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Abstract

Persistent memory (PM) can be accessed directly from

userspace without kernel involvement, but most PM filesys-

tems still perform metadata operations in the kernel for secu-

rity and rely on the kernel for cross-process synchronization.

We present per-file virtualization, where a virtualization

layer implements a complete set of file functionalities, in-

cluding metadata management, crash consistency, and con-

currency control, in userspace. We observe that not all file

metadata need to be maintained by the kernel and propose

embedding insensitive metadata into the file for userspace

management. For crash consistency, copy-on-write (CoW)

benefits from the embedding of the block mapping since the

mapping can be efficiently updated without kernel involve-

ment. For cross-process synchronization, we introduce lock-

free optimistic concurrency control (OCC) at user level, which

tolerates process crashes and provides better scalability.

Based on per-file virtualization, we implement MadFS, a

library PM filesystem that maintains the embedded metadata

as a compact log. Experimental results show that on concur-

rent workloads, MadFS achieves up to 3.6× the throughput of

ext4-DAX. For real-world applications, MadFS provides up

to 48% speedup for YCSB on LevelDB and 85% for TPC-C

on SQLite compared to NOVA.

1 Introduction

Persistent memory (PM) is a promising candidate for next-

generation storage devices. PM DIMMs are connected on the

memory bus and deliver near-DRAM performance while per-

sisting data across power-offs. They create new opportunities

for building storage systems.

With revolutionary hardware available, the software stack

needs to evolve accordingly. Traditional kernel filesystems

require I/O operations to cross the user-kernel boundary and

go through layers of the storage stack, introducing signif-

icant software overhead. In response to this observation,

*Both authors contributed equally to this work.

many PM filesystems have been proposed to perform I/O

in userspace [5, 8, 12, 25, 30, 41, 43]. The challenge is that a

userspace process is untrusted and unreliable: it could cor-

rupt metadata and threaten filesystem integrity; it could crash

in a shared critical section, blocking other processes. These

realities impose challenges for metadata operations and shar-

ing. Existing userspace filesystems bypass the kernel for data

operations, but typically still rely on the kernel for metadata

management [5, 8, 25, 30] with its inefficient storage stack.

In terms of sharing, most userspace filesystems either do not

support cross-process sharing [8] or rely on a kernel-granted

lease [5, 12, 30].

To address these challenges, we introduce per-file virtual-

ization, where a complete set of file functionalities, including

metadata management, crash consistency, and concurrency

control, are implemented in a userspace virtualization layer

and managed on a per-file basis for regular files. For userspace

metadata management, we observe that some metadata are pri-

vate to each file and have a similar trust model to the file data.

Thus, we propose metadata embedding, where insensitive

metadata (e.g., block mapping and file size) are embedded

in the file. This enables efficient metadata management in

userspace without sacrificing permission enforcement. In par-

ticular, embedding block mapping provides additional benefits

when copy-on-write (CoW) is used for data crash consistency.

For a process with memory-mapped files, existing kernel-

level CoW requires updating the page table on file writes,

causing expensive TLB shootdowns. With metadata embed-

ding, the block mapping can be changed entirely in userspace

without kernel involvement. To support cross-process concur-

rency control, we use the file data itself as the communication

medium and implement non-blocking synchronization. This

design simplifies the failure model and provides better con-

currency than locks.

Based on per-file virtualization, we present MadFS1, a li-

brary filesystem for persistent memory that provides strong

data crash consistency and linearizable concurrency control

1MadFS stands for metadata embedded filesystem.
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in userspace. MadFS requires no modification to the kernel

or application and can run on top of any direct access (DAX)

filesystem with mmap support (e.g., ext4-DAX). To provide

strong data crash consistency, MadFS performs CoW on data

updates. MadFS introduces a level of indirection that maps

virtual blocks seen by applications to logical blocks backed

by the underlying kernel filesystem. This block mapping is

embedded in the file for efficient userspace CoW and main-

tained as a log for crash consistency. We implement lock-free

optimistic concurrency control (OCC) to support concurrent

access to the same file cross processes. Specifically, a writer

tentatively makes changes in a private workspace. Before

committing to the log, the writer detects conflicts by checking

the movement of the log tail, and partially redoes the changes

if necessary. Compared to lock-based approaches, concurrent

readers and writers would not block each other even with

overlapping ranges, thus achieving better scalability.

We evaluate MadFS using a variety of microbenchmarks

and macrobenchmarks. MadFS achieves up to 3.6× through-

put for ext4-DAX on concurrent microbenchmarks. For Lev-

elDB running YCSB workload, MadFS provides up to 48%

improvement over NOVA. TPC-C workloads over SQLite on

MadFS outperform NOVA by 85%.

This paper makes the following contributions:

• We present per-file virtualization, where a virtualization

layer implements a complete set of file functionalities, in-

cluding metadata management, crash consistency, and con-

currency control, entirely in userspace.

• We introduce metadata embedding as a novel metadata man-

agement technique for userspace filesystems. Embedding

insensitive metadata in the file enables efficient modifica-

tion in userspace.

• In particular, when CoW is used for data crash consistency,

we propose embedding the block mapping, which allows it

to be updated without the kernel modifying the page table.

• We introduce lock-free optimistic concurrency control

(OCC) for userspace cross-process synchronization, which

tolerates process crashes and achieves better scalability.

• Based on per-file virtualization, we present MadFS, a library

PM filesystem that maintains the embedded metadata as

a compact log. The source code of MadFS is available at

https://github.com/WiscADSL/MadFS.

• We evaluate MadFS using microbenchmarks and mac-

robenchmarks to show that it provides high throughput for

both single-threaded and multi-threaded workloads.

2 Background and Motivation

Persistent memory (PM) is an emerging hardware technol-

ogy that provides durability with DRAM-like latency. PM is

considered both a new generation of denser memory and a

high-performance storage device. In this paper, we explore

the storage aspect of PM.

The byte-addressability of PM, like DRAM, enables CPUs

to directly read/write data through load/store instructions.

After data is stored in a memory location, it may still reside in

the CPU cache, so one needs to flush the cache line explicitly

(e.g., via clwb or clfushopt) for persistence. Alternatively,

non-temporal stores (e.g., movnti) can be used to persist data

directly, bypassing the CPU cache. For ordering constraints,

a memory fence (e.g., sfence) is needed to serialize memory

instructions.

One of the commercially available PM products is Intel

Optane Persistent Memory [1]. Intel announced the winding

down of the Optane business in Q2 2022 [10]. This work is

not specific to Intel Optane PM. We only require that the PM

is byte-addressable and applications can directly access the

data stored on the PM via memory-mapped I/O.

There has been a rich set of work on building more efficient

filesystems for PM. In this section, we broadly classify them

into userspace and kernel filesystems and then discuss their

challenges in metadata management, crash consistency, and

concurrency control.

2.1 Filesystems for Persistent Memory

Kernel filesystems. Mature Linux filesystems such as ext4

and XFS introduce direct access (DAX) mode [7, 42], which

bypasses the page cache and allows applications to directly

access file data stored on PM via memory-mapped I/O. These

DAX filesystems only ensure metadata consistency in the

presence of failures, while the responsibility of maintaining

data consistency on memory-mapped regions falls on the ap-

plications. There are also research kernel filesystems designed

for PM. BPFS [9] uses a tree layout similar to WAFL [23]

and avoids cascading CoW via short-circuit shadow paging.

PMFS [14] combines atomic in-place updates, journaling, and

CoW to support efficient crash consistency, and also advocates

the use of huge pages to reduce paging costs. NOVA [45] im-

plements log-structured metadata for each file and CoW data

crash consistency.

Userspace filesystems. With ultra-fast hardware, software

overhead becomes non-trivial. Thus, many PM filesystems

have proposed to bypass the kernel [5, 8, 12, 25, 30, 41, 43].

FLEX [43] calls mmap after open and intercepts data opera-

tions to handle them in userspace via memory instructions.

SplitFS [25] similarly handles data operations in userspace

with memory-mapped I/O but relies on a modified ext4-DAX

for metadata operations. It introduces a new system call

relink, which reassigns data blocks from one file to another.

For append operations, SplitFS redirects data to a temporary

staging file and invokes relink on fsync to publish the

newly written data to the target file. Libnvmmio [8] builds on

memory-mapped I/O and equips each block with a journal to

provide scalable crash-consistent I/O.
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2.2 Challenges in Metadata Management

Metadata safety is critical to filesystem integrity. In kernel

filesystems, metadata is managed exclusively by the kernel for

security reasons. A major challenge of userspace filesystems

comes from untrusted libraries. Thus, many of them still rely

on the kernel for metadata management (e.g., SplitFS [25],

Strata [30], and KucoFS [5]). Unfortunately, data operations

can be tightly coupled with metadata operations, defeating the

purpose of kernel bypassing and leading to lower performance.

For example, SplitFS appends data to a staging file, but still

requires the relink system call to swap the data blocks from

the staging file to the target one on each fsync.

A few filesystems also bypass the kernel for metadata op-

erations. Aerie [41] provides applications with direct access

to PM for reading/writing data and reading metadata, while

metadata updates are handled by a trusted filesystem service

via socket-based remote-procedure call (RPC). One draw-

back of this approach is that RPCs are expensive and incur

the overhead of context switches. Aerie uses batching to re-

duce the number of RPCs at the cost of visibility. ZoFS [12]

introduces a new abstraction called coffer. The dentries, in-

odes, and data blocks for a directory subtree are stored in a

coffer if they share the same permission. ZoFS relaxes the

protection domain from file to coffer and relies on the Intel

Memory Protection Key (MPK) hardware for security. Due to

hardware limitations of MPK, the number of simultaneously

memory-mapped coffers cannot exceed 15.

2.3 Challenges in Crash Consistency

Crash consistency is critical to filesystems. PM only guaran-

tees the atomicity of a single 64-bit store, so filesystems need

to build their own constructs for crash consistency.

To ensure metadata crash consistency, PM filesystems com-

monly use journaling [5,14,25,30,41,42]. Kernel filesystems

adapted for PM, such as ext4-DAX, rely on Linux journaling

block device (JBD) [28] for metadata journaling. However,

JBD was designed with block devices in mind and writes in

whole blocks, causing write amplification [4,43]. SplitFS also

uses JBD for the crash consistency of relink and suffers the

same problem. Many filesystems tailored for PM leverage

the byte-addressability to persist journal/log entries with a

finer granularity [14, 45]. NOVA equips each inode with a

private log. Cross-file updates are implemented via journaling

to update multiple log tails. BPFS [9] uses CoW for metadata

updates. SoapFS [13] and ZoFS [12] employ soft update [15]

for metadata crash consistency.

For data crash consistency, CoW is commonly used [5, 9,

14, 25, 45]. However, CoW has two major drawbacks when

used with memory-mapped I/O. First, huge pages have been

shown to have significant performance improvements for PM

filesystems due to fewer page faults, less TLB shootdown,

and shorter page table walk [14, 24, 25]. However, an open

issue brought out by PMFS is that CoW does not work well

with huge pages: the granularity of CoW is coupled with the

page size, which for huge pages is 2 MB or 1 GB on x86-

64. Writing to a sub-page results in copying the entire page,

causing significant write amplification [14]. SplitFS’s relink

changes the block mapping at the granularity of 4 KB blocks.

This breaks the contiguity of the file on the physical PM and

thus prevents the use of huge pages [24].

Second, in addition to huge pages, kernel-level CoW causes

expensive TLB shootdowns [2,3,8,40]. During CoW, the page

table should be updated so that the virtual address region is

backed by the new pages. The kernel needs to flush the TLB

on the local core, send an inter-processor interrupt (IPI) to the

other cores to flush the remote TLB, and wait for all cores

to finish. The whole process can take several microseconds

to complete [40], which is expensive for PM devices with

sub-microsecond latency [47].

Another option for data crash consistency is data journal-

ing. Strata [30] allows applications to write to a private log in

PM and relies on the kernel to digest the data to a slower stor-

age device. Libnvmmio [8] equips each block with a journal

and implements background checkpointing. In general, data

journaling faces the issue of double writes. Both Strata and

Libnvmmio make the digestion/checkpointing asynchronous

to remove it from the critical path at the cost of visibility.

Some PM filesystems do not provide data crash consistency,

including ext4-DAX, FLEX, PMFS, Aerie, and ZoFS. In this

case, applications have to detect and react to inconsistent file

data upon failures. Previous studies [35, 36] have shown that

many applications fail to handle inconsistent data correctly.

Data crash consistency is a desirable property for filesystems

if the overhead is acceptably low.

2.4 Challenges in Concurrency Control

For kernel filesystems, the kernel itself acts as a single cen-

tralized entity for synchronization. The inode lock ensures

that only one thread is operating on the same file at a time.

For userspace filesystems, however, concurrency control is

challenging, especially in cross-process cases. For example,

a process could crash while holding a lock, blocking other

processes. To prevent this situation, the lock must be visible

to the kernel so that the kernel can release it after a crash

(e.g., robust mutex [27]). This introduces additional kernel

involvement and can cause processes to sleep on the critical

path of data operations.

As a result, most userspace PM filesystems either do not

support cross-process synchronization [8] or use lease-based

locking [5, 12, 30, 41]. Aerie implements a lock service in the

filesystem service. Each application process is equipped with

an additional clerk thread to communicate with the lock ser-

vice and synchronize with others. In Strata and ZoFS, leases

are granted by the kernel. KucoFS uses a two-level locking

scheme with kernel-granted leases for inter-process synchro-
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nization and userspace range locks for intra-process synchro-

nization. In all these cases, there exists a centralized coordi-

nator to manage leases. This adds communication overhead

when multiple processes access the same file concurrently.

The lease timeout is another source of complexity. Timeout

relies on the assumption about the maximum completion time

of an operation, which could be unsafe. For example, a writer

starting with a valid lease can finish with the lease expired. In

this case, other threads will see partial data. A write operation

can take an arbitrarily long time to complete due to kernel

CPU scheduling or large I/O sizes. This will cause correctness

issues with lease-based locking.

3 Per-File Virtualization

To address these challenges, we propose per-file virtualization,

where a userspace virtualization layer implements a complete

set of file functionalities, including metadata management,

crash consistency, and concurrency control, on a per-file basis

for regular files.

Kernel-bypassing with metadata embedding. We observe

that some of the file metadata (e.g., block mapping and file

size) are private to each file, and share the same protection

domain as the file data. This allows us to embed a subset of

the metadata directly into the file to avoid the slow kernel I/O

stack for certain metadata operations, especially those that

are tightly coupled with data operations (e.g., CoW changing

block mapping). Compared to other techniques for userspace

metadata management, this method neither relies on a trusted

entity as in Aerie nor expands the protection domain beyond

a file as in ZoFS. Permission-related metadata (e.g., access

mode, owner, and group) must not be embedded. The kernel

filesystem shall still manage the permission and enforce ac-

cess control when a file is opened. Metadata embedding does

not apply to directories since the hierarchical structure must

be visible to the kernel to enforce access control. We leverage

the mature constructs of the kernel to handle directory opera-

tions, while the virtualization layer manages the embedded

file metadata and ensures its crash consistency.

Decoupling of block- and memory-mapping for CoW.

Embedding block mapping, in particular, enables efficient

userspace block management since the embedded block map-

ping can be modified independently from the memory map-

ping. This provides two major benefits when using CoW for

data crash consistency. First, the granularity for CoW is no

longer associated with huge page sizes. CoW can operate at

block granularity within the file, while the kernel still sees the

file as a contiguous region on the PM. This allows the usage

of huge pages during mmap. Second, block mapping updates

can be done in userspace via store instructions. The kernel no

longer needs to modify the page table. The nanosecond-level

cache coherence protocol [18, 33] ensures cross-core consis-

tency as opposed to microsecond-level TLB shootdown [40].

Non-blocking concurrency control. The embedding of meta-

data brings new opportunities for concurrency control in

userspace. As a file is now a self-contained entity with both

metadata and data stored in it, processes that memory-map

the same file can use the shared PM region for cross-process

synchronization, without relying on external entities. We ar-

gue that locking is not a good candidate for cross-process

synchronization, as the lock owner can crash in the middle of

a critical section. Detecting the lock owner’s crash without

the kernel is difficult if not impossible. Instead, we propose

to use atomic primitives (e.g., compare-and-swap) to imple-

ment non-blocking synchronization, where the suspension or

crash of a single process does not prevent others from making

progress [19±21]. In this way, inter- and intra-process concur-

rency control is handled uniformly, and the failure model is

greatly simplified. Non-blocking synchronization also brings

better concurrency, since operations do not block each other,

even with overlapping ranges.

Summary. With per-file virtualization, we aim to push file

functionalities into userspace as much as possible. Metadata

embedding bypasses the kernel for metadata management.

Embedding block mapping enables efficient userspace CoW

for crash consistency. Non-blocking synchronization allows

cross-process concurrency control to be enforced without

kernel involvement. All the techniques are applied on a per-

file basis and there is no global data structure.

4 MadFS: Design and Implementation

Based on per-file virtualization, we implement MadFS, a

userspace library filesystem overlaid on top of any DAX ker-

nel filesystem supporting mmap (e.g., ext4-DAX). It intercepts

POSIX I/O calls and requires no modifications to the applica-

tion. MadFS memory-maps the file on open, so subsequent

data operations (e.g., read and write) can be handled in

userspace via load and store. MadFS provides data crash

consistency through CoW. It embeds metadata in the file to

avoid kernel crossing for block mapping updates and delivers

instant visibility. MadFS employs lock-free optimistic concur-

rency control to provide high concurrency with cross-process

linearizability.

The architecture of MadFS is shown in Figure 2. A MadFS

file is a self-contained file on the underlying DAX filesys-

tem. Upon file creation, MadFS creates the file on the kernel

filesystem and initializes the basic structure to identify itself

as a MadFS file. The following discussion assumes operations

on the same file.

Embedded block map (§4.1). We introduce a level of indirec-

tion that maps virtual blocks seen by applications to logical

blocks managed by the underlying kernel filesystem. We call

this indirection the block map. The block map is embedded

in the file, which allows MadFS to efficiently handle CoW

operations in userspace.
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Shared Memory. The per-file shared memory is created with

the same permission as the file. Its name consists of the in-

ode number and the file creation timestamp for uniqueness.

The shared memory stores the bitmap (§4.2) and the current-

reading log block index (§4.5). When a process opens a file,

it tries to memory map the shared memory. If it does not exist,

the process reconstructs the bitmap from the log. The shared

memory is removed when the file is removed, the garbage

collector cleans up, or the operating system cleans up after

the user logs out.

Persistence and ordering. We use the non-temporal memcpy

from PMDK to copy data to persistent memory, bypassing the

CPU cache. We use clwb to write the log back to PM without

flushing the cache, as they may soon be read by other threads.

Memory fences are used to ensure that the data blocks are

made persistent before log entries, and that extended entries

are persisted before indirect entries.

Decoupling of persistence and ordering. Since each log

entry only takes 8 bytes, flushing the entire cache line on each

log commit is costly. Instead, MadFS only flushes a cache

line when a writer attempts to write to the first log entry of

the next line3. With an explicit fsync call, the last cache

line written is flushed to ensure durability, which is similar

to dsync proposed in OptFS [6]. The ordering of writes is

always guaranteed by the memory fence of CAS. Note that at

most 8 writes are not persistent without any fsync.

Handling mmap calls. We support mmap using a sequence of

mremap calls to map the data blocks to a contiguous region

of memory. This implementation is not optimized for perfor-

mance and does not provide a crash consistency guarantee.

Correctness. We use continuous integration for correctness

testing on a per-pull-request basis. MadFS passes all 209 test

cases in the LevelDB test suites, which make extensive use

of checksums and put a heavy load on the filesystem. We

use Intel’s pmemcheck [38], a fork of Valgrind [34] for PM,

to validate the durability of stores made to the PM. We also

compile MadFS with Clang Sanitizers [16] to check for data

races, memory problems, and undefined behavior.

Conversion tool. We implement a tool to convert files be-

tween the MadFS format and the normal file format. Convert-

ing a file to a MadFS format is fast. The tool allocates some

unused blocks, relocates the first data block to make space

for the superblock, and then initializes the superblock. It then

commits two log entries to describe the block map: one for the

relocated data block and one for the rest. To convert a MadFS

file to a normal file, the tool grows the file by the virtual file

size, dumps the data blocks in their virtual order, and then calls

fallocate with the FALLOC_FL_COLLAPSE_RANGE flag to

deallocate all the blocks previously occupied by MadFS.

3The time to the flush cannot be after the last slot of a cache line has been

written, since a writer could crash after CAS but before a flush is called.

5 Evaluation

In this section, we present the experimental results of mi-

crobenchmarks and macrobenchmarks. We demonstrate the

completeness, performance, and scalability of MadFS by an-

swering the following questions:

• What is the single-thread performance of MadFS? (§5.1)

• Does MadFS scale to multiple threads? (§5.2)

• What is the overhead of open in MadFS? (§5.3)

• Does garbage collection affect tail latency? (§5.3)

• How does MadFS perform on real-world applications (§5.4)

Setup. Our experiments are performed on an Intel x86 ma-

chine with a 128 GB Optane DC persistent memory DIMM.

The machine is equipped with two Intel Xeon Silver 8-core

4215R CPUs at 3.20 GHz (with 2 hyper-threads for each phys-

ical core) and 32 GB of DDR4 memory. We use Ubuntu 22.04

with custom-built Linux kernel 5.1 with NOVA [44, 45] and

SplitFS [25] included. For all experiments, we pin threads to

the core, disable CPU frequency scaling, and drop the kernel

cache before each run.

We compare MadFS (on ext4-DAX) to ext4-DAX, SplitFS,

and NOVA. Ext4-DAX does not provide data crash consis-

tency. We run SplitFS in the default POSIX mode, which

provides a similar crash consistency guarantee as ext4-DAX.

In this mode, SplitFS performs overwrites in-place; for ap-

pends, it redirects data to a staging file and invokes relink

system call to update the block mapping on fsync. NOVA

is a kernel filesystem that uses CoW for data and maintains

log-structured metadata. Among the four filesystems, only

NOVA and MadFS provide strong data crash consistency.

5.1 Single-Threaded Microbenchmark

To evaluate the baseline performance of MadFS, we designed

six microbenchmarks to measure single-threaded throughput

under different I/O sizes and access patterns. All operations

are repeated 10,000 times, and all writes are followed by

fsync. Figure 6 shows the results.

Read. For the read experiment, we measure how long it takes

to read data under different I/O sizes. MadFS and SplitFS

achieve the best performance since the data is served directly

from userspace, with most of the time spent on the memory

copy. NOVA and ext4-DAX are slower since they need to

go through the kernel storage stack. For large read sizes, the

difference between NOVA and MadFS becomes small as the

kernel overhead is amortized.

Block-aligned overwrite. In both sequential and random

cases, MadFS sustains a stable throughput of 2 GB/s for all

I/O sizes. ext4-DAX and NOVA do not saturate the device

bandwidth due to software stack overhead. ext4-DAX spends

non-trivial time on locks (dax_read_unlock) and metadata

journaling (called in ext4_iomap_begin/end). NOVA per-

forms block allocation during CoW with metadata journaling.
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