
Counting Unpredictable Bits: A Simple
PRG from One-Way Functions

Noam Mazor1(B) and Rafael Pass1,2

1 Cornell Tech, New York, USA
noammaz@gmail.com, rafaelp@tau.ac.il

2 Tel-Aviv University, Tel Aviv, Israel

Abstract. A central result in the theory of Cryptography, by H̊astad,
Imagliazzo, Luby and Levin [SICOMP’99], demonstrates that the exis-
tence one-way functions (OWF) implies the existence of pseudo-random
generators (PRGs). Despite the fundamental importance of this result,
and several elegant improvements/simplifications, analyses of construc-
tions of PRGs from OWFs remain complex (both conceptually and tech-
nically).

Our goal is to provide a construction of a PRG from OWFs with a
simple proof of security ; we thus focus on the setting of non-uniform
security (i.e., we start off with a OWF secure against non-uniform PPT,
and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-
contained, simple, proof of security, relying only on the Goldreich-Levin
Theorem (and the Chernoff bound). Although our main goal is simplicity,
the construction, and a variant there-of, also improves the efficiency—in
terms of invocations and seed lengths—of the state-of-the-art construc-
tions due to [Haitner-Reingold-Vadhan, STOC’10] and [Vadhan-Zheng,
STOC’12], by a factor O(log2 n).

The key novelty in our analysis is a generalization of the Blum-Micali
[FOCS’82] notion of unpredictabilty—rather than requiring that every
bit in the output of a function is unpredictable, we count how many
unpredictable bits a function has, and we show that any OWF on n input
bits (after hashing the input and the output) has n + O(log n) unpre-
dictable output bits. Such unpredictable bits can next be “extracted”
into a pseudorandom string using standard techniques.

N. Mazor—Part of this work was done while at Tel Aviv University and while visiting
the Simons Institute. Research partly supported by Israel Science Foundation grant
666/19, NSF CNS-2149305 and NSF CNS-2128519.
R. Pass—Part of this work was done while visiting the Simons Institute. Supported
in part by NSF Award CNS 2149305, NSF Award SATC-1704788, NSF Award
RI-1703846, AFOSR Award FA9550-18-1-0267, and a JP Morgan Faculty Award.
This material is based upon work supported by DARPA under Agreement No.
HR00110C0086. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the United States Government or DARPA.

c© International Association for Cryptologic Research 2023
G. Rothblum and H. Wee (Eds.): TCC 2023, LNCS 14369, pp. 191–218, 2023.
https://doi.org/10.1007/978-3-031-48615-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48615-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-48615-9_7

192 N. Mazor and R. Pass

1 Introduction

Pseudorandom generators (PRGs) are one of the most fundamental crypto-
graphic building blocks [BM82]. Roughly speaking, a PRG is a function taking
a seed of length n and expanding it into a longer string, of say, length 2n, such
that the output string is indistinguishable from random. While the existence of
PRGs almost immediately implies the existence of one-way functions (OWF), it
is significantly harder to show that OWFs imply the existence of PRGs. Indeed,
the first construction of PRGs from OWFs was obtained in the seminal work
by H̊astad, Impagliazzo, Luby and Levin (HILL) [HILL99]. This beautiful work
introduced a host of new notions and techniques and is a technical tour-de-
force. To understand the importance of this result, let us remark that still today,
known constructions of e.g., secure private-key encryption [GM84], commitment
schemes [Nao91], zero-knowledge [GMW87], pseudorandom functions [GGM84]
from the minimal assumption of OWFs, all pass through the notion of a PRG
and the result of [HILL99].

Consequently, it would be desirable to come up with simpler construc-
tions/proofs of the existence of PRGs from OWFs. Additionally, the PRGs con-
struction of HILL, while asymptotically efficient, has a large polynomial running
time. In particular, the PRG requires invoking the underlying OWFs O(n11)
times, where n is the security parameter. Since then, several simplifications and
improvements (in terms of the efficiency of the construction) were obtained by
Holenstein [Hol06a], Haitner, Harnik and Reingold [HHR06], Haitner, Reingold
and Vadhan [HRV13], Vadhan and Zheng [VZ12], leading up to constructions of
PRGs from OWFs using only ω(n3)1 non-adaptive invocations of the underlying
OWF, and using a seed of length ω(n4); additionally, Vadhan and Zheng [VZ12]
show how to improve the seed length to ω(n3 log n), but at the price of using an
adaptive construction. Finally, Haitner and Vadhan [HV17] obtained a construc-
tion with a simpler security proof (focusing only on the setting on non-uniform
security), but which required ω(n6 log n) invocations of the OWF. But despite
these beautiful works—and the intriguing new notions that they introduce—the
security proofs involved remain quite complicated (even the simplest one with
looser parameters in [HV17]).

Our Results. The goal of this paper is to provide a simple, self-contained, proof of
the existence of PRGs from any OWFs. Our proof relies only on standard results
such as the Goldreich-Levin (GL) Theorem [GL89] and the Chernoff bound (and
in case we want to optimize the seed-length using an adaptive construction, also
the Leftover-hash Lemma (LHL) [HILL99]). The hope is that our proof will
enable teaching the construction of a PRG from any OWF in graduate course
in Cryptography.

1 More formally, for any function q(n) = ω(n3), there exists a construction of a PRG
from OWFs that uses q calls. HRV [HRV13] state their result with additional log n
factor in both the seed length and the number of calls. However, the improved
parameters can be easily deduced from their main theorem.

Counting Unpredictable Bits 193

Following Haitner and Vadhan [HV17], as our (main) goal is to present a
security proof that is as easy as possible, we focus on the setting of non-uniform
security (i.e., we start off with a OWF that is secure against non-uniform poly-
time algorithms, and obtain a PRG secure against non-uniform polytime algo-
rithms). (As we note in the full version of this paper, our proof of security also
readily adapts to the uniform setting if we rely on Holenstein’s Uniform Hard-
core Lemma [Hol06b].)

Perhaps surprisingly, along the way, we manage to also improve the concrete
efficiency of the PRG, obtaining a construction that only requires invoking the
underlying OWF ω(n3/ log2 n) number of times, shaving a factor log2 n from the
best constructions [HRV13,VZ12], both in terms of number of invocations and
seed length. (On a very high level, this improvement comes from the fact that
we are relying on a simpler notion of “pseudo-entropy” and can next rely on a
simpler 0–1 Chernoff bound instead of a “multi-valued” Chernoff bound as in
[HRV13], which results in a tighter bound.)

Our main result is a non-adaptive construction of a PRG from any OWFs,
with a simple proof of security.

Theorem 1.1 (Non-adaptive Construction of a PRG from OWFs).
Assume the existence of a one-way function secure against non-uniform
polynomial-time algorithms. Then there exists a PRG secure against non-
uniform polynomial-time algorithms that non-adaptively invokes the underlying
OWF ω(n3/ log2 n) times, and that has a seed of length ω(n4/ log2 n).

As mentioned above, Vadhan and Zheng [VZ12] showed how to use adaptive
calls to the underlying OWF to improve the seed length in the construction of
[HRV13]; we note that the same method applies also to our construction enabling
us again to shave log2 n in the number of invocations of f and the seed length.

Theorem 1.2 (Adaptive PRG Construction from OWF with improved
seed length). Assume the existence of a one-way function secure against non-
uniform polynomial-time algorithms. Then there exist a PRG secure against non-
uniform polynomial-time algorithms that adaptively invokes the underlying OWF
ω(n3/ log2 n) times, and that has a seed of length ω(n3/ log n).

On Concrete Efficiency (Exponentially-Hard OWFs). While shaving a log2 n
factor may not seem significant (when the running time is O(n3), this does
make a significant difference in the regime of exponential security, or in the
regime of concrete security. In particular, if we start off with an exponentially-
secure OWF (i.e., a OWF secure against circuits of size 2Ω(n)), then we can
get a PRG that only invokes the OWF ω(log n) times. This matches the bound
of the best PRG from exponentially-secure OWFs from Haitner, Harnik and
Reingold [HHR06], but only uses non-adaptive calls to the underlying OWF,
whereas [HHR06] required adaptive calls, and may make the construction more
feasible in practice. On the downside, our construction uses a seed of length
O(n2), while [HHR06] uses seed of length ω(n log n). We believe we can get a
similar seed length using a better hash function, but we defer the details to a
future version.

194 N. Mazor and R. Pass

Theorem 1.3. Assume the existence of a one-way function secure against
circuits of size 2Ω(n). Then there exists a PRG secure against non-uniform
polynomial-time algorithms that non-adaptively invokes the underlying OWF
ω(log n) times.

We remark that the final PRG is also secure against exponential-size attackers,
but only achieves negligible indisitinguishability gap.

The Key Insight: Counting Unpredictable Bits. Starting with the work of HILL,
the key method for constructing a PRG from OWFs is to start with a OWF
and turning it into a generator of some “weak” form of pseudorandomness.
Later these weak forms of pseudorandomness can be gradually amplified to
achieve full pseudorandomness. Towards this, HILL introduced the notion of
pseudo-entropy—roughly speaking, which requires a distribution to be indistin-
guishable from a distribution with some entropy. Haitner, Reingold and Vadhan
[HRV13](HRV) improved and simplified the HILL construction by introducing
and working with a relaxed notion of next-block pseudo-entropy, where follow-
ing earlier notions of pseudorandomness by Shamir [Sha83] and Blum-Micali
[BM82], we focus on the ability of a distinguisher to learn something about the
next “block” in a sequence—and in more detail, this next block is required to
have “high pseudo-entropy in expectation over random blocks (see [HRV13] for
the formal definition).

In this work, we consider a strengthening of the HRV notion (which is incom-
parable to HILL notion): We start by going back to the “plain” notion of unpre-
dictability from Blum-Micali [BM82]: Recall that we say that a function satisfies
unpredictability for the i-th bit, if no non-uniform PPT attacker can guess the
i-th bit of the output of the function on a random input given the first i−1 bits.
We are interesting in counting how many unpredictable bits a function has. The
simplest way to do this would be to say that a function has k unpredictable bits
if there exists a set S of indexes, with |S| ≥ k, such that for each i ∈ S, the i-th
bit is unpredictable for f .

Such a notion will be a bit too strong for our needs—we want to allow
the indexes of the unpredictable bits to depend on the inputs. We do this by
allowing the set S(x) of “unpredictable bits” to be a function of the input x,
and we require that for each bit i in the union of the support of S(Un), we have
that unpredictability of the i-th bit holds conditioned on sampling an input x
such that i ∈ S(x) (That is, unpredictability of bit i holds whenever i is in the
set of “unpredictable bits”). To measure the number of such unpredictable bits,
we simply consider the expected size of S(Un): Roughly speaking, we say that a
function has k(·) unpredictable bits if for every inverse polynomial ε, there exists
function S such that (1) the expected size of S(Un) is at least k(n), and (2) the
bits specified by S are ε-unpredictable. More formally,

Definition 1.4. We say that a function g : {0, 1}m(n) → {0, 1}�(n) has k(·)-
unpredictable bits if for every inverse polynomial ε(·), there exists some S such
that (1) for all n ∈ N, E

[∣∣S(Um(n))
∣
∣] ≥ k(n), and (2) for all nonuniform PPT

Counting Unpredictable Bits 195

A, every sufficiently large n, every i ∈ ⋃
x∈{0,1}m(n) Supp(S(x)), A distinguishes

between

– {x ← {0, 1}m(n)|i ∈ S(x) : g(x)<i, g(x)i}
– {x ← {0, 1}m(n)|i ∈ S(x) : g(x)<i, U}
with probability at most ε(n).

For our purposes, we will need to generalize this definition to also apply to
families of functions {gh}h∈ {0,1}∗ , where the above conditions hold for gh for
a randomly sampled “key” h (looking forward, for us, this key, will just be the
description of a hash function based on inner-products mod 2).

2 Proof Overview

We present here our whole construction and provide a detailed proof overview—
in essence, the below description provides the whole proof except that it omits
standard hybrid arguments/reductions. (The formal proof in Sects. 4 to 7 of
course provides those details). We note that our construction closely follows the
construction paradigm of HRV but due to the use of our notion of unpredictabil-
ity, as opposed to next-bit pseudoentropy, we are able to simplify the analysis
in the non-uniform setting (and improve its parameters).

Let M be an n×n binary matrix, and we define the hash function M(x) = Mx
mod 2, where x is interpreted as a binary vector. A simple form of the Leftover-
hash Leamm (LHL) [HILL99] states that {M,M(X)k)} is 1/poly(n)-close to
{M,Uk}, if X has min-entropy k + c log n for a sufficiently large c, and when M
is sampled at random from the set of n × n binary matrices.2

– Step 1: Unpredictability Generators from Regular OWF. We start
by showing how to turn any regular OWF—recall that for a r(·)-regular
OWF, each element in the support of the function on inputs of length n has
between 2r(n)−1 and 2r(n) pre-images—into a function family that has n +
O(log n) unpredictable bits; we refer to such function as an “unpredictability
generator”.
For inputs of length n, the construction is defined as:

gM (x) = M(f(x))||M(x),

where the “hash function” M is described by an n×n binary matrix. In other
words, we are applying n GL-predicates to f(x), and then the same n GL

2 As an additional didactic contribution, we show that this simple form of the LHL
follows as a direct corollary of the GL-theorem; while this observation may already
be folklore, as far as we know, it has not been explicitly stated anywhere (more than
for the case of extracting 1, or O(log n) bits).

196 N. Mazor and R. Pass

predicates to x.3

First, note that the since f(·) is r(·)-regular, f(Un) has min-entropy n−r(n)−
1 and thus by the (simple) LHL the first n − r(n) − O(log n) bits of M(f(x))
are 1/poly(n)-close to uniform, and thus unpredictable. Next, we want to
argue that bits n + 1, . . . , n + r(n) + c log n, for any c, also are unpredictable.
Assume not; that is, there exists some efficient algorithm P and some index
i such that

P (f(x),M,M(x)<i) = M(x)i

with inverse polynomial advantage. By the GL theorem, this means that
there exists some PPT algorithm E such that E(f(x),M,M(x)<i) = x with
inverse polynomial probability, which in turn means that there exists some
E′ that computes x with probability 2−i/poly(n) ≥ 2−r(n)−O(log n) given
just f(x) (by guessing M(x)<i). But since f(x) has at least 2r(n)−1 pre-
images, and all of which are equally likely, we have that the probability that
Pr [E′(f(x)) = x] = Pr

[
E′(f(x)) ∈ f−1(f(x))

]
/2r(n)−1, and thus E′ inverts

f with inverse polynomial probability, which is a contradiction.
Thus, we conclude that for every inverse polynomial ε, there exists a set S
of ε-unpredictable indexes of size [n − r(n) − O(log n)] + [r(n) + c log n] =
n + (c − O(1)) log n (and which contains indexes 1, . . . n − r(n) − O(log n), as
well as n + 1, . . . n + r(n) + c log n).
(Note that the set S depends on the unpredictability advantage ε, but so far
does not depend on the input x.)

– Step 2: Unpredictability Generators from Any OWF. We next show
that the same construction actually works also for any (not necessarily reg-
ular) OWF. This directly follows from the observation that any OWF can
be essentially split into regular OWFs on a partition of the input domain.
In more detail, we can partition the input domain of the OWF into domains
D1,D2, . . ., such that (1) for each r, f is r-regular when restricted to Dr—
refer to this function as fr, and (2) for each r such that Dr has inverse
polynomial density in {0, 1}n,4 we have that f is one-way also on Dj . The set
Dj is simply the inputs x ∈ {0, 1}n such that f(x) has between 2j−1 and 2j

pre-images, and note that condition 2 follows directly from the assumption
that f is one-way.

3 We note that this step differs from the next-bit pseudo-entropy generator of HRV
where H is only applied to x and not f(x); this is the crucial difference that allows
us to get unpredictability as opposed to next-bit pseudo-entropy. Additionally, we
note that HRV has to work with a specially constructed hash function H (based
on concatenation of a Reed-Solomon Code and the Hadamard code); Haitner and
Vadhan [HV17] showed how to just use the standard GL predicate, but this gave
a final PRG construction with significantly worse parameters. Finally, Vadhan and
Zheng [VZ12] show how to analyze also the construction without any hash function
(achieving the same parameters as HRV), but this requires a much more complicated
proof.

4 Formally, r = r(n) is a function of the input length n, and we here require the
density condition to hold for all n ∈ N .

Counting Unpredictable Bits 197

Now, consider the set of “common” r’s such that Dr has inverse polynomial
density (and thus fr is one-way). By Step 1, we have shown that there exists
some (appropriately large) set Sr of unpredictable indexes for every fr such
that r is “common”, and for every such x ∈ Dr we define S(x) = Sr. For the
remaining x’s (that correspond to rare regularities), let S(x) simply be the
empty set. By a union bound over the n possible regularities, it follows that
S(x) is set to the empty set only for a small fraction of inputs, and thus the
expected size of S(Un) is still n + O(log n).
To show that unpredictability holds, assume for contradiction that there exists
some i in the (union) of the support of S(Un) such that bit i can be predicted
with inverse polynomial probability conditioned on i ∈ S(x) for infinitely
many input lengths n. Then, note that i ∈ S(x) implies that x ∈ Dr for
some “common” regularity r, so we can always find some common r (for each
input length n) such that prediction also succeeds conditioned on x ∈ Dr (for
infinitely many input lengths), but this contradicts the unpredictability of bit
i for the function fr.

– Step 3: From Unpredictability to Random-Index Unpredictability.
In the next step, we consider a slightly stronger notion of unpredictability.
Rather than bounding the expected size of the unpredictable set, the notion
of k(·)-random bits unpredictability requires that for each index i, we
have that Pr [i ∈ S(Un)] ≥ k(n)/�(n), where �(·) denotes the output length of
the function. Note that by the linearity of expectation, this directly implies
“plain” k-bits unpredictability (so this notion is a strengthening of “plain”
unpredictability).
To turn an unpredictability generator into a random-bit unpredictability gen-
erator, we rely on the same transformation as Haitner et al. [HRV13] used in
their “entropy equalization step” (and which was first used by [HRVW09]).
Given a function g : {0, 1}n → {0, 1}�(n) that has k-bit unpredictability,
consider the “shifted” direct-product function g′:

g′(i, x1, . . . , xr) = g(x1)≥i||g(x2)|| . . . ||g(xr−1)||g(xr)<i

where i ∈ [�(n)], xj ∈ {0, 1}n (see Fig. 1). That is, we apply the function g
on r random inputs, output the concatenation (i.e., the direct product) and
then simply truncate the i−1 bits from the beginning and the �− (i−1) bits
from the end, for a random i (specified by the inputs).
Note that each bit of g′ is part of the unpredictable set for f with probability
k(n)/�(n). To see this, note that clearly a random index into g is part of
the unpredictable set for g with probability k(n)/�(n); but each bit of g′ has
exactly the same distribution as a random bit of g. Thus, g′ has (r − 1)k(n)
random unpredictable bits (while using a seed of length n · r + log �(n)).

198 N. Mazor and R. Pass

i − 1 � − i + 1

g(x1) g(x2) g(x3) . . . g(xr−1) g(xr)

Fig. 1. The construction of a function with random-bits-unpredictability from a func-
tion g : {0, 1}n → {0, 1}�(n) with bits-unpredictability. We take r copies of g, and
truncate the i − 1 first bits and � − i + 1 last bits, such that the output, marked in
white, is of length (r − 1)�.

Finally, recall that the function obtained in Step 2 has a seed of length n,
outputs 2n bits and has (n+c log n)-bit unpredictability, for any c. If we plug
in this function into g, we get a function with seed length nr+O(log n), output
length 2(r−1)n and satisfying (r−1)(n+c log n)-random bit unpredictability.
To get “expansion” (i.e., more unpredictable bits than the seed length), we
set r = n/ log n, which results in a function g : {0, 1}n2/ log n+O(log n) →
{0, 1}2n2/ log n−2n that has n2/ log n + c · n) random unpredictable bits, for
any c.

– Step 4: Pseudorandomness from Random-Bit Unpredictability. In
the final step, we show how to turn any generator of random-bit unpredictabil-
ity into a standard PRG. The transformation is simple and goes back to HILL;
it was also used by HRV to turn next-bit pseudo-entropy into pseudorandom-
ness, but for us, it will be even simpler (and due to this reason we can also
improve the parameters from HRV).
The transformation consists of doing a t-wise direct product of a function
g : {0, 1}m(n) → {0, 1}�(n) that has k(n) random unpredictable bits, and then
applying any (seeded) extractor coordinate-wise to the outputs of g. In more
details, the ith block of the output will be H(g(x1)i, g(x2)i, . . . g(xt)i), where
H is an appropriate hash function, selected as part of the seed (and which
also can be included in the output). (See Fig. 2).

g(x1)

g(x2)
...

g(xt)

output bits

H : {0, 1}t → {0, 1}q

Fig. 2. Extracting pseudoentropy from a function g with random-bits unpredictability.
We take t copies of g and apply a hash function (random matrix) on every column.

Counting Unpredictable Bits 199

To analyze this construction, first note that by a standard hybrid argument,
we simply need to show that each such output block i is indistinguishable
from uniform given the prefix up to block i. Next—and this is the key step—
note that we can furthermore move to a hybrid where for each j ∈ [t], we
replace g(xj)i with a random bit whenever i is in the unpredictable set for xj .
Indistinguishability of the real experiment and this hybrid follows from the
definition of unpredictability through an essentially standard hybrid argu-
ment, but there is an important subtlety: The set S(x) is not efficiently com-
putable, so in the hybrid argument it is not clear how to efficiently emulate
the hybrids (and in particular, in Hybrid j, how to simulate all other “rows”
j′ �= j). Since we are in the non-uniform setting, this issue, however, is easy
to deal with: we can simply non-uniformly pick the best choices for those
values.Finally, by the Chernoff bound, we have that except with negligible
probability, the number of “rows” j such bit i is unpredictable for g is at
least t · k(n)/�(n)−√

tω(log n), and thus all those bits will be uniform in the
above hybrid. It follows that the min-entropy of the string on which we apply
the extractor is t · k(n)/�(n) − √

tω(log n) and thus roughly this many bits
may be extracted from each block; thus in total, we get t ·k(n)− �

√
tω(log n)

pseudorandom bits.
The input is of length t · m(n), so we need to choose t such that t ·
k(n) − �

√
tω(log n) > t · m(n), which yields t ≥ ω(log n)�2/(k − m)2. Plug-

ging in the construction from Step 3, we have that k(n) = m(n) + O(n),
�(n) = O(n2/ log n) which yields t ≥ ω(log n�2/n2) = ω(n2/ log n).
Note that the total seed length becomes t · m(n) + |H| = ω(n4/ log2 n) + |H|.
If we rely on a random matrix as a hash function (and the above simpli-
fied LHL), its description length will be t(n)2 = n4/ log2 n (see Fig. 3 for the
complete construction).5

output bits
H : {0, 1}t → {0, 1}q

gA(x1
1) gA(x2

1) gA(x3
1) . . . gA(xr−1

1) gA(xr
1)

gA(x1
2) gA(x2

2) gA(x3
2) . . . gA(xr−1

2) gA(xr
2)

gA(x1
3) gA(x2

3) gA(x3
3) . . . gA(xr−1

3) gA(xr
3)

...
gA(x1

t) gA(x2
t) gA(x3

t)
. . .

gA(xr−1
t) gA(xr

t)

Fig. 3. The non-adaptive PRG construction. There are t ≈ n2/ log n rows, each row
has r ≈ n/ log n i.i.d copies of gA(x) = (A(f(x)), A(x)), shifted by a random offset.
Every fully populated column, marked in white, is hashed by H.

5 In this step we save log2 n factor over HRV. The reason is that we apply the Chernoff
bound on a random variable that can only take zero-one values, while HRV consider
the sample entropy of the next bit, which can take larger values.

200 N. Mazor and R. Pass

Further Improving the Seed Length: Vadhan and Zheng [VZ12] presented an
elegant approach for shaving a factor n/ log n in terms of the seed length in the
construction of HRV. Their idea is to note that to compute “coordinate” j, we do
not actually need to know the “seed” xj′

to earlier coordinates j′ < j, and thus
we can take the input to coordinate j − 1 from coordinate j (while additionally
outputting O(log n) bits). The same method can be applied to our construction
and can be analyzed in a modular way. (We note that we do not claim any
original contributions w.r.t. this step on top of [VZ12]; the only “novelty” here
is the modular analysis of their construction.) Doing this yields an (adaptive)
construction with seed length ω(n3/ log n) + |H|. So, to take advantage of this
saving, we also need to have a hash function with a better description length.
This is easily obtain by using a standard constructions of pair-wise independent
hash functions (e.g., ha,b(x) = ax + b where the operations are over F2n) and
appealing to the standard LHL [HILL99] (instead of the above simplified form),
which yields a description length of O(t(n)) = O(n2/ log2 n), and thus a total
seed length of ω(n3/ log n)

3 Preliminaries

3.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and
distributions, uppercase for random variables, and lowercase for values and func-
tions. Let poly stand for the set of all polynomials. Let ppt stand for probabilistic
poly-time, and n.u.-poly-time stand for non-uniform poly-time. An n.u.-poly-
time algorithm A is equipped with a (fixed) poly-size advice string set {zn}n∈N

(that we typically omit from the notation). Let neg stand for a negligible func-
tion. For n ∈ N, let [n] := {1, . . . , n}. Given a vector s ∈ {0, 1}n, let si denote
its i-th entry, and s1,...,i denote its first i entries. For a function f : D → R, and
an image y ∈ R, let f−1(y) = {x ∈ D : f(x) = y}.

The support of a distribution P over a finite set S is defined by Supp(P) :=
{x ∈ S : P(x) > 0}. Let d ← P denote that d was sampled according to P.
Similarly, for a set S, let s ← S denote that s is drawn uniformly from S. For
n ∈ N, we denote by Un the uniform distribution over {0, 1}n, and by U the
uniform distribution over {0, 1}. The statistical distance (also known as, variation
distance) of two distributions P and Q over a discrete domain X is defined by
SD(P,Q) := maxS⊆X |P(S) − Q(S)| = 1

2

∑
x∈S |P(x) − Q(x)|. For distribution

ensembles P = {Pn}n∈N
and Q = {Qn}n∈N

we write P c≈ε Q if for every n.u.-
poly-time A, for all but finitely many n’s, |Pr [A(Pn) = 1] − Pr [A(Qn) = 1]| ≤
ε(n). We write P c≈ Q if |Pr [A(Pn) = 1] − Pr [A(Qn) = 1]| = neg(n) for every
such A.

Lastly, we identify a matrix M ∈ {0, 1}n×m with a function M : {0, 1}n →
{0, 1}m by M(x) := x · M mod 2, thinking of x ∈ {0, 1}n as a vector with
dimension n.

Counting Unpredictable Bits 201

3.2 One-Way Functions and Pseudorandom Generators

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.

Definition 3.1 (One-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a n.u-one-way function if for every n.u.-poly-time
algorithm A, there is a negligible function ν : N → [0, 1] such that for every
n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

] ≤ ν(n)

For simplicity, we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.

In Sect. 4 we use one-way functions to construct PRGs. The latter is formally
defined below.

Definition 3.2 (Pseudorandom generator). Let n be a security parameter.
A polynomial-time computable function G : {0, 1}n → {0, 1}m(n) is called a n.u-
pseudorandom generator if for every n > 0 it holds that m(n) > n and, for every
n.u.-poly-time algorithm D, there is a negligible function ν : N → [0, 1] such that
for every n > 0,

∣
∣
∣Prx←{0,1}n [D(G(x)) = 1] − Prx←{0,1}m(n) [D(x) = 1]

∣
∣
∣ ≤ ν(n).

As in this paper we are focusing on the non-uniform setting, we will refer to
n.u-one-way functions and n.u-PRGs simply by one-way functions and PRGs.

A key ingredient in the construction of PRG from one-way function is the
Goldreich-Levin hardcore predicate. We will use the following version, which is
a combination between Goldreich-Levin and Yao’s distinguishing to prediction
lemma [Yao82].

Lemma 3.3 (Goldreich-Levin [GL89,Yao82]). There exists an oracle-aided
PPT A such that the following holds. Let n ∈ N be a number, and Q a distri-
bution over {0, 1}n × {0, 1}∗, and let D be an algorithm such that

Pr(x,z)←Q,r←{0,1}n [D(z, r,GL(x, r)) = 1]
− Pr(x,z)←Q,r←{0,1}n [D(z, r, U) = 1] ≥ α

for some α, where GL(x, r) := 〈x, r〉 is the Goldreich-Levin predicate. Then

Pr(x,z)←Q
[
AD(1n, 1	1/α
, z) = x

]
≥ α3/8n.

3.3 Min-Entropy and Extraction

The min-entropy of a distribution Q, denoted by H∞(Q) is defined by

H∞(Q) := − log(max
q∈Supp(Q)

{Pr [Q = q]}).

We will use the following simplified version of the leftover hash lemma, which
shows that a random matrix is a strong extractor.

202 N. Mazor and R. Pass

Lemma 3.4 (Leftover hash lemma, simplified version). Let n ∈ N, ε ∈
[0, 1], and let X be a random variable over {0, 1}n. Let M ← {0, 1}n×� be a
random matrix for � ≤ H∞(X) − 3 log 1/ε − 4 log n − 4. Then,

SD((M,M(X)), (M,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}�.

The above (simplified) version of the leftover hash lemma can be proven
using GL. (The proof may be folklore, but we have not previously seen it in the
literature.)

Proof. Let � ≤ H∞(X)−3 log(1/ε)−4 log n−4 < n, and let M ← {0, 1}n×� be a
random matrix. Assume there exists an (inefficient) algorithm that distinguishes
M,M(X) from M,U� with advantage ε. By a simple hybrid argument, there
exists an (inefficient) distinguisher D and an index i ∈ [�], such that

Pr [D(M,M(X)<i,M(X)i) = 1] − Pr [D(M,M(X)<i, U) = 1] ≥ ε/� ≥ ε/n.

Observe that M(X)i = 〈Mi,X〉 is the GL hard-core predicate, and thus we
get that there exists algorithm A such that Pr [A(M,M(X)<i) = X] ≥ ε3/8n4.
Consider the algorithm A′ that given M , guess M(X)<i and runs A. Clearly,

Pr [A′(M) = X] ≥ 2−i · ε3/8n4 ≥ 2−� · ε3/8n4 > 2−H∞(X),

which is a contradiction, since M is independent from X. �

We will also use the well-known Chernoff bound in our proof.

Fact 3.5 (Chernoff bound). Let A1, ..., An be independent random variables
s.t. Ai ∈ {0, 1}. Let Â = Σn

i=1Ai and μ = E
[
Â

]
. For every ε ∈ [0, 1] It holds

that:

Pr
[∣∣
∣Â − μ

∣
∣
∣ ≥ ε · μ

]
≤ 2 · e−ε2·μ/3.

4 Unpredictable Bits

In this section we define bits-unpredictability, which is the main building block in
the construction. We will consider such a notion of unpredictability for families
of functions.

Definition 4.1 (Unpredictable bits). Let m = m(n), � = �(n), λ = λ(n)
and k = k(n) be integer functions, and let ε = ε(n) ∈ [0, 1]. We say that
a function family g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
has (k, ε)-bits-

unpredictability if for every n ∈ N and x ∈ {0, 1}m(n), there exists a set
S(x) ⊆ [�(n)], such that, for Xn ← {0, 1}m(n) and A ← {0, 1}λ(n):

Counting Unpredictable Bits 203

1. For every n, E [|S(Xn)|] ≥ k(n), and,
2. for every sequence {in}n∈N

such that in ∈ ⋃
x∈{0,1}m(n) S(x),

{
(A, gA(Xn)<in

, gA(Xn)in
)|in∈S(Xn)

}
n∈N

c≈ε

{
(A, gA(Xn)<in

, U)|in∈S(Xn)

}
n∈N

.

We say that g has k-bits-unpredictability if it has (k, n−c)-bits-unpredictability for
every c ∈ N.

We will also consider a stronger notion of unpredictability—called k-random-
bit unpredictability, that requires each individual bit to be unpredictable with
probability k/� where � is the output length.

Definition 4.2 (Random bits unpredictability). Let m = m(n), � = �(n)
and k = k(n) be integer functions, and let ε = ε(n) ∈ [0, 1]. We say that a func-
tion family g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
has (k, ε)-random-bits-

unpredictability if it satisfies Definition 4.1 except that condition (1) is replaced
by:

1. For every i ∈ [�(n)], Pr [i ∈ S(Xn)] ≥ k(n)/�(n).

We say that g has k-random-bits-unpredictability if it has (k, n−c)-bits- unpre-
dictability for every c ∈ N.

5 OWFs ⇒ Unpredictable Bits

In this section, we prove the next theorem, which shows how to construct a
function family with non-trivial bits-unpredictability from one-way functions.

Theorem 5.1 (OWFs imply unpredictability). Let f : {0, 1}n → {0, 1}n be
a one-way function and let Mn = {0, 1}n×n be the family of all n × n matrices.
Let g =

{
gM : {0, 1}n → {0, 1}2n

}

M∈Mn

defined by

gM (x) = M(f(x)),M(x).

Then g has (n + log n)-bits-unpredictability.

We start with proving Theorem5.1 for the case that f is a regular one-way
function on a partial domain. We later show how Theorem5.1 follows from this
case.

Definition 5.2 (Regular one-way function, partial domain). For every
n ∈ N, let Ωn ⊆ {0, 1}n be a set. An efficiently computable function f : Ωn →
{0, 1}n is a one-way function if for every n.u.-poly-time algorithm E,

Pr
[
E(f(Wn)) ∈ f−1(f(Wn))

]
= neg(n)

for Wn ← Ωn. Such a function is r = r(n) regular if for every n and x ∈ Ωn,

2r >
∣
∣f−1(f(x))

∣
∣ ≥ 2r−1.

204 N. Mazor and R. Pass

Lemma 5.3. Let ε = ε(n) ∈ [0, 1] and r = r(n) ∈ N be functions. Let
Ωn ⊆ {0, 1}n be a set such that |Ωn| = ε(n) · 2n, and let f : Ωn → {0, 1}n

be a r-regular one-way function. Let Mn ← Mn be a random matrix, and
Yn = (Mn(f(Wn),Mn(Wn)) for Wn ← Ωn. Then the following holds for every
c ∈ N:

For every n ∈ N there exists a set Sn ⊆ [2n] such that |Sn| = n + 4c log n −
log(1/ε), and for every sequence {in}n∈N

with in ∈ Sn it holds that

{(Mn, (Yn)≤in
)}n∈N

c≈n−c {(Mn, (Yn)<in
, U)}n∈N

.

In the following, fix c ∈ N, and let r, ε, Ωn,Mn,Wn and Yn be as defined in
Lemma 5.3. For every n ∈ N, let

Sn = [n − r(n) − 8c log n − log(1/ε(n))] ∪ {n < i ≤ n + r(n) + 12c log n} . (1)

Clearly, the size of S is n + 4c log n − log(1/ε), as stated in Lemma 5.3. To prove
the lemma, we use the following two claims.

Claim 5.4. For every n ∈ N and every i ∈ [n − r(n) − 8c log n − log(1/ε(n))] it
holds that

SD((Mn,Mn(f(Wn))≤i), (Mn,Mn(f(Wn))<i, U)) ≤ n−c,

for M ← Mn.

Proof. To prove the claim we will show that H∞(f(Wn)) ≥ n−r(n)−log(1/ε(n)).
The proof is then immediate from the leftover hash lemma (Lemma 3.4) and a
simple hybrid argument, as by Lemma 3.4, Mn(f(Wn))≤i) is statistically close
to i uniform bits. To show the bound on the min-entropy of f , compute,

H∞(f(X)) = − log(max
y

Pr [f(X) = y])

≥ − log(max
y

∣
∣f−1(y)

∣
∣

|Ωn|) > − log(
2r

ε2n
) = n − r − log(1/ε)

as stated. �

Claim 5.5. For every sequence {in}n∈N
, with in ∈ [r(n) + 12c log n] it holds

that

{(Mn, f(Wn),Mn(Wn)≤in
)}n∈N

c≈ {(Mn, f(Wn),Mn(Wn)<in
, U)}n∈N

.

Proof. Assume towards a contradiction that the claim does not hold. That is,
there exists some algorithm E and a sequence {in}n∈N

, such that

|Pr [E(Mn, f(Wn),Mn(Wn)≤in
) = 1]

− Pr [E(Mn, f(Wn),Mn(Wn)<in
, U) = 1] | ≥ n−d

Counting Unpredictable Bits 205

for some constant d ∈ N and for infinitely many n’s. Fix such n ∈ N, and omit
it from the notation. Let i∗ = in, assume without loss of generality that

Pr [E(M,f(W),M(W)≤i∗) = 1] − Pr [E(M,f(W),M(W)<i∗ , U) = 1] ≥ n−d.

By Lemma 3.3 (Goldreich-Levin), the existence of E implies that there exists
an algorithm E′ such that

Pr
[
E′(1nc

,M, f(W),M(W)<i∗) = W
]

≥ n−2d.

Let Ê be the algorithm that on input f(W), sample M ← {0, 1}n×n, and guess
r ← {0, 1}i∗−1. It then outputs E′(1nc

,M, f(W), r). Since Pr [M(W)<i∗ = r] =
2−i∗+1, it holds that

Pr
[
Ê(f(W)) = W

]
≥ n−2d · 2−i∗+1. (2)

Since f has at least 2r−1 ≥ 2i∗−12c log n pre-images, it holds that

Pr
[
Ê(f(W)) ∈ f−1(f(W))

]
≥ 2r−1 · Pr

[
Ê(f(W)) = W

]

≥ 2i∗−12c log n−1 · Pr
[
Ê(f(W)) = W

]
. (3)

Combining Eqs. (2) and (3), we get that

Pr
[
Ê(f(W)) = W

]
≥ n−2d−12c−1

which is a contradiction since f is a one-way function. �

5.1 Proving Lemma 5.3.

We are now ready to prove Lemma 5.3.

Proof (Proof of Lemma 5.3). Assume towards a contradiction that the lemma
does not hold. That is, there exists a constant c, a n.u.-poly-time algorithm E
and a sequence {in}n∈N

with in ∈ Sn such that,

|Pr [E(Mn, (Yn)≤in
) = 1] − Pr [E(Mn, (Yn)<in

, U) = 1]| > n−c

for infinitely many n’s, where Sn is the set defined in Eq. (1) with respect to the
constant c. We conclude the proof by the observation that, either for infinitely
many such n’s it holds that in ≤ n, or for infinitely many such n’s in > n. In the
first case, E contradicts Claim 5.4. In the second, E contradicts Claim 5.5 by a
simple data-processing argument. �

206 N. Mazor and R. Pass

5.2 Proving Theorem 5.1

Proof (Proof of Theorem 5.1). Fix c ∈ N. The proof follows by the observa-
tion that every one-way function is a combination of regular one-way func-
tions. Let f : {0, 1}n → {0, 1}n be a one-way function, and for every x ∈
{0, 1}n, let Df (x) =
log

∣
∣f−1(f(x))

∣
∣�. For every n ∈ N and r ∈ [n], let

Ωr
n = {x ∈ {0, 1}n : Df (x) = r}. Let εr(n) = |Ωr

n| /2n and let Sr
n be the set

Sn promised by Lemma 5.3 with respect to r. Observe that for every function
r = r(n), fr : Ωr

n → {0, 1}n is r-regular function. Moreover, for every such r with
εr(n) ≥ n−2c for every n ∈ N, it holds that the function fr is one-way. Indeed,
an algorithm E that inverts fr with probability α(n) inverts f with probability
at least α(n) · Pr [Df (Xn) = r(n)] ≥ α(n) · n−2c.

For x ∈ {0, 1}n, let S(x) = SDf (x)
n if εDf (x)(n) ≥ n−2c or ∅ otherwise. In the

following we show that

Pr [|S(Xn)| < n + 2c log n] ≤ n−c. (4)

It then follows that

E [|S(Xn)|] ≥ (n + 2c log n)(1 − n−c) ≥ n + c log n

as stated. To see Eq. (4), let Gn =
{
r ∈ [n] : εr(n) ≥ n−2c

}
. By definition of S

and Gn we get that for every r ∈ Gn and x with Df (x) = r

|S(x)| ≥ (n + 4c log n − log(1/n−2c))
= n + 2c log n.

Thus, Pr [|S(Xn)| < n + 2c log n] ≤ Pr [Df (Xn) /∈ Gn], and it is enough to
bound Pr [Df (Xn) /∈ Gn]. By union bound, as Df (x) can get at most n val-
ues, and for every r /∈ Gn it holds that Pr [Df (Xn) = r] ≤ n−2c, we get that
Pr [Df (Xn) /∈ Gn] ≤ n−2c · n ≤ n−c, as we wanted to show.

Next, assume toward a contradiction that g has no (n + log n, n−c)-bits-
unpredictability with respect to the above sets S(x). Namely, there exists an
algorithm E such that

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | in ∈ S(Xn)]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | in ∈ S(Xn)] | > n−c

for some sequence {in}n∈N
and for infinite many n’s. Below we show how to

construct a regular one-way function on partial domain fr∗
, such that E con-

tradicts Lemma 5.3 with respect to fr∗
. To do so, fix such n and observe that,

by an averaging argument, there exists some r∗ ∈ [n] such that in ∈ Sr∗
n , and,

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | in ∈ S(Xn),Df (Xn) = r∗]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | in ∈ S(Xn),Df (Xn) = r∗] | > n−c.

Counting Unpredictable Bits 207

Since S(Xn) is determined by Df (Xn), we get that,

|Pr [E(Mn, gMn
(Xn)≤in

) = 1 | Df (Xn) = r∗]

− Pr [E(Mn, gMn
(Xn)<in

, U) = 1 | Df (Xn) = r∗] | > n−c.

Lastly, observe that the event Df (Xn) = r does not depend on Mn, and only
depend on f(Xn). Thus, we can write the above as

∣
∣
∣Prx←Ωr∗

n
[E(Mn, gMn(x)≤in) = 1] − Prx←Ωr∗

n
[E(Mn, gMn(x)<in , U) = 1]

∣
∣
∣ ≥ n−c.

Moreover, since in ∈ Sr∗
n , it holds that εr∗

(n) ≥ n−2c. For every n let r∗(n)
be as described above (or, if no such r∗ exists, let r∗(n) be arbitrary r with
εr(n) ≥ n−2c).6 The above is a contradiction to Lemma 5.3, as by construction
fr∗

: Ωr∗
n → {0, 1}n is a regular one-way function (note that, while r∗ may not

be an efficiently computable function, fr∗
is). �

6 Bits Unpredictability ⇒ Random Bits Unpredictability

The next theorem, proven below, shows how to convert bits unpredictability to
random bits unpredictability.

Theorem 6.1 (Bits unpredictability to random bits unpredictability).
Let m = m(n), � = �(n), λ = λ(n) and k = k(n) be integer functions and
let g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
be a function family with k-

bits-unpredictability. Then, for every polynomial r = r(n), the function family
gr =

{
gr

a : [�(n)] × ({0, 1}m(n))r(n) → {0, 1}(r(n)−1)�(n)
}

a∈{0,1}λ(n)
defined by

gr
a(i, x1, . . . , xr) = ga(x1)≥i, ga(x2), . . . , ga(xr−1), ga(xr)<i

has (r(n) − 1)k(n)-random-bits unpredictability.

We get the following corollary, on construction of random-bits unpredictability
from a one-way function.

Corollary 6.2 (OWF to random-bits unpredictability). Let f : {0, 1}n →
{0, 1}n be a one-way. Then there exists an efficiently computable function fam-
ily g′ =

{
g′

a : {0, 1}m′(n) → {0, 1}�′(n)
}

a∈{0,1}λ(n)
with k′-random-bits unpre-

dictability, for m′(n) = O(n2/ log n), �′(n) = O(n2/ log n), λ(n) = n2 and
k′(n) ≥ m′(n) + n.

Moreover, the construction uses r(n) non-adaptive calls to f .

6 That is, for every n for which E distinguishes gMn(Xn)≤in from (gMn(Xn)<in , U)
given in ∈ S(Xn), we define r∗(n) as described, and for all other n’s we define r∗(n)
arbitrarily such that Pr [Df (Xn) = r∗(n)] is noticeable.

208 N. Mazor and R. Pass

Proof. Let g be the function family defined in Theorem5.1. Let r(n) =
�2n/ log n�+3, and let g′ = gr, as defined in Theorem 6.1. It holds that m′(n) =
�log n� + n · r(n) = O(n2/ log n), and �′(n) = 2n · (r(n) − 1) = O(n2/ log n).
Moreover, by Theorem 6.1,

k′(n) = (r(n)−1)(n+log n) = log n+n·r(n)+log n·(r(n)−2)−n ≥ m′(n)+2n−n.

�

6.1 Proving Theorem 6.1

Proof (Proof of Theorem 6.1). Let �,m, λ, k and g be as in Theorem 6.1, and fix
a polynomial r = r(n) and a constant c. In the following we prove that gr has
((r−1)k, n−c)-random bits unpredictability. For every n ∈ N and x ∈ {0, 1}m(n),
let Sg(x) be the set promised by Definition 4.1 with respect to the (k, n−c)-bits-
unpredictability of g.

For i ∈ [�(n)] and x1, . . . , xr ∈ ({0, 1}m(n))r(n), define the set

S(i, x1, . . . , xr) = (
⋃

j∈[r]

{
z + (j − 1)n − (i − 1) : z ∈ Sg(xj)

}
)
⋂

[�(n)·(r(n)−1)].

let X1
n, . . . , Xr

n ← {0, 1}m(n) and In ← [�(n)]. Clearly, for every i ∈ [�(n) ·
(r(n) − 1)], it holds that

Pr
[
i ∈ S(In,X1

n, . . . , Xr
n)

]
= Pr [(i + In mod �(n)) ∈ Sg(Xn)]

=
E [|Sg(Xn)|]

�(n)
≥ k(n)

�(n)
=

(r(n) − 1)k(n)
(r(n) − 1)�(n)

.

Let Sn = S(In,X1
n, . . . , Xr

n). Assume toward a contradiction that gr does not
have (r−1)k-random-bits unpredictability with respect to the above set S. That
is, there exists an algorithm E and an index z = z(n) ∈ [� · (r − 1)], such that,
for An ← {0, 1}λ(n),

|Pr
[
E(An, gr

An
(In,X1

n, . . . , Xr
n)≤z) = 1 | z ∈ Sn

]

− Pr
[
E(An, gr

An
(In,X1

n, . . . , Xr
n)<z, U) = 1

] | z ∈ Sn| ≥ n−c.

For infinitely many n’s. Fix such n and omit n from the notation. By an
averaging argument, there exists an index i∗ ∈ [�(n)] such that

|Pr
[
E(A, gr

A(i∗,X1, . . . , Xr)≤z) = 1 | z ∈ S]

− Pr
[
E(A, gr

A(i∗,X1, . . . , Xr)<z, U) = 1
] | z ∈ S| ≥ n−c.

Recall that gr
A is produced by r blocks of the form gA(Xj) (with a random

shift). Let s = � z+(i∗−1)
� � be the index of the block in which the index z belongs

to, and i be the index of z inside the block. That is, s and i are such that

Counting Unpredictable Bits 209

gr
A(i∗,X1, . . . , Xr)≤z = gA(X1)≥i∗ , gA(X2), . . . , gA(Xs)≤i. Consider the algo-

rithm E′ that, given a, ga(x)≤i and a bit b, sample X1, . . . , Xs−1 uniformly at
random and executes E(a, ga(X1)>i∗ , ga(X2), . . . , ga(x)<i, b).

Observe that,

|Pr [E′(A, gA(X)<i, gA(X)i) = 1 | i ∈ Sg(X)]
− Pr [E′(A, gA(X)<i, U) = 1 | i ∈ Sg(X)] |

= |Pr
[
E(A, gA(i∗,X1, . . . , Xr)≤z) = 1 | z ∈ S]

− Pr
[
E(A, gA(i∗,X1, . . . , Xr)<z, U) = 1 | z ∈ S] |

≥ n−c.

The above is a contradiction to the (k, n−c)-bits unpredictability of g, since by
assumption, it holds for infinitely many n’s �

7 Extracting Pseudorandomness and the Main Theorem

In this section we prove Theorem 7.1, which is the last step in our main con-
struction. Theorem 7.1 shows how to extract pseudorandomness from random
bits unpredictability.

Theorem 7.1 (Extracting from random bits unpredictability). Let s =
ω(1), m = m(n), � = �(n), λ = λ(n) and k = k(n) be integer functions, and
let g =

{
ga : {0, 1}m(n) → {0, 1}�(n)

}

a∈{0,1}λ(n)
be a function family with k(n)-

random-bits-unpredictability. Then the following holds for every polynomial t =
t(n). Let α(n) = k(n)/�(n), and let Hn ← {0, 1}t(n)×q(n) be a random matrix,
for q =
αt − √

αt · s log n − s log n�. Then for X1
n . . . , X

t(n)
n ← ({0, 1}m(n))t(n)

and An ← {0, 1}λ(n), the distribution ensemble

{Hn,An,Hn(gAn (X1
n)1,...,gAn (Xt(n)

n)1),...,Hn(gAn (X1
n)�(n),...,gAn (Xt(n)

n)�(n))}n∈N

is pseudorandom.

We prove Theorem 7.1 below, but first let us deduce our main theorem.

Theorem 7.2 (PRG construction).
For any function s(n) = ω(1), there exists a construction of a PRG from a one-
way function, that uses O(s(n) · n3/ log2 n) non-adaptive calls to the one-way
function and a seed of length O(s2(n) · n4/ log2 n)).

Proof (Proof of Theorem 7.2). Let f : {0, 1}n → {0, 1}n be a one-way function,
g′ =

{
g′

a : {0, 1}m′(n) → {0, 1}�′(n)
}

a∈{0,1}λ(n)
be the function family promised

by Corollary 6.2, and let α = k′/�′ ≤ 1.
Let s be as in Theorem 7.2 (assume without loss of generality that s(n) ≤

log n), t = 4� �′2s log n
(k′−m′)2 � = O(s ·n2/ log n), m = t ·m′ and � = (
αt−√

αts log n−

210 N. Mazor and R. Pass

s log n�)�′. Let H = {0, 1}t×(
αt−√
αts log n−s log n�) be the set of all matrices of

size t × (
αt − √
αts log n − s log n�), and let G : H × {0, 1}λ × {0, 1}m → H ×

{0, 1}λ × {0, 1}� be the function defined by

G(H,A,W1, . . . ,Wt) :=
H,A,H(gr

A(W1)1, . . . gr
A(Wt)1), . . . , H(gr

A(W1)�′ , . . . , gr
A(Wt)�′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and
W1, . . . ,Wt ← ({0, 1}m2)t. We need to show that G is expanding. To do so,
it is enough to verify that m < �.

Indeed,

� − m = (
αt −
√

αts log n − s log n�)�′ − tm′

> αt�′ − 2�′√ts log n − tm′

= tk′ − 2�′√ts log n − tm′

= t(k′ − m′) − 2�′√ts log n

≥ 0,

where the last inequality holds since m = m′t and since t(k′ −m′) ≥ 2�′√ts log n
by our choice of t.

Moreover, G uses tr = O(s ·n3/ log n) calls to f and has seed length log |H|+
λ + t · m2 = log |H| + O(t2 + n2 + s · n4/ log2 n) = O(s2 · n4/ log2 n). �

7.1 Exponentially-Hard OWFs

Before proving Theorem 7.1, we state and prove our results for exponentially-
hard one-way functions. We start with a formal definition of the latter.

Definition 7.3 (Exponentially hard one-way function). A polynomial-
time computable function f : {0, 1}∗ → {0, 1}∗ is called a T = T (n)-hard one-way
function if for every n.u. algorithm A of size at most T (n), for all but finitely
many n ∈ N,

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

] ≤ 1/T (N).

f is n.u exponentially-hard one-way function if it is 2cn-hard one-way function
for some constant c > 0.

We get the following theorem:

Theorem 7.4 (PRG construction from exponentially-hard OWFs). For
any function s(n) = ω(1), there exists a construction of a poly-time secure
PRG from an exponentially-hard one-way function, that uses O(s(n) · log n) non-
adaptive calls to the one-way function.

Counting Unpredictable Bits 211

Proof. Let f be an 2cn-hard one-way function. We use the well-known fact that
we can extract δn GL hard-core bits from the input of f , for some constant
c > δ > 0. Thus, by the construction in Theorem 5.1, we get a function family g
with (n + εn)-bits-unpredictability, for some constant ε > 0 (and g only makes
one call to f).

Next, by Theorem 6.1, and taking r = �3/ε� + 1 = O(1), we get that the
function family g′ = gr has k′(n) = (�3/ε� (1+ε)n)-random-bits-unpredictability.
Moreover, gr has input length m′(n) = O(log n) + n(�3/ε� + 1), output length
�′(n) = 2n(�3/ε�). We get that k′(n) − m′(n) = Ω(n) = Ω(�′(n)).

Let α = k′(n)/�′(n). Let s be as in Theorem 7.4, t = 4� �′2s log n
(k′−m′)2 � = O(s log n),

m = t ·m′ and � = (
αt−√
αts log n−s log n�)�′. Let H be the set of all matrices

of size t × (
αt − √
αts log n − s log n�), and let G : H × {0, 1}λ × {0, 1}m →

H × {0, 1}λ × {0, 1}� be the function defined by

G(H,A,W1, . . . ,Wt) :=
H,A,H(gr

A(W1)1, . . . gr
A(Wt)1), . . . , H(gr

A(W1)�′ , . . . , gr
A(Wt)�′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and
W1, . . . ,Wt ← ({0, 1}m2)t. By the same calculation as in the proof of Theo-
rem 7.2, G is expanding. Moreover, G uses tr = O(s log n) calls to f .

7.2 Proving Theorem 7.1

By a simple hybrid argument, it is enough to prove the following claim.

Claim 7.5. Let g, t,Hn, An and X1
n, . . . , Xt

n be as in Theorem7.1. Then for
every sequence {in}n∈N

, and for every n.u.-poly-time algorithm E,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | = neg(n).

Proof. (Proof of Theorem 7.1). Theorem 7.1 follows from Claim 7.5 by a simple
hybrid argument. �

In the following we prove Claim 7.5. Fix c ∈ N, a n.u.-poly-time E and a constant
d such that t(n) ≤ nd for large enough n. We want to show that

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | < n−c. (5)

for all but finitely many n’s. Let c′ = c + d + 2. For every n ∈ N and j ∈ [t(n)],
let Sj

n = Sg(Xj
n) be the set promised by the assumed (k, n−c′

)-random-bits-
unpredictability property of g. We define the random variables Q1, . . . , Qt as
follows. For every j ∈ t, let Qj = gA(Xj

n)in
if in /∈ Sj

n, or a uniform bit otherwise.

212 N. Mazor and R. Pass

By the definition of bits-unpredictability, it holds that for every n.u.-poly-time
algorithm E′,

∣
∣Pr

[
E′(gA(Xj

n)<in
, gA(Xj

n)in
) = 1

] − Pr
[
E′(gA(Xj

n)<in
, Qj) = 1

]∣∣ ≤ n−c′
.
(6)

The proof of Claim 7.5 follows from the following two claims.

Claim 7.6. For all but infinitely many n’s,

|Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Uq(n)) = 1

] | < n−c/2

Claim 7.7. For all but infinitely many n’s,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

] | < n−c/2

We will prove Claim 7.6 and Claim 7.7 below, but first let us prove Claim 7.5.

Proof. (Proof of Claim 7.5). Equation (5) holds by Claim 7.6 and Claim 7.7 and
the triangle inequality. The claim follows since Eq. (5) holds for every c ∈ N. �

7.3 Proving Claim 7.6

Proof. (Proof of Claim 7.6).
We will show that given gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, the distribution of

(Q1, . . . , Qt) is n−c/3-close to a distribution with min-entropy at least q(n) +
ω(log n). The proof then follows by the leftover hash lemma.

To do so, we start by showing that with probability 1 − n−c/3, there are at
least q(n) + ω(log n) indexes j such that in ∈ Sj . To see the above, fix n and
omit it from the notation. Let q′ = q + s log n, and for every j ∈ [t], let δj be an
indicator for the event that i ∈ Sj . By construction, δ1, . . . , δt are independent
random variables, and by the definition of k-random-bits-unpredictability, for
each j ∈ [t], it holds that Pr [δj = 1] ≥ k/� = α. Thus, by Chernoff inequality,
for large enough n it holds that

Pr

⎡

⎣
t∑

j=1

δj < q′

⎤

⎦ = Pr

⎡

⎣
t∑

j=1

δj < αt −
√

αts log n

⎤

⎦ ≤ 2−s log n/3 < n−c/3,

as we wanted to show. Next, let J =
{
j : in ∈ Sj

}
be the set of j’s for which Qj

is uniform independent bit. By the above Pr [|J | < q′] < n−c/3, and thus the
distribution (Q1, . . . , Qt) is n−c/3 close to the distribution (Q1, . . . , Qt)||J |≥q′ .
To bound the min-entropy of the latter, we want to show that for every q1, . . . , qt,

Counting Unpredictable Bits 213

it holds that Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′] ≤ 2−q′

, which concludes the
proof. It holds that,

Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′]

= EJ←J ||J |>q′
[
Pr

[
Q1, . . . , Qt = q1, . . . , qt | J = J

]]

≤ EJ←J ||J |>q′

[
2−|J|

]

≤ 2−q′
,

where the first inequality holds since for every j ∈ J , Qj is a uniform and
independent random bit. �

7.4 Proving Claim 7.7

Proof. (Proof of Claim 7.7). Assume towards a contradiction that the claim does
not hold. That is,

|Pr [E(Hn,An,gAn (X1
n)<in ,...,gAn (Xt

n)<in ,Hn(gAn (X1
n)in ,...,gAn (Xt

n)in)) = 1]

− Pr
[
E(Hn, An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
,Hn(Q1, . . . , Qt)) = 1

] | ≥ n−c/2

for some algorithm E and for infinitely many n’s. By data-processing inequality,
it holds that for some n.u.-poly-time Ê and for infinitely many n’s,

|Pr
[
Ê(An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, gAn

(X1
n)in

, . . . , gAn
(Xt

n)in
) = 1

]

− Pr
[
Ê(An, gAn

(X1
n)<in

, . . . , gAn
(Xt

n)<in
, Q1, . . . , Qt) = 1

]
| ≥ n−c/2.

Fix such n. By a simple hybrid argument, we get that there exists some j∗ ∈ [t],
such that,

|Pr
[
Ê(An,gAn (X1

n)<in ,...,gAn (Xt
n)<in ,gAn (X1

n)in ,...,gAn (Xj∗
n)in ,Qj∗+1,...,Qt) = 1

]

− Pr
[
Ê(An,gAn (X1

n)<in ,...,gAn (Xt
n)<in ,gAn (X1

n)in ,...,gAn (Xj∗−1
n)in ,Qj∗

,...,Qt) = 1
]
|

≥ n−c′
/2.

By a simple averaging argument, there is a fixing x1, . . . , xj∗−1, xj+1, . . . , xt for
X1

n, . . . , Xj∗−1
n ,Xj∗+1

n , . . . , Xt
n, and bj for every Qj with in ∈ Sg(xj), such that

the following holds. Let qj(a) = ga(xj) if in /∈ Sg(xj), or bj otherwise. Then it
holds that

|Pr[Ê(An, gAn
(x1)<in

, . . . , gAn
(Xj∗

n), . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , gAn
(Xj∗

n)in
, qj∗+1(An), . . . , qt(An)) = 1]

− Pr[Ê(An, gAn
(x1)<in

, . . . , gAn
(Xj∗

n), . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , Qj∗
, qj∗+1(An), . . . , qt(An)) = 1]|

≥ n−c′
/2.

214 N. Mazor and R. Pass

The above is a contradiction to the bit-unpredictability property of g. Indeed,
Let

E′(a, ga(x)<i, b)

= Ê(An, gAn
(x1)<in

, . . . , ga(x)<i, . . . , gAn
(xt)<in

,

gAn
(x1)in

, . . . , gAn
(xj∗−1)in

, b, qj∗+1(An), . . . , qt(An)).

We get that

|Pr [E′(An, gAn
(Xn)<in

, gAn
(Xn)in

) = 1]

− Pr [E′(An, gAn
(Xn)<in

, Q) = 1] | ≥ n−c′
/2.

where Q is equal to gAn
(Xn)in

) if in /∈ Sg(Xn), or uniform bit otherwise. This
is a contradiction to Eq. (6). �

8 Saving Seed Length

In this section we show how to use the transformation from [VZ12] to get the
following theorem.

Theorem 8.1. (PRG construction). For any function s = ω(1), there exists
a construction of a PRG from a one-way function, that uses O(s(n) · n3/ log2 n)
calls to the one-way function and a seed of length O(s(n) · n3/ log n).

To get an improvement in the seed length, we will also need to use a hash function
with a shorter description in the extraction step, described in Sect. 7. For this,
we need to define 2-universal families.

Definition 8.2. (2-universal family). A family of function F ={
f : {0, 1}n → {0, 1}�

}
is 2-universal if for every x �= x′ ∈ {0, 1}n it holds that

Prf←F [f(x) = f(x′)] = 2−�.
A universal a family is explicit if given a description of a function f ∈ F and

x ∈ {0, 1}n, f(x) can be computed in polynomial time (in n, �).

The family of all matrices of size n × m is an explicit 2-universal family, but
it is well known that there are explicit 2-universal families with description size
O(n+m). An important property of 2-universal families is that they can be used
to construct a strong extractor. This is stated in the leftover hash lemma:

Lemma 8.3. (Leftover hash lemma, standard version, [ILL89]).
Let n ∈ N, ε ∈ [0, 1], and let X be a random variable over {0, 1}n. Let H ={

h : {0, 1}n → {0, 1}�
}

be a 2-universal hash family with � ≤ H∞(X)−2 log 1/ε.
Then,

SD((H,H(X)), (H,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}� and H being the uniform dis-
tribution over H.

Counting Unpredictable Bits 215

We are now ready to prove the main result of this section.

Proof. Observe that the significant parts of the seed of the PRG G defined in
the proof of Theorem7.2 are the description of H, and t inputs to the function
gr.

More Efficient Hash Function. We start with reducing the description length
of H by using more efficient 2-universal family. Indeed, the proof of Claim7.5
holds also when Hn is a random function from a 2-universal family instead of a
random matrix. We change the proof of Theorem7.2, such that

H =
{

h : {0, 1}t(n) → {0, 1}αt−√
αts log n−s log n

}

is a 2-universal family of description size log |H| = O(t).

Using the transformation of [VZ12]. Next, we use the transformation of [VZ12]
to avoid the need to get t independent inputs for gr as input to the PRG. Let us
first recall the construction given in Sects. 5 to 7. The construction starts with
a function family g which has non-trivial bits-unpredictability. Then, for every
j ∈ [t] we compute

Y j = gr
A(Ij ,X1

j , . . . , Xr
j) = gA(Xj,1)≥Ij , gA(Xj,2), . . . , gA(Xj,r)<Ij .

Finally, we extract pseudorandom bits by applying an extractor on Y 1
i , . . . Y t

i for
every i ∈ [(r − 1)�]. We prove that H(Y 1

i , . . . Y t
i) is indistinguishable from uni-

form, given A, Y 1
i<, . . . Y t

<i. Moreover, by inspecting the reductions in the proofs
of Theorems 6.1 and 7.1, it is not hard to see that H(Y 1

i , . . . Y t
i) is indistinguish-

able from uniform, even given I1, . . . , It (in addition to A, Y 1
i<, . . . Y t

<i).
Vadhan and Zheng [VZ12] observed that for computing Y j

i , we only need to
know the value of A, Ij and exactly one (specific) of the values of Xj,1, . . . , Xj,r.
In particular, we don’t need to know the value of Xj,1, . . . , Xj,α−1, where α
is such that i = α · � + β for β ∈ [�], to compute Y j

i . Thus, we can sample
each input to g only when it is used. This gives rise to an algorithm G′ that
computes the output of the PRG in the following way: First, G′ samples A, and
for each j ∈ [t], the G′ samples Ij , and Xj,r,Xj,r−1 uniformly at random. Then,
for each i from (r − 1)� to (r − 2)� + 1, the algorithm computes H(Y 1

i , . . . Y t
i)

(notice that the relevant bits have already been fixed by A, Ij ,Xj,r and Xj,r−1)
and outputs the hashed value. The total length of the output of G′ so far is
q = � · t(m/� + Ω(log n/�)) = tm + Ω(t · log n). After finishing, the algorithm
samples Xj,r−2 uniformly at random for every j, and continues this process for
another � indexes (i from (r − 2)� to (r − 3)� + 1), and so on. This process of
sampling and hashing continues until it gets to i = 1, where in the k-th iteration,
G′ samples Xj,r−k for each j, and the hashes H(Y 1

i , . . . Y t
i) for each i between

(r − k)� to (r − k − 1)� + 1. This results with tm + Ω(t · log n) pseudorandom
bits in every iteration.

Clearly, the output of the described G′ is equal to the output of the PRG.
Moreover, the output in the k-th iteration is indistinguishable from uniform,

216 N. Mazor and R. Pass

even given the parts of Y j
<(r−k−1)� that have already been sampled up to the

k-th iteration (that is, A, Ij and

Y j [k] := Y j
(r−k−1)�−(Ij−1), . . . , Y

j
(r−k−1)�−1 = gA(Xj,r−k)<Ij).

More formally, for every k ∈ [r − 1], let Zk be the output of G′ in the k-th
iteration. It follows from the proof of Theorem 7.1 that for every such k,

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Zk)
c≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uq). (7)

Using an hybrid argument we can also see that

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Z1, . . . , Zk) (8)
c≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uk·q).

The idea in [VZ12] is to output only Ω(t · log n) bits of the above algorithm
in each iteration k, and to use the other tm pseudorandom bits to sample the
inputs X1,r−k−1, . . . Xt,r−k−1 of g for the next iteration. Since the output of G′

in each iteration is indistinguishable from uniform, the output of this process is
pseudorandom by a simple hybrid argument.

Indeed, fix a distinguisher E, a constant c ∈ N and a large enough n ∈ N , and
for each τ ∈ [r−1] let G′(τ) be the algorithm that samples X1,r−k−1, . . . Xt,r−k−1

uniformly at random in the beginning of each iteration k ≤ τ , and uses the
first tm bits of the output of each iteration k > τ as X1,r−k−1, . . . Xt,r−k−1.
That is, G′(r − 1) is simply the algorithm G′ described above, while G′(1)
is the algorithm considered by [VZ12], that only uses randomness to sample
X1,r−1,X1,r, . . . , Xt,r−1,Xt,r. Let Z1(τ), . . . , Zr−1(τ) be the output of G′(τ) in
each iteration respectively, and let Zk(τ)>tm be the last w − tm bits of Zk(τ).
Since the output of G′ is pseudorandom, we get that,

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]

− Pr
[
E(U(r−1)·(q−tm)) = 1

] | < n−c.

We want to show that it also holds that
∣
∣Pr

[
E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1

] − Pr
[
E(U(r−1)·(q−tm)) = 1

]∣∣ < 2n−c,

and thus it is enough to show that

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]

− Pr
[
E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1

] | < n−c.

Assume towards a contradiction that the above does not hold. By an
hybrid argument, there exists some τ ∈ [r − 1] such that E distinguish
between (Z1(τ)>tm, . . . , Zr−1(τ)>tm) and (Z1(τ + 1)>tm, . . . , Zr−1(τ + 1)>tm)
with advantage n−c/r.

Counting Unpredictable Bits 217

Observing that (Zτ+1(τ)>tm, . . . , Zr−1(τ)>tm) can be computed from Zτ (τ)
and A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], while (Zτ+1(τ + 1)>tm, . . . , Zr−1(τ + 1)>tm)
can be computed by the same function from Uq

and A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], we get the following by data processing. E
distinguishes between

A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], Z1(τ)>tm, . . . , Zτ (τ)>tm, Zτ (τ)≤tm

and

A, I1, . . . , It, Y 1[τ], . . . , Y t[τ], Z1(τ + 1)>tm, . . . , Zτ (τ + 1)>tm, Utm

with the same advantage, n−c/r. Since by definition (Z1(τ), . . . , Zτ (τ)) ≡
(Z1(τ + 1), . . . , Zτ (τ + 1)) ≡ (Z1, . . . , Zτ), we get a contradiction to Eq. (8).

To see that G′(1) outputs more pseudorandom bits than the randomness
used, observe that G′(1) uses 2tm random bits to sample

X1,r−1,X1,r, . . . , Xt,r−1,Xt,r,

and outputs Ω(t · log n) pseudorandom bits in each iteration. Thus, for r =
Ω(m/ log n), G′(1) an expanding function. �

References

[BM82] Blum, M., Micali, S.: How to generate cryptographically strong sequences
of pseudo random bits. In: Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 112–117 (1982). (cit. on pp. 2, 4)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications
of random functions (extended abstract). In: Blakley, G.R., Chaum, D.
(eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 22

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing (STOC), pp. 25–32 (1989). (cit. on pp. 2, 11)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
270–299 (1984). (cit. on p. 2)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Stoc 19,
pp. 218–229 (1987). (cit. on p. 2)

[HHR06] Haitner, I., Harnik, D., Reingold, O.: On the power of the randomized
iterate. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 22–40.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 2

[HILL99] Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 1364–1396 (1999).
(cit. on pp. 2, 5, 10)

[Hol06a] Holenstein, T.: Pseudorandom generators from one-way functions: a simple
construction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 443–461. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 23

https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/11818175_2
https://doi.org/10.1007/11681878_23
https://doi.org/10.1007/11681878_23

218 N. Mazor and R. Pass

[Hol06b] Holenstein, T.: Strengthening key agreement using hard-core sets. Ph.D.
thesis. ETH Zurich (2006). (cit. on pp. 3, 9)

[HRV13] Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in construct-
ing pseudorandom generators from one-way functions. SIAM J. Comput.
42(3), 1405–1430 (2013). (cit. on pp. 2–4, 7)

[HRVW09] Haitner, I., Reingold, O., Vadhan, S., Wee, H.: Inaccessible entropy. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), pp. 611–620 (2009). (cit. on p. 7)

[HV17] Haitner, I., Vadhan, S.: The many entropies in one-way functions. In: Tuto-
rials on the Foundations of Cryptography. ISC, pp. 159–217. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 4

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudorandom generation from
one-way functions. In: Annual ACM Symposium on Theory of Computing
(STOC), pp. 12–24 (1989). (cit. on p. 24)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 151–158
(1991). (cit. on p. 2)

[Sha83] Shamir, A.: On the generation of cryptographically strong pseudorandom
sequences. ACM Trans. Comput. Syst. (TOCS) 1(1), 38–44 (1983). (cit.
on p. 4)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: Annual ACM Symposium on
Theory of Computing (STOC), pp. 817–836 (2012). (cit. on pp. 2, 3, 6, 9,
10, 23–26)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions. In: Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 80–91 (1982).
(cit. on p. 11)

https://doi.org/10.1007/978-3-319-57048-8_4

	Counting Unpredictable Bits: A Simple PRG from One-Way Functions
	1 Introduction
	2 Proof Overview
	3 Preliminaries
	3.1 Notations
	3.2 One-Way Functions and Pseudorandom Generators
	3.3 Min-Entropy and Extraction

	4 Unpredictable Bits
	5 OWFs Unpredictable Bits
	5.1 Proving Lemma5.3.
	5.2 Proving Theorem 5.1

	6 Bits Unpredictability Random Bits Unpredictability
	6.1 Proving Theorem 6.1

	7 Extracting Pseudorandomness and the Main Theorem
	7.1 Exponentially-Hard OWFs
	7.2 Proving Theorem 7.1
	7.3 Proving Claim 7.6
	7.4 Proving Claim 7.7

	8 Saving Seed Length
	References

