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Abstract. Inspired by Gehrlein stability in multiwinner election, in this
paper, we define several notions of stability that are applicable in multi-
winner elections with multimodal preferences, a model recently proposed
by Jain and Talmon [ECAI, 2020]. In this paper we take a two-pronged
approach to this study: we introduce several natural notions of stabil-
ity that are applicable to multiwinner multimodal elections (MME) and

show an array of hardness and algorithmic results.

In a multimodal election, we have a set of candidates, C, and a multi-
set of ¢ different preference profiles, where each profile contains a multi-

set of strictly ordered lists over C. The goal is to find a committee of

a

given size, say k, that satisfies certain notions of stability. In this context,
we define the following notions of stability: global-strongly (weakly) sta-
ble, individual-strongly (weakly) stable, and pairwise-strongly (weakly)
stable. In general, finding any of these committees is an intractable prob-
lem, and hence motivates us to study them for restricted domains, namely
single-peaked and single-crossing, and when the number of voters is odd.
Besides showing that several of these variants remain computationally

intractable, we present several efficient algorithms for certain paramete
and restricted domains.
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1 Introduction

In social choice theory, multiwinner election is an important problem as many
real-life problems such as the selection of the members of a Parliament, research
papers for a conference, restaurant menu, a team of players for a team sports
competition, a catalogue of movies for an airline, locations for police or fire sta-
tions in a city, etc., can be viewed as a “multiwinner election” problem. Mathe-
matically modelled as a problem where the input consists of a set of alternatives
(called candidates), a set of voters such that every voter submits a ranking (a
total order) over the candidates, called the preference list of the voter!, and a
positive integer k. The goal is to choose a k-sized subset of candidates (called a
committee) that satisfy certain acceptability conditions.

This model has an obvious limitation in that in real-life scenarios, rarely does
one factor decide the desirability of a subset of candidates. In fact, in complex
decision making scenarios, e.g., selecting research papers for a conference, a team
of astronauts for a space mission, hors-d’oeuvres for a banquet, a team of players
for a basketball competition, a catalogue of movies for an airline, etc., multiple
competing factors (call them attributes) come into play. Certain candidates may
rank highly with respect to some attributes and lowly with respect to others.
In choosing a solution, the goal is to balance all these factors and choose a
committee that scores well on as many factors as possible. In our modelling of
the committee selection problem, the multiple attributes under consideration
can be modelled by submitting ¢ different preference profiles, where each profile
is a set of strict rankings of the candidates based on a specific attribute. Such
a model has been studied recently for various problems in computational social
choce theory, including voting theory [9,26,35,36] and the importance of such
a model is also highlighted in [4]. How we aggregate all these information to
produce a high quality solution with desirable properties is the context of this
work. We use the term MULTIMODAL COMMITTEE SELECTION (as opposed to
the unimodal setting where ¢ = 1), introduced by Jain and Talmon [26], to refer
to the problem under consideration.

Of the many notions of a good solution, the one that comes readily to mind is
the one closely associated to “popularity”, i.e., a solution that is preferred by at
least half of the voters, known as the Condorcet winner. Fishburn [21] general-
ized Condorcet’s idea for a single winner election (when k£ = 1) to a multiwinner
election (when k > 1). Darmann [12] defined two notions of a Condorcet commit-
tee: weak and strong, where the ranking over the committees is based on some
scoring rules. Gehrlein [24] proposed a new notion of a Condorcet committee
that compares the popularity of each committee member to every non-member.

In this paper, we extend the notion of Gehrlein-stability in the unimodal
setting [24] to the multimodal setting. Gehrlein-stability has been studied quite

! There are several other ways to submit a ballot.
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extensively for the committee selection problem in recent years [2,10,25,28,32].
It has been argued by Aziz et al. [2] that Gehrlein-stable committees are nat-
ural choice for shortlisting of candidates in situations that mirror multiwinner
elections to avoid controversy surrounding inclusion of some candidate and exclu-
sion of others as noted previously by [17,34]. Hence, there are good reasons to
believe that a Gehrlein-stable committee for multimodal preferences will ably
model scenarios described above. There are two notions of Gehrlein-stable com-
mittee in the unimodal setting, namely, Strongly Gehrlein-stable committee, and
Weakly Gehrlein-stable committee, depending on margin of victory between two
candidates. A committee is strongly (weakly) Gehrlein-stable, if each commit-
tee member, v, is preferred by more than (at least) half of the voters over any
non-committee member, u, in the pairwise election between u and v. The prob-
lem of finding strongly (weakly) Gehrlein stable committee is called STRONGLY
(WEAKLY) GEHRLEIN STABLE COMMITTEE SELECTION or S(W)GSCS in short.
In the multimodal setting, we extend these definitions in a way that will capture
our goal that the winning committee is “great across several attributes”. Natu-
rally, there may be several ways of achieving this. Chen et al. [9] undertakes one
such study in the context of the stable matching problem, where instead of a
committee, the goal is to pick a matching that satisfied some notion of stability
in multiple preference profiles. In this paper, we use similar ideas to motivate
notions of desirable solutions for the MULTIMODAL COMMITTEE SELECTION
problem that we believe are compelling, namely: global stability, individual sta-
bility, and pairwise stability, where each notion may be further refined in terms
of strong or weak stability.

Our Model. Formally stated, for a positive integer £, a multimodal election &
with £ attributes (called layers) is defined by a set C of candidates, and a multi-
set of £ preference profiles (L;);¢[q, where each £; is a multi-set of strict rankings
of the candidate set, representing the voters (model is oblivious to voter set).
The input instance of the MULTIMODAL COMMITTEE SELECTION problem is a
multimodal election & = (C, (£;);e(g), and two integers o, k > 1 where a € [(].2
The goal is to find a k-sized committee that satisfies certain stability criteria,
defined below, in « layers. We say that

— a committee S is globally-strongly (weakly) stable if there exist a layers in
which S is strongly (weakly) Gehrlein-stable.

— a committee S is individually-strongly (weakly) stable if for each (committee
member) ¢ € S, there exist « layers in which ¢ is preferred by more than
(at least) half of the voters over every (non-committee member) d € C\ S
in the pairwise election between ¢ and d. We say that these layers provide
stability to the candidate ¢, and ¢ is individually-strongly (weakly) stable in
these layers.

— acommittee S is pairwise-strongly (weakly) stable if for each pair of candidates
{¢,d} C C,wherec € S and d € C\S, there exist « layers in which c is preferred
by more than (at least) half of the voters in the pairwise election between ¢

2 For any x € N, [z] denotes the set {1,2,...,x}.
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and d. We say that these layers provide stability to the pair {c,d}, and the
pair {c, d} is pairwise-strongly (weakly) stable in these layers.

In our model, we do not assume that « is a function of £. However, when there
exists a relationship, we are able to exploit it (e.g., Theorem 15). In fact, it is
very well possible that £ is large and o = 1, for example, suppose the committee
to be selected is a panel of experts to adjudicate fellowships. Each member of
the panel is an expert in one field and while the panel size is k, there are some
¢ different subjects under consideration. In situations like these oo = 1.

We call a stable committee as a solution of the multimodal committee selec-
tion problem.

Problem Names
We denote the problems of computing a globally-strongly (weakly) stable solu-
tion by G-SS (G-WS); an individually-strongly (weakly) stable solution by

I-SS (I-WS); and a pairwise-strongly (weakly) stable solution by P-SS (P-WS).
Additionally, for any X € {G,I, P}, we will use X-YS to refer to both X-SS
and X-WS.

For X € {G,I,P} and Y € {S, W}, the formal definition of the problem is
presented below.

Input: A multimodal election & = (C,(L;)icjq), and two integers o, k > 1,

where « € [{].
Question: Does there exist a committee of size k that is a solution for X-YS?

Remark 1. All of the definitions coincide with that of Strongly (Weakly)
Gehrlein-stability when ¢ = a = 1.

Remark 2. The notion of strong and weak stability are equivalent for the odd
number of voters.

Remark 3. A committee that is globally stable is also individually and pairwise
stable; a committee which is individually stable is also pairwise stable.

Ezxample 1. We explain our model using the following example containing 3 vot-
ers {v1, v, v3}, 4 layers {L1, Lo, L3, L4}, and 4 candidates {a, b, ¢, d}.

(% (%) V3
Li:b=a>d>c a>=b=d>c d>=b>=a>c
Lo:b=a>d>c a>d>c>1b b>=cra>d
Ls:c=b>d> a; c=a>d>b d=c=a>b
Li:c=b=a=d; d>=c>=bra; c-a>=b-d

Let « =2,k = 2. Let S = {a,b}. In £, v; and vy prefers a and b over ¢ and
d. Thus, S is strongly Gehrlein-stable in £;. In L5, v; and vy prefer a over ¢
and d, and v; and vz prefer b over ¢ and d. Thus, there exist 2 layers in which
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S is strongly Gehrlein-stable. Hence, S is globally-strongly stable. Next, let us
consider a committee S = {b,c}. Note that S is not strongly Gehrlein-stable
in any layer, thus, it is not a globally-strongly stable committee. However, b is
more preferred than non-committee members a and d in layers £1 and Lo, ¢ is
more preferred than a and d in the layers £3 and L£4. Thus, b is individually-
strongly stable in the layers £; and Lo, and ¢ is individually-strongly stable in
the layers L3 and £4. Hence, S = {b,c} is individually-strongly stable. Let us
consider a committee S = {b,d}. Note that S is neither globally-strongly stable
nor individually-strongly stable as d is not more preferred than both a and ¢
in any layer. However, d is more preferred than a in layers £3 and L4, and d is
more preferred than ¢ in layers £; and Ls. Furthermore, b prefers a and ¢ both
in £; and L. Hence, S = {b,d} is pairwise-strongly stable.

Differences Between the Notions. Note that for an instance of a MULTI-
MODAL COMMITTEE SELECTION, it may be the case that it has no globally
stable solution but has an individually stable solution. Moreover, it may also be
the case that an instance may not have a globally stable or an individually stable
solution but has a pairwise stable solution. We explain it using an example in
Example 1.

Graph-Theoretic Formulation. Similar to Gehrlein-stable model, all the
models of stability that we study for multimodal election can be transformed
to graph-theoretic problems on directed graphs. Using each of ¢ preference pro-
files, we create ¢ directed graphs with C as the vertex set, where in the i*" layer,
denoted by the directed graph G; = (C, A;), there is an arc from vertex a to b
in A; if and only if in £; the candidate® a is preferred by more than half of the
voters over b in the pairwise election between a and b. These directed graphs are
known as majority graphs in the literature [2].

Let S C C. In the language of the majority graph, S is strongly Gehrlein-
stable in the i*" layer if for every pair of vertices u,v such that v € S and
v € C\ S, v is an out-neighbor of u in G;, which demonstrates that w is preferred
over v by more than half of the voters. The set S is weakly Gehrlein-stable in
the " layer if for every pair of vertices u,v such that u € S and v € C\ S, v
is not an in-neighbor of w in G; (i.e., either (u,v) is an arc or there is no arc
between u and v), which demonstrates that u is preferred over v by at least half
of the voters. We say that for the committee S, the vertex u € S is individually-
strongly stable in the i layer if every v € C\ S is an out-neighbor of u in G, and
is individually-weakly stable if every in-neighbor of u in G; is in S. Analogously,
for the set S, a pair of vertices u € S and v € C\ S is pairwise-strongly stable in
the i layer if v is an out-neighbor of u in G;, and is pairwise-weakly stable if v
is not an in-neighbor of u in G;. Note that when the numbers of voters is odd, all
the graphs are tournaments (a directed graph in which there is an arc between
every pair of vertices) and strongly and weakly stable definitions coincides to be
the same. We will use graph-theoretic formulation for deriving our results.

3 In the graph-theoretic formulation, we will refer to the candidates as vertices.
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Aziz et al. 2017 :
GEHRLEIN STABLE in O*(1.2207") [
.
.

GEHRLEIN STABLE is poly-time on Frroum

'
'

’ GEHRLEIN STABLE is NP-hard
: GEHRLEIN STABLE is W([l]-hard wrt. k

I-YS is NP-hard &
W(1]-hard wrt. k on Froum even if a =1
Th.3

P-YS is NP-hard & W([1]-hard wrt. k
on Froum even ifa=1,(=2

Th. 13

G-SS is poly-time
Th. 1

G-YS is poly-time on Froyrn
Cor. 1

P-YS is poly-time on Fioum if £ < 2a
Th. 15

I-YS is poly-time on FryansTourn if @ =1

Th.6

I-YS is NP-hard &
W(1]-hard wrt. k on FrransTourn
Th.7

G-WS solvable in
0*(1.2207") if a = O(1)
Th.2

P-YS solvable in O*(1.2207")
Th. 14

I-YS solvable in O"((n“"M K ﬂog]k)[) on Frourn
Th. 8

I-YS solvable in O*((k£)*) on Froum
Th.9

L-YS solvable in O*((k+1)%) on FrransTourn
Th. 12

Fig. 1. Our Contributions. The green arrows to the dashed boxes represent reduc-
tions that led to an algorithm, and the red arrows from the dashed boxes represent
reductions that led to a hardness result. (Color figure online)

Our Contributions. Due to Remark 1, and NP-hardness and W/[1]-hardness
of WGSCS* with respect to k [2,25], G-WS, I-WS, and P-WS are NP-hard
and W[1]-hard with respect to k. We list our contributions here. The notation
O*(f(k)) suppresses factors polynomial in input size. Here, Frourn and FrransTourn
denote the sets of graphs that contain tournaments and transitive tournaments,
respectively.

— G-SS can be solved in polynomial time and G-WS in O*(1.2207™) time for
constant a,, where n is the number of vertices in each layer. Furthermore, when
all the layers are tournament graphs, G-WS can be solved in polynomial time
due to Remark 2. Both the results are due to the reduction to unimodal case.

— I'WS is NP-hard and W[1]-hard with respect to k even when all the graphs
are tournaments and o = 1. This result is in contrast to unimodal case. Fur-
thermore, it remains intractable even for transitive tournaments (an acyclic
tournament), but in this reduction « is not constant. When all the graphs
are transitive tournaments and a = 1, it is solvable in polynomial time.

— When all the graphs are tournaments, we give following algorithms for I-WS:

4 (SCS is used in [25] as they only considered the weak stability notion.
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e solvable in O*((nl°8*1[log k1)¢) time. Thus, for £ < logn, the problem is
unlikely to be NP-hard unless NP C QP>.
e solvable in O*((k/)*) time.

— When all the graphs are transitive tournaments, I-WS can be solved in
O*((k + 1)*) time.

— P-WS is NP-hard and W[1]-hard with respect to k even when all the graphs
are tournaments, { = 2, and a = 1. However, it can be solved in polynomial
time when all the graphs are tournaments and ¢ < 2a.

— P-YS can be solved in O*(1.2207™) time.

Figure 1 explain the interplay of results and their relations with each other.
We skip the motivation for the considered parameters here as it is same as in [26].

Next, we highlight the significance of our study on tournaments and transitive
tournaments.

Restrictions on Layers. Aziz et al. [2] show that in the unimodal case a
Gehrlein-stable committee can be found in polynomial time when the number
of voters is odd, which corresponds to the case when majority graph is a tour-
nament. Moreover, they also show that additionally if the preference lists sat-
isfy single-peaked or single-crossing properties, then the corresponding majority
graph is a transitive tournament (the graph can be a tournament or transi-
tive tournament even in some other scenarios). Such domain restrictions are
also studied by [26]. This motivates us to study the MULTIMODAL COMMITTEE
SELECTION problem when each layer is a tournament or a transitive tournament.

Related Works. Jain and Talmon [26] studied committee selection under some
mulimodal voting rules. They discussed the significance of this problem, pro-
posed generalisation of known committee scoring rules [20] to the multimodal
setting, and studied computational and parameterized complexity of the mul-
timodal variants of k-Borda and Chamberlin-Courant (CC). Recently, Wen et
al. [36] studied matching problem with multimodal preferences under position
scoring rules. Chen et al. [9] gave similar definitions for stability for matching
with multimodal preferences. Steindl and Zehavi [35] studied pareto optimal
allocations of indivisible goods with multi-modal preferences. Boehmer and Nie-
dermeier [4] also highlighted the importance of multimodal preferences. There
has been many works on multiwinner elections where the preference profile is
attribute-based [1,6,8,14,27,29,33]. G-SS in a restricted setting of transitive
tournaments can be viewed as an instance of diverse committee [6] since only
top k candidates from each layer can be in a stable committee for transitive
tournaments, but it doesn’t generalize to our other cases.

For the committee selection problem, extensive research has been conducted
to study voting rules and their stability in the context of selecting a commit-
tee [10,17,19,28,34]. We refer to some surveys for application of parameterized
complexity in social choice theory [5,15,18].

5 Here QP denotes the complexity class quasi-polynomial.
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2 Preliminaries

Standard definitions and notations of graph theory in [13] apply. Let G = (V, A)
be a directed graph. For a vertex v € V(G), N (v) = {u: (u,v) € A(G)} denote
the in-neighborhood of the vertex v. We drop the subscript G when it is clear
from the context. For a subset X C V(G), N~ (X) is the set of all in-neighbors
of the vertices in X. Unless explicitly specified, for two vertices u and v, both
(u,v) and (v,u) are not arcs together in a directed graph. We use n to denote
the number of vertices in a graph. Topological ordering of a directed graph G
is a linear ordering of V(G) where u precedes v for each arc (u,v). From the
stability definitions, we have the following.

Proposition 1. For any X € {G,I,P}, an X-strongly stable and X -weakly
stable solution are the same on Frourmn-

The following will be used for some of our algorithms.

Proposition 2. [25, Theorem 3] WGSCS can be solved in time O*(1.2207™)
where n is the number of vertices in the majority graph.

We wish to point out that all our hardness reductions produce an instance
where each layer is a directed graph (with arcs in only one direction). Thus, due
to the following theorem, we can construct an election as well.

Proposition 3. [30] Given a directed graph, there exists a corresponding elec-
tion with size polynomial in the size of the given graph.

Parameterized Complexity. Here, each problem instance is associated with an
integer, k called parameter. A problem is said to be fized-parameter tractable
(FPT) with parameter k if it can be solved in f(k)n®®) time for some computable
function f, where n is the input size. W-hardness captures the parameterized
intractability with respect to a parameter. We refer the reader to [11,16,22] for
further details.

When referring to a solution that is strongly(weakly) Gehrlein-stable, we may
Just say strongly(weakly) stable.

3 Global Stability

Here, we present results pertaining to G-YS, Y € {S, W}. We begin with G-SS
and show it is in P and then follow it with G-WS which is NP-hard.

Note that since each layer has a unique strongly stable committee [3, Theorem
1]%, we can “guess” a layer in which the solution is stable and then compute the
strongly stable committee in that layer. Next, we verify if there are « — 1 other
layers in which that committee is also stable. Thus, we have the following:

5 In [2], the term “strict” is used instead of “strong” (Def. 1 and first para in Sec 5 of

[2])-
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Theorem 1. (#)7 G-SS is solvable in polynomial time.

Remark 4. Note that the strongly stable committee is unique in a unimodal
election [3, Theorem 1], however the same is not true for a multimodal election
as seen by the following example: Consider two majority graphs G; and Go
on the vertex set {u,v,w}. Let arc sets be F(G1) = {(u,v), (v,w), (u,w)} and
E(G2) = {(v,u), (v,w),(w,u)}. For k = 2 and a = 1, S1 = {u,v} and S =
{v,w}, both are globally-strongly stable.

Remark 5. Unlike strong stability, weak stable committee need not be unique,
even for a unimodal election.

Next, we study parameterized complexity and a tractable case of G-WS.
The hardness results, NP-hardness and W[1]-hardness with respect to k, which
follows from intractability of WGSCS [2,25], motivates us to study parameteri-
zation with respect to n. In the following discussions, we will adopt the following
terminology about G-WS: For an instance ((G)ie[q, o, k) and a subset of ver-
tices S, we say that the i layer provides stability to S if for any u € S and any
v € V(G)\S there is no arc (v,u) in the graph G;.

The following algorithm works on the same idea as Theorem 1, the difference
being that in light of Remark 5, it may not be sufficient to guess one layer and
proceed as in Theorem 1. Here, we would need to know the solution in the layer
it is stable and then verify if there are other layers which provide stability to
the committee is also stable. An exhaustive search of such a committee would
look through (Z) possibilities. Instead, if we guess the a layers, then we would
have to find a solution that is weakly stable in those layers only, captured by
a graph which is the union of the arc set in each of those layers. This gives an
improvement in time if « is a constant.

Theorem 2. (&) G-WS can be solved in O*(1.2207™) time, for a = O(1).
Proposition 1 and Theorem 1 imply the following result.

Corollary 1. G-YS is solvable in polynomial time on Froum-

4 Individual Stability

In this section, we will discuss results pertaining to I-YS, where Y € {S, W}.

4.1 Intractable Cases

We begin with an intractability result for tournaments. This is a sharp contrast
to the unimodal case which is polynomial time solvable for Frouem.

Theorem 3. I-YS is NP-hard and W[1]-hard with respect to k on Froum even
when o = 1.

" The proofs marked by # are deferred to the full version.
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Proof. We give a parameter-preserving reduction from the WGSCS problem,
which is known to be W[1]-hard with respect to k [25], to I-WS. Moreover, this
being a polynomial time reduction will also prove that I-WS is NP-hard. Let
T = (G, k') be an instance of WGSCS, where G is not a tournament; otherwise
the instance is polynomial-time solvable. Let Z denote the set of vertices in G
whose total degree (sum of in-degree and out-degree) is less than n — 1.

Construction. We will construct an instance of I-WS with | Z| layers and o = 1.
For each vertex u € Z, we create a graph G, as follows. Initialize G,, = G, i.e.,
every arc in G also exists in each layer of (G )ycz. Consider a vertex v which
is neither an in-neighbor nor an out-neighbor of u. Then, we add an arc from u
to v in G,. We make GG,, a tournament by adding the remaining missing arcs in
an arbitrary direction. Clearly, this construction takes polynomial time.

Due to Proposition 3, G, is a majority graph for an appropriately defined
election. Note that the vertex set of G, is same for each u € Z. Hence, J =
((Guw)uez,a =1,k = k') is an instance of I-WS, where each directed graph G,
is a tournament. The next observations follow directly from the construction.

Observation 4. Any vertexr u € Z has the same set of in-neighbors in G and
Gy.

Observation 5. Let G’ € {Gy: u € Z}. Then, any vertex v € V(G)\ Z has the
same in-neighbors in G and G'.

The following shows the correctness of the reduction.

Lemma 1. (&) S is a solution for WGSCS in Z iff S is a solution for I-WS
n J.

Since the constructed graph is a tournament, we can conclude the intractability
of I-YS. a

In contrast with the above intractability result, we note that when the layers
are transitive tournaments and o = 1, we have a tractable case for I-YS.

Theorem 6. I-YS is solvable in polynomial time on Frranstourn o @ = 1; and a
solution always ezists.

Proof. Let T = ((Gi)ie[q, @, k) be an instance of I-YS. Since each layer is a
transitive tournament, we may assume that the vertices in the *" layer, for
i € [¢], are ordered in terms of the topological ordering in G;. Thus, We can find
a solution by picking the first k vertices from Gj.

Unsurprisingly perhaps, for any arbitrary « > 1 the problem is again
intractable.

Theorem 7. I-YS is NP-hard and W[1]-hard with respect to k on FrransTourn-
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Proof. We prove this hardness result by showing a polynomial time reduction
from CLIQUE on regular graphs, in which given a regular undirected graph G
and an integer k, the goal is to decide if there is a subset S C V(G) of size k
such that for every pair of vertices u,v € S, uv is an edge in G. The CLIQUE
problem for regular graphs is NP-hard and W[1]-hard with respect to k [7,23].
Due to Proposition 1, we use I-SS in the rest of the proof.

We explain the construction along with the intuition behind the gadget. The
precise construction of the transitive tournaments is in the black box below.

Construction: Let (G,INC) be an instance of CLIQUE, where degree of every
vertex in G is d. For the ease of explanation, we assume that d is even. Let n
and m denote the number of vertices and edges in G, respectively. We construct
an instance of I-SS as follows: For every edge e = wv in G, we have two directed
graphs, say M., and M., . For every edge e € E(G) and every vertex u € V(G),
we add vertices u and e in every directed graph. We call these vertices as the
real vertices of the directed graphs. For every directed graph M (constructed
so far), we also add a set of dummy vertices, denoted by Dpq = {d},, ..., d},},
where the value of j will be specified later (at the end of the construction). We
call these vertices as dummy vertices of the directed graphs.

The purpose of adding the dummy vertices is that a real vertex e correspond-
ing to the edge e € E(G) should get the stability only from the corresponding
directed graphs, and the real vertex u corresponding to the vertex u € V(G)
should get stability only from the directed graphs M. , where e is an edge
incident to u.

Since every transitive tournament has a unique topological ordering,
we explain this ordering of vertices in every directed graph. Then, the
arc set is self-explanatory. For the directed graph M., , the ordering is
(u, e, Daq,, , (remaining vertices)). The notation () denote that the vertices in
this set can be ordered in any arbitrary order. Intuitively, the goal is that if the
vertex e is in the committee, then to provide it stability in the required num-
ber of layers (the number of layers will be defined later), v and v must also be
in the solution (i.e., a vertex corresponding to an edge of G pulls vertices that
correspond to its endpoints in G in the gommittee).

Next, we want to prevent more than k vertices in the committee correspond-
ing to vertices in V(G), so that these vertices corresponds to clique vertices.
Towards this, for every vertex u € V(G), we add a set of k% — 1 vertices,
denoted by T, = (t1,... 715132_1), in every directed graph. We call these ver-
tices mdz;gztor vertices. Let ﬁ denote the set of vertices in the reverse order of
Ty, ie., T, = (t{f’l,...,t}l). Let E(u) denote the set of edges incident to w.
Let FE;(u) and Eo(u) be two disjoint sbsets of E(u), each of size |E(w)l/2. In the
ordering of the vertices of the directed graph M., , where e € Ej(u), we add
T, in front of the ordering constructed above, i.e., the new ordering of M., is
(Tu,u,e, Dy, , (remaining vertices)). For e € Ea(u), the ordering of the vertices

— —
of M., is (u, Ty, e, Dy, , (remaining vertices)), i.e., T}, is after u.
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Additionally, for every edge e € E(G), we add 4/2 — 1 dummy layers, M,
i € [4/2 — 1], in which e is the first vertex in the ordering. Next, to ensure that
no other real vertex get stability from these dummy layers, for every M., i €
[4/2 — 1], we add a new set of j dummy vertices, denoted by D Mm_; - The ordering
of the vertices in these directed graphs is (e, (D1, ), (remaining vertices)). Note
that for every i € [d/2 — 1], M, provide stability to vertex e as it does not have
any in-neighbors in these directed graphs. Note that the number of layers in the
constructed instance is m(d/2 + 1).

Finally, we set k = k3 + (g), a = d/2+ 1, and the value of j as k so that no
dummy vertex can be part of the solution.

Precisely, the construction is as follows.

— For every u € V(G) and e € E(G), we add vertices u and e to directed
graphs.

— For every e(= w) € E(G), we add d4/2 + 1 directed graphs,
Me, , Me,, M, Me2, ...y M _aps_y.

— For every directed graph M, we add a set of K3+ (g) dummy vertices

i3 k
Dy = de,...,dM“?).
— For every vertex u € V(G), we add a set of indicator vertices T, =

.2
{tL, ...tk =1y,
— To define the edge set of a directed graph, we define its topological ordering.
Let F(u) denote the set of edges incident to u, and F;(u) and F3(u) be two
disjoint subsets of E(u) such that size of both the sets is [E(w)l/2.

e For every e € FEj(u), the ordering of vertices in M., is
(Tu,u,e,{Dn,, ), (remaining vertices))

e For every e € FEs(u), the ordering of vertices in M., is
(u, i, e, (Dn., ), (remaining vertices))

— For every i@ € [d2 — 1], the ordering of wvertices in M, is

(e,(D_, ), (remaining vertices)).

*k=k3+<§> and o = d/2 + 1.

Let Z = {ey,ey: e(=w) € E(G)} U{e': e € E(G),i € [¢/2 — 1]}. Since the
set of vertices is same in all the directed graphs, we denote it by V.
Next, we prove the correctness in the following lemma.

Lemma 2. 7 is a yes-instance of CLIQUE iff J is a yes-instance of I-SS.

Proof. Tn the forward direction, let S be a solution to (G, k). Let 8" = {{u, T,,} C
Vam:u € StU{e € Vapq: e € E(G[S])}, i.e., S’ contains real and indicator vertices
corresponding to the vertices and edges in G[S]. We claim that S’ is a solution
for ((My)eez,a, k). Since for every u € V(G), |T,| = k?> — 1, and S is a k-sized
clique, we have that |S'| = k + k(k2 — 1) + (g) = k. Next, we argue that S’ is
individually stable for a = 4/2 4+ 1. Note that there are 4/2 directed graphs in
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which the vertex u corresponding to the vertex u € V(G) does not have any
in-neighbor, and there are 4/2 directed graphs in which the in-neigbor of u is T,.
Since if w € S’, T,, C S’, we have that there are at least 4/2 + 1 directed graphs
that provides individual stability to the vertex u € S’. Similarly, there are at
least 4/2 4 1 directed graphs that provides individual stability to every vertex in
T., where T,, C S’. Next, we argue about the vertex e € S’ corresponding to the
edge e(= uv) € E(G). Note that there are 4/2 — 1 directed graphs (in particular,
Mi, where i € [d/2—1]) in which e does not have any in-neighbor. Furthermore,
in the directed graph M., , the set of in-neighbors of e is T, U {u} which is a
subset of S” as u € S. Similarly, all the in-neighbors of e in M., belong to S’
Thus, S’ is individually stable for a = /24 1.

In the backward direction, let S be an individually stable committee for
((Mg)eez,a, k). We observe some properties of the set S.

Claim 1 (&) S does not contain any dummy vertex.
Claim 2 (®) Ifu € S, then T, C S.
Claim 3 (&) If [T, N S| # 0, thenu e S.

Claim 4 (&) If the vertex e corresponding to the edge e(= wv) € E(G) is in S,
then the vertices {u,v} C S.

Let V* ={v e V(G):ve S} and E* ={e € E(G): e € S}.
Claim 5 (#) [V*| =k and |E*| = (}).

Next, we argue that the vertices are consistent with the edges, i.e., if uv € £,
then {u,v} C V*. This follows from Claim 4. Moreover, since |[V*| = k and

|E*| = (%), it follows that the graph G* = (V*, E*) is a complete graph on the
vertex set V*, and thus V* is a clique of size k in G.
This completes the proof of the theorem. a

4.2 Tractable Cases

The intractability results of Theorems 3 and 7 notwithstanding, motivate us to
look for parameters beyond « and k. Specifically, we look for combined param-
eters and in doing so we show that for Y € {S, W}, I-YS is FPT parameterized
by k 4+ £. We note that the parameterized complexity with parameter ¢ eludes
us. However, Theorem 8 implies that when ¢ < logn, we have an algorithm with
running time 2P°Y(°8™)  Thus, we cannot hope for an NP-hardness result when
¢ < logn, unless NP C QP. Therefore, the complexity when ¢ > logn remains
unknown.

At the heart of the parameterized algorithm, Theorem 8, is the notion of an
out-dominating set, defined as follows. For any graph G = (V, A), aset S C V(G)
is called an out-dominating set if every vertex v € V' \ S has an out-neighbor in
the set S.
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Before we present the algorithm, we can explain the intuition as follows. Any
solution S for I-YS can be viewed as S = S;U...USy, where each S; denotes the
set of vertices (possibly empty) that receive individual stability from the layer
i. (Clearly, every vertex in S must be in at least « different S;s.) Moreover, we
know that in the graph G; the in-neighbors of any vertex in .S; are also present in
S;. Thus, S; can be viewed as the union of a set X; and the set of its in-neighbors
in Gj, ie, S; = X; UNg, (X;). The set X; here is the out-dominating set of the
subgraph induced by S; in GG;, denoted by T;. While we do not know the set .5;,
we know that its size is at most k. Hence, the subgraph T; = G;[S;] has at most
k vertices and has an out-dominating set of size at most [log k]|, due to Lemma
3. This allows us to enumerate all possible subsets of size [log k] and from that
find its in-neighborhood. This process allows us to find X;, N7 (X;), and thus
S; for each i € [¢], and from there the set S. We use the next lemma to find the
out-dominating set.

Lemma 3. [31, Fact 2.5] A tournament G = (V, A) has an out-dominating set
of size at most [log|V|]. Additionally, if G is a transitive tournament, then G
has a unique out-dominating set of size one.

Theorem 8. I-YS is solvable in time O*((n[°8*¥1)%) on Froum.

Proof. Let T = ((Gi)icjg, o, k) be an instance of I-YS. Our algorithm works as
follows. For each ¢ € [¢], our algorithm guesses a vertex subset of size at most
[logk] in G; and finds its in-neighborhood set in G;. The union of these two
sets is denoted by Yi. If N (Y;) \'Y; # 0 or |Yi| > k, then we set V; = ). Else,
the algorithm checks if U;e[¢Y; is a solution for Z. If the algorithm fails to find
a subset of vertices that is a solution for Z, then it returns “no”.

Correctness. Any solution returned by the algorithm will quite obviously be
a solution for 7 since at the end the algorithm checks if U;c[qY; is a solution.
Thus, we only need to prove the other direction. That is, we prove that if there
exists an individual stable solution, the algorithm generates it. Suppose that 7
is a yes-instance and S is a solution. We may view S as a union of ¢ (possibly
empty) sets S; where S; are the vertices of G; that are stable in the layer i
i.e., all those vertices whose in-neighbors in G; are also in S;. We show that we
generate the set S; by enumerating [log k| size subsets in G; for each layer i. For
each i € [{], let T; = G;[S;] be the tournament induced by the vertices in S;. For
each ¢ € [{], let X; denote an out-dominating set of the graph 7;. Due to Lemma
3, |Xi| < [logk] since |S;| < k (because |S| = k). Recall that N (X;) denotes
the set of in-neighbors of X; in G;. From the definition of individual stability,

Hence, our algorithm generates the set X; by trying all possible subsets of
size at most [logk], and from that construct the set S;. Thus, for some choice
of X; we will have Y; = S; for each ¢ € [¢] and then the algorithm will return
UielgY: which is the solution S.

Time Complexity. This results in an algorithm that has to verify at most

[
(Zogig[log . (7;)) different subsets of vertices since in any layer there are
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2_0<i<[log k] () different subsets of size at most [logk]. The first [log k] terms
of binomial coefficients sum up to O(n/1°8*1). The last verification step can be

carried out in O(kf) steps by checking for each vertex in U;c(¢Y; if there are «
layers in which it is stable. O

Next, we discuss an FPT algorithm for the parameter k + £. We begin with
the following result that may be of independent interest.

Lemma 4. (#) In any tournament there are at most 2k + 1 wvertices with in-
degree at most k.

The next result is inspired by the above lemma as there are only O(kf)
vertices that can be part of solution, O(k) from each layer.

Theorem 9. (#) I-YS is solvable in time O*(£*) on Froum-

Remark 6. Comparing Theorem 8 vs Theorem 9. Note that neither algorithm
subsumes the other. Each works better than the other in certain situations as
described below

— For a constant value of k, Theorem 9 gives a polynomial time algorithm while
Theorem 8 gives an n®) time algorithm, (i.e., it does not run in polynomial
time if ¢ is not a constant.)

— For a constant value of £, Theorem 9 gives an FPT-algorithm with respect to
k (i.e., it runs in polynomial time if k is also a constant), while Theorem 8
gives a quasi-polynomial time algorithm.

Notwithstanding the hardness of Theorem 7 on transitive tournaments, we
note that the problem does admit polynomial time algorithm if the total number
of layers is a constant, which is an improvement over the running times given by
Theorems 8 and 9.

Theorem 10. (#) I-YS is solvable in O*((k + 1)) time on FrransTourn-
Due to Theorem 10, we have the following.

Corollary 11. I-YS is solvable in polynomial time on Frranstourn i £ =
O(logy, n).

Theorem 12. (&) I-YS is solvable in polynomial time on Frranstourn if £ = .

5 Pairwise Stability

In this section, we will discuss results pertaining to P-YS, where Y € {S, W}. We
begin by showing that P-YS is hard for two layers even for restricted domains.
Note that for £ = 1, P-YS can be solved in polynomial time on Fyoum, however,
for £ = 2, we have the following intractability result.
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Theorem 13. P-YS is NP-hard and W[1]-hard with respect to k on Froum even
when a =1 and £ = 2.

Proof. We give a reduction from an instance of WGSCS. Since WGSCS is
WI[1]-hard with respect to parameter k [25], this will prove that P-YS is also
WI[1]-hard with respect to k. Let Z = (G, k') be an instance of WGSCS. We will
create an instance of P-YS with two layers Gy and G5. Initialize G; = G5 = G.
Next, for every pair of vertices {u,v} that do not have an arc between them
in G, we add the arc (u,v) in Gy, and add the arc (v,u) in G2. We define
J = (G1,Ga,a = 1,k = k') to be an instance of P-YS. Note that G and G»
both are tournaments.

Since we can construct G; and G2 in polynomial time, the following result
proves the theorem.

Lemma 5. (&) S is solution for T iff S is a solution for J.

This completes the proof. a
The next result is an FPT algorithm for P-YS with respect to n. We prove
it by showing reductions to WGSCS.

Theorem 14. (&) P-YS is solvable in time in O*(1.2207™).

By focusing our attention towards structural parameters pertaining to the
layers in the instance of P-YS, we obtain the following result.

Theorem 15. (&) P-YS is solvable in polynomial time on Froum if £ < 2cu.

We conclude our discussions with the following result about weak stability
that follows due to the relationship between I-WS and P-WS, and Theorem 6.

Corollary 16. P-WS is solvable in polynomial time on Frianstourn if @ = 1.

6 Conclusion

We extend the study of stable committee to the multimodal elections. In fact,
in [26], the authors considered the same set of voters and candidates across
the layers. We generalize this to the scenario, where voters need not be the
same across the layers, and justified this model in Introduction. We defined
three notions of stability and studied their computational and parameterized
complexity.

The following questions elude us so far for transitive tournaments: (i) the
computational complexity of I-YS for constant a > 1, (ii) the parameterized
complexity of I-YS with parameter ¢, (iii) the computational complexity of P-
YS.

Jain and Talmon [26] initiated the study of scoring rules for multimodal
multiwinner election. We believe that it would be interesting to extend the notion
of stability given by Darmann [12] to multimodal preferences. In general, it would
be interesting to extend the extensive study of multiwinner election for unimodal
case to multimodal preferences.
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