
A ← A∪

{
a0[mb(Xi)] : mb(Xi) ∈ {0, 1}MB(Xi)

}
. for Y ∈ V \X do

if Y ∈ MB(X) for some X ∈ X then
Ia ←X ∪ {Y } \ {Xi}

end
else

Ia ←X ∪ {Y }
end
for pa(Y) ∈ {0, 1}|PA(Y)| do

if Y ∈ AN(Ia − Y) then
CONDa ←MB(Ia)

end
else

CONDa ←MB(Ia \ {Y }) ∪ PA(Y)
end
CONDa ←MB(Ia)
fa(PA(Y))← pa(Y)
Defaults← CONDa0 ∩CONDa \PA(Y)
fa(Defaults)← fa0(Defaults)
fa(CONDa \CONDa0 \PA(Y)) are chosen arbitrarily.
A ← A∪ {a}, where a is given by a = (Ia, fa).

end
end

end

20

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

B.2. Degree bounds

We can ensure that Nmp centers can be found on certain degree-bounded graphs, which in turn bound
γ. Let ∆in upper bound on the in-degree of any vertex in G and let ∆out upper bound the out-degree.
Then

γ ≤ ∆in + ∆out + ∆out(∆in − 1) = ∆in + ∆out∆in.

If we have a bound ∆ on the degree of the undirected skeleton of G, we get that

γ ≤ ∆(∆− 1) = ∆2 −∆.

Corollary 25 If either of the following conditions hold, we can find Nmp centers for G with depth at
most 3Nmp:

1. n ≥ Nmp(∆2
in + 2∆out∆in + ∆2

out∆
2
in −∆in −∆out + 1) = Nmp ·O(∆2

out∆
2
in).

2. n ≥ Nmp(∆4 − 2∆3 + ∆ + 1) = Nmp ·O(∆4).

Proof [Proof of Lemma 17] This follows immediately from Corollary 25 and Lemma 21.

Appendix C. Analyzing Bayesian Unzipping

In this section, we will analyze the numerical stability of the Bayesian unzipping process.

Lemma 26 Let a be a run with Y ∈ Ia. Then we can compute Pu(yb | paa(Y)) for b ∈ {0, 1} as
follows:

1. If Y ∈ BOT(Ia), then
Pu(yb | paa(Y)) = Pau(yb).

2. If Y /∈ BOT(Ia), then

Pu(yb | paa(y)) =
Pau(yb)Pu(cha(y) | topa(y), y1−b)

Pau(yb)Pu(cha(y) | topa(y), y1−b) + Pau(y1−b)Pu(cha(y) | topa(y), yb)
(6)

Proof In the following we’ll fix cha := cha(Y), mba := mba(Y), paa := paa(Y), and topa :=
topa(Y). If Y ∈ BOT(Ia), then Pau(yb) = Pu(yb | paa(Y)), so the claim is trivially true. If
Y /∈ BOT(Ia), then

Pau(yb) = Pau(yb | mba) =
Pu(yb,mba)
Pu(mba)

=
Pu(yb,mba)∑

b′=0,1 P̃u(yb′ ,mba)

and we can expand Pu(yb,mba) as

Pu(yb,mba) = Pu(yb | paa)Pu(cha | topa, yb)Pu(topa).

21

GORDON MAZAHERI RABANI SCHULMAN

Substituting this back into the preceding equation, we obtain

Pau(yb) =
Pu(yb | paa)Pu(cha | topa, yb)Pu(topa)∑

b′∈{0,1} Pu(yb′ | paa(Y))Pu(cha | topa, yb′)Pu(topa)

=
Pu(yb | paa)P(cha | topa, yb)∑

b′∈{0,1} Pu(yb′ | paa)Pu(cha | topa yb′)
.

We now multiply both sides by the denominator (which is non-zero since all terms are strictly
positive by assumption) and then simplify to obtain

Pu(yb | paa)
(
Pau(y1−b)P(cha | topa, yb)

)
+Pu(yb | paa)

(
−Pau(y1−b)Pu(cha | topa, y1−b)

)
= 0.

When augmented with the equation

Pu(yb | paa) + Pu(y1−b | paa) = 1

we have a system of two equations in Pu(yb | paa),Pu(y1−b | paa) which is non-singular whenever(
Pau(y1−b)P(cha | topa, yb)

)
6=
(
−Pau(y1−b)Pu(cha | topa, y1−b)

)
.

Since all probabilities occurring are strictly positive, this will always be the case and we can solve
the system for Pu(yb | paa). The resulting equation is

Pu(yb | paa) =
Pau(yb)P(cha | topa, y1−b)

Pau(yb)P(cha | topa, y1−b) + Pau(y1−b)P(cha | topa, yb)
,

proving the claim.

The following standard inequalities will be useful throughout the analysis:

Observation 27

1 + x

1− x
≤ 1 + 3x and 1− 3x ≤ 1− x

1 + x
for x ∈ (0, 1/4);

1− 2rx ≤ (1− x)r and (1 + x)r ≤ 1 + 2rx for x ∈ (0, 1), r ≥ 1, rx ≤ 1.

Lemma 28 Given access to
{
P̃au(Y)

}
a∈A,j∈[k]

for a good collection of runs A from a distribution

P satisfying
∣∣∣P̃au(yb)− Pau(yb)

∣∣∣ /Pau(yb) ≤ ε for all Y ∈ V , b ∈ {0, 1}, u ∈ [k] for ε suffi-
ciently small (and the estimated probabilities used as input to k-MixProd oracles), the procedure in
Algorithm 2 will output P̃u(yb | PA(Y)) and P̃(u) for all Y ∈ V , b ∈ {0, 1} , u ∈ [k] satisfying∣∣∣P̃u(yb | pa(Y))− Pu(yb | pa(Y))

∣∣∣
Pu(yb | pa(Y))

≤ (6(∆ + 1))`ε

where ` is the distance from Y to the nearest bottom vertex if Y doesn’t appear as a bottom vertex
and is 0 if Y is a bottom vertex.

22

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

Proof We fix a topological ordering on V , let’s say X1, X2, . . . , Xn. Now starting with the last
vertex in topological order,Xn, and proceeding in decreasing order, we’ll compute P̃u(Xi | PA(Xi)).
For bottom vertices, we set P̃u(xbi | pa(Xi)) = P̃au(xbi) for some run a with pa(Xi) = paa(Xi). It
immediately follows that Pu(Xi | PA(Xi)) satisfies the desired relative error bound. Inductively,
assume we’ve already computed P̃u(Vm | PA(Vm)) for all m > i satisfying the stated bounds, and
that we also have access to P̃au(Vi) = P̃u(Vi | CONDa) for a subset of the runs a ∈ A that cover Vi.
To streamline notation, let Y := Vi. Now fix a run a ∈ A with Y ∈ Ia.

Now we can bound each term above and below using the inductive hypothesis to get the desired
result. In particular, we know that

(1− ε)Pau(yb) ≤ P̃au(yb) ≤ (1 + ε)Pau(yb)

for b ∈ {0, 1} and

(1−(6(∆+1))`−1ε)Pu(vb | paa(vb)) ≤ P̃u(vb | paa(vb)) ≤ (1+(6(∆+1))`−1ε)Pu(vb | paa(vb))

for all V ∈ CH(Y) and b ∈ {0, 1} which implies that both the numerator and denominator of (6) are
within a factor of (1± ε)(1± (6(∆ + 1))`−1ε)∆ of the correct value for those terms. It immediately
follows that P̃u(yb | paa(Y)) is bounded by

Pu(yb | paa(Y))
1− ε
1 + ε

(
1− (6(∆ + 1))`−1ε

1 + (6(∆ + 1))`−1ε

)
≤ P̃u(y1 | paa(Y))

≤ Pu(y1 | paa(Y))
1 + ε

1− ε

(
1 + (6(∆ + 1))`−1ε

1− (6(∆ + 1))`−1ε

)
.

We now use the inequalities from Observation 27 to simplify the bounds as follows:

P̃u(yb | paa(Y)) ≤ Pu(yb | paa(Y))
1 + ε

1− ε

(
1 + (6(∆ + 1))`−1ε

1− (6(∆ + 1))`−1ε

)∆

≤ Pu(yb | paa(Y))(1 + 3ε)(1 + 3(6(∆ + 1))`−1ε)∆

≤ Pu(yb | paa(Y))(1 + 3(6(∆ + 1))`−1ε)∆+1

≤ Pu(yb | paa(Y))(1 + 2 · 3(∆ + 1)(6(∆ + 1))`−1ε)

≤ Pu(yb | paa(Y))(1 + (6(∆ + 1))`ε).

The lower bound is analogous.

Lemma 29 Given access to
{
P̃au(Y)

}
a∈A,j∈[k]

for a good collection of runs A from a distribution

P satisfying
∣∣∣P̃au(yb)− Pau(yb)

∣∣∣ /Pau(yb) ≤ ε for all Y ∈ Ia, b ∈ {0, 1}, u ∈ [k] for ε sufficiently

small, the procedure in Algorithm 2 will output P̃u(yb | PA(Y)) and P̃(u) for all Y ∈ V , b ∈
{0, 1} , u ∈ [k] satisfying∣∣∣P̃u(yb | pa(Y))− Pu(yb | pa(Y))

∣∣∣
Pu(yb | pa(Y))

≤ (6(∆ + 1))3Nmpε

23

GORDON MAZAHERI RABANI SCHULMAN

and ∣∣∣P̃(uj)− P(uj)
∣∣∣

P(uj)
≤ 5∆2ε.

Since Pu(yb | pa(Y)),P(uj) ≤ 1, we also have that∣∣∣P̃u(yb | pa(Y))− Pu(yb | pa(Y))
∣∣∣ ≤ (6(∆ + 1))9kε and

∣∣∣P̃(uj)− P(uj)
∣∣∣ ≤ 5∆2ε.

Proof The error bound on P̃u(yb | pa(Y)) follows from Lemma 28 above and the depth bound of
9k on non-bottom vertices.

For the error bound on P̃(uj) we write

P̃(uj) =
P̃(uj | conda)P̃(conda)

P̃(conda | uj)
and analyze each term separately. First, define Z := AN(CONDa) \ CONDa to be all ancestors of
vertices conditioned upon in aminus CONDa. Fix a topological order on the vertices in Z∪CONDa,
〈X1, . . . , Xm〉. We can write

P̃(conda | uj) =
∑

z∈{0,1}Z

m∏
i=1

P̃(z(Xi) | z(X1, . . . , Xi−1), conda)

=
∑

z∈{0,1}Z

∏
Xi∈Z∪CONDa

P̃(z(Xi) | z(PA(Xi)), paa(Xi))

=
∑

z∈{0,1}Z

 ∏
Xi∈Z

P̃(z(Xi) | z(PA(Xi)), paa(Xi))


 ∏
Xi∈CONDa

P̃(z(Xi) | z(PA(Xi)), paa(Xi))

 .

Now letCz denote the value in the first grouped product for a given z ∈ {0, 1}Z . Since
∑

z∈{0,1}Z Cz =
1, we can bound the error in the result by the error in the second grouped product:

(1− ε)|CONDa|P(conda | uj) ≤ P̃(conda | uj) ≤ (1 + ε)|CONDa|P(conda | uj).

Finally using the bound |CONDa| < 2∆2 and the inequalities from Observation 27 we obtain

(1− 2∆2ε)P(conda | uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε)P(conda | uj).

By assumption P̃(uj | conda) ∈ (1±ε)P(uj | conda); P̃(conda) is also known up to multiplicative
accuracy ε since the sampling needed to estimate the distributions that are input to k-MixProd oracles
far exceed that needed to get an ε estimate of this quantity. Thus, the resulting bound on P̃(uj) is

(1− 2∆2ε)(1− 3ε)P(uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε)(1 + 3ε)P(conda | uj)

which can be simplified to

(1− 2∆2ε− 3ε)P(uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε+ 3ε)P(conda | uj)

using (1− x)(1− y) ≥ (1− x− y) for x, y ∈ [0, 1) and 2∆2ε+ 3ε ≤ 5∆2ε for ∆ ≥ 1.

24

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

C.1. Mixtures of paths

Special cases do not require the condition of Nmp disjoint Markov boundaries. One of these special
cases is a mixture of paths v1 → v2 → v3 → · · · vn over k. We will will give a good set of runs for
n ≥ 2Nmp.

First, we will specify three default runs, which we will call ODD, EVEN, and LINK.

Definition 30 (ODD default run for Markov chains) Run ODD is specified by an independence
set of vertices with odd indices IODD = {V1, V3, V5, . . . , V2Nmp−1}. The conditioning set is given
by the evenly indexed vertices CONDODD = {V2, V4, V6, . . . , V2Nmp−2}. fODD may be chosen
arbitrarily, but for simplicity we will give fODD(Vi) = 0 for all Vi ∈ CONDODD.

Definition 31 (EVEN default run for Markov chains) Run EVEN is defined the same way for
evenly indexed vertices. That is, IEVEN = {V2, V4, V6, . . . , V2Nmp}, CONDEVEN = {V1, V3, V5, . . . , V2Nmp−1},
and fEVEN(vi) = 0 for all Vi ∈ CONDEVEN.

Definition 32 (LINK default run for Markov chains) Run LINK is part evenly indexed vertices
and part oddly indexed vertices. ILINK = IEVEN ∪ {V1} \ {V2}. Similarly, we condition on the
complement CONDLINK = {V2, V3, V5, . . . , V2Nmp−1} being 0.

Claim 33 If n ≥ 2Nmp, then ODD, EVEN, and LINK are well-formed runs.

Claim 34 ODD and LINK are aligned at V1. EVEN and LINK are aligned at evenly indexed
vertices beyond V2.

Now, we enumerate a set of runs that cover all possible entries to parents of vertices.

Definition 35 Let ODD[vi] denote a run on IODD[Vi] = IODD, CONDODD[Vi] = CONDODD with
fODD[Vi](Vj) = 1 if i = j and 0 if i 6= j. Similarly define EVEN[Vi] to be a run on IEVEN[Vi] =
IEVEN, CONDEVEN[Vi] = CONDEVEN with fEVEN[Vi](vj) = 1 if i = j and 0 if i 6= j.

Claim 36 Any run ODD[Vi] is aligned with ODD at Vj for j < i− 1 or j > i+ 1. Similarly, any
run EVEN[Vi] is aligned with EVEN at Vj for j < i− 1 or j > i+ 1.

Definition 37 Let TAILb[Vi] for i > 2Nmp give runs which have

ITAIL[Vi] = {V1, V3, V5, . . . , V2Nmp−1, Vi}
CONDTAIL[Vi] = {V2, V4, . . . , V2Nmp−2, Vi−1}

with

fTAIL[Vi](Vj) =

{
0 if i− 1 6= j

b if i− 1 = j

Claim 38 Any run LINK[Vi] is aligned with ODD at Vj for j < 2Nmp with even j.

25

GORDON MAZAHERI RABANI SCHULMAN

Claim 39 The set{
ODD[Vi] : vi ∈ IODD

}
∪
{

EVEN[Vj] : Vj ∈ IEVEN
}
∪
{

TAIL0[Vj],TAIL1[Vj] : j > 6k − 6
}

covers V .

Proof For all Vi with i > 6k − 6 we have LINK0[Vi] and LINK1[Vi] to cover both possible
assignments to Vi−1.

Consider Vi with i ≤ 2Nmp. If i > 1 is odd, then fEVEN[Vi](Vi−1) = 0 and fEVEN(Vi−1) = 1, so
all possible assignments to the parent of Vi are covered. Similarly, if i is even, then fODD[Vi](Vi−1) =
0 and fODD(Vi−1) = 1, so all possible assignments to the parent of Vi are covered. Finally, if i = 1,
then Vi has no parents.

We give the following example to illustrate this construction. Consider k = 2 and n = 8. We
will express a run a as sequences of values 0, 1 or *. A * in the ith location indicates Vi ∈ Ia and a
0 or 1 indicates fa(Vi) = 0 or fa(Vi) = 1, respectively. Finally, - indicates that the variable is not
conditioned on and not in the independent set (not in COND and not in I). The default runs are:

EVEN = 0*0*0*--

ODD = *0*0**--

LINK = *00*0*--

In addition to these runs, we have:

ODD[V1] = 1*0*0*--

ODD[V3] = 0*1*0*--

ODD[V5] = 0*0*1*--

EVEN[V2] = *1*0*---

EVEN[V4] = *0*1*---

EVEN[V6] = *0*0*---

TAIL0[V7] = *0*0-0*-

TAIL1[V7] = *0*0-1*-

TAIL0[V8] = *0*0--0*

TAIL1[V8] = *0*0--1*

The construction of a good set of runs given does not use disjoint Markov boundaries, yielding
greater efficiency than our more general algorithm for degree bounded graphs.

While similar in name and structure, this setting is different from that of hidden Markov models.
Hidden Markov models are Bayesian networks consisting of a chain of unobserved variables, each
affecting a unique observed variable, with no causal relations among the observed variables. For
instance, in Gupta et al. (2016), all chains in the mixture have the same state space. The sampling

26

CAUSAL INFERENCE DESPITE LIMITED GLOBAL CONFOUNDING VIA MIXTURE MODELS

process selects a chain and a starting state from the mixture distribution, then generates a short
observable path through the chain. In their model, under some conditions, a sufficiently large
collection of paths of length 3 suffices to recover the parameters of the mixture, using spectral
methods. A different model is considered in Batu et al. (2004). There, the constituents of the mixture
have disjoint state spaces and the observation is a long sequence of interleaved paths in the separate
chains. The primary challenge is to cluster the observable states into the k constituents. This model
can be viewed as a special case of the hidden Markov model problem.

The natural extension of EVEN and ODD vertices is a two-coloring on a tree which denotes
sets that are of even or odd distance from the root. One can construct a good set of runs for learning
mixtures of trees of size n ≥ 2Nmp that is very similar to the one given for mixtures of paths.

C.2. Larger alphabets for mixtures of DAGs

The simplest reduction for larger alphabets is to replace each vertex with a clique of d binary vertices
which represent the value of the nonbinary vertex. The pseudocode for this process is given in
Algorithm 5.

Algorithm 5: Reduction for larger alphabets
Input: A DAG (V , E) on n variables V1, . . . , Vn ∈ [d].
Output: A DAG (W, EW) on dn binary variables W 1

1 , . . .W
d
1 , . . .W

1
n , . . .W

d
n ∈ {0, 1}.

Start with EW ← ∅ for each vertex i ∈ [n] do
Form a clique among W 1

i , . . .W
d
i by adding directed edges (W a

i ,W
b
i) to EW for all pairs a < b

with a, b ∈ [d].
end
for each directed edge (Vi, Vj) ∈ E do

Add {W 1
i , . . . ,W

d
i } × {W 1

j , . . . ,W
d
j } to EW .

end

Observation 40 The maximum degree of (W, EW) outputted by Algorithm 5 is now at least ∆ ≥ d.

Observation 41 The number of vertices |W| = nd.

We now give the function that translates data from the original graph to the new graph.

Definition 42 (One-hot encoding) We define χ(v) = (10(v), . . . , 1d−1(v)) to give the one-hot
encoding of the value of a variable V .

This allows us to give the full algorithm.

Theorem 43 If P(V) =
∑

u Pu(V)P(u) is a mixture of k distributions over a DAG G = (V ,E)
with V ∈ {0, . . . , d− 1} and there exists a set of Nmp centers, then there is an algorithm to compute
estimates of all parameters to accuracy ε. If D = max(d,∆) then the algorithm uses O(nd2D

2
)

calls to the k-MixProd oracle.

Proof The algorithm uses the reduction in Algorithm 6. This involves running the algorithm on a
larger graph with nd vertices and ∆ ≥ d, which modifies the run-time and sample complexity as
given.

27

GORDON MAZAHERI RABANI SCHULMAN

Algorithm 6: DAG reduction for larger alphabets
Input: A DAG (V , E) on n variables V1, . . . , Vn ∈ [d]. And data with entries of the form

(v1, v2, . . . , vn).
Output: Parameters Pu(vi | PA(Vi)) for i ∈ [n].
Use Algorithm 5 to create a larger DAG on binary variables, called G′.
One-hot encode data on each Vi into binary variables ξ(V) = (W 1

i , . . . ,W
d
i).

Run the Mixture of DAGs algorithm for G′ on the one-hot encoded data.
for each parameter Pu(vi | PA(Vi)) do

Let Z indicate zero assignments to W b
i for b 6= vi.

One-hot encode each parent Vj ∈ PA(Vi) to obtain assignments to PA(W vi
i) \

{
wb : b 6= vi

}
,

denoted paOH(W vi
i).

Assign Pu(vi | PA(Vi)) = Pu(W vi
i = 1 | Z, paOH(W vi

i)).
end

28

	Introduction
	Problem Statement
	Summary of contributions
	Background
	Notation

	Applying a k-MixProd run
	Describing runs

	Combining Runs
	Aligning source labels across different runs
	Bayesian unzipping: recovering parameters per source
	Recovering the distribution on sources

	Outline of the combination process

	Collections of runs
	A generic good collection of runs
	Limiting the depth of unzipping

	Conclusion
	k-MixBND algorithm pseudocode
	Finding good collections of runs
	Constructing a good collection of runs from Nmp centers
	Degree bounds

	Analyzing Bayesian Unzipping
	Mixtures of paths
	Larger alphabets for mixtures of DAGs

