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N E U R O S C I E N C E

Uncovering the biological basis of control energy: 
Structural and metabolic correlates of energy 
inefficiency in temporal lobe epilepsy
Xiaosong He1,2*, Lorenzo Caciagli2,3,4, Linden Parkes2, Jennifer Stiso2, Teresa M. Karrer5,  
Jason Z. Kim2, Zhixin Lu2, Tommaso Menara6, Fabio Pasqualetti7, Michael R. Sperling8,  
Joseph I. Tracy8, Dani S. Bassett2,9,10*

Network control theory is increasingly used to profile the brain’s energy landscape via simulations of neural 
dynamics. This approach estimates the control energy required to simulate the activation of brain circuits based 
on structural connectome measured using diffusion magnetic resonance imaging, thereby quantifying those circuits’ 
energetic efficiency. The biological basis of control energy, however, remains unknown, hampering its further 
application. To fill this gap, investigating temporal lobe epilepsy as a lesion model, we show that patients require 
higher control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure 
focus. The energetic imbalance between ipsilateral and contralateral temporolimbic regions is tracked by asym-
metric patterns of glucose metabolism measured using positron emission tomography, which, in turn, may be 
selectively explained by asymmetric gray matter loss as evidenced in the hippocampus. Our investigation 
provides the first theoretical framework unifying gray matter integrity, metabolism, and energetic generation of 
neural dynamics.

INTRODUCTION
Human brain function emerges from continuous neural dynamics 
that give rise to diverse activation states and rich rules for transi­
tioning between states (1–3). Understanding the mechanisms 
governing these dynamical processes remains a core focus of inquiry 
in neuroscience (3). Recent developments have demonstrated that 
network control principles underlie the dynamical repertoire of many 
complex systems (4, 5). In formalizing those principles, network 
control theory (NCT) serves as a powerful approach from systems 
engineering that is typically deployed to design and manage techno­
logical, robotic, and communication systems. However, its nascent 
application to neural systems has proven remarkably productive, 
both across species (6, 7) and more particularly in humans (8–10). 
In these studies, NCT is used to model dynamic processes, such as 
the attainment and maintenance of brain states, and transitions 
between them, as a function of the underlying structural network 
architecture measured using diffusion magnetic resonance imaging 
(MRI). For example, one can simulate the activation of a given brain 
circuit by modeling the transition to a state when regions from this 
circuit are selectively active. Moreover, NCT can be used to quantify 
the energetic costs, or control energy, needed to facilitate these sim­
ulated state dynamics (11).

Control energy, as typically defined in engineering, refers to the 
input required to drive the system from one state to another along a 
trajectory of intermediate states (12). When modeling the temporal 
dynamics of brain activity, such an input can take the form of 
endogenous costs associated with internal cognitive demand or 
mental load (13, 14) or can take the form of direct external manip­
ulations such as brain stimulation (15) or medication (14). In the 
former context, the need for control energy to support designated 
brain dynamics can also be conceptualized as a measure of energetic 
efficiency, which is determined in part by dynamics and in part by 
the topological organization of the underlying structural network. 
As a marker of efficiency, it is notable that control energy decreases 
over development, suggesting enhanced efficiency with age (16), 
and is heightened in psychiatric disorders, suggesting decremented 
efficiency in disease (17, 18). These prior investigations lay important 
groundwork for the use of NCT to model the structurally constrained 
energetic processes that guide brain state transitions; collectively, 
these studies support its feasibility, ensure its methodological rigor, 
and underscore its neuroscientific relevance.

However, a key remaining question is whether and how control 
energy relates to biological forms of energy that are measurable 
in vivo or in vitro. One way to address this issue is to quantify how 
the aforementioned energetic efficiency, measured as control energy, 
cofluctuates with unrelated measures of energy consumption. It is 
well known that the brain poses marked energetic demands, con­
suming 20% of the body’s energy while comprising merely 2% of 
the body’s weight (19). Notably, neural dynamics and their energetic 
sequelae are disrupted in neurological and psychiatric disorders, 
with devastating consequences for cognitive function and behavior. 
One prototypical example of a dynamical energetic disruption is an 
epileptic seizure. As transient periods of hypersynchronous neuro­
nal activity (20), seizures consume substantial energy and instantly 
disrupt ongoing brain dynamics, causing marked behavioral disturb­
ances (21, 22). Despite their transience, the impact of seizures on 
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brain function can linger well beyond seizure termination, especially 
in patients with drug-resistant focal epilepsy, such as the common 
temporal lobe epilepsy (TLE). Neuropsychological assessments in 
patients with TLE during the interictal period, i.e., when they are 
not suffering from seizures, reveal persistent deficits across multiple 
cognitive and affective domains (23–25), indicating the presence of 
prominent disruptions to normal brain dynamics.

TLE is also characterized by widespread alterations in brain 
structure, which extends beyond the seizure foci in the temporal lobes 
(26, 27). Concordantly, epileptogenic regions evince persistent 
hypometabolism during interictal periods (28). The severity of both 
structural damage and hypometabolism is associated with cognitive 
decline in patients with TLE (29–31), suggesting that chronic neural 
dysfunction might be rooted in a reduced baseline metabolism under­
pinned by compromised structural integrity. Regional hypometabolism 

could hamper the attainment and maintenance of healthy activation 
levels, in turn, decrementing the brain’s dynamic repertoire and 
clamping cognitive function. Examples of such altered dynamics in 
TLE abound, spanning reduced language network flexibility (i.e., fewer 
state transitions) (32), reduced memory network flexibility (33), de­
layed information flow, and slower activation spreading times (34).

Leveraging these pervasive alterations in dynamics, metabolism, 
and structure, here, we consider TLE as a lesion model and capitalize 
on NCT to assess how damage to structural connectivity disrupts 
the energetic generation of brain dynamics and its metabolic under­
pinning. We begin by stipulating a dynamical model whereby activ­
ity is constrained to spread along structural connections (Fig. 1A). 
Using this model, we quantify the control energy required to move 
between any two states or patterns of activity (11). Although a 
generic artificial system could hypothetically visit any state, evidence 

Fig. 1. Schematic of methods. (A) On the basis of a simplified noise-free, linear, continuous-time, and time-invariant model of neural dynamics, we simulate energetic 
processes during brain state transitions instantiated upon and constrained by the structural connectome (matrix A). Two types of control energy (a quadratic function of 
u) are depicted: the minimal control energy (MCE) required to drive the brain from an initial state [x(0)] to a final state [x(T)] using a specific set of control nodes (whole 
brain, matrix B) and the optimal control energy (OCE) additionally constrains the length of the trajectory between states. (B) Eight preferential brain states are defined 
according to the known ICNs (37, 38). Within each state, regions from a specific ICN are activated at a magnitude of 1, whereas the rest of the brain remains at 0 (inactivat-
ed). These preferential brain states constitute the initial and final states of our simulations. (C) We then simulate the energetic inputs required to activate each of the 
preferential brain states from a theoretical baseline (i.e., activity magnitude of 0). Next, we estimate the OCE consumed during each of the activation processes across the 
whole brain for each individual. (D) We also simulate transitions between preferential brain states and estimate the MCE consumed at each brain region for each individual. 
VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network; SAL/VAN, salience/ventral attention network; LIM, limbic network; CONT, executive 
control network; DMN, default mode network; SUB, subcortical network.
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suggests that the brain preferentially visits some states more often 
than others (2, 35, 36). These preferential states can be defined by 
the coactivation of regions that are functionally coupled at rest 
(37, 38). These so-called intrinsic connectivity networks (ICNs) can 
also be detected during task performance and have been shown to 
support a range of cognitive processes (37, 39, 40). Here, we study 
the efficient attainment of eight such preferential states (9, 38), 
whereby only regions in a given ICN are active (Fig. 1B). Then, we 
use NCT to simulate transitions among preferential states and to 
estimate the associated energy costs, thereby probing the brain’s 
efficiency and integrity in the presence of TLE. Our simulations 
evaluate two transition types: (i) reaching transitions, where the 
brain moves from a theoretical baseline to a preferential state 
(Fig. 1C), and (ii) switching transitions, where the brain moves 
between two preferential states (Fig. 1D). By estimating the control 
energy for reaching transitions, we determine which preferential 
states are difficult to reach; that determination informs our under­
standing of the ICNs affected by TLE. Subsequently, we compute 
control energy for switching transitions, which allows us to identify 
the regions that tend to carry the greatest energetic burdens in 
supporting the brain’s dynamical repertoire. Last, we dig deeper 
into the neurophysiological underpinnings of control energy by 
leveraging fluorodeoxyglucose (FDG)–positron emission tomography 
(PET) images, which are commonly obtained as part of the pre­
surgical evaluation in patients with TLE, to measure baseline brain 
metabolism. These data allow us to verify whether regions that show 
altered energetic efficiency in facilitating brain state transitions also 
present with metabolic anomalies and to determine how both the 
theoretical and empirical measures of energy costs are related to the 
underlying structural integrity of those regions. Our analyses thus 
provide two contributions of major significance that substantially 
advance the extant literature. First, we demonstrate how control 
energy tracks changes in the energetic efficiency of the brain, which, 
in turn, emerge as a consequence of epilepsy-related pathology. 
Second, we provide a data-driven, biological interpretation of con­
trol energy by systematically probing its relationship with the brain’s 
underlying glucose metabolism and structural integrity.

In this study, we enrolled 60 patients with TLE and 50 demo­
graphically matched healthy controls (HCs) (Table 1), who under­
went an MRI scanning session including both a high–angular 
resolution diffusion imaging (HARDI) scan and a T1-weighted 
(T1w) anatomical scan. Among the enrolled patients, 50 also re­
ceived an FDG-PET scan as part of their presurgical evaluation. From 
each participant’s HARDI data, we generated a structural connectome 
and estimated the control energy required to perform all reaching 
and switching transitions. Then, we tested for energetic inefficiency 
in TLE by comparing control energy between patients and HCs. We 
showed that patients with TLE present with an energetic inefficiency 
in reaching a preferential state predominantly composed of limbic 
regions. This inefficiency was due to excessive energy costs associated 
with activating the limbic network ipsilateral to the patients’ seizure 
focus. When considering switching transitions, we found that the 
mesial and inferior parts of the ipsilateral temporal lobe demanded 
greater energy consumption in TLE than in HCs. These increased 
costs of regulating brain dynamics incurred by patients with TLE 
limit their capacity to activate and maintain desired brain states, 
potentially leading to dysfunction. Furthermore, we found that this 
energetic imbalance between ipsilateral mesial and inferior temporal 
regions and their contralateral counterparts were accompanied by 

similar asymmetries in metabolic patterns. Specifically, a mediation 
analysis focused on the hippocampus showed that such association 
may be rooted in a corresponding asymmetry of underlying gray 
matter volume loss.

RESULTS
We started our analyses by verifying that the imaging data quality 
was comparable between the two experimental groups (Table 1). 
Next, for each participant, we reconstructed a structural white matter 
network as a weighted undirected adjacency matrix composed of 
122 cortical and subcortical regions (see details in Materials and 
Methods), which formed the basis of our NCT analyses (e.g., matrix 
A in Fig. 1A). We observed that patients with TLE presented lower 
matrix density and total weight (i.e., sum of all edge weights) than 
HCs (Table 1), which is in accord with the well-recognized white 
matter abnormalities in TLE (41, 42). To minimize the influence of 
demographic and data quality metrics on our subsequent statistical 
analyses, we regressed them out from all imaging derivates using 
linear regression (see Materials and Methods).

Simulated activation of ICNs
Our first research question pertained to the energetic costs associated 
with reaching each preferential brain state. Specifically, we examined 
the extent to which patients with TLE may exhibit energetic abnormal­
ities during the activation of eight canonical ICNs (9, 38), including 
the visual, somatomotor, dorsal attention, salience/ventral attention, 
limbic (encompassing amygdala and hippocampus), executive con­
trol, default mode, and subcortical networks (Fig. 1B). We used the 
optimal control framework (9, 10, 15, 16) to model how the brain’s 
underlying structural network facilitated transitions from an initial 
baseline state to each preferential (final) state. Here, the initial state 
was set at a theoretical baseline with activity magnitude in all regions 
at 0. For each of our eight preferential states, the activity magnitude 
of regions within a specific ICN was set to 1, while the rest of the 
brain remained at 0 (16). Thus, these reaching transitions simulated 
the rise of activity in the target ICN from a mean-centered baseline, 
mimicking the activation process triggered by specific cognitive op­
erations. For this model, an optimal solution of the control energy 
needed at each region can be produced by constraining both the 
energy costs and the length of the transition trajectory based on the 
underlying network topology (13). As previously reported (13), we 
referred to this solution as the optimal control energy (OCE) and 
summarized it globally as a measure of the brain’s energetic efficiency 
(Fig. 1C; see details in Materials and Methods). For each participant, 
we estimated the global OCE during each reaching transition. We 
regressed the confounding variables out of these global OCE esti­
mates and compared the residuals between our two groups using 
a permutation-based t test (43), an approach that simultaneously 
corrects for multiple comparisons by controlling the family-wise 
error rate (44). We found that patients with TLE required greater 
global OCE to activate the limbic network compared to HCs 
(Welch’s t108 = 3.80, Pcorr = 0.002). The global OCE needed to ac­
tivate other ICNs did not significantly differ between the two groups 
(Welch’s |t108| < 1.55, Pcorr > 0.609) (Fig. 2). This finding suggested that 
it was energetically more challenging for patients with TLE to specif­
ically activate the limbic network.

In the above analysis, our preferential states were defined with 
ICNs extended into both hemispheres. However, seizures in our 
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enrolled patients with TLE were exclusively of unilateral origin, i.e., 
from either the left or the right temporal lobe. This laterality of 
seizure focus prompted the question of whether the energetic in­
efficiency that we observed in these patients may be asymmetric, 
especially regarding the limbic network, which included both the 
epileptogenic temporal lobe and its contralateral counterpart. To 
probe this asymmetry, we resimulated the reaching transition for 
the limbic network twice, once to activate the limbic regions in the 

left hemisphere only and once to activate regions in the right hemi­
sphere. Although such a hemispheric restriction of activation is un­
likely to occur in the brain, the simulation offers an opportunity to 
assess the laterality of the pathological burden observed in patients 
with TLE. When examining the lateralized global OCE, we found a 
significant hemisphere-by-group interaction (F2,107 = 15.20, P = 
2 × 10−6) (Fig. 3), demonstrating that patients with TLE required 
more energy to activate the limbic network ipsilateral to the seizure 

Table 1. Sample demographic and clinical characteristics. Continuous variables were presented as means ± SD. TLE, patients with TLE; HC, healthy controls; 
HARDI, high–angular resolution diffusion imaging; FIAS, focal impaired awareness seizure; FAS, focal aware seizure; FBTCS, focal to bilateral tonic-clonic seizure; 
ASM, antiseizure medication. The quality of T1w images was assessed with an image quality rating and the total intracranial volume produced with the 
Computational Anatomy Toolbox (CAT12). The quality of HARDI data was assessed with a neighboring correlation index (74), which quantified the similarity 
between low b volumes with similar gradient directions, and with the mean framewise displacement (73) as a measure of head motion. Seizure focus was 
classified as left temporal (LT) and right temporal (RT). Temporal pathology was diagnosed by neuroradiologists on the basis of presurgical MRI scans as normal 
brain MRI (NB), hippocampal sclerosis (HS), and other pathologies (other), such as tumor, focal cortical dysplasia, and encephalocele. FBTCS history was sorted 
as follows: none, patients who had never had any FBTCS events during their lifetime; remote, patients who had experienced FBTCS in the past, but none for 1 year 
or more before scanning; and current, patients who had recurrent FBTCS within 1 year before scanning (46). For continuous variables, independent t tests were 
conducted. For categorical variables, chi square tests were conducted. Significant differences were highlighted in bold. 

Experimental group (N) TLE (60) HC (50) T/2 P

Age (year) 41.13 ± 14.41 37.98 ± 11.78 1.24 0.218

Sex (male/female) 34/26 26/24 0.24 0.625

Handedness (right/left) 51/9 42/8 0.02 0.885

T1-weighted image quality

Image quality rating 0.858 ± 0.006 0.859 ± 0.006 −1.13 0.260

Total intracranial volume 
(cm3) 1417 ± 150 1416 ± 143 0.04 0.969

HARDI image quality

Neighboring correlation 0.795 ± 0.013 0.795 ± 0.015 −0.31 0.754

Mean framewise displacement 0.375 ± 0.155 0.343 ± 0.132 1.16 0.251

Structural network properties

Matrix density 0.895 ± 0.045 0.911 ± 0.045 −1.79 0.076

Matrix total weight (log10( ∙ )) 7.078 ± 0.018 7.086 ± 0.014 −2.58 0.011

Seizure focus (LT/RT) 38/22

Age at epilepsy onset (year) 25.28 ± 15.59

Duration of epilepsy (year) 15.85 ± 16.46

Temporal pathology (NB/HS/
other) 15/27/18

Frequency of FIAS (number 
per month) 9.28 ± 16.41

FBTCS history (none/remote/
current) 19/16/25

Seizure type

FIAS 9

FAS 1

FIAS/FAS 9

FIAS + FBTCS 22

FAS + FBTCS 1

FIAS/FAS + FBTCS 14

FBTCS 4

Number of current ASMs 
(1/2/3) 27/26/7
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focus. More specifically, patients with TLE with a left-sided seizure 
focus required more energy to activate the left hemispheric limbic 
network [versus right TLE (RTLE): PBonferroni = 0.048; versus HC: 
PBonferroni = 4 × 10−5], whereas patients with TLE with a right-sided 
seizure focus required more energy to activate the right hemispheric 
limbic network [versus left TLE (LTLE): PBonferroni = 0.007; versus HC: 
PBonferroni = 2 × 10−4]. By contrast, we observed no significant differ­
ences between patients with TLE and HCs regarding the energy needed 
to activate the contralateral limbic network (PBonferroni > 0.588). 
Thus, the extra energetic costs associated with limbic network acti­
vation in TLE can be attributed to the increased energetic needs of 
the ipsilateral hemisphere but not of the contralateral one.

Regional energetic efficiency in supporting brain  
state transitions
Empirical brain dynamics depend not only on the attainment of dif­
ferent states but even more on the flexible transitions among them, 
supported by brain regions consuming energy with different efficiency. 
While our reaching transition simulations have enabled us to iden­
tify global energetic inefficiency during limbic network activation in 
patients with TLE, these transitions are not necessarily represent­
ative enough, i.e., the brain does not revisit a specific baseline each 
time but, rather, continuously transitions between different states. 
Thus, to better profile regional energetic efficiency, we extended 

our investigation to examine switching transitions among our pref­
erential states, as a closer approximation of empirical brain dynamics 
(9). For each individual, we modeled a total of 64 pairwise transi­
tions, including both reciprocal-state transitions and single-state 
persistence, i.e., transitions that start and end at the same state, 
among the eight ICN-defined preferential states (Fig. 1D). To allow 
for maximal flexibility during the simulated transitions, we estimated 
the minimal control energy (MCE), which can be obtained by only 
constraining the control input to facilitate the designated transition, 
regardless of its trajectory (13). For each region, we averaged the 
MCE across all 64 transitions as a region-specific metric of energetic 
efficiency at the individual level. As in prior work (41, 45, 46), we 
mirror-flipped the regional MCE of the patients with RTLE to 
group metrics according to the laterality of the seizure focus, to en­
hance statistical power (41, 46). This procedure was done after con­
found regression and Z-standardization of each patient’s regional 
MCE relative to HC data. Thus, instead of comparing raw values of 
regional MCE from mixed hemispheric origin between patients and 
HCs, we performed a permutation-based one-sample t test on 
patients’ Z scores of the 122 regions to identify abnormal regional 
energetic efficiencies within ipsilateral and contralateral hemispheres, 
respectively (see Materials and Methods for further details).

After correcting for multiple comparisons, we found that regional 
MCE was significantly elevated in patients with TLE within the 

Fig. 2. Global OCE estimated during simulated activation of ICNs. After correction for multiple comparisons, significant group differences were only found for the 
simulated activation of the LIM, which demanded more global OCE in patients with TLE compared to HCs. **Pcorr < 0.01. The central mark indicates the median, and the 
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 28, 2023



He et al., Sci. Adv. 8, eabn2293 (2022)     9 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 17

hemisphere ipsilateral to the seizure focus only. This elevation 
occurred specifically in regions such as the temporal pole (t59 = 5.40, 
Pcorr = 1 × 10−4), inferior temporal gyrus (t59 = 5.03, Pcorr = 5 × 10−4), 
amygdala (t59 = 6.01, Pcorr = 1 × 10−5), hippocampus (t59 = 5.24, Pcorr = 
2 × 10−4), parahippocampal gyrus (t59 = 4.54, Pcorr = 0.003), and 
fusiform gyrus (t59 = 4.93, Pcorr = 7 × 10−4), as well as the isthmus of 
the cingulate gyrus (t59 = 4.17, Pcorr = 0.011; rest of the brain: |t59| < 
3.41, Pcorr > 0.114) (Fig. 4A). No significant effects were observed in 
the contralateral hemisphere. In TLE, these regions required more 
energy to facilitate the same brain state transitions than in HC. Fur­
thermore, this energetic inefficiency was largely located in the ipsi­
lateral temporolimbic regions, consistent with our previous results 
showing costly activation of the limbic network in patients with TLE.

It remains to be determined, however, whether simulating tran­
sitions among ICN-defined brain states can provide a representative 
overview of all possible brain state transitions. Thus, we stringently 
assessed the robustness of the above findings by comparing them 
to MCE values derived from transitions between 100,000 pairs of 
random initial and final states. These random states were generated 
following a Gaussian distribution of activity magnitude across the 
122 regions with a mean of 1 and an SD of 0.1 as previously done (16). 
This finite repository serves as an approximation of all possible state 
transitions when no a priori brain states are explicitly defined. We 
adopted the same minimal control framework as above and obtained 
Z-transformed regional energy estimates. Consistent with our 
primary findings, we found significantly higher MCE in the 
ipsilateral hemisphere only, encompassing regions such as the 
temporal pole (t59  =  4.57, Pcorr  =  0.003), inferior temporal gyrus 
(t59 = 4.45, Pcorr = 0.004), amygdala (t59 = 3.96, Pcorr = 0.022), hippo­
campus (t59 = 4.44, Pcorr = 0.004), parahippocampal gyrus (t59 = 5.33, 
Pcorr = 2 × 10−4), and fusiform gyrus (t59 = 5.30, Pcorr = 2 × 10−4), as 
well as the isthmus of the cingulate gyrus (t59 = 4.83, Pcorr = 0.001; 
rest of the brain: |t59| < 3.30, Pcorr > 0.156) (Fig. 4B). Thus, analysis 
of randomly generated brain states yielded results matching those 
observed from ICN-defined brain states, supporting the notion that 
our preferential states appropriately represented the repertoire of 
empirical brain dynamics.

Biological validation of the brain’s energetic 
inefficiency in TLE
Through NCT, we have established that TLE is associated with 
energetic inefficiency during simulated brain dynamics, not only 
with respect to attaining preferential states but also in relation to 
transitions among them. Next, we sought to validate our findings 
using an independent measure of neurophysiological energy con­
sumption, FDG-PET. FDG-PET is a common clinical investigation 
used for seizure focus localization and allows probing brain metab­
olism in vivo by measuring regional glucose uptake. Here, FDG-PET 
was acquired in a subset of 50 patients with TLE during their pre­
surgical evaluation. In the absence of HC data as baseline, we used 
data from the contralateral hemisphere in the same patient as a 
reference (47). After confound regression, we generated a laterality 
index (LI) of glucose uptake for each region (see Materials and 
Methods for details). A negative LI indicated lower ipsilateral 
metabolism than contralateral, whereas a positive LI indicated higher 
ipsilateral metabolism than contralateral. This relative definition 
of hypometabolism versus hypermetabolism is commonly used in 
clinical settings (48). Leveraging this measure of metabolic integrity, 
we sought to identify the neurophysiological basis of the energetic 
inefficiency observed in our patients with TLE.

Our first and most straightforward observation was that all 
the regions with disrupted energetic profiles captured by our NCT 
analyses—ipsilateral temporal pole, inferior temporal gyrus, amygdala, 
hippocampus, parahippocampal gyrus, fusiform gyrus, and isthmus 
of cingulate gyrus—also exhibited ipsilateral hypometabolism 
(permutation-based one-sample t test correcting for multiple com­
parisons; Fig. 5A and table S1). To expound on this observation, we 
also calculated LIs of the regional MCE in these regions and tested 
bivariate correlations between the seven pairs of LIs (i.e., one for 
MCE and one for glucose uptake) with a permutation-based product-
moment correlation controlling for multiple comparisons. We found 
significant correlations between LIs pairs at the temporal pole 
(R49 = −0.37, Pcorr = 0.049), amygdala (R49 = −0.62, Pcorr = 8 × 10−6), 
hippocampus (R49 = −0.60, Pcorr = 3 × 10−5), parahippocampal gyrus 
(R49 = −0.50, Pcorr = 0.002), and the fusiform gyrus (R49 = −0.39, Pcorr = 
0.036) but not within the inferior temporal gyrus (R49 = −0.34, Pcorr = 
0.096) or isthmus of cingulate gyrus (R49 = −0.22, Pcorr = 0.551) 
(Fig. 5, B to H). These results suggest that the regions where patients 
with TLE show greater control energy needs also show greater 
hypometabolism (i.e., lower metabolic baseline) with respect to their 
contralateral counterparts.

One common reason for a region to exhibit hypometabolism is 
the loss of local structural integrity, as manifested by gray matter 
atrophy (49, 50). Accordingly, within the abovementioned regions, 
we also examined whether the LI of control energy was correlated 
with the LI of gray matter volume. We found a significant correla­
tion between energy and volume LIs in the hippocampus only 
(R49 = −0.47, Pcorr = 0.005; all other regions had |R49| < 0.32 and 
Pcorr > 0.167). This finding indicated that greater gray matter vol­
ume loss in the hippocampus was associated with greater control 
energy needs. A bootstrapped mediation analysis focusing on the 
hippocampus found that the LI of glucose uptake provided full 
mediation of the association between the LI of gray matter volume 
and the LI of control energy ( = −0.125, P = 0.016; Fig. 5I). Thus, 
the loss of local structural integrity may serve as a substrate leading 
to a decline in baseline regional metabolism, which, in turn, engenders 
inefficient energetic control of brain dynamics.

Fig. 3. Global OCE estimated during a simulated transition from the baseline 
to a final state where only one side of the LIM is activated. When the target was 
set to the left hemispheric LIM, only patients with left TLE (LTLE) needed more 
energy than the other two groups. When the target was set to the right hemispheric 
LIM, only patients with right TLE (RTLE) needed more energy than the other 
two groups. *PBonferroni < 0.05, **PBonferroni < 0.01, and ***PBonferroni < 0.001. The central 
mark indicates the median, and the bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively.
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Sensitivity analyses on the contributions of control energy 
in characterizing the brain’s energetic efficiency
Last, we conducted several sensitivity analyses to verify the contri­
butions of control energy in characterizing the brain’s energetic 
efficiency. First, we evaluated the impact of the overall white matter 
health on our obtained results. White matter lesions are commonly 
detected with specific T2-weighted imaging sequences in the form 
of white matter hyperintensity (WMH). In the absence of these data, 
however, estimation of global WMH volume can still be obtained 
from the T1w image using the Computational Anatomy Toolbox 
(CAT12). Accordingly, we extracted estimates of WMH for each 
individual and regressed those estimates out of our control energy 
metrics. We then repeated our main analyses and found consistent 
results at every step (result S1). Therefore, changes to control energy 
metrics are mainly driven by changes to the dynamics occurring 
atop altered structural networks rather than being driven by overall 
white matter health.

Second, we explored whether similar findings can be obtained 
from conventional derivatives of the structural connectome and 
whether control energy provided unique information by comparison. 
We began by replacing the global OCE needed to activate each ICN 
with the connectivity strength of each ICN (i.e., the sum of all edge 
weights connected to all regions within each ICN) and compared 
the latter between patients with TLE and HCs, as we had in Fig. 2. 
We then replaced nodal MCE with nodal degree and strength and 
performed the same statistical analyses as those presented in Figs. 4 
and 5. We found that, compared to the control energy findings, par­
allel results can be largely reproduced with the connectivity strength 
of the ICN, and with nodal strength but not with nodal degree 
(result S2 and tables S2 to S4). To determine whether control energy 
metrics accounted for unique variance, we formulated stepwise 
linear regression models and confirmed that, compared to these 
conventional connectomic metrics, control energy generally confers 
superior explanatory power both in differentiating patients from 

Fig. 4. Regional energy efficiency differences between patients with TLE and HCs. (A) We estimated the minimal control energy (MCE) consumption of each region 
during all transitions between the brain states defined by ICNs. In the hemisphere ipsilateral to the seizure focus, we found significantly higher energy consumption in 
patients with TLE than in HC among several temporolimbic regions. (B) We then estimated the MCE consumption of each region during transitions between 100,000 pairs 
of initial [x(0)] and final states [x(T)] with randomly generated activity magnitudes. Concordant results were found, showing that the patients needed significantly higher 
control energy in the ipsilateral temporolimbic regions. The boxplots depict the deviation scores (Z) of energy consumption of patients with TLE in reference to HC. Only 
regions with significant group differences after multiple comparison corrections are displayed, including the isthmus of the cingulate gyrus (Isthmuscingulate), 
fusiform gyrus (Fusiform), temporal pole (Temporalpole), inferior temporal gyrus (Inferiortemporal), parahippocampal gyrus (Parahippocampal), amygdala, and 
hippocampus.
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controls and in predicting the asymmetry of glucose metabolism 
(result S2 and table S5).

Third, we tested whether similar findings could be produced 
with other NCT metrics, such as average and modal controllability, 
and whether control energy provided unique information compared 
to them. Here, we replaced nodal MCE with average and modal 
controllability and performed the same statistical analyses reported 
in Figs. 4 and 5. We found significant patient-control differences in 
both average and modal controllability, which were in line with our 
control energy findings (result S3 and tables S6 and S7). However, 
only the laterality of modal controllability showed significant asso­
ciations with the laterality of glucose metabolism (result S3 and 
table S8). Again, through stepwise linear regression models, we 
confirmed that the control energy is more sensitive to the effects of 
pathology and is a better predictor of brain metabolic asymmetry 
compared to controllability (result S3 and table S9).

DISCUSSION
NCT is a powerful approach to studying the brain’s energy landscape, 
as both supported and constrained by the underlying white matter 
connectivity architecture (6–10). In the absence of any external input 
(e.g., brain stimulation), the brain consumes metabolic resources to 
facilitate neural dynamics, and that process can be theoretically 
simulated by the NCT metric of control energy. However, the pre­
cise relation between biological energy and control energy remains 
to be elucidated. Here, we conceptualized TLE as a lateralized lesion 
model and investigated how disruptions in energetic efficiency 
during simulated brain state transitions are associated with patho­
logical changes in regional glucose metabolism and structural integrity, 
thereby providing a neurophysiological correlate for control energy. 
We began by showing that patients with TLE required more control 
energy to activate the limbic network compared to HCs. In particular, 
this increased energy was localized to the limbic network ipsilateral 

Fig. 5. Regional control energy consumption is associated with glucose metabolism in patients with TLE. (A) Multiple comparisons–corrected one-sample t tests 
on LIs (with RTLE mirror-flipped to match the ipsilateral versus the contralateral side) of regional glucose uptake revealed widespread ipsilateral hypometabolism in ref-
erence to the metabolic levels in the contralateral hemisphere (top). Notably, all the ipsilateral temporolimbic regions with atypical energetic profiles also presented with 
hypometabolism (bottom). (B to H) Pearson correlations corrected for multiple comparisons revealed significant associations between the laterality of glucose uptake 
and control energy consumption during all the transitions between the states defined by ICNs, most prominently in the limbic regions, whereas the side with lower glu-
cose metabolic baseline consumed more control energy. Note that LIs were not mirror-flipped for RTLE for the correlation analyses. Corrected P values (Pcorr) are depicted. 
(I) A mediation analysis was performed on the hippocampus, where the association between the laterality of gray matter volume (LI-Vol) and control energy (LI-CE) was 
also found to be significant. We found that the laterality of glucose uptake (LI-Glu) provided a full mediation of the association between the former two variables. The 
significance of the mediation effect was assessed using bootstrapped confidence intervals.
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to the patients’ seizure focus. Furthermore, we quantified regional 
energy profiles during transitions between different brain states and 
found that the mesial and inferior parts of the ipsilateral temporal 
lobe in TLE consumed more control energy on average than HCs. 
Intuitively, the extra energetic demands in these patients may result in 
suboptimal dynamics and inadequate activation, which, in turn, may 
eventually impair function. We demonstrated that the imbalance of 
energetic costs between the ipsilateral and contralateral mesial and 
inferior temporal regions was also mirrored in their asymmetric 
metabolic patterns, whereby regions with lower baseline metabolic 
levels also had higher energetic demands. Specifically, for the hippo­
campus, we found significant associations between lateralization of 
energy costs, glucose uptake, and gray matter volume, with hypo­
metabolism fully mediating the increase in energy demand pertaining 
to volume loss on the ipsilateral side. In excavating these relations, 
our study uncovers the neurophysiological correlates of control 
energy, thereby paving the way for further application of this 
powerful framework in both health and disease.

In this study, we focused on two main categories of simulated 
brain state transitions. The first one probed the efficiency with which 
patients’ brains could attain each of eight ICN-defined preferential 
brain states from a common baseline. Compared to HCs, patients 
with TLE needed greater global control energy to activate the limbic 
network, especially its ipsilateral side. Thus, it is plausible that 
failing to meet these increased energy demands may underpin in­
adequate limbic activation and dysfunction. Considering the over­
lap between the limbic network and the seizure focus in TLE, 
dysfunction within this network may be expected in these patients. 
For instance, episodic memory deficits and affective comorbidities 
are commonly reported in TLE (23, 25) and can be reasonably 
attributed to limbic dysfunction. Previous imaging studies have 
shown that some limbic regions, such as the epileptogenic hippo­
campus, are less activated during episodic memory encoding in 
TLE (51–53). Last, altered functional connectivity seeded from the 
amygdala is also associated with comorbid psychiatric symptoms in 
these patients (54). In line with this evidence, our findings suggest 
that TLE is associated with compromised energetic efficiency of 
ipsilateral limbic regions.

Brain function depends on the ability to both reach desired brain 
states and swiftly transition among them. Therefore, our second set 
of analyses focused on modeling the brain’s capacity to transition 
between pairs of ICN-defined preferential states. Across all possible 
pairwise transitions, we found that patients with TLE exhibited ele­
vated control energy requirements compared to HCs, again rooted 
in ipsilateral temporolimbic regions. These results suggest that dis­
ruption to the underlying structural networks of patients with TLE 
not only affects the activation of the limbic network but also leads to 
greater energy demands of ipsilateral temporolimbic regions during 
transitions among all ICN-defined states. Last, we sought to further 
validate our findings by testing 100,000 pairs of random brain states 
that were not a priori rooted in functional neuroanatomy. In doing 
so, we found near-identical results, demonstrating that the increased 
energy costs in the ipsilateral temporolimbic regions represent a 
general signature of dysfunctional control of neuronal dynamics in 
patients with TLE. Collectively, our study provides evidence that 
altered brain dynamics in TLE, as a pathological trait, are under­
pinned by energetic inefficiency that mostly affects areas in proximity 
or closely connected to the seizure focus and may represent a sub­
strate of enduring brain dysfunction.

After establishing the validity of NCT for identifying energetic 
inefficiency rooted in the topology of the structure connectome and 
dynamics thereupon, we sought to provide further clarification 
regarding the neurophysiological basis of this trait. We know that 
the brain consumes energy via glucose metabolism (19), and previous 
studies have linked control energy to cognitive effort (14). Therefore, 
we hypothesized that the magnitude of control energy may reflect 
the extent of local metabolism needed to instantiate the desired 
neural dynamics. Using FDG-PET, we showed that regional energetic 
inefficiency coexists with altered metabolism in TLE. Specifically, 
we observed that reduced baseline glucose intake (i.e., hypometab­
olism) aligned, as clinically expected, with the side of seizure focus. 
Taking the contralateral hemisphere as reference, we found that 
greater ipsilateral hypometabolism was associated with greater ipsi­
lateral energetic inefficiency. We thus highlight a formal link between 
theoretical control energy and a physiological measure of brain 
metabolism and suggest that the compromised metabolic baseline 
in affected regions may lead to greater energetic challenges in sup­
porting desired brain dynamics. Regardless, we advocate for future 
work to establish whether glucose expenditure during a specific 
cognitive process can also be successfully tracked by control energy 
estimated during a simulation of the same dynamic process.

A common cause of metabolic alterations may be the loss of 
underlying structural integrity. For instance, concomitant gray matter 
volume loss and hypometabolism are reported in patients with TLE, 
especially in epileptogenic regions such as the hippocampus (55). In 
our patients with TLE, we found that gray matter volume asymmetry 
was also associated with energy asymmetry in the hippocampus. 
Through a mediation analysis, we formally demonstrated that the 
asymmetry of baseline metabolism fully mediates the association 
between the asymmetry of gray matter volume and energy costs. 
That is, greater volume loss may lead to greater baseline hypo­
metabolism, thereby increasing energy demands during brain state 
transitions in the ipsilateral hippocampus. These results deliver a 
unifying framework, linking independently measured regional 
volumetrics, glucose metabolism, and network control properties 
derived from structural networks. Our work thus captures both the 
metabolic and volumetric bases of control energy, further supporting 
its application in modeling the endogenous resources consumed 
during brain dynamics in the absence of external stimulation. In 
addition, our work suggests that the magnitude of control energy is 
modulated not only by the transition trajectory (13–15) but also by 
the integrity of the underlying structure. Specifically, regions harbor­
ing pathology, such as the hippocampus in TLE, can exhibit differ­
ent degrees of neural loss, causing a metabolic resource gap that, in 
turn, affects brain state transitions. Nonetheless, regional structural 
integrity may not be the only determinant of local metabolism and 
energetic demands. Local inhibitory circuitry (28, 56), or diaschisis 
due to connections from the pathological regions (56, 57), may affect 
local metabolism and energy consumption as well, even in the 
absence of local volume loss.

Prior work has demonstrated that NCT can provide insights 
unattainable by graph theory metrics, particularly regarding how the 
brain’s topological organization supports brain function (15, 16, 18, 58, 59). 
In line with these prior studies, here, we show through a series of 
sensitivity analyses that, compared to conventional descriptive 
connectomic metrics, control energy offers superior sensitivity to 
the effects of pathology and metabolic asymmetry. One likely expla­
nation for this finding is that variation of degree and strength only 
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reflects local topology, while control energy metrics capitalize on 
modeling the spread of dynamics and can thus better quantify the 
complex patterns of interindividual variations emerging from the 
full topology of the structural connectome (18). In addition, we find 
consistent associations between the lateralities of glucose metabo­
lism and modal controllability, which further confirms our pri­
mary hypothesis that brain metabolism may serve as a biophysical 
substrate for network control. Notably, control energy and con­
trollability capture distinct dimensions of variance, and control 
energy accounts for greater variance in brain metabolism than 
controllability.

Several methodological considerations are pertinent to this study. 
First, the structural connectome obtained via diffusion tractography 
used in our study is an approximation of the real structural scaffold 
of functional brain dynamics. Implementing other forms of struc­
tural connectivity, such as a spatial adjacency network, may provide 
added value to our model (13). Second, we modeled the neural dy­
namics under assumptions of linearity and time invariance, following 
previous studies (9, 10, 13, 15, 16). Recent research has shown that 
these simplified models can provide useful first-order approxima­
tions of brain dynamics (60, 61) and even outperform nonlinear 
models when predicting the macroscopic brain activity measured 
by functional MRI and intracranial electrocorticography (62). None­
theless, further adaptations are expected to incorporate advanced 
features such as nonlinearity (63, 64) and time dependence (65). 
Third, as in previous studies (9, 10, 16), we defined a discrete set of 
brain states on the basis of ICNs known to underpin cognition 
(37, 39, 40). Alternatively, the magnitude of brain states could also 
be defined via empirically measured neurophysiological signals 
(14, 15, 17). However, the estimated energy costs in our model 
depend not only on the network structure but also on the distance 
between the initial and final states (15). Thus, by setting binary 
states uniformly, we ensured a consistent transition distance across 
all participants. Accordingly, the extent of energy costs only reflects 
the efficiency of the underlying network structure (or the lack 
thereof) during the same designated dynamic process. However, we 
acknowledge that epilepsy may not only compromise the brain 
dynamics that we seek to simulate here but also alter how brain 
regions coactivate and influence patterns of regional clustering into 
cohesive functional networks. Future NCT work capitalizing on 
personalized functional network topography (66) may provide more 
fine-grained, subject-specific descriptions of how the energetic pro­
cesses are compromised in patients with epilepsy. Fourth, in the 
absence of PET data in HCs, we focused on ipsilateral hypometabolism 
relative to the contralateral hemisphere in patients. However, we 
note that imbalances might be attributed to metabolic abnormalities 
in either or both hemispheres. Future work should capitalize on HCs’ 
PET data to better disentangle hemisphere-specific associations be­
tween control energy and brain metabolism. Fifth, our TLE cohort 
was heterogeneous in etiology, which may raise the possibility of 
subgroup-specific energetic characteristics that were not addressed 
in the current study. Last, some antiseizure medications (ASMs) may 
affect brain dynamics (67); however, because of the heterogeneous 
regimen of ASM history in our patients, we did not focus on the 
relationship between ASMs and control energy profiles here. Simi­
larly, while interictal epileptic discharges (IEDs) can transiently in­
fluence brain dynamics, their relevance to control energy warrants 
further investigation, as quantitative measures of IEDs were not 
available in this study.

In summary, our study capitalized on TLE as a disease model to deliver 
a unifying framework linking loss of structural integrity, alterations 
of local metabolism, and greater energetic demands to attain desired 
brain state transitions, leading to altered brain dynamics. By pro­
viding a neurophysiological basis of control energy, our work paves 
the way for further applications of NCT in the field of neuroscience.

MATERIALS AND METHODS
Participants
Sixty patients with refractory unilateral TLE (38 left-sided and 
22 right-sided) were recruited from the Thomas Jefferson Compre­
hensive Epilepsy Center. Diagnosis was determined by a multimodal 
evaluation including neurological history and examination, interictal 
and ictal scalp video–electroencephalography, MRI, FDG-PET, and 
neuropsychological testing. Localization was determined after con­
firming that the testing was concordant for unilateral TLE, as de­
scribed previously (68). Patients were excluded from the study for 
any of the following reasons: previous brain surgery, evidence for 
extratemporal or multifocal epilepsy by history or testing, contrain­
dications to MRI, or hospitalization for any axis I disorder listed in 
the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders V). 
Depressive disorders were admissible, given the high comorbidity 
of depression and epilepsy (69). The demographic and clinical char­
acteristics of the patient groups are presented in Table 1, along with 
the demographic information of 50 age-, sex-, and handedness-
matched HCs. All HCs were free of psychiatric or neurological 
disorders based on a health screening measure. This study was ap­
proved by the Institutional Review Board for Research with Human 
Subjects at the Thomas Jefferson University. All participants pro­
vided informed consent in writing.

Imaging acquisition
All participants were scanned on a 3-T X-series Philips Achieva 
clinical MRI scanner (Amsterdam, the Netherlands) at the Thomas 
Jefferson University Hospital. The data acquisition session included 
both a HARDI scan and a high-resolution T1w anatomical scan. 
The HARDI scan was 61-directional with a b value of 3000 s/mm2 
and repetition time (TR) = 7517 ms, echo time (TE) = 98 ms, in 
addition to 1 b0 images. The matrix size was 96 by 96 with a slice 
number of 52. The field of view (FOV) was 230 mm by 230 mm, and 
the slice thickness was 2.5 mm. Participants lay in a foam pad to 
comfortably stabilize the head and were instructed to remain still 
throughout the scan. Before collection of the HARDI scan, T1w 
images (180 slices) were collected using an magnetization-prepared 
rapid gradient-echo sequence (256 by 256 isotropic 1-mm voxels; 
TR = 640 ms, TE = 3.2 ms, flip angle = 8°, FOV = 256 mm by 256 mm) 
in identical positions to provide an anatomical reference. The in-plane 
resolution for each T1 slice was 1 mm3 (axial oblique).

As part of their presurgical evaluation, 50 patients also underwent 
on-site PET scans. The other 10 patients who received PET scans 
from other facilities (off-site), and HCs who did not receive PET 
scans, were excluded from the FDG-PET–related analysis. All PET 
scans were performed during interictal periods using a standard 
protocol. Preinjection blood glucose level was less than 150 mg/dl 
for all patients (range, 61 to 128 mg/dl). An intravenous catheter 
was inserted under local anesthesia, and a dose around 5.9 ± 1.4 mCi 
of radioactive FDG (100 mg/liter) was injected. The scan was initiated 
about 42 ± 15 min after the injection. Participants’ eyes were open, 
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and their ears were nonoccluded. Ambient noise and light were kept 
to a minimum. Thirty-one patients (62% of patients; 20 LTLE and 
11 RTLE) were scanned on a Siemens Biograph 1080 PET/CT, with 
data consisting of 109 axial slices, 3 mm thick, and 1 mm by 1 mm 
in resolution. The remaining 19 patients (38% of patients; 15 LTLE 
and 4 RTLE) were scanned on a Siemens Biograph 20 mCT PET/
CT, with data consisting of 110 axial slices, 3 mm thick, and 1.6 mm 
by 1.6 mm in resolution. Attenuation-corrected PET images were 
iteratively reconstructed by standard vendor-provided software. 
There was no significant difference in the proportion of patients 
with LTLE and RTLE acquired with either scanner (2 = 1.17, 
P = 0.28). Furthermore, we obtained asymmetry indices that use the 
same participant as reference, therefore reducing potential scanner-
specific bias, as reported previously (47). This procedure also avoids 
confounds related to demographic factors, such as age, medication 
history, and epilepsy history (70, 71). Nevertheless, the scanner 
model was also used as a categorical nuisance regressor during the 
data analysis along with demographic information.

Imaging processing
The T1w and HARDI data were analyzed through QSIprep (v0.8.0; 
https://qsiprep.readthedocs.io) (72), which is based on Nipype 1.4.2. 
QSIprep automates diffusion MRI data preprocessing and reconstruc­
tion using well-recognized neuroimaging tools including Advanced 
Normalization Tools (ANTs), Analysis of Functional NeuroImages, 
FMRIB Software Library (FSL), DSI Studio, MRtrix3, and fMRIprep.
Anatomical data preprocessing
The T1w image was corrected for intensity nonuniformity using 
N4BiasFieldCorrection (ANTs 2.3.1) and was used as a T1w reference 
throughout the workflow. The T1w reference was then skull-stripped 
using antsBrainExtraction.sh (ANTs 2.3.1), using OASIS as the target 
template. Spatial normalization to the International Consortium for 
Brain Mapping (ICBM) 152 Nonlinear Asymmetrical template version 
2009c was performed through nonlinear registration with antsRegistration 
(ANTs 2.3.1), using brain-extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal fluid, white matter, 
and gray matter was performed on the brain-extracted T1w using 
FMRIB’s Automated Segmentation Tool (FSL 6.0.3).
Diffusion data preprocessing
The HARDI image was first denoised using a Marchenko-Pastur 
principal components analysis method, underwent Gibbs-ringing 
artifacts removal, and then was spatially bias-corrected through 
MRtrix3. Subsequently, it was corrected for head motion and eddy 
current distortions via eddy_openmp (FSL 6.0.3). A deformation field 
to correct for susceptibility distortions was estimated on the basis of 
fMRIprep’s fieldmap-less approach. The deformation field was that 
resulting from co-registering the b0 reference to the same-subject 
T1w reference with its intensity inverted. Registration was performed 
with antsRegistration (ANTs 2.3.1), and the process was regularized 
by constraining the deformation to be nonzero only along the 
phase-encoding direction and was further modulated with an average 
fieldmap template. On the basis of the estimated susceptibility 
distortion, an unwarped b = 0 reference was calculated for a more 
accurate co-registration with the T1w reference, and then a final 
preprocessed HARDI image was produced in the native space 
of the T1w reference with an isotropic voxel size of 2 mm3. Two 
quality metrics were calculated on the basis of the preprocessed 
data, including framewise displacement (73) and neighboring 
correlation (74).

Diffusion data reconstruction and tractography
The preprocessed HARDI image was reconstructed via MRtrix3. 
Multitissue fiber response functions were estimated using the 
Dhollander algorithm, during which fiber orientation distributions 
(FODs) were estimated via constrained spherical deconvolution 
(CSD) using an unsupervised multitissue method. Specifically, a 
single-shell optimized multitissue CSD was performed using 
MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix3. FODs 
were intensity-normalized using mtnormalize. Subsequently, an 
anatomically constrained probabilistic tractography was performed 
using the iFOD2 probabilistic tracking method, in which the white 
matter FODs were used for tractography and the T1w segmentation 
was used for anatomical constraints. For each participant, we gener­
ated 107 streamlines with a maximum length of 250 mm, minimum 
length of 30 mm, and FOD power of 0.33. Weights for each streamline 
were calculated using a spherical deconvolution-informed filtering 
of tractograms (SIFT2) (75), which was then used to estimate the 
structural connectivity matrix.
Brain parcellation customization
Consistent with previous work (9), we chose the Lausanne parcella­
tion scheme including n = 129 cortical and subcortical parcels (76) 
to build the structural network. This parcellation scheme is estab­
lished by subdividing the Desikan-Killiany anatomical atlas. Specif­
ically, to enable the proposed asymmetry analysis, we needed the 
parcellation to be symmetric. However, we noted that six regions 
have been subdivided asymmetrically, whereas the medial orbitof­
rontal gyrus, inferior parietal gyrus, and lateral occipital gyrus have 
one more subdivision in the right hemisphere, and the rostral middle 
frontal gyrus, precentral gyrus, and postcentral gyrus have one more 
subdivision in the left hemisphere. These additional subdivisions 
were subsequently merged with their corresponding neighbor to 
match their cross-hemisphere counterpart, producing a symmetric 
version of the parcellation constituted by 61 pairs of cortical and 
subcortical parcels (excluding brainstem; details in table S10). This 
parcellation was then inversely warped onto the native space of the 
T1w reference and resampled at 2-mm3 voxel resolution. Using 
tck2connectome (MRTrix3), allowing a 2-mm radial search from 
each streamline end point to locate the nearest node, we built a 
122 by 122 undirected adjacency matrix for each participant with 
the SIFT2 weighted streamline counts representing interregional 
structural connectivity.

To define neurobiologically meaningful brain states, we capitalized 
on an established functional brain parcellation (77) of ICNs, which 
was defined by clustering the resting-state functional connectivity 
data from 1000 healthy participants (38). This parcellation is consti­
tuted by seven cortical ICNs that are commonly seen during both 
resting and task conditions (37, 39), including visual, somatomotor, 
dorsal attention, salience/ventral attention, limbic, executive control, 
and default mode networks. As in prior work (9), we mapped both 
parcellations to a common surface space (fsaverage) and calculated the 
proportional overlap of vertices between each parcel and each of the 
seven ICNs. Using a winner-take-all strategy, we assigned each parcel 
to the ICN with highest overlap proportion (Fig. 1B). In addition, 
subcortical regions were summarized into an eighth, subcortical net­
work, except for the hippocampus and amygdala, which were assigned 
to the limbic network following the common clinical definition. These 
eight nonoverlapping networks were used as representative brain 
states during simulations of brain state transitions. The rationale of 
defining brain state with these ICNs is discussed in method S1.
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FDG-PET data preprocessing
PET images were preprocessed with Statistical Parametric Mapping 
12 (SPM 12; www.fil.ion.ucl.ac.uk/spm/software/spm12). Briefly, 
the PET image was first co-registered to the T1w reference image, 
smoothed with a 6-mm kernel, and intensity-normalized by the 
global mean uptake estimated on the basis of a skull-striped brain 
mask derived from the T1w reference image. Regional mean glucose 
uptake was subsequently estimated on the basis of the same parcel­
lation. As stated, in the absence of PET data from HC, we calculated 
the LI (​​LI​ i​​  = ​ ​L​ i​​ − ​R​ i​​ _ ​L​ i​​ + ​R​ i​​

​​) of regional glucose uptake from the aforemen­
tioned 61 pairs of parcels for the subsequent analyses.
Regional gray matter volume estimation
Last, we obtained regional mean gray matter volumes using the 
CAT12 (v12.7; www.neuro.uni-jena.de/cat/). The T1w image was 
first denoised with a spatial adaptive nonlocal means denoising filter, 
followed by internal resampling to properly accommodate low-
resolution images and anisotropic spatial resolutions. Subsequently, 
the data were bias-corrected and affine-registered followed by the 
standard SPM “unified segmentation.” The brain was then parcellated 
into left and right hemispheres, subcortical areas, and the cerebellum. 
Furthermore, local white matter hyperintensities were detected to 
be later accounted for during the spatial normalization. Subsequently, 
a local intensity transformation of all tissue classes was performed, 
and a final adaptive maximum a posteriori segmentation was then 
refined by applying a partial volume estimation, which effectively 
estimated the fractional content for each tissue type per voxel. Last, 
the tissue segments were spatially normalized to a common refer­
ence space using Geodesic Shooting registration, so that the regional 
gray matter volume could be estimated on the basis of the same 
parcellation. In addition, the total intracranial volume and a sum­
mary image quality rating for each T1w image were exported and 
were used as covariates.

Brain state transitions simulated through linear NCT
Theoretical framework of linear NCT
To investigate whether TLE is associated with compromised effi­
ciency of common brain dynamics, we leveraged recent developments 
of linear NCT and explored the energetic efficiency of the structural 
brain network in facilitating designated brain state transitions. The 
following equations have been derived and reported in previous 
work (9, 10, 13, 15, 16); we report them here to clarify precisely how 
NCT was used in our analyses and simulations.

As in previous work (9, 10, 13, 15, 16), we used a simplified 
noise-free linear and time-invariant network model to describe the 
dynamics of the brain

	​ ​x ̇ ​  =  Ax(t) + Bu(t)​	 (1)

Here, x(t) is an N × 1 vector that represents the state (i.e., activity 
level) of each node of the system at time t (N = 122). A is an N × 
N adjacency matrix denoting the relationship between the system 
elements, which can be operationalized as the structural brain 
network. To ensure the stability of the system, A is normalized as 
follows (13)

	​​ A​ norm​​  = ​   A ─ ‖ ​(A)​ max​​‖+ 1 ​ − I​	 (2)

whereas (A)max denotes the largest positive eigenvalue of the system 
and I denotes the N × N identity matrix. Subtracting this identity 

matrix ensures that internal dynamics decay for each node, thereby 
stabilizing the system to prevent its infinite growth. B is the input 
matrix that identifies the nodes in the control set. Here, we set B to 
be the N × N identity matrix to set all the brain parcels as control 
nodes where energy can be consumed to facilitate brain state transi­
tions. Last, u(t) denotes the amount of energy injected into each 
control node at each time point t. Intuitively, u(t) can be summa­
rized over time to represent the total energy consumption during 
transition from an initial state to a final state.
Simulation I: Individual ICN activation
In our first simulation, we considered the scenario that the brain 
transits from an initial baseline state (x0 = x(t = 0)) to a final state 
(xT = x(t = T)) when a specific ICN is predominantly activated. We 
modeled this control task by setting

	​​ x​ i​​(t  =  0) = 0, i  =  1, … , 122​	

and

	​​ x​ i​​(t  =  T ) = {​ 0,  if i ∉ ​ICN​ k ​​​  
1,  if i ∈ ​ICN​ k​​

​, k  =  1, … , 8​	

Note that, theoretically, setting the initial state to full zeros does 
not necessarily mean that the brain is globally inactive, which is bio­
logically impossible. Rather, it can be viewed as a mean-centered 
baseline, and the final state has additional activations within the 
specific ICN than other regions by 1 arbitrary unit. This setting is 
analogous to task functional MRI analyses, where contrasts are com­
monly set between a condition of interest (1) and a baseline (0) (16).

To explore the energetic efficiency of the structural brain network 
in facilitating the activation of specific ICNs, we adopted the optimal 
control framework to estimate the control energy required to opti­
mally steer the brain through these state transitions (15, 16). Against a 
naturalistic trajectory, when the brain state drifts without any con­
trol input, the proposed state transition commonly relies on the 
additional control input u(t) to reach the desired final state. This 
control effort can be intuitively understood as an internal cognitive 
control process (or as external brain stimulation in other patient 
scenarios), and it is based on both the energy costs and the length of 
the transition trajectory (13). Therefore, an optimal solution can be 
described as the minimized combination of both the length of 
the transition trajectory and the required control energy, during 
the state transition from an initial state (x(0) = x0) to the final state 
(x(T) = xT) over the time horizon T [see (10, 78)]

	​​
u(t)* = ​argmin J(u)​ 

u
​ ​

​  
= ​argmin​ 

u
​ ​ ​ ∫0​ 

T
 ​​(​(​x​ T​​ − x(t))​​ ⊤​ S(​x​ T​​ − x(t)) + u ​(t)​​ ⊤​ u(t)) dt

​​	 (3)

where (xT − x(t))⊤(xT − x(t)) is the distance between the state at time 
t and the final state xT, T is the finite amount of time given to reach 
the final state, and  is the relative weighting between the cost asso­
ciated with the length of the transition trajectory and the input con­
trol energy. Following a previous benchmarking study (13), we set 
T = 3 and  = 1, allowing 1000 steps of transition from the initial 
state to the final state. To minimize the unintended energy cost on 
regulating the regions of no interest (i.e., those outside of the target 
ICN), we applied a constraint matrix S, which is an N × N binary 
diagonal matrix that selects only regions that are members of the 
target ICN. Accordingly, the term (xT − x(t))⊤S(xT − x(t)) specifically 
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constrains the trajectories of all regions within the target ICN, and 
the term u(t)⊤u(t) constrains the amount of control energy used to 
reach the final state. The cost function J(u(t)*) is used to solve 
the unique optimal control input u(t)*. Specifically, we define a 
Hamiltonian as

	​ H(p, x, u, t) = ​(​x​ T​​ − x)​​ ⊤​ S(​x​ T​​ − x ) +  ​u​​ ⊤​ u + p(Ax + Bu)​	 (4)

According to the Pontryagin minimization principle (78), if u* is 
a solution with the optimal trajectory x*, then there exists a 
p* such that

	​​

​ ∂ H ─ ∂ x ​  =  − 2S(​x​ T​​ − ​x​​ *​ ) + ​A​​ ⊤​ ​p​​ *​  =  − ​​p ̇ ​​​ *​,

​   ​ ∂ H ─ ∂ p ​  = ​ Ax​​ *​ + Bu,​  

​ ∂ H ─ ∂ u ​  =  2 ​u​​ *​ + ​B​​ ⊤​ ​p​​ *​  =  0

 ​​	  (5)

From this set of equations, we can derive that

	​​ u​​ *​  =  − ​ 1 ─ 2 ​ ​B​​ ⊤​ ​p​​ *​​	 (6)

	​​​ x ̇ ​​​ *​  = ​ Ax​​ *​ − ​ 1 ─ 2 ​ ​BB​​ ⊤​ ​p​​ *​​	 (7)

which can be reduced to

	​ [​ ​​x ̇ ​​​ *​​ 
​​p ̇ ​​​ *​

​ ] = [​ 
A

​ 
− ​ 1 ─ 2 ​ ​BB​​ ⊤​

​  
− 2S

​ 
− ​A​​ ⊤​

 ​  ] [​ ​x​​ *​​ 
​p​​ *​

​ ] + [​ 0​ 2S​ ] ​x​ T​​​	 (8)

If we denote

	​ ​   A ​  =  [​ 
A

​ 
− ​ 1 ─ 2 ​ ​BB​​ ⊤​

​  
− 2S

​ 
− ​A​​ ⊤​

 ​ ]​	

	​ ​   x ​  =  [ ​ ​x​​ *​​ 
​p​​ *​

​]​	
	​ ​   b ​  =  [​ 0​ 2S​ ] ​x​ T​​​	

then this reduced Eq. 8 can be rewritten as

	​ ​​   x ​ ˙ ​  =  ​   A ​​   x ​ + ​   b ​​	

and can be solved as

	​ ​   x ​(t) = ​e​​ ​   A ​t​​   x ​(0) + ​​   A ​​​ −1​(​e​​ ​   A ​t​ − I) ​   b ​​	 (9)

Then, by fixing t = T, we arrive at

	​​    x ​(T ) = ​e​​ ​   A ​T​​   x ​(0) + ​​   A ​​​ −1​(​e​​ ​   A ​T​ − I ) ​   b ​​	 (10)

We let

	​ c  = ​​    A ​​​ −1​(​e​​ ​   A ​T​ − I ) ​   b ​​	

	​​ e​​ ​   A ​T​  =  [​​E​ 11​​​  ​E​ 12​​​ ​E​ 21​​​  ​E​ 22​​​]​	

so that Eq. 10 can be rewritten as

	​ [ ​ 
​x​​ *​(T)

​ 
​p​​ *​(T)

​ ] = [​​E​ 11​​​  ​E​ 12​​​ ​E​ 21​​​  ​E​ 22​​​ ] [​ 
​x​​ *​(0)

​ 
​p​​ *​(0)

​ ] + [​​c​ 1​​​ ​c​ 2​​​]​	

from which we can obtain

	​​ x​​ *​(T ) = ​E​ 11​​ ​x​​ *​(0) + ​E​ 12​​ ​p​​ *​(0) + ​c​ 1​​​	 (11)

	 Moreover, if we let ​​ 
_

 S ​  =  I − S​, then as a known result in optimal 
control theory (11), ​​ 

_
 S ​​p​​ *​(T ) = 0​. Therefore	

	​
​ _ 
S
 ​
​p​​ *​(T ) = 

​ _ 
S
 ​
​E​ 21​​ ​x​​ *​(0) + 

​ _ 
S
 ​
​E​ 22​​ ​p​​ *​ + 

​ _ 
S
 ​
​c​ 2​​  =  0​	 (12)

Last, p*(0) can be solved for as follows

	​​ p​​ *​(0) = ​[​ 
​SE​ 12​​

​ 
​ 
_

 S ​​E​ 22​​
​]​​ 

+

​(− [​ 
​SE​ 11​​

​ 
​ 
_

 S ​​E​ 21​​
​ ] ​x​​ *​(0) − [​ 

​Sc​ 1​​
​ 

​ 
_

 S ​​c​ 2​​
​ ] + [​Sx(T)​ 

0
 ​  ] )​	 (13)

where [∙]+ indicates the Moore-Penrose pseudo-inverse of a 
matrix. Now that we have obtained p*(0), we can use it and x(0) to 
solve for ​​ ~ x ​​ via forward integration based on Eq. 9. To solve for u*, 
we take p* from our solution for ​​ ~ x ​​ and solve Eq. 6. In particular, the 
OCE injected at each region i can be defined as

	​​ E​i​ 
*​  = ​ ∫0​ 

T
 ​​ ​‖​u​i​ *​(t)‖​​ 

2
​ dt​	 (14)

or given in total

	​​ E​opt​ * ​   = ​  ∑ 
i=1

​ 
m

 ​​ ​E​i​ 
*​  = ​ ∫0​ 

T
 ​​ ​u​​ *​ ​(t)​​ ⊤​ ​u​​ *​(t) dt​	 (15)

This total OCE consumption ​​E​opt​ * ​​  is then used as a measure of 
efficiency of the structural brain network during specific ICN 
activations.
Simulation IIa: Between ICN transitions
In our second simulation, we investigated the regional energetic 
consumption associated with facilitating brain dynamics. While it is 
computationally impossible to simulate all brain transitions, we 
considered two sets of finite repositories instead. First, we used the 
eight ICN-defined representative brain states (i.e., the xT in the 
“Simulation I: Individual ICN activation” section) and explored all 
the possible transitions among them (9). Counting scenarios of 
both reciprocal transitions and single-state persistence (i.e., x0 = xT), 
this simulation resulted in a total of 64 control tasks. Considering 
the linear nature of our dynamical model, theoretically, any possible 
transition can be written as a linear combination of the proposed 
transitions (9). Thus, this simulation is generally relevant to all tran­
sitions represented during common brain dynamics.

We further alleviated the constraint on the length of the transi­
tion trajectory in our model to allow the brain to travel more freely 
across different intermediate states. Specifically, we adopted a 
subform of the optimal control framework, namely, the MCE, 
which can be obtained by letting  → ∞ in Eq. 3, so that the cost 
function J accounts only for the control input to facilitate the 
designated transition regardless of the trajectory (13). Accordingly, 
the MCE during the state transition from an initial state (x(0) = x0) 
to the final state (x(T) = xT) over the time horizon T can be de­
scribed as (2, 13, 17)
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	​ u(t)* = ​argmin J(u)​ 
u
​ ​   = ​ argmin​ 

u
​ ​ ​ ∫0​ 

T
 ​​u ​(t)​​ ⊤​ u(t) dt​	 (16)

To solve the MCE u(t)* this time, we compute the controllability 
Gramian W for controlling the network A from the control node 
set B in Eq. 1 as

	​ W  = ​ ∫0​ 
T
 ​​ ​e​​ A(T−t)​ ​BB​​ ⊤​ ​e​​ ​A​​ ⊤​(T−t)​ dt​	 (17)

where, as defined previously, A is the normalized N × N structural 
brain network, B is an N × N identity matrix setting all the brain 
parcels as control nodes, and T is the finite time horizon of the tran­
sition trajectory. Similarly, we set T = 3 and allow for 1000 steps of 
transition from the initial state to the final state following (13). 
Then, the u(t)* can be computed as

	​ u(t)* = ​B​​ ⊤​ ​e​​ ​A​​ ⊤​(T−t)​ ​W​​ −1​(x(T ) − ​e​​ AT​ x(0))​	 (18)

and the MCE injected at each region i can be calculated on the basis 
of Eq. 14. Last, for each brain region, we averaged their MCE across 
the 64 control tasks as a measure of their individual energetic con­
sumption during dynamics among known ICNs.
Simulation IIb: Random brain state transitions
The second set of finite repositories of brain states included 100,000 
pairs of randomly generated initial and final brain states xrand with 
a Gaussian distribution at mean(xrand) = 1 and std(xrand) = 0.1 (16). 
Accordingly, this simulation resulted in a total of 100,000 control 
tasks, which served as an approximation of all transitions when no 
prior preference of brain states is explicitly defined. On the basis of 
our previous argument of the linear nature of the model, we were 
not expecting significant difference between our previous simulation 
IIa and this simulation IIb. Rather, we expected to observe a con­
sistency between the two, which would serve as a validation of simula­
tion IIa. Similarly, we adopted the same minimal control framework, 
and for each brain region, we calculated and summarized their MCE 
across the 100,000 control tasks as the measure of their individual 
energetic consumption during brain dynamics among randomly 
organized brain networks.

Statistical inferences
Comparisons for common demographic and clinical information 
were made with standard parametric tests such as an independent 
t test or chi square test, conducted using IBM SPSS v25. The  level 
was set at P < 0.05 for both parametric and nonparametric tests.
Confounding factor regression
To minimize the influence of individual variances of the demo­
graphic characteristics and imaging data qualities (Table 1), con­
founding factor regressions were applied before statistical inferences 
on our neuroimaging data. Specifically, for derivates from all imaging 
modalities, four potential confounding factors were identified and 
included in the models: age, sex, handedness, and total intracranial 
volume. Furthermore, additional confounding factors were added 
to the models for different modalities: (i) for HARDI derivates (i.e., 
control energy), the neighboring correlation, mean framewise dis­
placement, matrix density, and total weight were added; (ii) for T1w 
derivates (i.e., regional gray matter volume), the image quality rating 
was added; and (iii) for FDG-PET derivates (i.e., regional glucose 
uptake), the PET scanner model was added. For each modality, all 
confounding factors were regressed out from their derivates with 

one linear regression model, and the residuals were taken for subse­
quent statistical analyses.
Permutation-based nonparametric statistical testing
To minimize the bias of the data distribution to our statistical infer­
ence and to correct for multiple comparisons, we implemented a 
permutation-based method as our main statistical strategy (43). 
Individual permutation-based statistical testing allows inference of 
the probability of the observed statistic (e.g., t value and r value), 
from a distribution of the same statistic estimated from massive 
instances of the same samples with their group identities permuted 
(79). In many cases, we wish to apply a permutation-based test to 
scenarios with multiple comparisons, i.e., comparing multiple within-
subject variables across the same groups of subjects. In this case, we 
can expand the traditional approach by applying a “tmax” principle 
to adjust the estimated P values of each variable for multiple com­
parisons by controlling the family-wise error rate (44). Briefly, the 
observed statistic for each variable is compared to the distribution 
of the most extreme statistic across the entire family of tests for each 
possible permutation. This procedure corrects for multiple com­
parisons, because the distribution of the most extreme statistics 
automatically adjusts to reflect the increased chance of false discov­
eries due to an increased number of comparisons (43). We performed 
1,000,000 permutations each time to ensure high precision during 
P value estimation (46). This strategy was applied on all analyses 
(i.e., t tests and product-moment correlations) when multiple com­
parison correction was required.

To increase statistical power (41, 45, 46), the regional control 
energy values of the patients with RTLE were flipped left to right, 
allowing all statistical analyses to be conducted in accordance with 
the site of ictal onset (left, ipsilateral; right, contralateral). However, 
as there was no way to flip HC data to match the ipsilateral versus 
contralateral side in the patients with RTLE, we instead calculated 
the deviation score of regional energy [Zpat = (Epat − con)/con, 
where con and con were the mean and SD of the same regional 
energy from the HC] for each patient at each hemisphere and 
flipped the Z score of RTLE afterward (41, 46). Then, Z scores were 
evaluated via a permutation-based one-sample t test.
Permutation-based mediation analysis
To disentangle the associations among regional gray matter volume 
change, glucose metabolism, and control energy consumption in the 
hippocampus, we applied a mediation analysis to test the hypothesis 
that the regional metabolic baseline, as a measure of functional 
integrity, mediated the relationship between local structural integrity 
and energetic efficiency. After confound regression, we generated 
the laterality indices for gray matter volume, glucose uptake, and 
MCE estimated during cross-ICN transitions. We then evaluated 
the significance of the indirect effect using bootstrapped confidence 
intervals via the MediationToolbox (https://github.com/canlab/
MediationToolbox). Specifically, we examined (i) path c: the total 
effect of the LI of gray matter volume on the LI of MCE; (ii) path a: 
the relationship between the LI of gray matter volume and the LI of 
glucose uptake; (iii) path b: the relationship between the LI of glucose 
uptake and the LI of MCE; and (iv) path c′: the direct effect of the LI 
of gray matter volume on the LI of MCE while controlling for the 
mediator (LI of glucose uptake). The mediation/indirect effect a*b 
is the effect size of the relationship between the LI of gray matter 
volume and the LI of MCE that was reduced after controlling for the 
mediator (LI of glucose uptake). For each path, we calculated 
the  coefficient, which reflected the changes of the outcome for 
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every one-unit change in the predictor. A bootstrap analysis (i.e., 
resampled 1,000,000 times) was implemented to estimate the confi­
dence intervals for the indirect effect.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation 
practices such that papers from women and other minority scholars 
are undercited relative to the number of such papers in the field 
(80–88). Here, we sought to proactively consider choosing references 
that reflect the diversity of the field in thought, form of contribution, 
gender, race, ethnicity, and other factors. First, we obtained the pre­
dicted gender of the first and last author of each reference by using 
databases that store the probability of a first name being carried by 
a woman (84, 89). By this measure (and excluding self-citations to 
the first and last authors of our current paper), our references 
contain 11.56% woman (first)/woman (last), 22.12% man/woman, 
22.12% woman/man, and 44.2% man/man. This method is limited 
in that (i) names, pronouns, and social media profiles used to con­
struct the databases may not, in every case, be indicative of gender 
identity and (ii) it cannot account for intersex, nonbinary, or trans­
gender people. Second, we obtained predicted racial/ethnic category 
of the first and last authors of each reference by databases that store 
the probability of a first and last name being carried by an author of 
color (90, 91). By this measure (and excluding self-citations), our 
references contain 11.17% author of color (first)/author of color 
(last), 14.42% white author/author of color, 25.78% author of color/
white author, and 48.64% white author/white author. This method 
is limited in that (i) names and Florida voter data to make the 
predictions may not be indicative of racial/ethnic identity and (ii) it 
cannot account for Indigenous and mixed-race authors or those 
who may face differential biases because of the ambiguous racializa­
tion or ethnicization of their names. We look forward to future 
work that could help us to better understand how to support equi­
table practices in science.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn2293

View/request a protocol for this paper from Bio-protocol.
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