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Abstract— Inertia-dominated mechanical systems can achieve
net displacement by 1) periodically changing their shape
(known as kinematic gait) and 2) adjusting their inertia distri-
bution to utilize the existing nonzero net momentum (known
as momentum gait). Therefore, finding the gait that most effec-
tively utilizes the two types of locomotion in terms of the mag-
nitude of the net momentum is a significant topic in the study of
locomotion. For kinematic locomotion with zero net momentum,
the geometry of optimal gaits is expressed as the equilibria of
system constraint curvature flux through the surface bounded
by the gait, and the cost associated with executing the gait in the
metric space. In this paper, we identify the geometry of optimal
gaits with nonzero net momentum effects by lifting the gait
description to a time-parameterized curve in shape-time space.
We also propose the variational gait optimization algorithm
corresponding to the lifted geometric structure, and identify two
distinct patterns in the optimal motion, determined by whether
or not the kinematic and momentum gaits are concentric.
The examples of systems with and without fluid-added mass
demonstrate that the proposed algorithm can efficiently solve
forward and turning locomotion gaits in the presence of nonzero
net momentum. At any given momentum and effort limit, the
proposed optimal gait that takes into account both momentum
and kinematic effects outperforms the reference gaits that each
only considers one of these effects.

I. INTRODUCTION

Multibody systems can in many cases achieve net displace-
ment in the absence of momentum by periodically changing
their shape [1]. Examples of such systems include falling
cats [2] and floating space satellites [3] that are capable
of reorientation without net angular momentum. Likewise,
swimmers immersed in an inertia-dominated “perfect fluid”
that results in a nonzero fluid-added mass can achieve
translational and rotational self-propulsion even though the
swimmer-fluid system has no net linear or angular momen-
tum [4]. If the system is assumed to start and end from rest,
the net displacement induced by this effect depends only on
the path of the gait through the shape space. In this paper, we
will refer to gaits that maximize this displacement (relative
to a time or energy cost function [5], [6]) as kinematic gaits.

When the system has nonzero net spatial momentum
resulting from prior actions, such as jumping into the air
or underwater initial launch, locomotion also experiences
drift. When the shape is fixed, the drift appears as a steady
translation or rotation, the magnitude of which is determined
by momentum and inertia. This phenomenon occurs not
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only in space robotics [7], [8] but also in sports and dance
movements that are challenging for robots, such as aerial
spins in freestyle skiing and fouetté turns in ballet [9]. In this
paper, we will refer to motions in which the system holds
itself in a configuration that maximizes and directs the drift in
a given direction for a given momentum as momentum gaits.

For systems with zero momentum, optimal gaits for
speed or efficiency clearly require that the system actively
cycle its shape (otherwise it will not translate or rotate
at all). Conversely, at very large values of momentum,
it is clearly best to hold a minimum-inertia shape in the
corresponding direction of motion, because the kinematic
contribution of any active gait will be outweighed by the
loss of dynamic motion incurred by moving away from
the minimum-inertia shape during this gait. Between these
two extremes, however, optimal locomotion gaits tend to
combine both effects – augmenting the momentum gliding
with an active pumping motion, or, equivalently, biasing
kinematic gaits towards lower-inertia shapes. For example,
a swimmer in a race comes out of a dive or off the wall
with significant momentum, and exploits this momentum
by adopting a streamlined shape that minimizes fluid-added
mass in the forward direction [9]. As friction saps this initial
momentum, swimmers transition into an active stroke that
(ideally) strikes a balance between the active propulsion it
supplies and the extra inertial drag it incurs [10].

In this paper, we examine the problem of identifying
gaits that best balance kinematic and gliding contributions
as a function of current momentum and available effort.
Optimizing gaits for locomotion is highly nonlinear due
to shape-dependent dynamics and the noncommutativity of
translations and rotations. The geometric mechanics com-
munity has developed tools based on mathematical struc-
tures such as Lie brackets to understand these nonlinearities
and to identify shape oscillations that produce useful net
displacements [11], [12], and our group’s previous work in
coordinate optimization has further extended these tools to
large-amplitude gait analysis [13], [14]. Building on these
tools, we have identified geometric structure in the optimal
gaits for drag-dominated systems [5] and inertia-dominated
systems with zero net momentum [6], and used these insights
to develop efficient algorithms for estimating the gradient of
gait performance during numerical optimization. However,
nonzero net momentum poses new challenges, because the
original gait analysis tools cannot capture the momentum
effects of the system. Considering the coupling between
translations and rotations, gait optimization needs to consider
both kinematic and momentum effects.
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Fig. 1. Left: Optimal gaits of a perfect-fluid swimmer in the forward direction and a floating snake in the turning direction at different net momentum
levels. Inset cartoons illustrate the configuration of the system at the four different quarters of the gait, with the red markers indicating the position of the
snake’s or swimmer’s head. Right: Velocity and optimal gait radius of the two locomoting systems at different net momentum levels. Gaits transition from
kinematic gaits to momentum gaits as the net momentum rises from zero. Depending on whether the two gaits share the same center, the transition can
be continuous or discrete.

This work is also related to angular momentum control in
space robotics, in which drift due to nonzero momentum
is generally considered to be a disturbance. Methods for
isolating this drift and compensating the control laws have
been developed in [7], [8]. However, these methods are
not designed to actively exploit the nonzero momentum.
A second strain of relevant research is focused on mixed
dynamic and kinematic systems such as snakeboards [15].
Such a system can not only have nonzero momentum but can
also change momentum through nonholonomic constraints.
Existing works on gait design for such systems include
small-time local controllability analysis [16], optimal control
[17], and geometry-based gait selection [18]. However, these
works have not yet been extended to optimality or geometric
interpretability similar to kinematic gait design. Lastly, the
reinforcement learning policy applied to the perfect-fluid
swimmer demonstrates robustness to momentum drift [19].
However, the drift-aware policy degenerates to suboptimal
when momentum reaches zero.

In this paper, we propose geometric gait analysis tools
that consider nonzero net spatial momentum effects and the
corresponding variational gait optimization algorithm. The
main contributions are:

1) Lifting the gait description from a time-parameterized
curve through the shape-space of the system (in which
the shape locus determines net displacement, and the
time parameterization only affects the execution cost)
into a time-parameterized curve through shape-time

space (which can capture the property that the pacing
and duration of the gait affect the amount and nature
of momentum drift over a cycle);

2) Adapting the geometric expressions for the gradient of
gait performance to this lifted geometric structure; and

3) Contrasting the nature of optimal gaits for systems
whose kinematic and momentum gaits have coincident
or noncoincident centers.1

As a demonstration of this approach, we consider two char-
acteristic example systems in this paper as shown in Fig. 2 –
multi-link systems either immersed in an inertia-dominated
“perfect fluid” (the perfect-fluid swimmer) or under free-
fall/zero-gravity conditions (the floating snake), and use
the proposed algorithm to determine their optimal gait for
forward and turning directions, respectively. As illustrated
in Fig. 1, with the increase of net momentum, the optimal
gaits transition from kinematic gaits to momentum gaits.
Depending on whether or not the two gait centers coincide,
the transition may be continuous or discrete. The results show
that, at any given momentum and effort limit, the proposed
optimal gait that takes into account both momentum and
kinematic effects outperforms the reference gaits that each
only considers one of these effects.

1The center of a momentum gait can be clearly defined as the configura-
tion that minimizes inertia. The center of a kinematic gait is in some cases
ambiguous. In this paper, we define the center of a kinematic gait as the
point to which the gait eventually converges when increasing the cost of
gait execution.



Fig. 2. Schematic of the kinematic system used for method validation. The
system consists of three equivalent links and two joints. Depending on the
medium in which it exists, the link mass can be entirely inertial or have an
additional fluid mass. Figure reproduced from [13].

II. BACKGROUND

This section reviews several key techniques of geometric
mechanics used by the method proposed in this paper.

A. Inertia-dominated Mechanical System

The configuration space Q of a multi-body locomoting
system (the space of its generalized coordinates q) can be
divided into position space G, which locates the system in the
world, and shape space R, which gives the relative arrange-
ment of the system components.2 For example, the position
of the three-link systems (an abstraction of perfect-fluid
swimmers and floating snakes) in Fig. 2 can be the center of
mass and the central link orientation, g = (x, y, ✓) 2 SE(2),
and their shape is the angle of the two joints, r = (↵1,↵2).

The dynamics of an inertia-dominated locomoting system
are determined by its generalized inertia matrix M , which
relates the generalized momentum of the system to its
generalized velocities,
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where ë
g = g�1ġ is the body velocity of the system, r is its

current shape, ṙ is the shape velocity,
ë
p is its generalized

momentum expressed in coordinates instantaneously aligned
with the body frame, and pr is its momentum in the shape
direction.3 For a multi-body system, the inertia matrix can
be constructed in the same manner as that used in [6].

If the system starts with a nonzero spatial momentum
í
p

relative to the origin and there are no external forces, then the

2Formally, this decoupling is embodied in a differential geometric struc-
ture called a fiber bundle, in which the shape and position of the system
are respectively referred to as elements of the base and fiber spaces.

3The “open circle” notation we use here is similar to the “dot” notation,
but denotes derivatives with respect to group actions rather than coordinate
values. An accompanying right arrow specifies that the group operation is
a right operation (locally with respect to the current configuration), and a
left arrow specifies a left operation (globally with respect to the origin of
the working coordinate system). The “circle-arrow” superscripts represent
tangent vectors, such as velocity, and the subscripts are for covectors such
as force or momentum. By convention, velocity is represented as the time
derivative of the configuration, and momentum and force are given their
own symbols.

For example, the full reading of the notation of the body velocityëg is “the
velocity constructed by taking the derivative of position with respect to right
group actions”, and the full reading of the notation of spatial momentum

í
p is “the momentum constructed by taking the derivative of kinetic energy
with respect to left (spatial) velocities”.

conservation of momentum means that
í
p remains constant for

all time. The top half of (1) can then be rewritten as
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where Ad⇤g is the dual adjoint operator that converts spatial
momentum

í
p to body momentum

ë
p.4 Rearranging the mo-

mentum equation gives the system reconstruction equation,
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(3)

where the matrix A is the local connection of the system
and � is the momentum distribution function [1], [13]. Refer
to the example of swim race, each row of �A encodes how
the active stroke induces body velocity in each direction and
can be visualized as an arrow field over the shape space,
�(r, g)

í
p describes how much the swimmer is gliding driven

by momentum, and �(r, g) itself describes how the spatially-
constant momentum induces gliding in the body frame at the
current configuration. Fig. 3 illustrates an example of body
velocity reconstruction for the systems studied in this paper.

B. Constraint Curvature Functions for Zero Net Momentum

Systems

Due to range-of-motion limits on the reachable shape
space, locomoting systems typically move via cyclic gaits
that maximize motion in a given direction relative to some
execution cost. For systems with zero net momentum, the
geometric mechanics community has developed methods for
finding optimal gaits based on the constraint curvature (a
measure of net displacement caused by the kinematic effects
of periodic shape changes) [3], [6], [11], [12], [15], [20]–
[23].

The core principle of these works is that the net dis-
placement g� over the gait cycle � on a system described
by the reconstruction equation (3) with zero net momentum
is the line integral of the local connection along �, so the
displacement induced by a gait depends only on the gait’s
path in shape space. More importantly, the resulting dis-
placement can be approximated as the surface integral of the
constraint curvature D(�A) of the local connection (its total
Lie bracket) over the surface �a bounded by the gait cycle,

g� =

‰
�
�gA(r) (4a)

=

¨
�a

�dA+
P⇥

Ai,Aj>i

⇤
| {z }
D(�A) (total Lie bracket)

+higher-order terms,

(4b)

where dA, the exterior derivative of the local connection (its
generalized row-wise curl), measures the nonconservative
contribution to the net displacement of the gait, and the

4In colloquial terms, Ad⇤g combines the cross-product operation that
converts linear and angular momentum about the origin to linear and angular
momentum about the system’s current location with a rotation operation that
expresses the momentum in body-aligned coordinates [5, Appendix B].



local Lie bracket
P⇥

Ai,Aj>i

⇤
measures the primary

noncommutative contribution. Plotting these curvature
terms as scalar functions over shape space (as the contour
illustrated in Fig. 4) reveals the effect of gaits’ geometry on
the motions they induce. More significantly, the constraint
curvature function (CCF) D(�A) encodes the derivative of
the net displacement with respect to variations in the gait.

For systems with nonzero net momentum, however, the
net displacement is a function not only of the gait path but
also of the duration along the gait path. This makes the CCF
alone unable to accurately predict the net displacement of
the gait due to the additional drift induced by momentum
effects and the rotational and translational coupling between
kinematic and momentum effects. In this paper, we introduce
a better way to account for both effects when predicting the
net displacement of the gait and performing the optimization.

C. Minimum Perturbation Coordinates

The minimum perturbation coordinates presented in [13]
place the system’s body frame at a generalized center of
mass, aligned with a generalized mean orientation of the
body links. These coordinates minimize the noncommuta-
tivity of the system and enable displacement approximation
of large-amplitude motions by CCFs [13], [14], [23]. In
this paper, we follow the same approach. The relationship
between A and � in the original coordinates (chosen for
convenience and clarity in defining the system) and the min-
imum perturbation coordinates used in the analysis (chosen
for the accuracy of the inherent approximations) is

ë
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�
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ṙ +Ad-1
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�new

í
p,

(5)

where B is the transformation from the original body frame
to the new body frame, and the adjoint operator in �new is
also updated to match the new body frame. In the following
sections, we will use the minimum perturbation coordinates
for better accuracy, but we will hide the subscripts for sim-
plicity. Although coordinate optimization is for systems with
zero net momentum, the impact of nonzero net momentum
on the entire system is equivalent to the effect of momentum
on the single rigid body abstraction of the system. Therefore,
the minimum perturbation coordinate is still valid for systems
with nonzero net momentum.

III. GAIT OPTIMIZATION WITH NONZERO MOMENTUM

To extend existing geometric methods for locomotion
analysis and gait optimization to systems with nonzero net
momentum, we propose a gait parameterization technique
that accounts for the momentum effects by including time
along the gait as an extra “shape-like” parameter. In what
follows, we discuss the modifications of the local connection
and CCF required to introduce the time parameterization and
algorithms for gait optimization of such systems.

A. Time Parameterization of Local Connections With

Nonzero Net Momentum

In order to properly account for momentum effects, we
construct an extended configuration space for the system

Fig. 3. The time parameterized local connections (or equivalently, the
body velocity reconstructions) of the two locomoting systems studied in
this paper in the optimized directions x and ✓, respectively. The arrow field
visualizes the local connection corresponding to kinematic motion, and the
contour corresponds to the local connection of the time variable.

Fig. 4. The CCFs of the two locomoting systems studied in this paper in the
optimization directions x and ✓ respectively. The arrow field visualizes the
total Lie brackets between the two directions of kinematic motion and the
momentum duration, and the contour corresponds to couplings within the
kinematic motion. The counterclockwise arrow field means that the surface
created by the gait variation towards the center can capture more CCF flux in
the d↵1^dt and d↵2^dt directions and thus gain more momentum effect.

in which time is treated as a system parameter along with
shape and position. In our fiber-bundle partitioning of this
configuration space, we include time alongside the shape
parameters to form the base space, while maintaining the
identification of the fiber space with the position space.
Because the time variable t has the same scale as time,
its derivative ṫ is constant with unit value. In this way, we
turn the n-dimensional base space into (n+ 1)-dimensional
base space with the constraint on the derivative of the time
variable. The lifted base r̃ and local connection Ã become

r̃ =
⇥
↵1 ↵2 t

⇤>
Ã(r, g) =

h
A(r) ��(r, g)

í
p
i
, (6)

where �(r, g) maps the constant spatial momentum
í
p to body

velocity, and the body velocities are reconstructed as
ë
g = �Ã(r, g) ˙̃r. (7)

For a three-link system, adding the time variable makes
the new local connection Ã in the reconstruction function a
3D covector field, where the magnitude of the t component
is inversely proportional to the inertia of the system at the
given shape and does not vary with time. Because the time
variable is now part of the base, the net displacement of the



system is again a function only of the lifted gait path. Note
that the gait is now semi-cyclic – the joint portion of the base
variable is cyclic, yet the duration is increasing such that the
start and end of the cycle are offset in the t component by
the gait period.

Because Ã(r, g) is not a function of t, i.e. time does not
affect the vector field, we can visualize this vector field in the
original shape space. Fig. 3 shows the time-parameterized
local connections in the optimized directions for the two
characteristic example systems we consider in this paper. For
a floating snake system, the vortex center of the kinematic
motion does not overlap with the minimum-inertia configura-
tion, whereas the opposite is true for a perfect-fluid swimmer.

For simplicity, we drop the tilde superscript in (6) and (7)
in the following sections.

B. Constraint Curvature Function With Momentum

We can compute the system’s CCF on the lifted base space
in a similar manner to that used in [24],

D(�A) = (�dA1,2 + [A1,A2]) d↵1 ^ d↵2

+

✓
�dA1,3 + [A1,A3] +

@A3

@g
A1

◆
d↵1 ^ dt

+

✓
�dA2,3 + [A2,A3] +

@A3

@g
A2

◆
d↵2 ^ dt,

(8)
where dAi,j is the exterior derivative of the local connection,
[Ai,Aj ] is the local Lie bracket, and the third term in
the direction involving the time variable @A3

@g Ai is a posi-
tional asymmetry term capturing the interaction between the
position-dependent connections of the time variable because
A3(r, g) (originally �(r, g)) is not only a function of shape
r but also of position g.

For a 3D base space, the CCF also has three components.
Furthermore, similar to the reconstruction equation, because
A is not a function of t, the CCFs depend only on the
joint angles. Therefore, we can again visualize the CCFs
via plots on the original shape space. Specifically, in Fig. 4,
we plot the CCFs resulting from the coupling between ↵i

and t as the arrow field, and the coupling between ↵1 and
↵2 as the contour. The visualization of CCF fits with the
intuition from the time-parameterized local connections that
the counterclockwise arrow field in the d↵1^dt and d↵2^dt
directions will direct the gait variation towards minimum-
inertia configuration, whereas the kinematics-related CCF in
the d↵1^d↵2 direction has the richest values around its local
connection vortex centers.

C. Variational Gait Optimization with Nonzero Momentum

The geometry-based variational gait optimization algo-
rithm proposed in [5] exploits the fact that the CCF flux pass-
ing through the surface enclosed by the gait is an approxima-
tion of the net displacement to compute gradients. However,
the gaits studied in this paper are nonclosed in the lifted base
space, which is beyond the scope of the original algorithm.

Although the net displacement cannot be approximated
by calculating the area integral of the CCF now, it is still

Fig. 5. Gait descriptions in the original 2D base space and the lifted 3D
base space, and the corresponding gradient expressions for variational gait
optimization for closed and nonclosed gaits. In the original 2D shape space,
the gait is closed. The gradient of the net displacement with respect to the
gait only involves the flux of CCF passing through the surface enclosed by
the gait variation. However, the gait is no longer closed when it is lifted into
a 3D base space constructed by adding the time variable (as shown by the
black dotted lines). In this case, it is necessary to close the gait variation by
considering the difference in the time direction at the endpoints. Thus, the
gradient of the net displacement with respect to the gait contains both the
flux of the CCF passing through the surface enclosed by the gait variation
plus the momentum effect during the time difference at the endpoints.

possible to form a closed surface from the gait variation
by connecting the time differences at the endpoints using
a method similar to that in [24]. The time-difference con-
nection that closes the gait at the endpoints actually reflects
the conservative component caused by the momentum [14].
Thus, as illustrated in Fig. 5, the complete gradient of the
variational optimization algorithm for nonclosed gaits will
consist of two parts: the flux of the CCF passing through the
surface enclosed by the gait variation, and the momentum
effect during the time difference at the endpoints.

In this work, because we know that the gait is still closed
in the joint space (↵1,↵2), and the nonclosed part only
involves the momentum effect duration t direction, we can
directly add the displacement caused by the time difference
at the gait endpoint �end to the original algorithm in [5],

rg� ⇡
˛
�
((r�)yD(�A)) + (rt�end)At(�end). (9)

When in 3D base space, the integral term can be calculated
as moving the transcription point in the normal and binormal
directions of the gait,˛

�
(r�)yD(�A) =

˛
�

�
(r?�)D(�A)k? + (r??�)D(�A)k??

�
,

(10)

where the subscripts k, ?, and ?? denote the direction
tangent, normal, and binormal to the gait, and the derivatives
are taken with respect to gait parameters.

To make a fair comparison between gaits with different
periods, we place an upper bound c on the average actuation



effort E over a gait cycle [6],

E =
1

T

ˆ T

0
k⌧k2 dt  c, (11)

where ⌧ is the actuator force whose square norm gives the
nonregenerable power dissipation of the actuators, and c
is the constant average actuation effort. In this paper, we
choose c = 1, which is the unit average actuator force
constraint. The actuator force and its gradients with respect
to gait parameters can then be calculated using the similar
algorithm as we used for the momentum-free systems in [6].

We implement a gradient-based optimizer in MATLAB by
providing (9) and (11) as the gradients and constraints for
the fmincon optimizer using the interior-point method. We
parameterize the gaits via the 4th-order Fourier series and
use these series to generate direct-transcription waypoints
for numerical optimization. The lower order constrains the
optimizer to generate only simple gaits and prevents adjacent
waypoints from intersecting each other during optimization,
thus improving its numerical stability. The initial guess for
gait optimization at each net momentum level is based on
the optimal solution obtained at the previous level.

IV. SYSTEM ANALYSIS

In order to evaluate the proposed method and verify
the aforementioned hypotheses, we performed tests on two
categories of locomoting systems with nonzero net spatial
momentum

í
p: 1) systems whose kinematic gaits have the

same centers as their momentum gaits, and 2) systems whose
kinematic and momentum gaits have different centers. These
situations correspond respectively to the forward motion
of a perfect-fluid swimmer and the turning motion of a
floating snake. As illustrated in Fig. 4, for both of these
classes of system the kinematic gaits are centered on high-
value regions of the d↵1 ^ d↵2 component of the CCF,
whereas the momentum gaits maximize net displacement
in the minimum-inertia configurations of the system. For
different systems and directions of locomotion, these centers
may or may not be aligned, leading respectively to smooth
or nonsmooth transitions between these two gaits with in-
creasing net momentum, as illustrated in the comparison of
average gait velocities in Fig. 6.

The geometries of the two systems are shown in Fig. 2.
The perfect-fluid swimmer consists of three identical links,
each with a unit length, whereas the floating snake comprises
a center link that is twice as long as its unit-length arms. The
links are represented as ellipses with a shape aspect ratio of
0.1 and a unit density. Similarly, the fluid is also assigned
a unit density. The fluid-added mass for the perfect-fluid
swimmer is determined using the model proposed in [23].

A. Systems With the Same Centers for Kinematic and Mo-

mentum Gaits

An example of the kinematic and momentum gaits sharing
the same center is the forward swimming of a perfect-fluid
swimmer that is able to translate and rotate using cyclic
shape changes [4]. We compare gait optimization considering

Fig. 6. Average forward (x) velocity for a perfect-fluid swimmer (left)
and average angular velocity for floating snakes (right) over a gait cycle
performing optimal gaits, kinematic gaits, and momentum gaits at different
net forward and angular spatial momentum, respectively. All gaits are
performed under the unit average actuator force constraint. The kinematic
gaits are optimized without considering the contribution of momentum to
displacement, and the momentum gaits are performed at the minimum-
inertia configuration.

kinematics and momentum effects individually or together
under the constraint of unit average actuator force.

The left panel of Fig. 6 illustrates the average forward
velocity for optimal, kinematic, and momentum gaits for
different levels of net forward spatial momentum under
the constraint of unit average actuator force. At any given
momentum, the optimal gait always outperforms gaits that
only consider either kinematic or momentum contributions to
displacement. As net forward spatial momentum increased,
the gait transitioned smoothly from fully exploiting kine-
matic effects to utilizing momentum.

Fig. 7 illustrates the optimal gaits for different net momen-
tum levels. As mentioned before, we can clearly find that
kinematic gait and momentum gait share the same center at
(0, 0). However, their amplitudes are different, as kinematic
gaits need to cover regions rich in kinematic CCF (in ↵1^↵2

direction), whereas momentum gaits require to hold the
system shape in the minimum-inertia configuration. As net
momentum increases, momentum effects start to dominate
the system. Given the unit average actuator force constraint
(which prevents the system from arbitrarily increasing the
speed of the gait to compensate for the increased inertia),
the gait gradually transitions from a large-span kinematic
gait to maintaining the minimum-inertia configuration and
making more use of momentum for locomotion5.

B. Systems With Different Centers for Kinematic and Mo-

mentum Gaits

An example in which the kinematic and momentum gaits
have different centers is the turning motion of a floating
snake. The floating snake has no fluid-added mass, so without
external force or linear momentum, it can only achieve net
rotation. We compare gait optimization considering kine-
matic and momentum effects individually or together under
the constraint of unit average actuator force.

5When the momentum reaches a sufficiently high level, the gait will
ultimately converge to a point at the minimum-inertia configuration.



Fig. 7. Optimal gaits for forward (x) motion of a perfect-fluid swimmer constrained by unit average actuator force for different net forward spatial
momentums. The pacing of the gait is represented by the line thickness, with thick lines representing “slow” changes in base variables and thin lines for
“fast” changes. The contours in the background represent the CCF in the ↵1 ^ ↵2 direction (i.e. kinematic effects). Two markers illustrate the centers of
the kinematic and the momentum gaits, respectively.

Fig. 8. Optimal gaits for turning motion of a floating snake constrained by unit average actuator force for different net angular spatial momentums. The
pacing of the gait is represented by the line thickness, with thick lines representing “slow” changes in base variables and thin lines for “fast” changes. The
contours in the background represent the CCF in the ↵1 ^↵2 direction (i.e. kinematic effects). Two markers illustrate the centers of the kinematic and the
momentum gaits, respectively.

The right panel of Fig. 6 illustrates the average angular
velocity for optimal, kinematic, and momentum gaits for
different levels of net spatial angular momentum under
the constraint of unit average actuator force. At any given
momentum and effort limit, the proposed optimal gait that
takes into account both momentum and kinematic effects
outperforms the reference gaits that each only considers one
of these effects. When the net spatial angular momentum is
small, the optimal gait is almost identical to the kinematic
gait. Once the angular momentum exceeds this threshold, the
optimal gait immediately switches to the momentum gait.

Fig. 8 illustrates the optimal gaits for different net
momentum levels. The kinematic gait center is located
around (1.6, 1.6), whereas the momentum gait center is
located at (⇡,⇡). Furthermore, kinematic gaits need to cover
regions rich in kinematic CCF (in ↵1^↵2 direction), whereas
momentum gaits need to maintain the minimum-inertia
configuration. As net momentum increases, the momentum
effects start to increase. Given the unit average actuator
force constraint, once the momentum effects outweigh the
kinematic effects, the gait switches from a large-span kine-
matic gait to maintaining the minimum-inertia configuration
and making more use of momentum for locomotion.

This discretization can be understood by considering a 1D
gait optimization problem, where the gait is restricted to be
a circle tangent to (⇡,⇡) on the ↵1 = ↵2 line, with variable
radius and uniform pace. Because the planar rotation is not

subject to noncommutativity, we can consider the angular ve-
locities contributed by kinematics and momentum separately.
Because both the CCF around the center of the kinematic
gait and the inertia around the center of the momentum gait
are symmetric, they can be approximated locally as elliptic
paraboloids. According to the surface integral of CCF and
the proportional relationship between inertia and velocity,
we can conclude that the angular velocities caused by the
kinematic and momentum effects both peak at the respective
centers and decrease nonlinearly away from their centers.

Fig. 9 samples these two angular velocities and their
sum at different net momentum levels and gait radii. We
can clearly see that there are two peaks in the total angular
velocity due to the noncoincidence of the center positions
of the kinematic gait and the momentum gait, and their
magnitude depends on the net momentum level. Once the
net momentum is greater than a certain value, the peak at
the minimum-inertia configuration will exceed the one at
the kinematic gait center. Therefore, as the net momentum
level rises, there is a discrete switch in the optimal gait.

V. CONCLUSION AND FUTURE WORK

This work presents improved geometric gait analysis tools
that can account for nonzero net momentum effects by lifting
the gait description into time-parameterized curves in shape-
time space. We also propose the variational gait optimization
algorithm corresponding to the lifted geometric structure.



Fig. 9. Circular gait analysis for interpreting the discrete change in optimal
gaits. Left: Kinematics and momentum contributions to the average velocity
for different gait radii. The momentum contribution is normalized by the mo-
mentum magnitude. Right: Total angular velocity at different net momentum
levels and gait radii, and the gait radius at which maximum velocity is ob-
tained. The positions of the two peaks of kinematic and momentum contribu-
tions do not coincide, which explains the discrete variation in optimal gaits.

It enables visual gait design and efficient gait optimization
for inertia-dominant systems with nonzero net momentum.
This approach also identifies two distinct types of sys-
tems with center-coincident and noncoincident kinematic
and momentum gaits. Examples of perfect-fluid swimmers
and floating snakes demonstrate that the proposed algorithm
can effectively solve forward and turning motion gaits in
the presence of nonzero net momentum. The optimal gaits
derived by our method are consistently faster at a given
effort limit than the kinematic or momentum gaits alone.
Future work includes: enabling the analysis and optimization
of gait for systems with variable net momentum; extending
our methods to systems locomoting in a direction that is not
aligned with its nonzero momentum, systems with mixed
inertial and viscous drag, or systems in the SO(3) and SE(3)
groups; adapting the Lagrange multiplier method [25] or gait
morphing algorithms [26] to identify the optimal gait family
across various net momentum levels for efficient hardware
deployment; integrating the proposed method with feedback
control to ensure the stability of underwater locomotion for
elongated bodies presented in [27]; and enhancing the error
characterization and analysis of (9) in [14], [28] by incorpo-
rating the impacts of nonzero net spatial momentum effects.
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