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Abstract—Post-quantum cryptography (PQC) refers to cryp-
tographic algorithms that are thought to be secure against a
cryptanalytic attack by a quantum computer. Before PQC algo-
rithms can be widely deployed to replace the current standards
such as the RSA algorithm, they need to be rigorously evaluated
theoretically and practically. In this work, we present a cloud-
based infrastructure being developed for performing side-channel
analysis on PQC algorithms for the research community. Multiple
types of side-channel attacks, such as timing attacks, power
attacks, and electromagnetic attacks can be applied on different
types of devices, such as FPGA devices and microcontrollers. An
automated tool flow is being developed that can run executables
on the target devices, collect traces (e.g., power consumption
waveforms and electromagnetic radiation signals), perform leak-
age assessment (using Test Vector Leakage Assessment), and
generate analysis reports. Remote users access the infrastructure
through a web portal by uploading the hardware or software im-
plementations of cryptographic algorithms. Side-channel attack
and leakage analysis are performed on the given implementation.
Finally, the user is informed for downloading the analysis report
from the portal.

Index Terms—Side-channel attack, Post-Quantum cryptogra-
phy, Leakage detection, Hardware design, Cloud-based Infras-
tructure.

I. INTRODUCTION

The modern internet enables secure multi-party communi-
cation through cryptography. Asymmetric cryptography allows
these communications to be established without prior arranged
keys. However, current standardized asymmetric encryption
schemes are subject to key factorization attacks in polynomial
time when using a quantum computer. Standardization efforts
are underway to create quantum-safe asymmetric cryptogra-
phy. The algorithms and their implementations need to be thor-
oughly vetted for side-channel resistance. The overall objective
of this project is to create an open research infrastructure that

helps improve the side-channel analysis of the implementations
of Post-Quantum Cryptography that will be used for secure
communication among the digital infrastructure.

Quantum Computers and Cryptography: One conse-
quence of Shor’s algorithm [1] is that discrete logarithm
and factoring can be performed in many circumstances in
polynomial time. This renders most standardized asymmetric
cryptographic algorithms (such as RSA or ECC) with signif-
icantly reduced security. To remedy this oncoming concern,
the National Institute of Standards and Technology (NIST) [2]
began a standardization effort in 2016 to identify and decide on
asymmetric algorithms and their respective parameter sets that
are resistant against both classical and quantum computers.
This effort is named “Post Quantum Cryptography” or PQC.
CRYSTALS-Kyber [3] has been selected and is undergoing
final preparation for standardization as the key-establishment
mechanism (KEM) of choice. SImilarly, for digital signatures,
CRYSTALS-Dilithium [4], FALCON [5], and SPHINCS+ [6]
have been selected for further standardization.

Cryptography and Side Channels: However, a physical
implementation of these algorithms that are currently mathe-
matically secure may, under certain circumstances, be phys-
ically insecure. The implementation of the algorithm (such
AES on an embedded system) can leak secret information,
including potentially its private key. Attacks that exploit the
implementation rather than the design of the algorithm are
called “side-channel attacks” (SCA). Some examples of SCA
involve measuring power, electromagnetic radiation, and tim-
ing differences. All of these side-channels can yield additional
information about the algorithm that should be secret. There-
fore, it is crucial that the algorithm is mathematically secure
and also SCA secure to ensure that secure communication is
preserved.

PQC algorithms that are selected for standardization are
either new or under-researched in SCA. Given that there are978-1-5386-5541-2/22/$31.00 ©2022 IEEE



no established implementations, the existing implementations
of PQC have been shown to have vulnerabilities [7] [8] [9]
[10]. Performing side-channel analysis on cryptography is non-
trivial. It requires specific domain knowledge, equipment, and
resources. It can also be prohibitively expensive. Therefore,
the goal of this project is to significantly reduce the barrier-to-
entry to enable SCA research for PQC more broadly. We hope
that by making this available, the broader security community
will be able to more expediently arrive at secure and trusted
PQC implementations.

Existing SCA Labs: There exist industry SCA labs that do
conduct side-channel analysis. Some examples of SCA labs
are Riscure with Inspector, Secure IC with Analyzr, Rambus
offering DPA workstation, and eShard. Some of the compa-
nies provide software tools to conduct SCA, some provide
auditing on the customer’s implementation, and some also
provide full workstations that conduct SCA. Unfortunately,
the industrial solutions can be costly. Further there exists no
SCA infrastructure open to the public for PQC algorithms.
Riscure and PQShield are working towards an SCA lab
dedicated to PQC algorithms. But it is unclear if it will be
open to all or just customers who want SCA auditing. There
is work of an open-source SCA platform named FOBOS2
[11]. However, it is geared towards lightweight ciphers and
hardware implementations.

Regarding Power Electronics: Microgrid and distributed
PV delivery has potentially pushed vital infrastructure into
physically insecure locations. Therefore, it is vital that the
community integrates safe implementations of PQC algorithms
into the power infrastructure. Without secure PQC imple-
mentations, secure communication will not be guaranteed.
Malicious actors can find and act on vulnerabilities on the
PQC implementations, possibly disrupting the power grid or
causing harm. Therefore, the plan of this work is to use this
infrastructure to help test and validate the SCA security of new
PQC implementations that will be integrated into the power
electronics infrastructure.

In this work, we present the prototype of a multi-target and
multi-tool power side-channel analysis platform that conducts
the Test Vector Leakage Assessment (TVLA) on PQC im-
plementations. This infrastructure offers SCA leakage assess-
ments on PQC implementations. It is open to both industry
and researchers who want to test the SCA security without
requiring the necessary equipment. The current infrastructure
contains two types of power trace collecting devices, i.e.,
high-end oscilloscopes for high-resolution trace collection, and
NewAE ChipWhisperer for faster and smaller trace captures.
Hardware and software implementations of PQC algorithms
run on FPGA devices and various target boards (e.g., micro-
controller boards), respectively.

II. THE OVERALL ARCHITECTURE

A. Main Components

The overview of the architecture for the prototype of the
infrastructure is shown in Fig. 1. It consists of four main
components. The client interface is responsible for servicing
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Fig. 1: An overview of the major system components.

the user, scheduling SCA jobs (similar to an HPC system),
and storing the SCA analysis results from the lab computer.
The sandbox computer consists of a lab computer connecting
to either the ChipWhisperer testbench or the oscilloscope
testbench. This computer will have a set of scripts (both in
bash scripts and Python) that will control the target boards,
control the oscilloscope or ChipWhisperer, and also process
the power traces and compute statistical analysis. Once the
job is completed, it will return the results back to the client
interface.

The ChipWhisperer testbench consists of a ChipWhisperer-
Lite connected to a CW308 UFO board. The ChipWhisperer
is a hardware security tool performing side-channel analysis
through power analysis and fault injections on either hard-
ware or software victim boards. In the current prototype,
the ChipWhisperer tool is utilized for software only targets
for measurement. For the software targets, the STM32F4
microcontroller board is employed, which consists of an ARM
Cortex-M4 processor (at 7.37 MHz). The victim board is
controlled by the lab computer in the sandbox computer
component. The ChipWhisperer testbench uses synchronous
sampling tied to the victim board, requiring a lower sampling
rate to be equivalent to a high asynchronous sampling os-
cilloscope [12]. The main drawback of ChipWhisperer-Lite
is the relatively small sample buffer (24,400 samples total).
Therefore, the prototype will only utilize the ChipWhisperer
testbench for software implementations that can fit the whole
measurement of the point of interest into the sample buffer.
The inputs (public key, private key, plaintext) are all generated
on the board.

The oscilloscope testbench consists of a Tektronix MDO34
3-BW-200 oscilloscope, a victim microcontroller for the soft-
ware implementations, and a Xilinx Virtex-7 FPGA VC707



(at 100 MHz) for the hardware implementation. For software
implementations, the shunt resistor found on the CW308
UFO board can be measured with a passive probe at various
sampling rates and lengths depending on the length of the
implementation runtime. For hardware implementations, a
passive probe is attached to the output of VCCINT power rail.
The victim boards in this testbench are controlled by the lab
computer found in the sandbox computer component. The in-
puts, such as the ciphertext and the keys, are genereated on the
FPGA’s MicroBlaze processor. The sandbox computer utilizes
a custom communication protocol [13] through Python to gen-
erate the inputs and feed them into the encryption/decryption
module, which runs on the FPGA device.

B. Evaluation

Test Vector leakage Assessment (TVLA) [14] has become
the de facto standard in the evaluation of side-channel mea-
surements, such as power and electromagnetic (EM) traces.
TVLA identifies differences between two sets of side-channel
measurements by computing the uni-variate Welch’s t-test for
the two sets of measurements. The test can be employed
to detect side-channel leakages that are not associated with
any specific leakage model [15]. Two sets of measurements
are taken, the first with fixed inputs and the second with
random inputs, which will be referred to as Tf and Tr,
respectively. The fixed set contains fixed variables utilized for
the cryptographic operation. The random dataset will share
all the same variables with the fixed set except for a single
random variable. At each time step a pass/fail decision is given
by testing for a null hypothesis such that the means of the two
sets are equivalent. The TVLA at each time step is calculated
as follows:

TV LA =
µr − µf√
σ2
r

nr
+

σ2
f

nf

, (1)

where µr, σr, and nr are the mean, standard deviation, and
number of traces collected for Tr, respectively; likewise for
trace set Tf . The null hypothesis is rejected with a confidence
level of 99.9999% if the absolute value of the t-test is greater
than 4.5 [14]. Assuming independent leakage, any variation in
the power traces is the result of the underlying computation
other than factors such as hardware architecture features [16].
Therefore, a rejected null hypothesis, which constitutes a fail
decision, suggests that the two trace sets Tr and Tf are
different and as such might leak some information about
the underlying computation with the differing variables. An
accepted null hypothesis suggests with high confidence that
there is no effect on the power with the difference of the inputs
and the use of variables.

Distinguishers are classes that test for the difference in
power when varying certain variables associated with the
distinguisher. Since there are many variables within PQC
algorithms, the prototype must create many distinguishers to
test each effect of the variables on the power traces. Within
this work, the ciphertext distinguisher is utilized for the key
encapsulation mechanism (KEM) algorithm and the message

Fig. 2: TVLA Process for KEM Distinguisher.

distinguisher for the Public-Key Encryption (PKE) algorithm.
The ciphertext distinguisher consists of two datasets, where
one setup uses the same generated ciphertext (fixed), and the
other generates a new ciphertext (random) every measurement.
This distinguisher measures the power difference within the
decapsulation sub-algorithm to see if varying the input (which
is the ciphertext) affects the power. The message distinguisher
will test to see if there is a power difference with the use of
the message on the decryption sub-algorithm. The message
distinguisher will contain two sets of data, where the fixed
dataset has the same message used for all measurements. The
random dataset will consist of a random message for every
measurement.

The test vectors for the two test benches for the TVLA
process are generated differently. For the software side im-
plementations, the test vectors are generated in KEM Keypair
and KEM Encapsulation. Dataset A consists of power traces
utilizing the same generated ciphertext. Dataset B consists of
power traces that have a randomly generated ciphertext. Both
dataset A and B are collected during the same process, where
the prototype first captures dataset A and then dataset B in
the same job process. KEM keypair is ran first to generate
the public and private key pair. This key will stay constant for
both dataset A and B. For dataset A, encapsulation is ran once,
and it will generate the fixed ciphertext that will be utilized as
many times as the TVLA process requires in decapsulation.
The point-of-interest is placed by the user in any place the
user wants to measure inside decapsulation. For dataset B,
encapsulation is ran every measurement to generate a new
ciphertext, where this random ciphertext that was generated
will be utilized only once in a decapsulation call. Once the
testbench is finished measuring, both datasets are sent to the
sandbox computer where it will calculate the TVLA results.
The software side TVLA KEM distinguisher process can be
seen in Fig. 2. For the hardware side, the inputs, such as
the private key and the ciphertexts, are fed into the FPGA
where it will perform decryption. It will follow a similar setup
where dataset A has a fixed ciphertext and dataset B will



have a random ciphertext with many decryption runs where
the measurement occurs. The keypair and the ciphertext test
vectors are generated using Kyber’s source C code.

(a) Unmasked Interface. (b) Masked Interface.

Fig. 3: Software PQC Interfaces.

C. Taking User’s Implementation

To take arbitrary PQC KEM implementations for the soft-
ware side, the user must implement the sub-algorithms of
the KEM process (keypair, encapsulation, and decapsulation).
Once the sub-algorithms are implemented, they will be called
by using the PQClean [17] API interface for simplicity. The
unmasked interface can be seen with Fig. 3a. Since there exists
implementations with countermeasures (such as masking) that
utilize custom variables that do not follow the PQClean
API interface, a separate interface is made for the user if
specified. This masked interface can be seen in Fig. 3b. For the
hardware side, the prototype will obtain the user’s bitstream
and testvectors through the client interface and will be utilized
on the FPGA board.

D. Measuring Point of Interest

Previous asymmetric cryptography algorithms (such as
RSA) were less complex than the newly developed standard-
ized PQC algorithms. Many of the newly introduced stan-
dardized PQC algorithms contain many sub-algorithms, which
make the run-time on platforms longer. Therefore, it may be
difficult to measure the full algorithm in a single measurement
since it will require a very large sample buffer. Therefore, it is
up to the user to decide the area of measurement that will be
performed for the SCA analysis. An example of the function
measured in decapsulation in the prototype and how it placed
the point of interest can be seen in Fig. 4.

III. IMPLEMENTATION AND RESULTS

With this prototype, a set of software tools have been
developed to automate the power-based side-channel attack
and analysis, as shown in Fig. 5. Starting from the hardware
or software implementation of the algorithm uploaded by
the user, a sequence of operations will take place in order,
represented by numbers 1 to 5 in Fig. 5. The following is an
explanation of each step.

Fig. 4: Area of Measurement.

Fig. 5: An automated process for performing power-based
side-channel attack and analysis.

(a) Job form on the client
interface.

(b) TVLA result of an unmasked Ky-
ber implementation.

Fig. 6: Client Interface.

1) The user sends the PQC implementation in either a
bitstream for the hardware implementation or the source
code that implements the sub-algorithms for the software
implementation. The user will specify what platform
they require to run the tests on, and the number of traces
wanted. This can be seen in Fig. 6a. The web portal
will then send the implementation to the appropriate lab
computer to perform analysis on the testbench.

2) The control PC (i.e., the lab computer) uses Python
script to control either the oscilloscope or the Chip-
Whisperer. The oscilloscope is always used for the
hardware implementation. It is optionally employed for



the software implementation if the algorithm requires
high resolution traces or the sample buffer of the Chip-
Whisperer cannot save all the data.

3) For the case of the software implementation, the Chip-
Whisperer capture board (which is commanded by the
control PC) is utilized to command the victim to perform
cryptographic sub-algorithms followed by the TVLA
process. In the hardware implementation case, the con-
trol PC sends inputs to the platform, and the oscilloscope
measures the power consumption of the operations.

4) For each power measurement, the resulting power trace
back is sent to the control PC. Once all the power
measurements are done, the control PC performs the
TVLA on the fixed dataset and the random dataset. It
will then take these results from the TVLA and convert
them into both a readable form and a graph.

5) The TVLA results will be sent back to the user on the
client interface. One example can be seen in Fig. 6b.

(a) Power trace of the unmasked
Kyber.

(b) Power trace of the masked
Kyber.

(c) TVLA result of the unmasked
Kyber.

(d) TVLA result of the masked
Kyber.

Fig. 7: Side-channel attack and analysis of CRYSTALS-Kyber
on Xilinx Virtex-7 FPGA.

As a showcase, we implemented CRYSTALS-Kyber, the
first PQC algorithm standardized by NIST, on Xilinx Virtex-
7 FPGA [13], [18]. Two versions of Kyber were coded in
Verilog HDL. For both the unmasked and masked versions of
the algorithm, they ran on the FPGA 4,000 times. Once 4,000
traces were collected, TVLA was applied. Given the results in
Figures 7c and 7d, it could be found that the unmasked version
had a leakage while the masked version had no leakage.

For the software side, the source code of CRYSTALS-
Kyber from the PQM4 [19] library, which contains Cortex-
M4 implementations of the PQC algorithms, was utilized.
The interfaces were implemented by taking the sub-algorithms
from the PQM4 implementation and placing them in the
interface. The masked CRYSTALS-Kyber implementation was

Fig. 8: TVLA result of the software masked Kyber.

Fig. 9: TVLA result of the software unmasked Kyber.

taken from an open-sourced repository by Heinz et al. [20]. An
example of the TVLA of the masked implementation can be
found in Fig. 8. An example of the TVLA of the unmasked im-
plementation can be found in Fig. 9. There is a larger reduction
of leakage samples in the masked implementation compared
with the unmasked implementation. 3rd round PQC algorithm
Saber [21] was tested on the ChipWhisperer platform, but was
not used for the infrastructure testing.

IV. CONCLUSION

In this work, we present a cloud-based infrastructure for
post-quantum cryptography side-channel attack and analysis.
This prototype contains the development of a set of tools to
automate the process from accepting user inputs to returning
testing reports. Results show that the infrastructure can suc-
cessfully detect leakage of secrets from unmasked version of
CRYSTALS-Kyber algorithm. This infrastructure can be used
to rigorously test cryptographic algorithms that are integrated
into the power electronics to ensure secure communication in
power grid.

One of the limitations of this work is the use of the
infrastructure’s distinguishers and the inputs that are used for
measuring. When looking at distinguishers, they usually cover
a variable that can be composed of many other variables. For
instance, the ciphertext in Kyber is composed of some secret
variables and some public variables. It may be possible that
the testbench accidentally measures the leakage of the public
variable, which gives the false impression that there is leakage
of the secret variable [22] that is being analyzed through



the TVLA. It may be the possible reason why Fig. 8 fails
the TVLA. Possibly creating better crafted test vectors with
relation to the distinguisher would help with this situation.
Another issue of the prototype is that the algorithm imple-
mentations can run for so long that the oscilloscope does not
have enough memory to capture the whole trace. For some
software masked implementations, the overhead introduced
into the runtime was large enough that the oscilloscope could
not measure the specified point of interest. The oscilloscope
used in the prototype has a limited sample buffer length and
must follow the Nyquist-Shannon theorem, meaning there is
a maximum number of samples that can be measured. This
means that the infrastructure tool will first need to measure
the runtime of the implementation to gauge if it could be
measured or would require a more powerful oscilloscope (in
terms of sample length).

Given the simplicity of the major system components,
this infrastructure can be scaled up to service many users.
The prototype currently contains a self-hosted Flask server,
one sandboxed computer that operates the ChipWhisperer
testbench, and another sandboxed computer that operates the
oscilloscope testbench. To scale this to a larger size, it would
require a larger server to help process the jobs, more sandbox
computers to control testbenches and perform TVLA.

Some plans for this infrastructure involve fully prototyping
the infrastructure tool. The prototype currently has both an
automated capturing process and an automated TVLA process
for the two distinguishers mentioned before. The current
prototype also has the website up and running with a database
along with scripts to help run the TVLA process. The work
left in the prototype involves automating the whole end-to-end
process from the user end all the way to the testbench and
returning results. Some additional plans for the infrastructure
tool involve adding more platforms to the list to allow users
to have more freedom in their implementations. The infras-
tructure prototype currently has the STM32F4 and the Virtex-
7 VC707 FPGA victim targets. There are also plans to add
electromagnetic radiation analysis using near-field probes to
capture leakage that can only be seen by those types of probes.
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