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Abstract. We present a theoretical framework for analyzing the effi-
ciency of consensus protocols, and apply it to analyze the optimistic and
pessimistic confirmation times of state-of-the-art partially-synchronous
protocols in the so-called “rotating leader/random leader” model of con-
sensus (recently popularized in the blockchain setting).

We next present a new and simple consensus protocol in the partially
synchronous setting, tolerating f < n/3 byzantine faults; in our eyes,
this protocol is essentially as simple to describe as the simplest known
protocols, but it also enjoys an even simpler security proof, while match-
ing and, even improving, the efficiency of the state-of-the-art (according
to our theoretical framework).

As with the state-of-the-art protocols, our protocol assumes a (bare)
PKI, a digital signature scheme, collision-resistant hash functions, and a
random leader election oracle, which may be instantiated with a random
oracle (or a CRS).

1 Introduction

Distributed consensus algorithms [48] allow large numbers of machines to agree
on a single ground truth, even when some machines malfunction. Born out of
research towards fault-tolerant aircraft control [60] in the 1970s, consensus algo-
rithms have since then touched every corner of the Internet, and are used by
the Internet’s most important services to replicate data at scale (e.g. Google’s
Chubby lock service [15], Apache Zookeeper [§], and many more). Today, new
varieties of consensus algorithms power blockchains such as Bitcoin [51] and
Ethereum [17], where users propose transactions which are then batched into
agreed-upon blocks, and where—unlike in classical consensus algorithms—the
set of servers is not known ahead of time, and instead miners can join the sys-
tem at any time (in other words, the system is “permissionless”). Subsequently,
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blockchains have found new applications in cryptocurrency and also in bringing
liquidity to otherwise illiquid markets (such as the market for art [7]).

At their core, consensus algorithms allow people to work together and col-
laborate without needing to trust each other. In some sense, they (and their evo-
lution as multi-party computation algorithms [61]) are the epitome of enabling
collaboration without needing trust. In a society that heavily depends on trust-
mitigation protocols (such as markets, democracy, a justice system, etc.) to keep
people safe, boost productivity, and to provide a high standard of living, contin-
ued innovation on trustless algorithms is of fundamental importance.

Relevance of the Permissioned Setting. In this paper, we return our focus to
classical permissioned consensus protocols, where the set of participants is known
ahead of time. This setting has by now been studied for four decades [48], but
importantly, many modern techniques for realizing scalable, energy efficient per-
missionless blockchains (see e.g. Ethereum [16], Algorand [28]) rely on classical
permissioned consensus as a building block. In particular, blockchain applica-
tions bring forth new desiderata for such consensus protocols, and require them
to be faster and more robust than ever before, which we will soon make more
precise.

Our focus here is on the partially-synchronous model of computation [31],
which is specified by a worst-case bound on message delivery A, but where
the actual message delivery time may be much smaller § < A. The protocol is
aware of A, but is not aware of J; additionally, even the worst-case bound may
not always hold, but is only required to hold after GST (the global stabiliza-
tion time); liveness is only required to hold after GST, and consistency holds
always'. As we are in the partially-synchronous model, we assume the byzan-
tine attacker can control at most 1/3 of the players (which is optimal [31]).
The partial-synchronous model is well-suited for settings that require security
even if the network is partitioned (e.g. due to a Denial-of-Service attack), or if
message delivery is unreliable (e.g. on today’s Internet). Note that the partially-
synchronous approach underlies many of the most successful consensus protocols
deployed today, including Paxos [46] and PBFT [23].

The Multicast Model. We adopt the multicast model of communication. In the
multicast model, players communicate by multicasting a message to the entire
network, as opposed in the point-to-point model, where players send each mes-
sage to a single recipient (whose identity must usually be known). The multicast
model is the model of choice for protocols built for the large-scale peer-to-peer
setting (see Bitcoin, Ethereum, and Algorand as examples). Protocols often have
different communication complexities depending on whether they are analyzed in
a point-to-point model, or a multicast setting. We note that when analyzing pro-
tocols implemented on top of peer-to-peer gossip networks, the communication
complexity in the multi-cast model is most realistic, especially if point-to-point
communication is implemented by what is essentially a multicast.

1 As usual, the model can also be extended a more general model where liveness hold
during “periods of synchrony”; for simplicity, we ignore this distinction.
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Consensus with Rotating/Random Leaders. In a blockchain protocol or a state-
machine replication system, clients send the system a series of transactions (txs)
over time and the protocol participants must collectively decide the order in
which the transactions are executed, outputting a LOG of transactions. Suppose
that there are two conflicting pending transactions txs and txs’' (for instance,
comprising a double spend), and that the protocol must decide which of them
to include in the final log of transactions. Typically, protocols (in the partially
synchronous setting) decide which of the transactions to include by either flipping
an imperfect global coin [18,22] to directly choose one of the transactions, or by
electing a leader process to decide on behalf of all of the participants. Nearly all
modern protocols deployed in practice fall into the second category, including
blockchains, where the leader is equivalent to the block proposer (see Paxos [47],
PBFT [23], Bitcoin [51], Ethereum [17], Algorand [34]). The reason is one of
scalability: a block proposer can sequence many transactions in a row (as in
PBFT), and more importantly also aggregate transactions together into blocks
to improve throughput (as in blockchains). In contrast, flipping a global coin for
each pair of transactions is expensive and is largely restricted to solving binary
consensus, unless the coin is itself used to elect a leader.

Consequently, block proposers (or leaders) have disproportionate power when
deciding the order of transactions within blocks, or across blocks if it is propos-
ing many blocks in a sequence. In a system such as Ethereum, where block
proposers can profit from ordering transactions at will, such a disproportionate
balance of power affects the security and fairness of the underlying protocol (e.g.
via “miner extractable value” [30]). Mitigating the power of block proposers to
reorder transactions within a block is an active area of research (e.g. see [38,43]).
Over multiple blocks, it is prudent to ensure that each new block is proposed
by a different, “fresh” block proposer?, if only to ensure that no process is ‘in
power’ for too long.

A slow leader can additionally cause blocks to be confirmed slowly and dras-
tically reduce throughput. In a ‘stable leader’ protocol such as PBFT, where the
leader is never changed unless it detectably misbehaves, this can be problematic.
Even if there is only a single slow process, if that process is the leader, then every
block proposal may take much longer than the true network speed §. Thus one
more reason to rotate leaders frequently is to ensure that a single slow leader
cannot slow down the entire operation for too long (e.g. see [6]).

In this paper, we focus on leader-based consensus protocols in the permis-
sioned setting, specifically those protocols that rotate its leaders, or randomly
choose their leaders for each block. This seems essential for both fairness and
performance in the common case where proposers can be corrupt.

Efficiency Measures for Consensus with Rotating Leaders. There has been a
recent explosion in new leader-based consensus protocols. To compare these var-

2 See the related notion of chain quality [32], which (informally) requires that any
sufficiently long chain contain a large fraction of blocks that are mined by honest
parties.
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ious approaches, and to understand whether they are “optimal” in some well-
defined way, we need to specify some efficiency measures. In this paper, we
consider the following notions of efficiency:

— Optimistic confirmation time: Suppose that all block proposers are honest.
When a transaction is provided to the protocol (after GST), how long does it
take for the transaction to be finalized? The optimistic confirmation time is
(informally) the sum of the “proposal confirmation time” and the “optimistic
block time” (both rather imprecise, but popular, notions):

e Proposal confirmation time: Suppose an honest proposer is elected and
proposes a block; how long does it take for that block to be finalized?

e Optimistic block time: Suppose all block proposers are honest. How long
does a pending transaction need to wait to be included in the next honest
block proposal?

If the optimistic confirmation time depends only on the true message delivery
time 0 and not on the known upper bound A, we say that the protocol is
optimistically responsive [54]. In practice, A is usually set conservatively s.t.
¢ is much smaller than A, in which case a protocol that runs at the speed of
0 (instead of the parameter A) is much preferable.

— Pessimistic confirmation time: Suppose that some number f of eligible pro-
posers are corrupt. When a transaction is provided to the protocol (after
GST), how long does it take for the transaction to be finalized? This is an
important metric in practice, where there are almost certainly leaders who
are offline, or even downright malicious. Uncooperative leaders may choose
to exclude a transaction from its block proposals, whereas slow leaders may
not propose it at all. There are two notions here:

o Worst-case confirmation time. In the very worst-case, how long must
we wait for a transaction to be finalized? The bound must hold for any
transaction arrival time t.

o (Ezpected) pessimistic confirmation time. In expectation, how long does

it take for a transaction to be finalized?
Essentially all protocols in the literature consider a “view-based liveness”
notion that is tailored for rotating leader based protocols.® Following
the literature, we will also consider this notion of expected “view-based”
liveness: Suppose that the protocol proceeds in incrementing “views” or
“iterations” v :=1,2,... where each view v is assigned a single leader L,,.
Fix some view number v ahead of time, and suppose that a transaction
is provided to every honest player at the time they enter view v. How
long (in expectation) does it take for the transaction to be finalized, once
every honest process has entered view v?

3 We may also consider an expected worst-case confirmation time, where, for any trans-
action arrival time ¢ after GST, both fixed ahead of time, a transaction must be
finalized soon after ¢ in expectation over the coins of the execution. Such a bound
may be useful to capture real-world liveness, but is typically difficult to analyze in
a setting where the adversary can control the scheduling of messages.
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We focus mainly on the expected pessimistic confirmation time. For our proto-
col, as well as many other protocols in the literature, we can turn an expected
liveness bound into a worst-case liveness bound by losing an additive term
of w(log ) - ©(A), where A is the security parameter. Note that, if a pro-
tocol requires multiple honest leaders in a row to confirm transactions, the
worst-case bound will be worse.

The State of the Art. Before describing our contributions, we summarize the cur-
rent start of the art; we focus only on leader-based protocols that rotate their
leaders or elect random leaders. (The interested reader will find further com-
parisons of related works in Sect. 4, building on the survey below.) Throughout,
denote n the number of participants, and f the number of faults; we consider
static corruptions only.

Roughly speaking, the literature has focused on optimizing the optimistic
confirmation times, but this has come at the expense of sacrificing the pessimistic
confirmation time. In more details, let’s first examine optimistic confirmation
time:

— Proposal confirmation-time favoring. The seminal paper of PBFT [23]
achieves a proposal confirmation time of 3¢ for honest block proposals, but has
stable leaders. Instead, consider an optimistically responsive “base version”
of the Algorand agreement protocol [28], denote Algorand**, which is similar
to PBFT but allows a different leader for each block. Algorand* achieves a
proposal confirmation time of 34, and an optimistic block time of 34. [5] later
showed that a 3§ proposal confirmation time is optimal when f > (n+2)/5.5

— Block-time favoring. Following Hotstuff [62], a new class of pipe-lined pro-
tocols were subsequently designed to improve the optimistic block time of
rotating-leader protocols from 34 to 20. These protocols pipe-line proposals,
similar to Nakamoto style consensus [51], and achieve an optimistic block
time of 2. However, these protocols require a worse proposal confirmation
time: proposals take 49 time (Pala [26]), or 55 time (Jolteon [33]/Pipelined
Fast-Hotstuff [39]) or 70 time (Hotstuff [62]) to be confirmed, and additionally
require 2, 3, and 4 honest leaders in a row respectively to confirm each block.
In essence, these protocols improve the blocktime to just 26, but they sacri-
fice the proposal confirmation time. Moreover, the pessimistic confirmation
time blows up significantly. Note that Hotstuff and its variants are generally

* While the version of Algorand agreement in [28] is not optimistically responsive,
it can be easily made so if every period has a unique leader known ahead of time
(provided by a leader election oracle in lieu of using a VRF). Then, players can
simply ‘soft-vote’ immediately on seeing a proposal from the leader, and ‘cert-vote’
immediately on seeing 2n/3 soft-votes, much like in PBFT.

5 We do not consider optimizations of the variety made in Parametrized FaB Paxos
[49] and SBFT [36], where if f < (n + 2)/5, a proposal confirmation time of 24 is
possible without affecting worst-case fault tolerance. We are particularly interested
in the case when leaders are honest, but 1/3 of voters are not.
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Table 1. Latency of Popular Consensus Protocols (Random Leaders)

ProposalConf. Time | OptimisticBlock Time | Pessimistic
Liveness (f = [n/3] — 1)
Simplex 30 20 3.5 + 1.5A
Algorand* 36 35 45 +2A
(28]
ICC 34 26 5.5 + 1.5A
[19]
PaLa 45 26 6.256 + 9.25A
[26]
Pipeline Fast-Hotstuff |58 26 10.875 +9.5A
[39]
Jolteon
(33]
Chained Hotstuff (v6) |76 26 19.316 4+ 12.18A
(62]
P-Sync Bullshark 60 30 65 +9A
[59]
Streamlet 6A 2A 35.56A
[24]

*Base protocol without sortition.

designed for the point-to-point messaging model, where, to reduce commu-
nication, players often send their votes to a single recipient who aggregates
them; if players instead multicast their votes, the confirmation time improves
slightly (but only shaves off §, or one less honest leader in a row).

— Simultaneously proposal confirmation-time and block-time friendly: The
recent ICC protocol [19] simultaneously achieves the state-of-the-art 36 pro-
posal confirmation time and 2§ optimistic block time. However, this protocol
again requires (essentially) 2 honest leaders in a row to confirm a block if
a faulty leader was previously elected. Requiring multiple honest leaders in
a row to finalize a block severely impacts the pessimistic confirmation time,
which we will explore next.

Pessimistic Liveness. Few protocols explicitly analyze their expected or worst-
case confirmation time under pessimistic conditions, despite it being an impor-
tant performance desiderata in practice—after all, it is natural to assume that a
fraction of the participants will be offline if not outright malicious. To explicitly
compare the different approaches, we focus on the setting where each “iteration”
of the protocol is associated with a randomly selected leader (essentially all the
protocols in the literature, for this setting, assume or instantiate such a sequence
of leaders). Throughout, assume that f = |n/3].

The current state-of-the-art is achieved by Algorand* (as defined above),
which achieves 49 + 2A expected view-based liveness. Protocols that require
multiple honest leaders in a row to confirm transactions generally achieve
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degraded expected liveness: ICC [19], PaLa [26], Pipelined Fast-Hotstuff/Jolteon
[33,39], and Chained Hotstuff (v6) [62] have expected liveness of 5.56 + 1.54,
6.250+9.25A, 10.875+9.5A, and 19.315+12.18 A respectively.’ Generally speak-
ing, the more honest leaders required in a row to finalize a block, the worse the
expected pessimistic liveness.

These protocols also get an even worse worst-case confirmation time: a pro-
tocol that requires k honest leaders in a row would need a longer sequence of
random leaders to guarantee that k honest leaders in a row are elected, compared
to if it only required 1 honest leader for confirmation.” Protocols with random
leaders generally require just a sequence of at least w(log \) leaders to guarantee
one honest leader.

So, summarizing the state of the art, there is a trade-off between achieving
good optimistic liveness bounds, and achieving pessimistic liveness bounds.

Our Contributions. In this paper, we present a simple consensus protocol, named
Simplex, that matches the best optimistic liveness bounds, while at the same
time matching and even improving the best known pessimistic liveness bounds
(both in expectation and in the worst-case). Most importantly, our protocol is
simple to describe and has an, in our eyes, a very simple proof of correctness—
including an easy liveness proof. In contrast, most protocols in the literature
have somewhat informal or difficult liveness arguments or do not analyze their
own theoretical latency at all. (In terms of simplicity, while the protocol itself
is arguably more complicated to describe than Streamlet [24], the proof of cor-
rectness is significantly easier, which may make it more understandable.)

In more details, assuming a “bare” PKI, collision-resistant hash functions,
and a random leader election oracle (which can be instantiated using a Ran-
dom Oracle), Simplex implements partially-synchronous consensus (tolerating
the standard f < n/3 static byzantine faults), while achieving

— an optimal proposal confirmation time of 36,

— an optimistic block time of 24,

— an expected pessimistic confirmation time of 3.50 + 1.5A4,

— a worst-case pessimistic confirmation time of 49 + w(log A) - (34 + 9),
— and using O(n) multicast complexity.

As observed by [53], the Random Oracle can be replaced with a PRF (which
follows from collision-resistant hash functions [37]) and a CRS chosen after the
public keys.

5 Here, Chained Hotstuff is analyzed using a timeout-based pacemaker from LibraBFT
[11] and a timeout of 34, since they don’t instantiate their own pacemaker. Pala is
analyzed with a less conservative timeout of 1lmin=5A, and 1sec=2A than the ones
presented in their paper.

7 An alternative is to have a single leader be in power for k iterations in a row, before
switching to the next leader; this sacrifices fairness, since we would like to rotate
leaders more frequently, and the latency is still not ideal, since a faulty leader can
delay the execution for k iterations.
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We also note that using now standard techniques, we can bring down the
communication complexity to polylog(\) (in the multi-cast model) and linear (in
the point-to-point model) through subsampling the committee of voters [26,29].
This gives a scalable protocol that may be suitable for deployment in practice
on large-scale peer-to-peer networks. We do not innovate on this subsampling
and therefore just focus on the “base protocol” (which determines the concrete
efficiency also of the protocol with subsampling).

Comparison of Techniques. Our contributions build on the techniques of many
prior works. In contrast with the pipelined protocols of [24,26,33,39,62], which
generally fall into a streamlined “propose/vote” paradigm where processes only
send one vote type, our protocol follows [23] and requires processes to multicast
a second “finalize” message to finalize blocks (in parallel with the next block pro-
posal). We posit that the resulting protocol is actually simpler despite the second
voting step.® Moreover, having a second voting step makes for a faster proto-
col in the optimistic case, matching the proposal confirmation time of PBFT.
Another technique that we use is that of a “dummy block”: if, during some iter-
ation, a process detects no progress (i.e. due to a faulty leader or network), it
will timeout and vote for the dummy block. On seeing 2n/3 votes for the dummy
block, a player may move to the next iteration and try again with a new leader.
It is similar to the notion of a timeout certificate in [26,33,62]; the difference is
that, in our protocol, a process must either vote for the dummy block of height
h, or vote “finalize” for a block of height h (whereas no such stipulation was
made in prior work). Then, if we see 2n/3 finalize messages, we can be sure that
no process saw 2n/3 votes for the dummy block at that height, and it is safe to
finalize the block. The result is a simpler consistency and liveness proof; more-
over, a block proposer never needs to wait extra time before proposing (unlike
in [14,26]) even after seeing a timeout block.

Comparison with Asynchronous Protocols. Consensus protocols have also been
designed for the asynchronous setting [4,18,22,50,55, etc], where protocols
should make progress even before GST, as long as messages are eventually
delivered. Asynchronous protocols generally have worse latency than their
partial-synchronous counterparts after GST. Here, we only mention the elegant
DAGRider protocol [42], which requires 4 rounds of reliable broadcast (= 124§
time) in the optimistic case, and Bullshark [58], which adds a synchronous fast-
path but still requires 2 rounds of reliable broadcast (or 64 time) optimistically,
as opposed to the optimal 35. Moreover, essentially every asynchronous protocol
requires a common coin, which is most practically implemented using thresh-
old signatures, following [18]. Threshold signatures require a private setup or

8 To recover a streamlined protocol, it is possible to “piggyback” the finalize message
onto the first vote message of the next block; this would only make liveness a little
slower, and consistency would still hold.
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trusted dealer, which aside from being hard to implement, makes it difficult to
subsample the protocol for scalability.

Note on Adaptive Security. Following the approach of Algorand [28], our protocol
can also be adapted to support adaptive adversaries. Since these techniques
are by now well-known, we just briefly review them here: a description of the
concrete approach can be found e.g., in Section A.1 of [26]. It requires preforming
leader election using a VRF and either a RO (as in [28]) or a CRS (as in [26]),
that is chosen after the PKI. Using a VRF leads to a minor complication that
multiple leaders may be chosen in an epoch. The key point to note is that (exactly
as in [26]): consistency of our protocol holds irregardless (think of an epoch
with multiple elected leader as simply a single corrupted leader), and liveness
requires just a single epoch with a single (honest) leader, which still happens with
some reasonable probability. Since there can be epochs with multiple leaders, the
liveness parameters worsen, in the same way as it would with other protocols.

2 The Protocol

We describe the Simplex consensus protocol in the framework of blockchains,
which provides an elegant framework for reasoning about consensus on a
sequence of values.

To start, the protocol assumes a (bare) public-key infrastructure (PKI), and
a digital signature scheme. Additionally, let H : {0,1}* — {0,1}* be a publicly
known collision-resistant hash function.

— Bare PKI setup. Before the protocol execution, a trusted party generates a
(pk;, sk;) keypair for each process i € [n] using the key generation algorithm
for the digital signature scheme, and for each i € [n] sends (pk,, sk;) to process
i. Each process replies with a pk}, where honest processes reply with the same
pk; = pk;. The trusted party then sends {pkg}ie[n] to all parties.’

— Notation for digital signatures. For any message m € {0,1}* and a pro-
cess p € [n], we denote by (m), a tuple of the form (m, o), where o is a valid
signature for m under process p’s public key.

The protocol uses the following data structures.

— Blocks, block heights, and the genesis block. A block b is a tuple
(h, parent, txs), where h € N is referred to as the height of the block, parent
is a string that (typically) is meant to be the hash of a “parent” blockchain,
and txs is an arbitrary sequence of strings, corresponding to transactions con-
tained in the block.

Define the genesis block to be the special tuple by := (0,0, ().

9 Note that this is referred to as a Bare PKI [10] since malicious parties may pick their
own, potentially malformed, public keys.
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— Dummy blocks. The special dummy block of height h is the tuple 1j :=
(h, L, 1). This is an empty block that will be inserted into the blockchain at
heights where no agreement is reached. A dummy block does not point to a
specific parent.

— Blockchains. A blockchain of height h is a sequence of blocks (b, b1, ..., bp)
such that by is the genesis block, and for each ¢ € [h], either b; = 1, or
b; = (i, H(bo,-..,b;i—1),txs) for some txs.

— Notarized blocks and blockchains. A notarization for a block b —which
may be the dummy block— is a set of signed messages of the form (vote, h, b),,
from > 2n/3 unique processes p € [n], where h is the height of the block b. A
notarized block is a block augmented with a notarization for that block.

A notarized blockchain is a tuple (bg,...,bp,S), where by,...,b, is a
blockchain, and S is a set of notarizations, one for each block by,...,by.
We stress that a notarized blockchain may contain notarized dummy blocks.

— Finalized blocks and blockchains. A finalization for a height h is a set
of signed messages of the form (finalize, h), from > 2n/3 unique processes
p € [n]. We say that a block of height h is finalized if it is notarized and
accompanied by a finalization for h.

A finalized blockchain is either just the genesis block by, or a notarized
blockchain accompanied by a finalization for the last block.

— Linearizing a blockchain. Given a blockchain by, by, ..., by, denote

linearize(bg, b1, . - ., by)

to be the (most natural) operation that takes the sequences of transactions
from each individual block, in order, and outputs the concatenation, to form
a total ordering of all transactions in the blockchain.

2.1 The Protocol Description and Main Theorem

We are now ready to describe the protocol. The protocol runs in sequential
iterations h = 1,2, 3, ... where each process starts in iteration A = 1. Note that
each process may advance through iterations at a different speed, and at any
given time, two processes may be in two different iterations, due to network
delay (since we are in the partially synchronous setting). As local state, each
process p € [n] keeps track of which iteration h it is currently in, and also stores
all of the notarized blocks and messages that it has seen thus far.

Additionally, we assume that each iteration h has a pre-determined block
proposer or leader L, € [n] that is randomly chosen ahead of time; this is referred
to as a random leader election oracle and can be implemented using a random
oracle: namely, L;, := H*(h) mod n, where H*(-) is some public hash function
modeled as a random oracle.

Player p on entering iteration h does the following:

1. Leader proposal: If p = L;, p multicasts a single proposal of the form

(propose, h, bo, ..., br—1,bp,S)p.
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Here, by, . . ., by, is p’s choice of a blockchain of height h, where (b, . .., bp—1,5)
is a notarized parent blockchain, and b, # 1. The new block b, should
contain every pending transaction that p has seen that is not already in the
parent chain.
2. Dummy blocks: Each process p starts a new timer T}, set to fire locally after
3A time.'0 If T}, fires, vote for the dummy block by multicasting (vote, h, L) ,.
3. Notarizing block proposals: On seeing the first proposal of the form

(propose, h, b, ..., bn, S)L,

check that by, # Ly, that by, ..., by is a valid blockchain, and that
(boy .- .,bn—1,S) is a notarized blockchain. If all checks pass, multicast

(vote, h, bp,)p.

4. Next iteration and finalize votes: On seeing a notarized blockchain of
height h, enter iteration h 4 1. At the same time, p multicasts its view of the
notarized blockchain to everyone else.

At this point in time, if the timer 7}, did not fire yet: cancel T}, (so it never
fires) and multicast (finalize, h),.

5. Finalized Outputs: Whenever p sees a finalized blockchain by, . .., by, out-

put the contents LOG « linearize(by, . . ., by/).

Let us informally describe the intuition behind the protocol. In each iteration,
the processes collectively try to get the leader’s block (proposal) notarized; if
this fails due to a faulty leader or a faulty network, then the timer will fire. The
timer thus upper bounds the amount of time each leader has to get its block
notarized; when it fires, processes now have the option of voting for the dummy
block and (on seeing a notarization for this dummy block) moving to next height
to try again with the next leader. Eventually, we will hit a good leader and have
good network conditions and an iteration h will complete without the timer T},
firing for any honest process. Consistency, on the other hand, will follow from a
straight-forward use of the standard “quorum intersection lemma’.

Summarizing, we get the following theorem.

Theorem 1 (Partially-synchronous Consensus). Assuming collision-res-
istant hash functions, digital signatures, a PRF, a bare PKI, and a CRS, there is
a partially-synchronous blockchain protocol for f < n/3 static corruptions that
has O(n) multicast complexity, optimistic confirmation time of 56, worst-case
confirmation time of 40 +w(log \) - (3A+9), and expected view-based liveness of
3.50 + 1.5A.

Note that the existence of digital signatures and PRF's follows from the existence
of collison-resistant hash functions (see [37,57] respectively), but we include it
here to emphasize what cryptographic building blocks we rely on. Also, as noted

10 Tn addition, we could optimistically fire the timer when the leader “equivocates”; we
omit the rule for brevity.
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in [53], we can replace the random oracle with a common reference string (CRS)
that is chosen after the adversary has registered its public keys, and instead
use L, = PRFgs(h) mod n (and note that existence of PRFs follow from the
existence of collision-resistant hash functions [37]).

2.2 Proof Outline

Let us provide a proof outline which conveys the essence of the whole proof:

Consistency. The consistency proof is straightforward. Let Alice and Bob be
two honest players. We want to show that if Alice finalizes a chain by, ..., by,
and Bob finalizes a longer chain by, ...,b,...,b),, then Alice’s chain is a prefix
of Bob’s, namely that by ..., by = by, ..., 0. It suffices to show that Bob’s block
at height h is identical to Alice’s, namely that b}, = by; by the collision resistant
hash function, the parent chains must be the same.

First, since Alice saw a finalization for height A, then the dummy block
14 cannot be notarized in Bob’s view, by the standard “quorum intersection”
lemma. This is because an honest player only votes for either (finalize, h), or
(vote, h, L), and never both. Likewise, since Alice saw that by, is notarized, then
a competing non-dummy block b}, # b, also cannot be notarized in Bob’s view,
again by the standard “quorum intersection” lemma. This follows because an
honest player only votes for a single (non-dummy) block proposal per iteration.
Immediately it must be that b, = by, as required.

Liveness. Perhaps more interestingly, the liveness proof is also simple—this is
in contrast to all previous protocols in the partially-synchronous setting that we
are aware of, each of which require a subtle/complex analysis. We first claim
that any honest leader can drive the protocol forward after GST. To see this, let
us first observe that honest players need to be “synchronized” after GST:

“Synchronization after GST” (Sync): If an honest player enters an iter-
ation h by time t > GST, then every honest player enters iteration h by
time t 4+ 9.

This follows because when an honest player enters iteration h, it forwards a
notarized blockchain of height h — 1 to everyone else (and thus they will enter
iteration h once they receive it, unless they had already entered iteration h
before).

Now, assume the honest leader for height h proposes a block at time ¢ > GST.
We shall argue that the block it proposes will be finalized by time ¢ + 3. This
follows from the following observations.

1. Every honest player must enter iteration h+1 by time t+ 26. This is because
either (a) every honest player votes for the leader’s block by time ¢ + § (thus
they all see a notarized blockchain for h by time t 4+ 26), or (b) some honest
player i did not vote for the leader’s block. In the latter case, player ¢ must
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have already been in iteration h+1 (or higher) when it saw the block proposal
by time ¢ + § (since otherwise it would have voted as by Sync, it must be in
iteration at least h by time ¢+ 0) and thus would have forwarded a notarized
blockchain of height h by t + §. So again, every honest player will enter
iteration h + 1 by time ¢ + 24.

2. No timer of an honest player can fire until after time t + 2. This is because
no honest player could have entered iteration h before time ¢ — § by Sync.
Consequently, the earliest any (honest) timer can fire is after time t—d+3A >
t+26.

Combining Observation 1 and 2, we have that every honest player must vote
(finalize, h) when it enters iteration h + 1 (because none of their timers have
fired by the time they enter iteration h + 1). Consequently, by time ¢ + 34, every
honest player sees that h is finalized. Since no honest player voted for the dummy
block (since by Observation 2, their timers did not fire), it must be the leader’s
block that is finalized, which concludes the proof for the case that the leader is
honest.

Let us next consider the case that the leader for iteration A is malicious.
We shall argue that in this case, the iteration will be “skipped” (and all honest
processes move on to iteration h + 1) after at most 3A + ¢ time: Suppose that
every honest player is in iteration h by time ¢t > GST. Either every honest player
fires its timer (by time t + 3A), or some honest player does not fire its timer.
In the first case, they all vote for the dummy block and see a notarized dummy
block by time t + 3A + 4, thus entering iteration h + 1. In the second case, that
player must have entered iteration h + 1 before its timer could fire, i.e. before
t 4+ 3A; but as before, then every honest player will follow it into iteration h + 1
by time ¢t + 3A + 6.

3 Formal Analysis

3.1 Preliminaries

We analyze the Simplex protocol in the framework of blockchains. Throughout,
when we say that a message is “in honest view”, we mean that it is in the view
of some honest process (but perhaps not all honest processes).

The Permissioned Setting. We consider static byzantine corruptions. Denote n
the number of players, f < n/3 of which are set to be “corrupted”. The corrupted
players are chosen ahead of time, before the setup phase. The remaining players
are “honest”.

Protocol Erxecution. In our setting the adversary has power over the network
and can choose when to deliver messages sent by honest players. However, in
good network conditions, message delivery should occur “quickly”. This requires
that we formalize a notion of time, in addition to specifying the execution of
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a distributed protocol.'* In the spirit of the UC framework [20], consider n
player machines, an adversary machine A, and an environment Z, where each is
modeled as an instance of a non-uniform probabilistic polynomial time (nuPPT)
interactive Turing Machine (ITM) that takes as input the security parameter 1*.
The adversary A controls the f (statically corrupted) faulty players. Each player
additionally has access to an authenticated multicast channel F,, over which
A has scheduling power. We use the notation EXECj(1*, 2, A) to denote a
random execution of the protocol IT with A and Z, over the coins of the setup,
the players, A, and Z.

To model time, we consider environments Z that send special “tick” messages
to the n player machines. Fix any execution of a protocol with Z and A on some
1*. Recall that an execution is a sequence of activations of instances of machines.
Given an execution, we say that it proceeds in timesteps t = 0,1,2,... where
timestep ¢ starts at the first point (in the execution) where the environment
Z has sent any player machine exactly ¢ “tick” messages. An event happens
before/at/after time ¢ if it occurs before/during/after timestep ¢ in the execution.
The execution ends when Z halts.

Network Model and Clocks. We consider adversaries that are partially syn-
chronous [31]. An environment/attacker tuple (£, .A) is“d-bounded partially syn-
chronous” if, for every protocol II, for every security parameter ), there exists
a time GST € N s.t. in every execution of IT with Z and A on 1*:

— Synchronized clocks. Denote t* the time at which Z halts. It must be that Z
sends every honest player exactly one “tick” message at each time ¢ € [t*].

— Message delivery guarantee after GST. For every time ¢ € N, if some hon-
est player sends a message by time ¢, the message is delivered by time
max(GST, ¢+ §). Note that GST is not publicly known.

Definition of a Blockchain Protocol. Let T : N x N — N, and ¢ € N. A protocol
I, parametrized by A, is said to compute a blockchain with (expected) T'(d, A)-
liveness if for every environment Z and attacker A, in executions of IT in Z with
A on 1%, the following properties hold with all but negligible probability in :

— Consistency. If two honest players ever output sequences of transactions LOG
and LOG’ respectively, either LOG < LOG' or LOG’ < LOG, where “<” means
“is a prefix of or is equal to”.

— T(6, A)-Liveness. Fix any time ¢ € N. Suppose that (A, Z) is additionally
d-bounded partially synchronous for some § < A and GST < ¢. Suppose that
Z never halts early and that it always delivers some input txs to every honest
player by time t. Then txs is in the output of every honest player by time
t+1T(,A4).

! Doing this composably has been visited in-depth in works such as [9,12,21,40,41,44].
However, here we ignore the question of composability and use an simple stand-alone
model for convenience.
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We say that a protocol has T'(d, A) optimistic confirmation time if it is T'(d, A)-
live when f = 0. Similarly, a protocol has T'(d, A) worst-case confirmation time
if it is T'(6, A)-live for any f < n/3. Now, suppose that a protocol proceeds in
incrementing views (or iterations) v = 1,2, ..., implemented by a local counter
on each process. We say that a protocol has expected T'(8, A) view-based liveness
(w.r.t. the counter v) if:

— Expected T(8,A) View-Based Liveness. Fix any view v € N. Suppose that
(A, £) is additionally d-bounded partially synchronous for some § < A and
some GST. Suppose that Z never halts early and that it always delivers some
input txs to every honest player before they enter view v. Suppose that every
honest player enters view v by time ¢. If ¢ > GST, then txs is in the output
of every honest player by time ¢ + T'(d, A), in expectation (over the coins of
the execution).

Optimistic Responsiveness. (Variant of definition from [54].) We say that a
blockchain protocol is optimistically responsive if it is has T'(d)-time liveness
for some function T'(-) that is not a function of A, conditioned on all processes
being honest. In other words, when all processes are honest, the liveness depends
only on ¢, not A.

3.2 Consistency of Simplex

In this section, we present a consistency proof for the protocol. We start with a
simple fact about digital signatures:

Lemma 1. With overwhelming probability in X\, for any honest process i, no
honest process will see a valid signature of the form (m); in honest view unless
process i previously signed m.

Proof. This is by a direct reduction to the unforgeability of the signature scheme.
O

We next state the standard quorum-intersection lemma, and for completeness
provide its proof. (This is a very standard technique.)

Lemma 2. Let h € N. Let by, and b), be two distinct blocks s.t. neither are equal
to the dummy block L1y. It cannot be that both by and b;l are both notarized in
honest view (except with negligible probability in ).

Proof. Consider a random execution and let b;, and bj, be any two blocks of height
h in the execution transcript, s.t. by, # b}, and moreover by, # L and bj, # L.
We call a tuple (i, m) “good” if m € {(vote, h, by,), (vote, h, b}, )} and there exists a
valid signature {(m), in the view of some honest player. By the construction of the
protocol, each honest process signs at most one of (vote, h, b) and (vote, h, b},).
On the other hand, each corrupted player can sign both messages. Applying
Lemma 1, then there are at most (n — f) + f -2 = n+ f < 4n/3 good tuples
with all but negligible probability in the security parameter. Now assume for the



Simplex Consensus: A Simple and Fast Consensus Protocol 467

sake of contradiction that there are both notarizations for b, and b}, in honest
view. Then there are > 2n/3 signatures for (vote, h,bs) and likewise > 2n/3
signatures for (vote, h, b},) in honest view; thus there are > 4n/3 good tuples in
honest view, which is a contradiction. a

We can also apply the exact same quorum-intersection technique to finalize
and | messages; for completeness, we write out the proof (again).

Lemma 3. If there is a finalization for height h in honest view, L, cannot be
notarized in honest view (except with negligible probability in ).

Proof. We call a tuple (¢, m) “good” if m € {(finalize, h), (vote, h, L)} and there
exists a valid signature (m), in the view of some honest player. By the construc-
tion of the protocol, each honest process signs at most one of (finalize, h) or
(vote, h, L), whereas each corrupted player can sign either message. Applying
Lemma 1, there are thus at most (n — f) + f -2 = n+ f < 4n/3 good tuples
(with all but negligible probability in A). But now assume for the sake of contra-
diction that b is finalized and _Lj is also notarized. Since by, is finalized, there
are > 2n/3 signatures for (finalize, h) in honest view, and likewise since L;, is
notarized, there are > 2n/3 signatures for (vote, h, 1 ;) in honest view; thus there
are > 4n/3 good tuples, which is a contradiction. a

The main theorem immediately follows:

Theorem 2 (Consistency). Suppose that two sequences of transactions, denote
LOG and LOG', are both output in honest view. Then either LOG = LOG or LOG' <
LOG (with overwhelming probability in \).

Proof. Immediately, there must be two blockchains denoted bg, by, ...,b, and
bo, b}, ..., b, such that both are finalized in honest view, where
LOG « linearize(bg, by, . .., by) and LOG" — linearize(bo, b}, . . ., b},). Without loss

of generality, we assume that h < h/.

It suffices to show that b, = b}, and moreover that b, # L. In plainer
English, the two chains should contain the same block at height h, and more-
over this block is not the dummy block. Then by collision-resistant property
of the hash function H(-), the parent chains are the same bg,by1,...,bp—1 =
bo, b}, ..., b},_;, and thus LOG < LOG'.

To prove that b, = b}, first observe that both b, and b, are finalized in
honest view, and thus both b}, and b, are notarized in honest view. Because
b, is notarized in honest view, then some honest process must have voted for
it in iteration A’ which implies that b} is also notarized in honest view. By
Lemma 3, observing that b, is finalized in honest view, it must be that by, # 1,
and likewise b}, # L (except with negligible probability in \). Finally, we apply
Lemma 2, which says that since by, and b}, are both notarized and not the dummy
block, it must be that b, = b}, (except with negligible probability), concluding
the proof. a
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Fig. 1. Timeline of events when the leader of iteration h is honest (¢ > GST).

3.3 Liveness of Simplex

In this section, we analyze the liveness of the protocol. Throughout, suppose that
(A, £2) is additionally -bounded partially synchronous, for some § < A. Recall
that the protocol is parametrized by A and not 6. When we say that “an honest
process has entered iteration A by time t”, we mean that the process previously
entered iteration h at some time ¢’ < t; when time ¢ comes around, the process
may well be in a larger iteration h' > h.

Lemma 4 (Synchronized Iterations). If some honest process has entered

iteration h by time t, then every honest process has entered iteration h by time
max(GST,t + 0).

Proof. By the assumption that some honest process p has entered iteration h
by time t, we know that process p must have seen a notarized blockchain of
height h — 1 at or before time t. By the protocol design, p will multicast their
view of this notarized blockchain immediately before entering iteration h. Sub-
sequently, every honest process will have seen a notarized blockchain of height
h — 1, and thus also a notarized blockchain for every height A’ < h — 1, by time
max(GST,t+3). Thus, by time max(GST, ¢+ ), every honest process that is not
yet in an iteration > h will have incremented its iteration number until it is in
iteration h. O

We show that the proposal confirmation time is 39, and that the optimistic
block time is 26 (Fig. 1).

Lemma 5 (The Effect of Honest Leaders). Let h be any iteration with an
honest leader Ly,. Suppose that Ly entered iteration h by some time t > GST.
Then, with all but negligible probability, every honest process will have entered
iteration h+ 1 by time t 4+ 28. Moreover, every honest process will see a finalized
block at height h, proposed by Ly, by time t + 30.
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We break the proof down into two subclaims.

Subclaim 1. Every honest player will see a notarized blockchain of height h, and
thus enter iteration h + 1, by time ¢t 4+ 2§ (except with negligible probability).

Proof. Recall that L; enters iteration A by time ¢. Thus, L; must multicast a
proposal for a new non-dummy block by, by time ¢. Thus, by time ¢+ (observing
that ¢ > GST), every honest process must have seen a valid proposal from the
leader for by,. There are now two cases:

— Case 1. Every honest process p casts a vote (vote, h, by,), by time t+4. Subse-
quently every honest process will see a notarization for b, and thus a notarized
blockchain of height h by time ¢ + 24, if not earlier, and enter iteration h+ 1,
as required.

— Clase 2. There is some honest process p that did not multicast a vote
(vote, h, bp)p by time ¢t+4. However, by Lemma 4, every honest process should
have entered iteration h by time t+J, so the only way this could happen is if p
entered iteration h+ 1 before time ¢+ §. Then, every honest process will have
entered iteration A 4+ 1 (and thus seen a notarized blockchain of height h) by
time ¢ + 24, again by Lemma 4. (This case may have occured if, for instance,
p saw a notarization for Lp’s proposed block without seeing the proposal
itself.) O

Subclaim 2. Every honest player p will multicast (finalize, h), by time ¢ + 26,
and thus see a finalized block of height h by time ¢ + 39 (except with negligible
probability).

Proof. By Subclaim 1, every honest player sees a notarized blockchain of height
h (thus finishing iteration k) by time t + 26. We will show below that no honest
player’s timer for iteration h can fire before time < ¢ 4 24. Then, when each
honest player p finishes iteration h, they must multicast a (finalize, h), message,
as their timer cannot have fired yet, showing the claim.

Let ¢/ < t be the time at which the first honest process enters iteration h.
By Lemma 4, all honest processes—including the leader Lp—will have entered
iteration h by max(GST,t'+4), implying that ¢t < t'+6 (since t is strictly greater
than GST). The earliest an honest timer can fire is at or after t' +3A > ¢/ +3§ >
t 4 26 time (noting that A > §), as desired. O

Finishing the Proof of Lemma 5. It remains to show that this finalized block is
proposed by the leader. Recall that by Subclaim 2, every honest player p will
have seen a finalized block by of height h by time t 4+ 3§. Applying Lemma 3,
we know that by, # L. Thus, b, must be proposed by L, because for it to be
notarized, some honest player must have voted for it. The lemma follows. a

Theorem 3 (Optimistic Confirmation Time). Simplez has an optimistic
confirmation time of 54.
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Fig. 2. Timeline of events when the leader of iteration h is faulty (¢t > GST).

Proof. Suppose that there is a set of transactions txs in the view of every honest
player by time ¢, where ¢ > GST, where txs is not yet in the output of any honest
player. Let h be the highest iteration that any honest player is in at time t. There
are two cases. If L, has not entered iteration h yet by time ¢, then by Lemma 4,
it will enter iteration h by time ¢t 4+ ¢, at which point it proposes a blockchain
that contains txs; applying Lemma 5 then completes the proof. In the second
case, by time ¢, L;, has already started iteration h, and by Lemma 5 every honest
process will be in iteration h + 1 by time ¢ 4+ 2§, and see a finalized block from
Lyy1 by t+ 54. O

Now, we are ready to reason about worst-case confirmation time (Fig. 2).

Lemma 6 (The Effect of Faulty Leaders). Suppose every honest process
has entered iteration h by time t, for some t > GST. Then every honest process
will have entered iteration h + 1 by time t + 3A 4 4.

Proof. There are two cases. First, suppose that for every honest process, its timer
in iteration h fires; then every honest process p will cast a vote (vote, h, L),
at some time < t 4+ 34, and subsequently this vote will be in the view of every
honest process by time max(GST,t+3A+0) = t+3A+0d. These votes comprise a
notarization for 1 and thus every honest process will see a notarized blockchain
of height h by time t + 3A 4 ¢ (if not earlier) and subsequently enter iteration
h + 1 as required. The second case is if an iteration A timer does not fire for
some honest process p. Then it must be that p entered iteration h 4+ 1 at a time
before its timer could fire, i.e. before time ¢t + 34, and applying Lemma 4 yields
the claim. O

Theorem 4 (Worst-Case Confirmation Time). Simplez has worst-case
confirmation time of (45 +w(logA) - (34 +9)).

Proof. Suppose that there is a set of transactions txs in the view of every honest
player by time ¢, where ¢ > GST, where txs is not yet in the output of any honest
player. Let h be the highest iteration that any honest player is in at time ¢t. By
Lemma 4 every honest process must have entered iteration i by time t+J. Now,
suppose that at least one iteration ¢ € {h+1,...,h+k} has an honest leader L,
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for some choice of k € N. Then, applying Lemmas 5 and 6, every honest process
will see a finalized block containing txs by time ¢t + 40 + k(34 + J).

It remains to analyze the probability that, in a random execution, there is a
sequence of k iterations in arow h,h+1,..., h+k—1s.t. for every i € [k], Lpti—1
is corrupt. First, observe that the attacker (and the environment) is PPT, and so
there is a polynomial function m(+) s.t. any execution of the protocol on a security
parameter 1* must contain at most m()\) number of iterations. Fix any A € N.
Recall that, for all i € [m(A)], L; is selected using a random oracle, and is thus
corrupt with independent probability f/n < 1/3. (Recall that we instantiated
the leader election oracle to be either L; := H*(i) mod n or L; := H*(0y)
mod n, where H* is a random oracle and o; is a unique threshold signature
on i.)

To help, we analyze the probability that in a sequence of m(\) unbiased
coin flips, there is a consecutive sequence of at least k tails. There are at most
(m(\) — k + 1) - 27(N)=F possible sequences with at least k consecutive tails,
out of 2™ total; thus the probability is less than (7”()‘)27:“1) Immediately,
the probability there are k corrupt leaders in a row is < Mjﬂ) since the
probability a leader is corrupt is less than the probability an unbiased coin is
tails. Observing that (7"@)27?”1) is a negligible function in A when k& = w(log \),
the theorem follows. O

)

For the sake of comparison, we also compute the expected view-based live-
ness. Recall that it says that, if every honest process sees some transaction txs
before they enter iteration h, once every honest process enters iteration h, then
txs will soon be confirmed:

Theorem 5 (Expected View-Based Liveness). Simplex has expected 3.50 +
1.5A view-based liveness.

Proof. Fix any iteration h € N. Suppose that there is a set of transactions txs
in the view of every honest player before they enter iteration h, and moreover
suppose that every honest player entered iteration h by some time ¢t > GST.
Recall that for each iteration 4, we defined the leader to be L; := H*(i) mod n,
where H* is a random oracle (chosen independently of GST and &). Immediately,
for each i € N, L; must be an honest player with independent probability (n —
f)/n > 2/3. Denote X the number s.t. Ly x is honest but, when X > 0, L; is
faulty Vi where h < i < h+ X. Here X is a random variable, and immediately
E[X] <3/2—1 = 1/2. Observe that, importantly, L, x will propose a blockchain
that contains txs.

It remains to upper bound the time at which some honest process enters
iteration h + X. By Lemma 6, every honest process will have entered iteration
h+X by time t+ X - (3A+6). Applying Lemma 5, we conclude that every honest
process will see a finalized block proposed by Ly x by time t¢4+35+(X)-(3A+9).
Moreover, this block contains txs if not already in a previous block. Taking the
expectation of the time elapsed since ¢, the theorem statement follows. a
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3.4 Communication Complexity

Each iteration of the Simplex protocol (without subsampling) requires O(n)
multicasts. Note that we do not make any additional “relay rule assumptions”,
unlike other protocols in the multicast model (e.g. Streamlet [24], Algorand
Agreement [28], PaLa [26]).

Lemma 7. In each iteration h, each honest process will multicast at most 4
messages.

Proof. For each iteration h € N, an honest process p will multicast at most one
propose message, at most one vote message for a non-_L block, at most one of
(vote, h, L), and (finalize, h),, and will relay their view of a notarized blockchain
of height h at most once. O

Each message is at most size O(\® - n) (since a notarization contains up to
n signatures of O(A®) size each, where 0 < ¢ < 1), so in each iteration, at
most O(A° - n?) bits total are multicast (in the system as a whole, summing
over all players). We note that this matches the multicast bit complexity of the
base Algorand Agreement protocol [28]. By using now standard techniques, we
can bring down the multicast bit complexity to O(A® - polylog(A)) through sub-
sampling the committee of voters [29]. Assuming the sub-exponential security of
OWFs, then the length of a signature can be made to be O(polylog(})), yielding
a total multicast bit complexity of O(polylog()A)). We do not innovate on these
methods, and focus on the base protocol.

Multicast can be implemented in various different ways on an underlying com-
munication network. In a point-to-point network, each multicast involves sending
the message to every other player; thus, our protocol—without subsampling—
has O()\¢-n?) total bit complexity in a point-to-point setting (counting every bit
that was sent in the whole system). However, in modern peer-to-peer networks
or gossip networks, peers do not need to directly communicate with every other
peer. In the same vein as e.g. [13,27] or the implementation of [34], it is possible
to simulate all-to-all communication if each peer talks to O(polylog(n)) other
peers (if chosen appropriately). Then, total communication can be reduced to
O(X¢-n?) - polylog(n) bits (assuming that players do not relay the same message
twice when gossiping messages). This may be reduced further by subsampling
(again, following the techniques in Algorand).

We note that many nice works, starting with Hotstuff [62], propose base pro-
tocols that achieve O(A® - n) bit complexity in a point-to-point setting, when
all players are honest. Pessimistically, the bit complexity is O(\® - n?). Hot-
stuff and many follow-up works use threshold signatures to compress the size
of notarizations, which requires a private setup, making it unclear how to do
subsampling. Indeed, our protocol with subsampling (without gossip) matches
the asymptotic communication complexity of their base protocols, achieving
O(A® - polylog(\) - n) total bit complexity, or O(polylog()) - n) assuming sub-
exponentially secure OWFs. Moreover, this bound holds both pessimistically
and optimistically for our protocol, as opposed to just the optimistic case in
Hotstuff.
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Table 2. Extended Comparison of Popular Consensus Protocols (Random Leaders)

Proposal Conf. Time | OptimisticBlock Time | Expected View-Based
Liveness (v := n’_‘f)

Simplex 35 26 36 +(y—1)-(3A +9)
Algorand** 35 38 36+ (y— 1) - (44 +28)
[28]
ICC 35 24 3B+ (y—1)-(v-(24+
[19] 26) + 26)
PaLa 45 26 45+ (2 —1)- (BA+
(26] H+(y—1)-25+7-24
Pipelined 58 25 56 + (7% — 1) (44 +
Fast-Hotstuff” N+EN>+~v-2)-28
[39]
Jolteon”
[33]
Chained 78 26 764+ (v*—1)-(3A+6)+
Hotstuff (v6)" P+ +v-3)-26
[62]
Streamlet 6A 2A 6A + ('ys + 'y4 + 'ys +
[24] Y24y —5)-2A
P-Sync Bullshark? 68 36 65+ (v —1) - 18A
[59]
Hotstuff (v1)" 58 24 564 (v2 — 1) - (5A +
[1,3] 8 ++%-24
Casper FFG~
[16]
Chained Tendermint”

~“With random leaders. *Base protocol without sortition, with optimistic responsive-
ness. 'Following the techniques of Algorand [34], by using subsampling, many (if not
all) of the protocols here built for the multicast model can be adapted to use only
polylog()\) multicasts per block. * Assuming that it takes 36 to generate a vertex (opti-
mistically), and where the timeout is set to 9A according to Section C.2 in [58].

4 Related Work

The roots of consensus research in the permissioned and partially-synchronous
setting dates back to the seminal paper of [31]. Subsequently, the classical
approaches in Paxos [46] and PBFT [23] became mainstream and were further
studied in [35,45,49,52]. These protocols typically adopt an expensive or com-
plex “view-change” phase for switching out a faulty leader for a new leader, and
are built mainly for the stable leader setting, where a single leader can propose
many blocks in a row without ceding its leadership.

More recently, the rise of blockchain applications (in particular, Proof-of-
Stake systems) motivated a new line of work towards building fairer and simpler
consensus protocols, where each leader generally only gets to propose a single
block. In particular, Casper FFG [16], Hotstuff (v1) [3], Tendermint [14], and
PaLa [26] introduced a new “streamlined” approach where consensus is reached
on many pipelined blocks at once, largely avoiding the complexity of a dedi-
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cated view-change subroutine. All four protocols proceed in incrementing epochs
e =1,2,... and have a similar voting rule, where voters vote only for proposals
extending the “freshest block” they’ve seen, that is, the one with the highest
epoch number. As a consequence of the voting rule, the protocols maintain some
intricacy when arguing liveness (i.e. the proposer may have to wait an extra 2A
before proposing a new block, if the previous proposer crashed).!? (Note that
Simplex does not have this intricacy.) Somewhat separately, but also building
on the streamlined paradigm, Streamlet [24] achieves a simple protocol descrip-
tion but has worse optimistic and pessimistic liveness. In Streamlet, players are
allowed to vote for any “longest chain,” even if it is not the “freshest block” that
they have seen, and thus requires a different consistency and liveness argument
than do Hotstuff/Tendermint/PaLa.

PBFT [23] remains the fastest protocol when leaders are honest, requiring
only 30 timesteps to confirm transactions; [5] showed that this is optimal in
the partially synchronous setting for f < n/3. (We mention works such as
Parametrized FaB Paxos [49] and SBFT [36], which achieve even faster opti-
mistic confirmation when f < n/5, but this requires that the fraction of faulty
voters also be small, in addition to honest leaders.) However, we are more inter-
ested in the setting with rotating/random leaders, due to issues of fairness.
(Random leaders also give better worst-case confirmation time.) Consequently,
many works have adapted PBFT to a setting with rotating leaders; we men-
tion Algorand [28], Fast-Hotstuff [39], and Jolteon [33]. In particular, Pipelined
Fast-Hotstuff and Jolteon propose streamlined versions of PBFT-like protocols
that also seek to reduce the complexity of the view-change, again by pipelining
proposals; both are slower than Algorand. Algorand and Fast-Hotstuff (without
pipelining) achieve 39 proposal confirmation time, but worse 30 block time.

A major concern when designing modern consensus protocols is that of com-
munication complexity. A low communication complexity is essential for a scal-
able protocol. In the multicast model, Algorand [29] showed an elegant way to
subsample the committee of voters to achieve polylog(\) multicasts (or O(n) mes-
sages in the point-to-point model). We remark that their techniques also apply
to our protocol. (If we additionally trade off optimistic responsiveness, Algorand
[29] can also achieve adaptive security.) In the point-to-point messaging model,
a nice line of works, starting with Hotstuff [62], seeked to reduce communication
complexity by funneling all messages through the leader (a technique from [56])
and by using threshold signatures to reduce the size of certificates (a technique
from [18]). Hotstuff, Pipelined Fast-Hotstuff [39] and Jolteon [33] all achieve
O(n) messages per block optimistically, and O(n?) messages in the case of a
faulty leader (or better when amortized over many round-robin leaders, depend-
ing on the implementation of the ‘pacemaker’). It remains unclear how realistic
it is to funnel communication through a single leader on a peer-to-peer network.
We note that their optimizations to message size using threshold signatures or
aggregate signatures also apply to other protocols; of course, threshold signatures
require a much stronger private setup (e.g. see [18]) that we wish to avoid. Apart

12 Sometimes, this is referred to as the ‘hidden lock problem’.



Simplex Consensus: A Simple and Fast Consensus Protocol 475

from requiring additional complexity to instantiate the private setup, it is also
not clear how to do subsampling for protocols that require threshold signatures,
as an example.

Our protocol has a similar ‘notarize/finalize’ voting procedure to that of [19]
(Dfinity ICC) and an old variant of Streamlet ([25], Appendix A), but uses dif-
ferent techniques for proposals and for switching leaders. The ICC protocol [19]
is also quite nice but does not use timeout/dummy blocks, and incurs some com-
plexity in how they rank leaders and allow multiple leaders in each round (they
additionally assume threshold signatures and a trusted private setup, which we
avoid). Consequently, if the first leader in a round is corrupt, they need essentially
two honest leaders in a row to confirm a subsequent block. It is worth exploring
whether their techniques for block dissemination can be used to improve Sim-
plex. Independently, we also note structural similarities between Simplex and
the Graded Binding Crusader Agreement protocol (using a weak common coin)
in [2], albeit that protocol is for the asynchronous setting.

In a somewhat distinct line of work, [58] propose a partially synchronous
version of Bullshark built on top of what they call a DAG. These protocols are
well-suited for the asynchronous setting, but when adapted for partial-synchrony,
much care is needed when integrating timeouts into the DAG construction, to
ensure that a slow honest leader is not left behind before it can propose a block;
moreover, it trades-off latency.

We summarize the comparisons in Table2 (for the random leader setting).
When computing the expected view-based liveness, we define a parameter v :=
n/(n — f) that corresponds to the inverse fraction of eligible leaders who are
honest.!3 Table 1 presents concrete values for expected liveness when f = [n/3]—
1. Importantly, we remark that the landscape of consensus protocols is rich
and ever-changing; this survey may not be comprehensive. In particular, while
we compare only theoretical works here, much has been done to improve the
performance of consensus protocols in practice by the systems community.
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