
A Unified Analysis of Dynamic Interactive
Learning

Xing Gao, Thomas Maranzatto, Lev Reyzin

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

{xgao53,tmaran2,lreyzin}@uic.edu

Abstract—In this paper we investigate the problem of learning
evolving concepts over a combinatorial structure. Previous work
by Emamjomeh-Zadeh et al. [1] introduced dynamics into inter-
active learning as a way to model non-static user preferences in
clustering problems or recommender systems. We provide many
useful contributions to this problem. First, we give a framework
that captures the two different models analyzed by Emamjomeh-
Zadeh et al. [1], which allows us to study any type of concept
evolution and matches the same mistake bounds and running time
guarantees of the previous models. Using this general model we
solve the open problem of closing the gap between the upper and
lower bounds on the number of mistakes. Finally, we study an
efficient algorithm where the learner simply follows the feedback
at each round, and we provide mistake bounds for low diameter
graphs such as cliques, stars, and general o(logn) diameter
graphs by using a Markov Chain model.

I. INTRODUCTION

The problem of recommending products or media is ubiqui-
tous in many practical settings such as search engines, online
marketplaces, or media streaming services (e.g. Google search,
Amazon, Spotify, etc.). In such settings any algorithm that tries
to optimize recommendations receives implicit feedback from
users in the system. This feedback is then used to refine future
queries.

Drawing inspiration from earlier work on query learning
by Angluin [2], as well as more recent models for interac-
tive clustering [3]–[5], Emamjomeh-Zadeh and Kempe [6]
considered such product recommendation problems from the
perspective of combinatorial learning, where specific orderings
of recommendations are nodes in a (very large) digraph. In this
graph there is a distinguished node (the target) that corresponds
to the ordering that the learner wishes to discover. This can be
thought of as the ‘ideal’ ordering of products in a marketplace,
or the ‘best’ sequence of recommendations in a streaming
service. A directed edge exists from node s to s′ if the user
might prefer s′ when the learner proposes s. For example, a
user might want to swap two items from an ordered list s to
get the more preferred ordering s′. If the learner proposes a
node and that is not the target, it receives noisy (random [6] or
even adversarial [7]) feedback in the form of an edge on the
shortest path from the proposed node and the target. This form

Supported in part by NSF awards ECCS-2217023 and CCF-2307106.

of feedback is similar to the correction queries from query
learning [8].

Emamjomeh-Zadeh et al. [1] subsequently considered cases
when the combinatorial structure itself can evolve over time –
as they noted, some of these settings resembled earlier work
on shifting bandits [9]. These dynamic settings are also where
our results lie, and among our results, we generalize the work
of Emamjomeh-Zadeh et al. [1] and solve some of their open
problems herein.

II. PRELIMINARIES

Emamjomeh-Zadeh and Kempe [6] first introduced a static
graph model for robust interactive learning, where there is one
fixed concept (the target) in the concept class, and the learner
is trying to learn under noisy feedback. Later Emamjomeh-
Zadeh et al. [1] extended the model to dynamic interactive
learning, where the target concept can change during learning.
Our work is based on the same framework, so we will briefly
describe previously defined models and results here.

A. Static model

For clarity we first state the static learning model from
Emamjomeh-Zadeh and Kempe [6], as it is a foundation for
later work on dynamic models.

Definition 1 (Feedback graph [6]). Define a weighted (directed
or undirected) graph G = (V,E,w), where the vertices
represent a set of n = |V | candidate concepts. The edge set E
captures all possible corrections a learner can receive: edge
(s, s′) exists if the user is allowed to propose s′ in response
to s. The edge weights w are given to the learning algorithm,
satisfying a key property: if the learner proposes s and the
ground truth (target) is t 6= s, then every correct user feedback
s′ lies on a shortest path from s to t with respect to edge
weight w.

Note that we assume that the weighted graph is given to the
algorithm and faithfully represents the underlying problem.

For an undirected graph G, let NG(v) denote the neighbor-
hood of v in G. For a directed graph G, let N in

D (v) be the
in-neighborhood of v in digraph D (including self loops) and
Nout
D (v) be the out-neighborhood of v in digraph D (including

self loops).

In the static model there exists a fixed target vertex t ∈ V
that the algorithm is attempting to learn over multiple rounds.
In each round the learner proposes a query vertex q ∈ V and
receives a feedback vertex z which is noisy with probability p.
Specifically, if q = t, with probability 1−p the learner receives
feedback q indicating the query is correct, and with probability
p it receives an incorrect feedback z which is adversarially
chosen from NG(q); if q 6= t the algorithm is given a feedback
z ∈ NG(q) which is incorrect with probability p. Crucially both
correct and incorrect feedbacks are adversarial. As discussed
in Emamjomeh-Zadeh and Kempe [6] this implies learning is
only feasible when p < 1/2.

Other important definitions used throughout include the
collection of concepts that are consistent with a particular
feedback, or the version space for a query-feedback pair, as
well as the weighted median of the feedback graph, which can
be interpreted as the ‘center of mass’ of the graph.

Definition 2 (Version space [6]). If the learner pro-
poses q and receives feedback z, let SG(q, z) be
the collection of concepts (nodes) that are consis-
tent with the feedback. Formally, SG(q, z) = {v |
z lies on a shortest weighted path from q to v}.

Definition 3 (Weighted median [10]). Let L : V → R≥0 be a
function that assigns likelihood to every vertex in the feedback
graph G = (V,E,w). A weighted median u is a vertex that
minimizes

∑
v∈V L(v) · w(u, v).

Emamjomeh-Zadeh and Kempe [6] presented a multiplicative
weight update algorithm, which assigns likelihoods for each
vertex in the feedback graph, and repeatedly queries the
weighted median, which has the property of halving the total
likelihood of its version space each round.

B. Dynamic model

Our paper is concerned with dynamic interactive learning
where the target t is allowed to move. Assume that over the
R rounds of learning the target moves at most B times and
at round r the target is located at some node tr. Without
further assumption on target evolution, Emamjomeh-Zadeh
and Kempe [1] showed the following general mistake upper
bound. For the remainder of the paper, denote the entropy as
H(p) = p log 1

p + (1− p) log 1
1−p .

Theorem 4 (Emamjomeh-Zadeh et al. [1]). Assume the total
number of rounds R is known beforehand. Let A = V R be the
set of all node sequences of length R and let a∗ = 〈t1, . . . , tR〉
be the sequence of true targets throughout the R rounds. Let
λ : A→ R≥0 be a function that assigns non-negative weights
(likelihoods) to these sequences, such that

∑
a∈A λ(a) ≤ 1.

There is an online learning algorithm that makes at most
1

1−H(p) · log 1
λ(a∗) mistakes in expectation.

While this is a positive result for the mistake bound, it does
not guarantee an efficient algorithm as it has to keep track
of weights for all sequences V R, and in the worst case the
number of sequences is O(nR) where n = |V |. Relatively

efficient implementations exist for the following two models
without explicitly constructing the λ map for each sequence.

1) Shifting Target: In the Shifting Target model there exists
an unknown subset of vertices S ⊆ V where |S| ≤ k, and
the learner knows k. Target transition is restricted within S,
viz. tr ∈ S for every round r. Previous work by Emamjomeh-
Zadeh et al. [1] proved the following theorem.

Theorem 5 ([1]). Under the Shifting Target model, there is a
deterministic algorithm that runs in time O(nkpoly(n)) and
makes at most 1

1−H(p) · (k log n+(B+1) log k+R ·H(B/R))
mistakes in expectation. Furthermore, there exists a graph such
that every algorithm makes at least

min
{ 1

1−H(p)
· [k log n+ (B − 2k + 1) · (log k)]

− o(log n)−B · o(log k) , R− o(R)
}

mistakes in expectation.

Note in particular the exponential dependence on k in the
runtime of the algorithm.

2) Drifting Target: In the Drifting Target model, it is
assumed that the target slowly evolves over time, and the
evolution can be modeled by following the edges of some
transition graph defined below.

Definition 6 (Transition graph [1]). There exists a known
unweighted digraph G′ = (V,E′), where in particular G′ and
G have the same vertex set but their edge sets can be different.
The target is only allowed to move along edges of G′. Formally
for every round r the model requires tr+1 ∈ {tr} ∪Nout

G′ (tr).
Let ∆ be the maximum degree in G′.

In previous work, Emamjomeh-Zadeh et al. [1] proved the
following theorem.

Theorem 7 (Emamjomeh-Zadeh et al. [1]). Under the Drifting
Target model, there is a deterministic algorithm that runs in
time poly(n) and makes at most 1

1−H(p) · (log n+B · log ∆ +

R ·H(B/R)) mistakes in expectation..
Furthermore, there exists a graph such that every algorithm

makes at least

min
{
R− o(R),

1

1−H(p)
(log n+B log ∆)− o(log n)−B · o(log ∆)

}
mistakes in expectation.

Notice that for both Shifting Target and Drifting Target
models, there is a gap of R ·H(B/R) between the mistake
upper bound and lower bound, which remains an open problem
in Emamjomeh-Zadeh et al. [1]. We will show a new lower
bound and close the gap in Section 4.

III. A UNIFIED MODEL

Our first contribution is to define a more generalized
model inspired by the original Drifting Target model, and
show that the results from Theorems 5 and 7 are both valid

Algorithm 1 Interactive learning likelihood update

1: Initialize L′1(u) ∀u ∈ V ′
2: for 1 ≤ r ≤ R do
3: ∀i ∈ V : Lr(i) ←

∑
u∈V ′i

L′r(u) {Aggregate Lr from
L′r over the duplicates}

4: qr ← arg mini∈V
∑
j∈V Lr(j) · w(i, j) {Query the

weighted median}
5: zr ← feedback from adversary
6: ∀i ∈ V and ∀u ∈ V ′i :
7: P (i) ← (1 − p) · 1[i ∈ SG(qr, zr)] + p · 1[i 6∈

SG(qr, zr)] {Weight update multiplier for i}
8: P (u) ← P (i) {Same weight update for each

duplicate u of i}
9: ∀u ∈ V ′ : L′r+1(u) =

∑
v∈Nin

G′ (u) P (v) · L′r(v) · πvu
{Apply weight update and transition}

10: end for

under this generalization, thus unifying previous models. The
technique used in Emamjomeh-Zadeh et al. [1] to efficiently
implement the Shifting Target model was to keep track of
likelihoods for each subset of nodes instead of each sequence,
reducing computational complexity from O(nR) to O(nk).
Similarly, their efficient implementation for the Drifting Target
model keeps track of likelihoods for each node, reducing
computational complexity to O(poly(n)). This method requires
customization for each transition model, and can become tricky
as the models become more complicated. A key motivation
for a general model is that it unifies a wide class of transition
models, and allows us to easily obtain mistake upper bounds
and runtime guarantees based on a single algorithm.

As above let G = (V,E,w) be the graph representing the
candidate concepts (the feedback graph), and G′ = (V ′, E′, π)
be a directed transition graph, representing all possible ways
the target might change over time. The key difference is that
for each vertex i ∈ V , V ′ contains possibly duplicated vertices
corresponding to the same vertex i, denoted by V ′i := {u ∈
V ′ | u corresponds to i ∈ V }. Define n′ = |V ′|, ∆′ as the
max degree of G′, and πij as the transition probability in G′,
where πii = (1 − b) with b = B

R , and πij = πout := b
∆′ for

i 6= j under a uniform transition assumption.
We present a modified version of the algorithm from

Emamjomeh-Zadeh et al. [1]. In the rth round, we keep track
of the likelihoods for each vertex u ∈ V ′ as L′r(u), and for
each vertex i ∈ V its likelihood Lr(i) is aggregated from L′r
as the summation over all of i’s duplicates in V ′. The median
of the feedback graph G is then calculated based on Lr. We
update the likelihoods L′r+1 for all corresponding nodes in G′

based on each node’s consistency with the feedback using the
same rules as in Emamjomeh-Zadeh et al. [1].

Theorem 8. Assuming the first target is chosen uniformly at
random from V ′, Algorithm 1 runs in time O(∆′ ·n′+poly(n)),
uses space O(n′), and makes at most

1

1−H(1− p)
·
(

log n′ +B · log ∆′ +R ·H(B/R)
)

mistakes in expectation.
Alternatively writing the bound using transition probabil-

ities instead of maximum degree, Algorithm 1 runs in time
O
(

1
n′ · π

B
out · (1− b)R−B

)
, uses space O(n′), and makes at

most

1

1−H(1− p)
·
(

log n′ +B · log(b/πout) +R ·H(b)
)

mistakes in expectation.

Proof. We wish to show that the likelihood of the ground truth
sequence a∗ is at least

λ(a∗) =
1

n′ ·∆′B ·
(
R
B

) ,
or alternatively

λ(a∗) =
1

n′
· πBout · (1− b)R−B .

Note that these two expressions correspond to two equivalent
interpretations of the transition model: 1, the target changes
at most B times during R rounds; 2, the target changes with
probability at most b = B/R at each round.

For the first interpretation, we provide the expression for
λ(a∗) with a combinatorial argument: there are n′ choices for
the first node, and the next node differs from the previous
node at most B times, each time with ∆′ choices, and these
changes can occur at

(
R
B

)
locations in the sequence. Thus the

total number of valid sequences is n′ ·∆′B ·
(
R
B

)
. The initial

likelihoods are assigned uniformly among all sequences, so
dividing 1 by the total number of sequences gives us λ(a∗).

For the second interpretation, we have a probabilistic
argument: the sequence starts with any particular node in the
transition graph with probability 1

n′ , and the next node changes
to one of the neighbors with probability πout = b

∆′ for B times,
and stays the same with probability 1 − b for R − B times.
Taking the product of these probabilities gives the result.

The mistake upper bound follows by substituting λ(a∗) into
Theorem 5 of Emamjomeh-Zadeh et al. [1]. Note that for
large R we approximate

(
R
B

)
by
(
R
B

)B · (R
R−B

)(R−B)
, which

contributes to the term R ·H(B/R) = R logR − B logB −
(R−B) log(R−B) after taking logarithm.

For algorithmic complexity, steps 3 (aggregating likelihoods)
and 6 (computing weight multiplier) both take time O(n′), step
4 (computing median) takes time O(n3), and step 9 (updating
weight and transition) takes time O(∆′ · n′), and Lr, L′r takes
space n and n′ respectively.

Under our generalized model, any dynamic interactive
learning problem can be reduced to defining the feedback graph
G to represent the concept class, and defining the transition
graph G′ to represent the concept evolution. Specifically, the
Shifting Target model and Drifting Target model studied in the
original paper can be shown as special cases under this general
model, and we will show that the general bounds agree with
the original results.

Corollary 9. In the Drifting Target model, Algorithm 1 runs
in time O(∆ · poly(n)), uses space O(n), and makes at most

1

1−H(1− p)
·
(

log n+B · log ∆ +R ·H(B/R)
)

mistakes in expectation.

Proof. The transition graph G′ is the same as the feedback
graph G, and transition probability is assumed to be uniform.
Thus n′ = n, and ∆′ = ∆. Plugging into Theorem 8 gives the
result.

Corollary 10. In the Shifting Target model, Algorithm 1 runs
in time O(k2 · nk), uses space O(k · nk), and makes at most

1

1−H(1− p)
·
(
k · log n+ (B + 1) · log k +R ·H(B/R)

)
mistakes in expectation.

Proof. The transition graph G′ consists of
(
n
k

)
disconnected

sub-graphs, where each sub-graph is a clique of size k,
corresponding to a subset of k vertices in V . Each round the
target might shift within a k-clique, and each clique represents
a possible choice of the k-subset of targets. Thus n′ =

(
n
k

)
· k

and ∆′ = k. Plugging this into Theorem 8 gives the result.

Since the mistake and computational upper bounds mostly
depend on the size of transition graph, namely n′ and ∆′,
minimality of the transition graph is crucial for query and
computational efficiency. We want to find the worst case
mistake upper bound, which can be used as a benchmark
when modeling various types of transitions. A trivial upper
bound on mistakes occurs in the case that the learner does not
have any information about how target might change over time,
thus the transition graph G′ is a complete graph on n′ = n
vertices, and ∆′ = n. Plugging into Theorem 8 gives the
following result.

Corollary 11. The worst case mistake upper bound using
Algorithm 1 is

1

1−H(1− p)
·
(

(B + 1) · log n+R ·H(B/R)
)
,

and runs in time O(poly(n)) and space O(n).

In the following sections, we will discuss a few examples
of other transition models, showing a hierarchy of mistake
bounds.

A. Shortest path

Given two vertices s, t ∈ G, define SBG (s, t) to be the
collection of all subsets of SG(s, t) that contain at most B
vertices. Formally, SBG (s, t) = {H ⊆ SG(s, t) : |H| ≤ B}. In
the Shortest Path model we insist the target can only move
along a shortest path in G.

We can describe this model in the language of our general-
ized framework. The transition graph G′ consists of many
disconnected directed paths, each corresponding to some
element of SBG (s, t) for some s, t ∈ G. This procedure over
counts, so we also restrict G′ to only include one copy of any

subset of vertices in a path in G. Finally the vertices in any
subgraph of G′ are connected with B− 1 arcs that correspond
to the ordering imposed by traversing SG(s, t) from s to t.

The number of vertices in G′ is bounded as n′ ≤ B ·
(
n
B

)
.

We can’t hope to do better than this, as there are classes of
graphs with exponentially many shortest paths between two
distinguished vertices. The maximum degree of G′ is 2, as all
disconnected components are paths.

This model is a variation of the Shifting Target model. If the
target can move B times, then the target can only move in one
direction in each valid path. We can still apply Thm. 8 and get
a naive mistake upper bound that runs in time nB · poly(n).
We can achieve the

(
n
B

)
bound on the number of subsets when

G is a path with n vertices. However, the target can only move
in one direction along the path, so it’s natural to think a better
algorithm can be developed at least for this case.

Corollary 12. In the Shortest-path model, Algorithm 1 runs
in time O(nB), uses space O(B · nB), and makes at most

1

1−H(p)
· (B · log n+ (B + 1) · logB +R ·H(B/R))

mistakes in expectation.

B. m-Neighborhood

Let Nm
G (v) denote the set of vertices in G that have a

shortest path of length m to v. In the m-Neighborhood model,
the target can move within Nm

G , and m is known to the learner.
This model is a variation of the Drifting Target model, and
note that m = 1 is exactly the case when G = G′ in the
original Drifting Target model. The transition graph G′ is
constructed by including an arc from every v ∈ V to every
node in its m-Neighborhood. Note that n′ = n and ∆′ ≤ ∆m.
Applying Theorem 8 gives the following mistake bound for
the m-Neighborhood model:

Corollary 13. In the m-Neighborhood model, Algorithm 1
runs in time O(∆m · n), uses space O(n), and makes at most

1
1−H(p) · (log n+B ·m · log(∆) +R ·H(B/R)) mistakes in
expectation.

To complete our hierarchy, in descending mistake upper
bounds we have: Shortest Path model, the original Shifting
Target model, the m-Neighborhood model, and the original
Drifting Target model.

IV. QUERY COMPLEXITY LOWER BOUND

In this section we close the gap between upper and lower
bounds on the nubmer of mistakes, which remained an open
problem in Emamjomeh-Zadeh et al. [1]. We show a mistake
lower bound that matches the upper bound asymptotically.

Our result requires some background on the noisy binary
search problem. Here there is a distinguished integer t from
the set {1, ...,m}. In each round r, the learner queries some
integer x. If x = t then the item has been found and the
procedure stops. Otherwise with probability 1− p the learner
receives correct feedback of the form x > t or x < t. We
make use of the following lower bound.

Theorem 14 (Emamjomeh-Zadeh et al. [1]). Every algorithm
for the noisy binary search problem requires at least logm

1−H(p) −
o(logm) queries in expectation.

The idea of our proof is to establish a reduction from noisy
binary search: given a noisy binary search problem where the
target is uniformly random among m items, we will reduce
it to a specific Drifting Target problem under our dynamic
interactive learning model. Thus the lower bound on noisy
binary search is also a lower bound on interactive learning.

Theorem 15. For every n and ∆′, there exists a Drifting Target
problem such that every algorithm makes at least

1

1−H(1− p)
·
(

log n+B · log ∆′ +R ·H(B/R)
)

−o (log n+B · log ∆′ +R ·H(B/R))

mistakes in expectation.

Proof. We reduce a noisy binary search problem over m items
to an interactive learning problem defined in the following
way: choose n and R such that m ≤ nR so that each of the
m items can be represented as a base n encoding/enumeration
of a sequence with R digits. The feedback graph G for the
learning problem is a simple path on n vertices, ordered in
the same way as in the encoding: the left end is the smallest
digit while the right end is the largest. The transition graph G′

is defined on the same set of vertices as in G so n′ = n. G′

includes all the edges in G as bi-directional edges, potentially
with additional edges up to some degree ∆′.

For example, to search among m ≤ 1000 items, we can
choose n = 10 and R = 3, so that each item can be encoded
by a length-3 sequence between 〈0, 0, 0〉 and 〈9, 9, 9〉, which
are our familiar base-10 natural numbers up to 999. The graph
G consists of vertices 0, 1, 2, . . . , 9 on a path, and interactive
learning continues for 3 rounds. Suppose the target item is
encoded as the sequence 〈1, 1, 2〉, then the ground truth target
locations during the 3 rounds are vertices 1, 1, 2 respectively
(target shifted once from vertex 1 to 2).

In the rth round of the interaction, the learner queries vertex
i ∈ [n], which can be interpreted as guessing the rth digit of the
target’s encoding sequence. Without loss of generality, suppose
the adversary’s feedback is some vertex j to the left of vertex
i, which is interpreted as the rth digit of the target sequence
is less than the value i. The learner updates likelihoods for
sequences whose rth digit is less than i by a factor of 1−p > 1

2 ,
and the other sequences by a factor of p < 1

2 . According to
Lemma 6 from [1], the likelihood of the target item’s encoding
sequence (ground truth) decreases exponentially more slowly
than the rest of the sequences and will eventually prevail.

To establish the lower bound for a Drifting Target problem
with arbitrary n and ∆′, there exists a noisy binary search
problem on m = n ·∆′B ·

(
R
B

)
items that reduces to the Drifting

Target problem. The encoding is restricted such that after the
first digit is chosen, the remaining digits can change at most
B times among ∆′ choices (all other sequences are initialized
with 0 likelihoods). Plugging in our value of m into Theorem

14 gives a mistake lower bound of 1
1−H(1−p) ·

(
log n + B ·

log ∆′+R ·H(B/R)
)
− o(log n+B · log ∆′+R ·H(B/R)),

as desired.

V. EFFICIENT ALGORITHM FOR LOW DIAMETER GRAPHS

While Algorithm 1 emphasizes on bounding the number
of mistakes for general interactive learning problems, its
computation can be inefficient in each round and deteriorates
as the transition model becomes more complex. We realize
that the computational complexity mainly comes from keeping
track of the likelihoods under all possible transitions, so we
consider an alternative approach where the learner ignores the
transition model completely and simply follows the adversary’s
feedback each round. After the initial query, the algorithm
requires no computation. In this section, we study this simple
algorithm’s performance on low diameter graphs. We formally
present this algorithm below.

Algorithm 2 ‘Follow the Feedback’ Procedure for Interactive
Learning

q1 ← argmini∈V
∑
j∈V w(i, j){Start with a ‘center’ vertex}

for 1 ≤ r ≤ R do
zr ← feedback from adversary after querying qr
qr+1 ← zr {Follow the feedback for next round}

end for

A. Cliques: graphs with diameter 1

A clique is the most symmetric graph, where each vertex
can be considered the center, and the graph has diameter 1.
This means no matter which node the learner queries, a correct
feedback from the adversary will reveal the true target at each
round. Therefore after each mistake, the learner will keep
querying the correct node until the target’s next move. The
mistake upper bound is stated in the theorem below.

Theorem 16. If the feedback graph G′ is fully-connected (a
clique on the concept class), Algorithm 2 makes at most B +
p(R−B) mistakes in expectation.

Proof. By assumption the learner queries a node then receives
a feedback, and the target may move at any point during this
process. To help with the analysis in this case, we break down
the chain of events in the following way: in each round we
assume that at first the target moves (or stays put), then the
learner makes a query and receives a new feedback. Notice that
in every round where the target moves the learner will make a
mistake regardless of the correctness of the previous feedback.
If we assume target can move at most B times, this leads to
B mistakes. For the R − B rounds where the target doesn’t
move, the learner makes a mistake if and only if the previous
feedback is incorrect. As feedback is noisy with probability p,
this leads to p(R−B) mistakes. So the expected number of
mistakes over the course of R rounds is:

E[M] = B + p(R−B)

In anticipation of discussing other classes of graphs we present
a second analysis of Algorithm 2 on cliques. Assume that
each round the target moves with probability b = B

R . We can
model the process as a Markov Chain where the states {0, 1}
represent the learner’s distance from the target at each round.
Note that these states do not represent the learner’s position in
the graph. Now we break down the chain of events in a slightly
different way: first, the learner queries the node received from
previous feedback and receives a new feedback, then target
either moves or stays put for the next round.

The new feedback is correct with probability 1− p, and the
target stays at the same vertex with probability 1− b, so in the
next round, the learner queries the correct vertex (transitions
to state 0) with probability (1− p)(1− b). If either the new
feedback is incorrect or the target moves at the end of this
round, the learner will make a mistake next round (transitions to
state 1) with probability p+b−pb, assuming noise of feedback
and target evolution are independent. The state transition matrix
is:

P =

0 1()
0 (1− p)(1− b) p+ b− pb
1 (1− p)(1− b) p+ b− pb

Each row in the transition matrix is already in its stationary
distribution π = (π0, π1). The expected number of mistakes
over the course of R rounds is: E[M] = R(1 − π0) = B +
p(R−B).

B. Stars: graphs with diameter 2

A simple star graph is a graph of diameter 2, with one center
vertex connecting to all the other vertices (leaf nodes). After
querying the center vertex, a correct feedback will reveal the
true target, so an efficient strategy is to query the center first
then follow the feedback. We assume the target only moves
among the leaf nodes, because the learner will make no more
mistakes in the case that the target can move to the center: if
the learner queries a wrong leaf, it takes at least 2 queries if
target is on another leaf, and takes 1 query if the target is at
the center.

Theorem 17. If the feedback graph G′ is a star then Algorithm
2 makes at most 2B + p(R − B) + p2(R − B) mistakes in
expectation.

Proof. We again break down the chain of events in this order:
first, the target either moves or stays put, then the learner queries
the previous feedback received and the adversary provides a
new feedback. For the B rounds that the target moves, the
learner will make 1 mistake each time. For the R−B rounds
when the target doesn’t move, if the previous feedback was
incorrect, the learner will make 1 mistake; if the previous
feedback was correct, the learner will make a mistake if the
feedback pointed to the center, which means the previous query
was a wrong leaf. Another case that the feedback points to the
center is when the learner queried the correct leaf, but received
an incorrect feedback pointing to the center.

Let x, y, z represent the number of times the learner queries
the correct leaf, the wrong leaf, and the center respectively.
Based on the analysis above, we can set up a system of linear
equations:

x+ y + z = R (1)
px+ (1− p)y = z (2)

B + p(R−B) + (1− p)(R−B)(y/R) = R− x (3)

Equation 1 is trivial; equation 2 represents the number of
times the learner queries the center as a function of queries to
correct/incorrect leaf nodes; equation 3 is the expected number
of mistakes, which is the number of times the learner does not
query the correct leaf. After elimination, equation 3 becomes:

E[M] = B + p(R−B)

+ [B + p2(R−B)] · (1− p)(R−B)

B + p2(R−B) + (1− p)R
≤ 2B + p(R−B) + p2(R−B)

Alternatively, if we assume each round the target moves with
probability b = B

R , we can model the process using a Markov
Chain with states {0, 1, 2} representing the learner’s distance
from the target at each round. Similar to the analysis of the
clique, we have state transition matrix:

P =

0 1 2()0 (1− p)(1− b) p (1− p)b
1 (1− p)(1− b) 0 p+ b− pb
2 0 1− p p

This is a fully-connected Markov Chain, and the stationary
distribution π = (π0, π1, π2) can be calculated numerically.
The expected number of mistakes over the course of R rounds
is R(1 − π0). It can be verified that the numerical solution
agrees with the analytical solution above.

C. Quasi-stars: graphs with diameter d

We can also extend this analysis for “quasi-stars” with a
central vertex connecting otherwise disjoint paths of length d/2
(for even d). We can generalize the Markov Chain with states
{0, 1, ..., d}, representing the distance from query node to the
true target. Further assume that every time the target moves,
it moves for a distance of at least 2, with uniform probability
of landing at any distance (≥ 2) to the target. The (d+ 1) by
(d+ 1) transition matrix P can be approximated as follows:

Pij =



0 j = i− 2, moves 2 steps closer
(1− p)(1− b) j = i− 1, moves 1 step closer
0 j = i, distance to target unchanged
p(1− b) j = i+ 1, moves 1 step further
p′ all remaining probabilities sum to 1

With the exception that P00 = (1− p)(1− b).
With stationary distribution π = (π0, ..., πd), we get ex-

pected total mistakes as E[M] = R(1 − π0), which can be
computed numerically.

D. Graphs with diameter o(log n)

From our previous analysis, we notice that the mistake bound
does not depend on the number of nodes in the feedback graph,
but rather the diameter, which is the largest distance from
any node to the target. Therefore we consider general graphs
bounded by diameter d. The mistake bound is stated as the
theorem below.

Theorem 18. If the feedback graph has diameter d, then
Algorithm 2 makes at most 1

1−p ·
(
dB− pB

1−2p + pR
)

mistakes
in expectation.

The proof of this theorem consists of two lemmas: Lemma
19 and 20. We model the learning process as a random walk
on a Markov Chain with states {0, . . . , d}. However, now we
reverse the meaning of the states: state 0 means the query node
is distance d from the true target, and state d means the query
node is the target. This change does not affect the result of
analysis, but greatly simplifies the notation. Every time the
target moves, the random walk restarts at state 0 and moves
towards state d: the learner moves 1 step forward upon every
correct feedback, and moves 1 step backward upon every noisy
feedback. There are two types of mistakes during the random
walk: before reaching the target for the first time, every query
contributes a mistake; once the learner reaches the target, it
will circle around it due to noise probability p < 1/2, and
occasionally misses the target.

The first type of mistake is captured by the hitting time of
random walk on the Markov Chain from state 0 to state d. We
have the following lemma:

Lemma 19. Let p < 1/2, for a Markov Chain on a path of
length d+ 1, the random walk with forward probability 1− p
and backward probability p has a hitting time

h0,d ≤
d

1− 2p
− p

(1− 2p)2
.

Proof. The transition probabilities of the Markov Chain are:

Pij =



1− p j = i+ 1 (move towards target)
p j = i− 1 (move away from target)
1− p j = i = d (self-loop on the target)
p j = i = 0 (self-loop on nodes furthest

from the target)

Let r = p
1−p . It follows from the assumption p < 1

2 that r < 1.
The hitting time analysis follows:

For i = 1 . . . d:

hi,i+1 = (1− p) · 1 + p · (1 + hi−1,i+1)

= 1 + p · (hi−1,i + hi,i+1)

We solve the recurrence: hi,i+1 =
1+p·hi−1,i

1−p with base cases:

h0,1 = 1
1−p and h1,2 =

1+ p
1−p

1−p = 1
(1−p)2 .

For i ≥ 2:

hi,i+1 =

(∑i−2
j=0 (1− p)i−j · pj

)
+ pi−1

(1− p)i+1

=
(1− p)i ·

∑i−2
j=0

(
p

1−p
)j

+ pi−1

(1− p)i+1

=
1

(1− p)i+1
·
(

(1− p)i · 1− ri−1

1− r
+ pi−1

)
=

1

(1− p)i+1
·
(

(1− p)i+1 · 1− ri−1

1− 2p
+ pi−1

)
=

1

1− 2p
− ri−1

1− 2p
+

pi−1

(1− p)i+1

=
1

1− 2p
+
(1

(1− p)2
− 1

1− 2p

)
· ri−1

h2,d =

d−1∑
i=2

hi,i+1

=
d− 2

1− 2p
+
(1

(1− p)2
− 1

1− 2p

)
·
d−1∑
i=2

ri−1

=
d− 2

1− 2p
+
(1

(1− p)2
− 1

1− 2p

)
· r − r

d−1

1− r

≤ d− 2

1− 2p
+
(1

(1− p)2
− 1

1− 2p

)
· p

1− 2p

h0,d = h0,1 + h1,2 + h2,d

≤ 1

1− p
+

1

(1− p)2
+

d− 2

1− 2p

+
(1

(1− p)2
− 1

1− 2p

)
· p

1− 2p

=
d− 2

1− 2p
− p

(1− 2p)2
+

1

1− p

+
1

(1− p)2
+

p

(1− p)2(1− 2p)

=
d

1− 2p
− p

(1− 2p)2

Next we consider the second type of mistake. Once the
learner reaches the target, it will keep reporting the correct
node unless it receives noisy feedback and is misguided to
move away from the target, which will cause a mistake for the
next query. We bound the fraction of time the learner misses
the target with the following lemma.

Lemma 20. Let p < 1/2, after reaching state d and before the
next target transition, the expected fraction of time the learner
wanders away from state d is bounded by Toff ≤ p

1−p .

Proof. Once the random walk reaches state d (learner queried
the correct target), let Td denote the expected time spent at state
d and r = p

1−p , we have the following recurrence relations:

p · Td = (1− p) · Td−1 =⇒ Td−1 = r · Td
Td−1 = (1− p) · Td−2 + p · Td =⇒ Td−2 = r · Td−1

...

p · T1 = (1− p) · T0 =⇒ T0 = r · T1

For i = 0 . . . d : Ti = rd−i · Td

The expected fraction of time not spent at state d:

Toff = 1− Td∑d
i=0 Ti

= 1− 1− r
1− rd+1

≤ r =
p

1− p
,

which finishes the proof.

Note that the hitting time h0,d is linear in d, and Toff is
positively related to entropy H(p). Combining the results above,
we can prove Theorem 18:

Proof of Theorem 18. Assume every time the random walk
restarts at state 0, state d can be reached before the next restart.
This means every time the target moves, the learner is able
to reach the target before its next transition. Since the learner
makes a mistake every round spent on the hitting time, this
is the worst case assumption because the learner is forced
to make all the mistakes possible for each target transition.
Combining the two types of mistakes from previous lemmas,
the total expected number of mistakes is:

E[M] = B · h0,d + (R−B · h0,d) · Toff

≤ B ·
(d

1− 2p
− p

(1− 2p)2

)
· 1− 2p

1− p
+

pR

1− p

=
1

1− p
·
(
dB − pB

1− 2p
+ pR

)
,

which completes the proof.

In the case that d = 2, the bound in Theorem 18 for a
general diameter-2 graph is slightly larger than the bound from
Theorem 17 for the star graph. This makes sense because a
star is the best case diameter-2 graph, with a center node that
when queried provides information to the true target.

In the case that d = o(log n) and p = o(H(B/R)), we
notice that the result from Theorem 18 is comparable to the
trivial upper bound of Algorithm 1 as stated in Corollary 11.
This means that if the learner has very limited information
on target transition, or the transition model is complex, and
the graph is bounded by low diameter, then Algorithm 2
makes a huge improvement on computational efficiency without
too much sacrifice on the number of mistakes. Note that
a complex transition model is often correlated with a low
diameter feedback graph: highly connected graphs tend to have
low diameters, and potentially complex transitions due to the
close relationships between concepts.

E. Paths: graphs with diameter n

We also note that while path graphs seem like an easy case,
they actually present difficulties due to their large diameter.

An upper bound on noisy binary search was given by Ben-Or
and Hassidim [11]. Their algorithm returns the correct element
with probability (1 − δ) with an expected (1−δ)

1−H(p) ·
(

log n +

O(log log n)+O(log(1/δ))
)

queries. This can be implemented
in poly-time.

A naive algorithm for the shifting target case is to run their
algorithm k times, setting δ appropriately small, for example,
δ = 1/ log(kn). Then as both k and n go to infinity, the
probability of failure goes to 0.

If k ≈ log(n), B ≈ k, and the number of rounds is much
larger than the expected number of queries, this naive algorithm
essentially matches the mistake bound from Emamjomeh-Zadeh
and Kempe [6]. The difference is the k log k vs. k2 log k and
R ·H(B/R) vs. log(log(kd)) terms.

REFERENCES

[1] E. Emamjomeh-Zadeh, D. Kempe, M. Mahdian, and R. E. Schapire,
“Interactive learning of a dynamic structure,” in Algorithmic Learning
Theory. PMLR, 2020, pp. 277–296.

[2] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4,
pp. 319–342, 1987.

[3] P. Awasthi, M. Balcan, and K. Voevodski, “Local algorithms for
interactive clustering,” J. Mach. Learn. Res., vol. 18, pp. 3:1–3:35, 2017.

[4] M.-F. Balcan and A. Blum, “Clustering with interactive feedback,” in
International Conference on Algorithmic Learning Theory. Springer,
2008, pp. 316–328.

[5] Á. D. Lelkes and L. Reyzin, “Interactive clustering of linear classes and
cryptographic lower bounds,” in Algorithmic Learning Theory - 26th
International Conference, ALT 2015, Banff, AB, Canada, October 4-6,
2015, Proceedings, ser. Lecture Notes in Computer Science, K. Chaudhuri,
C. Gentile, and S. Zilles, Eds., vol. 9355. Springer, 2015, pp. 165–176.

[6] E. Emamjomeh-Zadeh and D. Kempe, “A general framework for robust
interactive learning,” in Proceedings of the 31st International Conference
on Neural Information Processing Systems, 2017, pp. 7085–7094.

[7] D. Dereniowski, S. Tiegel, P. Uznanski, and D. Wolleb-Graf, “A
framework for searching in graphs in the presence of errors,” in 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019,
San Diego, CA, USA, ser. OASICS, J. T. Fineman and M. Mitzenmacher,
Eds., vol. 69. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
pp. 4:1–4:17.

[8] L. Becerra-Bonache, A. Dediu, and C. Tirnăucă, “Learning DFA
from correction and equivalence queries,” in Grammatical Inference:
Algorithms and Applications, 8th International Colloquium, ICGI 2006,
Tokyo, Japan, September 20-22, 2006, Proceedings, ser. Lecture Notes
in Computer Science, Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino,
and E. Tomita, Eds., vol. 4201. Springer, 2006, pp. 281–292.

[9] O. Bousquet and M. K. Warmuth, “Tracking a small set of experts by
mixing past posteriors,” J. Mach. Learn. Res., vol. 3, pp. 363–396, 2002.

[10] E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal, “Deterministic and
probabilistic binary search in graphs,” in Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, D. Wichs and Y. Mansour, Eds.
ACM, 2016, pp. 519–532.

[11] M. Ben-Or and A. Hassidim, “The bayesian learner is optimal for noisy
binary search (and pretty good for quantum as well),” in 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008,
October 25-28, 2008, Philadelphia, PA, USA. IEEE Computer Society,
2008, pp. 221–230.

	Introduction
	Preliminaries
	Static model
	Dynamic model
	Shifting Target
	Drifting Target

	A unified model
	Shortest path
	m-Neighborhood

	Query complexity lower bound
	Efficient algorithm for low diameter graphs
	Cliques: graphs with diameter 1
	Stars: graphs with diameter 2
	Quasi-stars: graphs with diameter d
	Graphs with diameter o(log n)
	Paths: graphs with diameter n

	References

