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ABSTRACT

Insights are often considered the ideal outcome of visual analysis
sessions. However, there is no single definition of what an insight
is. Some scholars define insights as correlations, while others define
them as hypotheses or aha moments. This lack of a clear defini-
tion can make it difficult to build visualization tools that effectively
support insight discovery. In this paper, we contribute a compre-
hensive literature review that maps the landscape of existing insight
definitions. We summarize key themes regarding how insight is de-
fined, with the goal of helping readers identify which definitions of
insight align closely with their research and tool development goals.
Based on our review, we also suggest interesting research directions,
such as synthesizing a unified formalism for insight and connecting
theories of insight to other critical concepts in visualization research.
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1 INTRODUCTION

Card, Mackinlay, and Shneiderman assert that the goal of informa-
tion visualization is to amplify the user’s cognition [9]. To this end,
many visualization tools aim to amplify cognition by helping users
extract reliable insights from their data [10, 32] (e.g., to increase
insight generation rates [29, 54] or to reduce the incidence of false
discoveries [55, 56]). However, to enhance insight discovery, it is
crucial to have a clear understanding of what insights are and how
they can be discovered. Yet, the literature presents different defini-
tions of “insights” [26]. For example, Sariaya et al. define insight as
a unit of discovery [38] while Gomez et al. [19] and Guo et al. [23]
argue that insights are hypotheses. Demiralp et al. [16] view insights
as statistical data properties such as correlations between variables.
Chen et al. suggest that insights are links between statistical data
properties and user domain knowledge [11]. Additionally, Chang et
al. [10] draw on psychology and cognitive science to define insights
as “aha” moments as well as links between units of knowledge.

Defining insights is a critical challenge for the visualization com-
munity because it can significantly influence tool development tra-
jectories. Depending on the chosen definition of insights, developers
might pursue vastly different approaches. For example, if insights
are hypotheses, developers might design visualization tools to max-
imize the generation of verifiable hypotheses such as significant
data correlations or outliers (e.g., [16]). In contrast, if insights are
“aha” moments, a researcher may instead design creativity support
tools [42] or problem-solving tools [15] to maximize user creativity
and inspiration. Alternatively, if insights are links to users’ domain
knowledge, researchers may strive to build knowledge management
tools for tracking what users have learned over time (e.g., [21]). This
raises the question of which insight definition is the “right” one to
use when developing a new insight-based study or visualization tool.
Further, what factors should influence this choice?
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This paper summarizes the key considerations from the visualiza-
tion literature regarding how insights are defined and how to design
applications around these definitions. Our aim is to help researchers
and developers choose (or create) the definitions that best suit their
design objectives1. Additionally, we identify areas of interest for
future research, including the opportunity to contribute new insight
definitions, integrate existing definitions, or establish connections
between insight definitions and related concepts in the literature.

In summary, this paper makes the following contributions:
• We present a literature review on the definition of insights.
• We categorize the definitions and their pros/cons to help

readers identify suitable definitions to motivate their work.
• We present interesting research directions in insight- and

theory-based visualization research motivated by this work.

2 HOW ARE INSIGHTS DEFINED IN THE LITERATURE?
Review Process. We conducted keyword searches for “visu-

alization task” and “visualization insight” in Google Scholar. We
also reviewed the proceedings of VIS and EuroVis from 2013 to
2023, including papers describing visualization objectives, tasks,
and provenance, since they are often discussed alongside insights.
This generated an initial list of 125 papers. We reviewed each paper
to verify its relevance to visualization and whether it focused on
defining, analyzing, or supporting insight discovery, e.g., “But what,
exactly, is insight? How can it be measured and evaluated?” [32].
For each relevant paper, we reviewed its list of references to identify
papers we may have missed. These steps yielded a list of 38 papers.
With feedback from colleagues/reviewers, we extended it to include
their suggestions, producing a final list of 41 papers. We analyzed
how insight was defined in each paper, focusing on high-level themes
and key characteristics of insights. Additionally, we cite synergistic
ideas when relevant, e.g., tasks and visualization recommendations.

2.1 Categories of Insight.
The prior work details several high-level categories of insights that
visualization tools can support. The first set of categorizations
we observe distinguishes between instantaneous sparks and long-
term knowledge building. Chang et al. [10] distinguish between a
“knowledge-building insight,” or information directly extending a
user’s existing knowledge structures, and “spontaneous insight,” or a
“eureka” moment that connects loosely related knowledge structures.
This distinction is similar to “directed” versus “unexpected” insights
as proposed by Saraiya et al. [38]. Chang et al. [10] argue that
knowledge-building is typically the focus of visualization and visual
analytics work [10], though some argue the opposite [33, 34, 41].

Alternatively, categorizations may focus on the source of insights,
such as the input dataset, social structures of the analyst, or an
analyst’s external domain knowledge. We summarize these catego-
rizations in Table 1, where overlaps in categories share the same
row(s) of the table. Saraiya et al. define four categories of data-
driven insights [37,38]: overall distributions, patterns, grouping, and
detail. Choe et al. [12] extend these ideas by providing more gran-
ular categorizations of data-driven insights, such as distinguishing
distributions versus data summaries or correlations versus trends in
identifying patterns. Zgraggen et al. [55] follow a similar structure
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Insight Source Pousman et al. [34] Liu & Heer [29] Guo et al. [23] Choe et al. [12] Saraiya et al. [38] Zgraggen et al. [55]

Detail Detail
Trend
Correlation Patterns Correlation
Data Summary
Distribution Overall Distributions Shape

Observation Fact

Outlier
Mean
Variance

Analytic insight

Generalization Generalization Comparison Grouping
Ranking

Hypothesis Hypothesis
Question

Data-driven

Simulation
Reflective insight Recall Self-reflection

Domain-driven
Awareness insight

Socially-driven Social insight
UI-driven Interface

Table 1: We observe significant overlaps in how insights are categorized in the literature. Observed categories are colored and labeled by the
source of the insight: the data, external domain knowledge, social structure, or the visualization interface itself.

but focus on categorizing the different ways in which people make
data comparisons to extract data-driven insights. Guo et al. [23] and
Gomez et al. [19] abstract these ideas into higher-level categories
that connect the data facts emphasized by Choe et al. [12] with more
generalization-focused insights observed by Zgraggen et al. [55]
and a separate category of data-driven insights known as hypotheses,
i.e., conjectures about the dataset that can be tested through subse-
quent confirmatory analyses. Liu and Heer propose seven insight
categories for analyzing exploratory visual analysis outcomes [29]:
“observation,” “generalization,” “hypothesis,” “question,” “recall,”
“interface,” and “simulation,” where we find that the simulation cat-
egory was not proposed in prior insight studies. The Liu and Heer
taxonomy [29] acts as a superset of sorts and overlaps significantly
with categories proposed in the literature, such as those by Saraiya
et al. [37–39] and North [31], Smuc et al. [45], Gomez et al. [19]
and Guo et al. [23], and Yi et al. [52]. Note that these categories
are not mutually exclusive and have been found to co-occur [45].

However, data-driven insights are not the only insights an analyst
may uncover. For example, Gotz et al. [21], Pousman et al. [34],
Liu and Heer [29], and Choe et al. [12] observe that analysts often
connect what they see in the data with their own knowledge and
experiences, i.e., with domain knowledge that exists outside the
target dataset. Pousman et al. broaden this view to support other
kinds of insights that may not be purely data-driven, in particular
“awareness insight,” “social insight,” and “reflective insight” [34].
Furthermore, Smuc et al. [45] and Liu and Heer [29] observe that
users may also gain insights into how to improve the visual analysis
tool they are interacting with, yielding UI-driven insights.

2.1.1 Using Insight Categorizations to Inform Tool Design
Each categorization emphasizes different sources of insight that
can impact how we design visualization tools. For example, Guo
et al. [23], Saraiya et al. [38] and Zgraggen et al. [55] emphasize
data-driven sources of insight, which may be appropriate for tools
designed for rigorous testing and management of key data statistics,
e.g., to prevent false discoveries [56]. Pousman et al. [34], Liu and
Heer [29] and Choe et al. [12] broaden this view to consider the
context of the person performing the analysis, which can be critical
for tools used for a domain-specific purpose (e.g., medicine [24,38])
or a personal one (e.g., life logging [12]). With an integrative view
of these categorizations, we hope to empower readers to choose a
categorization that best suits their research and development needs.

2.2 The Varying Definitions of Insight.
Although insights are often categorized in similar ways, the litera-
ture present inconsistent definitions for what constitutes an insight.
Are they utterances, statistical correlations, or something more com-
plex? In this section, we summarize the definitions proposed in the
literature and discuss the pros and cons that may affect their use.

2.2.1 Insights are Utterances
Some definitions assert that insights are utterances. Saraiya et al.
define insight as “an individual observation about the data by the
participant, a unit of discovery,” [37,38] which can include “any data
observation that the user mentions” during in-person lab studies [29,
38, 54, 55], as well as self-reported insight diaries collected through
field studies [39] and competition submissions [33]. Gomez et al.
observe that users may only report a subset of their insights relevant
to the study at hand [19]. Zgraggen et al. posit that insights may
not only be explicitly defined through direct user reporting but also
implicitly defined through observation, such as when the user is
observed performing an analysis but does not officially report the
outcome of this analysis to experimenters [55].

Pros and Cons. This definition adopts a stream-of-
consciousness view of insights that require experimenters to bear
witness to the utterance in order to capture the corresponding insight.
On the one hand, this definition is easy to apply in insight-based
studies since all that is required is an experimenter to observe a
user’s utterances. On the other hand, this definition places a signifi-
cant burden on the experimenter to manually identify and validate
utterances, ignoring the potential role that visualization provenance
and automation can play in helping to detect insights [51].

2.2.2 Insights are Data Facts
Several works categorize insights in terms of how their calculation
supports user hypotheses, claims, and reflections, pointing to a third
definition – insights are data facts. As shown in Table 1, Choe et al.
propose eight insight classes, where six classes are statistical in na-
ture (“trend,” “correlation,” “data summary,” “distribution,” “outlier”
and “comparison”) and two are adapted from existing taxonomies (
“detail” [38, 39] and “self-reflection” [34]). Zgraggen et al. propose
five insight classes, all of which are statistical in nature [55]. We
observe that these statistical insight classes extend those initially
proposed by Saraiya et al. [38, 39]. Liu and Heer [29], Pousman et
al. [34], and Chen et al. [11] group these different statistical represen-
tations into a single high-level category, i.e., “observation,” “analytic
insight” and “data facts,” respectively. These overlaps suggest that
collectively, data facts may be a core building block of insights.
Chen et al. formalize the relationship between data facts and insights
through their Fact Management Framework [11], which provides a
theoretical base from which to formalize insights. Building on these
ideas, visualization recommendation systems such as ForeSight [16],
DataSite [14], SeeDB [47], and Voder [46] extract statistical patterns
and anomalies to strengthen the user’s understanding of the data and
hopefully guide the user toward new insights.

Pros and Cons. The allure of data facts lies in how easy they
are to compute. For example, when insight is defined as a linear
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Figure 1: Insights seem to capture internal knowledge extracted from
data such as data facts, generalizations of these facts, and hypotheses
to be tested. Insights also link internal and external knowledge such
as domain knowledge, personal experiences, and tool expertise.

correlation, it becomes straightforward for a visualization recom-
mendation system to automatically recommend data-driven insights
by testing every pair of variables for a correlation [53]. Further-
more, a statistical or mathematical representation of insight enables
researchers to test their validity. For example, Zgraggen et al. tested
the accuracy of reported insights by mapping each utterance from
their user study to corresponding dataset statistics such as mean,
variance, and linear correlation [55]. However, this definition of
insight ignores the role of domain knowledge in contextualizing
statistical results. For example, a correlation only becomes meaning-
ful when it represents a relationship that matters in the real world,
such as a correlation between racial discrimination and incidence
of crime [30] or precipitation and incidence of wildlife strikes [5].
Thus, we should be cautious when adopting this definition since a
naive application could yield spurious and ungrounded results.

2.2.3 Insights are Hypotheses
The prior work also suggests that insights are hypotheses and/or

evidence. For example, to evaluate how study participants per-
form during open-ended exploration tasks, Gomez et al. label each
observed insight from their study as a “claim,” i.e., “a general hy-
pothesis, question, or remark about the data model that is potentially
synthesized from multiple observations,” or as “evidence,” such
as an observation comprised of “specific references to data points”
supporting the claim [19]. Guo et al. augment this claim-evidence
structure to encompass “facts,” “generalizations,” and “hypothe-
ses” [23], where facts are units of truth about specific entities in the
data, generalizations are inferred relationships between observed
entities, and hypotheses are claims that facts and generalizations can
support. Liu and Heer adopt a similar strategy where they observe
that analysts’ data observations and generalizations can lead to new
hypotheses, i.e., insights [29]. Similarly, Sacha et al. observe that
“Analysts try to find evidence that supports or contradicts hypotheses
in order to gain knowledge from data” [36].

Pros and Cons. With this definition, insights are the culmi-
nation of a natural progression toward building the user’s mental
model of the data. It starts with extracting low-level data facts from
a dataset, moves to group these facts into broader generalizations
about the dataset, and finishes with the user formulating hypothe-
ses to be tested in subsequent confirmatory analyses. As a result,
this definition aligns well with the categorizations we analyzed in
subsection 2.1. This definition can also be considered an extension
of the previous definition of insights as data facts. That being said,
this definition also inherits the same limitations. Specifically, this
definition completely omits the role of user experiences, domain
knowledge, and social structures in forming insights. Further, it is
still unclear how to construct the desired hierarchy from data facts to
hypotheses without significant manual intervention [23], requiring

additional research in the future to formalize these structures.

2.2.4 Insights are Knowledge links
Finally, others argue that insights can be seen as knowledge links.

For example, Chang et al. say that “insight is considered to be
more or less units of knowledge” in visual analytics [10]. This
idea can also be extended to define insights as links connecting
statistical and/or visual analysis findings (e.g., [25, 46]) with user
knowledge [1,2,20–22,24,25,31,35,36,38,39,43–45,52], which can
be synthesized from one or more user sessions [10,20–22,24,39,43–
45], a priori knowledge from outside the exploration process [2, 21,
22, 24, 34, 36, 39, 43, 45, 52], etc. Links can be implied, for example
through observations made in qualitative insight studies [38, 39, 45],
or they can be digital objects made through annotation [20, 21, 50]
and linking interactions [17, 20, 21, 24, 43, 44, 50] such as to connect
system visualization state with the user’s digitized notes. Similarly,
insights can be made hierarchical and even composed together to
form more complex insights [20, 22, 30, 31, 34, 38, 39, 43, 45].

Moreover, Smuc et al. argue that insights can be more effectively
analyzed through a direct analysis of how users’ reported insights
to build on one another and propose relational insight organizers
(or RIOs) to organize and visualize the resulting insight graph [45].
RIOs share similarities with the structures proposed by Gotz et
al. [21], where user knowledge is also captured as a graph, with
high-level concepts and instantiations of these concepts stored as
nodes within the graph, and relationships between instances stored
as edges in the graph. Similar graph-based structures have also
been suggested by Shrinivasan and van Wijk [44], Willett et al. [50],
Mathisen et al. [30], He et al. [24], and Kandogan and Engelke [25].

Pros and Cons. We believe this definition is the most compre-
hensive conceptualization of insight since multiple units of knowl-
edge and relationships between knowledge units can be represented
using this definition. For example, data facts can be represented as
units of analytic knowledge within a network graph, and domain
knowledge can be represented as separate nodes within the graph for
contextualizing these data facts. That being said, most implemen-
tations of this definition keep insights at a relatively high level, for
example, by only capturing domain knowledge as unstructured text
in user-written notes or only capturing analytic knowledge as visu-
alizations rather than the data characteristics that users interpreted
within these visualizations (e.g., specific correlations, differences in
means, etc.). We still lack formal structures for reasoning about what
we call the internal knowledge that users extract from data and the
external knowledge users bring into an analysis session, hindering
our ability to operationalize this definition in practice.

2.2.5 Integrating the Definitions
At face value, these definitions may appear distinct. However, a close
look at the varying perspectives points to an overarching theme – an

insight is a collection of knowledge. We summarize the knowledge
captured through insights in Figure 1. Although existing definitions
vary in what they emphasize, e.g., prioritizing data facts versus
domain knowledge, the components appear consistent across def-
initions, which we categorize as internal and external knowledge.
For example, internal knowledge consistently includes data facts,
generalizations, and hypotheses. External knowledge consistently
includes domain expertise and personal experiences. Awareness of
these components enables users of existing theory to navigate the
varied definitions of insight; for example, identifying a definition em-
phasizing domain knowledge to motivate the design of a knowledge
management tool [21].

2.3 Scoping Insights.
Although there are many ways to express knowledge gained, gaining
this knowledge generally occurs within a certain visual analysis
scope [18, 20]. Further, scoping insights appears to be tightly bound
with defining tasks [8, 18] or objectives [28, 35] in visualization
research. Here, we explore how insights are scoped in the literature.



Many task models have been developed to categorize the scope of
insights that analysts may be looking for. These models often take
the form of taxonomies and typologies [18], where tasks observed in
the field or lab studies are generalized into abstract classes, such as
“Find Anomalies” [1], “Search/Comparison” [27] or “characterizing
data distributions and relationships” [5]. Specific to insights, a num-
ber of taxonomies target insight generation processes to understand
whether task patterns may predict insight scope, rigor, and complex-
ity [5, 23, 52]. Task models may also take the form of frameworks,
where the scope and structure of observed tasks, and relationships
between these tasks, are abstracted into general-purpose hierarchies.
Examples include the framework of tasks, sub-tasks, actions, and
events proposed by Gotz and Zhou [20], and the goals to tasks frame-
work proposed by Lam et al. [28]. We observe that these models
predict the scope of insights by culling the set of relevant data facts
(taxonomies) or narrowing the range of relevant data for applying
these data facts (frameworks). Further, these models seem to suggest
an upper bound on the depth and breadth of corresponding insights,
where insights are unlikely to cover more data or facts than are
predicted by these models. That being said, these models represent
a range of possibilities. They are not meant to predict the exact
insights an analyst may uncover as they analyze a dataset.

An analyst’s interest in pursuing certain tasks can also be defined
by the kinds of insights they expect to uncover. This observation
stems from how a user’s analysis strategy is likely informed by an
initial goal or “hunch” regarding the target dataset [5, 28, 55], even
if vaguely at first [5]. For example, Bertin defines tasks according
to the structure of the underlying data and what the user seeks to
learn from it [6]. Andrienko and Andrienko extend Bertin’s ideas to
define tasks as declarative functions over data relations comprised
of targets, i.e., data attributes of interest, and constraints, i.e., query
predicates over these attributes [3]. We note that Andrienko and An-
drienko and Bertin’s proposals overlap significantly with declarative
definitions of task in database research, notably relational calculus,
a component of the relational model [13]. That being said, existing
declarative definitions of task are limited to scoping the user’s ex-
pectations and fail to encapsulate the insights that the user found,
which are particularly interesting in insight discovery work.

Thus, although existing task models are useful aids for inferring
insight scope, they alone are insufficient for fully defining insights
and must be paired with alternative theories accordingly.

3 DISCUSSION
3.1 Building a “Grammar of Insights”
The structural consistencies we observed across insight definitions
draw close parallels to the role of grammars in visualization lan-
guages. For example, visualizations have been categorized in the
same way that insights have [4, 7]. However, by favoring ease of
use, visualization taxonomies also sacrifice the ability to express a
diverse range of visualizations. Instead, one could identify the core
building blocks behind them and construct grammars for expressing
these building blocks. This is the core idea behind the Grammar
of Graphics [49], which has led to wildly successful visualization
grammars such as Vega-Lite [40] and ggplot2 [48].

We (and others [25]) posit that the consistent structures observed
across insight definitions suggests that one could also derive an
equivalent “grammar of insights,” i.e., a unified formalism for ex-
pressing the core building blocks observed in our literature review.
With a formalism, we can start to derive new grammars for express-
ing insights that maintain consistency with established definitions.

3.2 Insights, Objectives and Tasks
An emergent theme from this work is that insights, objectives, and
tasks are intertwined. For example, the types of insights gained
during a task are likely influenced by the user’s current objective,
such as confirming an established hypothesis versus searching for
interesting patterns in the data [5]. Similarly, when a user pivots to a

new task, i.e., changes their analysis objective, their recent insights
likely influenced that pivot. The literature also seems to suggest
that generalizable theory models should capture the various facets of
user tasks (insights and objectives) and their interconnected nature.
For example, Andrienko and Andrienko model these connections by
defining tasks in two parts [3]: the target information sought during
the task and the constraints the target must fulfill. Brehmer and
Munzner expand on this principle through a multi-level typology
that connects why the user performs a task, how they execute the
related methods, and what the task’s inputs and outputs are [8]. By
connecting the inputs that guide the task (objectives) with the outputs
produced from the task (insights), we posit that theoretical task
models could provide a holistic structure that enables researchers to
analyze how tasks evolve and induce particular insights over time.

4 CONCLUSION
The paper presents a literature review charting the landscape of
existing definitions of insight. We dissect the key components of
these definitions, evaluate their pros and cons, and discuss their
applicability to various scenarios in insight-based research. Based
on our review, we identify two opportunities to extend existing
theory: developing grammars of insight and connecting insight with
theoretical models of visual analysis tasks and objectives.
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