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ABSTRACT

We prove that GRaPH IsomoRPHISM and CANONIZATION in graphs
excluding a fixed graph H as a minor can be solved by an algo-
rithm working in time f(H) - n9W | where f is some function.
In other words, we show that these problems are fixed-parameter
tractable when parameterized by the size of the excluded minor,
with the caveat that the bound on the running time is not necessar-
ily computable. The underlying approach is based on decomposing
the graph in a canonical way into unbreakable (intuitively, well-
connected) parts, which essentially provides a reduction to the case
where the given H-minor-free graph is unbreakable itself. This is
complemented by an analysis of unbreakable H-minor-free graphs,
which reveals that every such graph can be canonically decom-
posed into a part that admits few automorphisms and a part that
has bounded treewidth.
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1 INTRODUCTION

The GraPH IsoMORPHISM problem is arguably the most widely
known problem whose membership in P is unknown, but which
is not believed to be NP-hard. After decades of research, a quasi-
polynomial time algorithm was proposed by Babai in 2015 [1].

While the existence of a polynomial-time algorithm on general
graphs is still elusive, the complexity of GRAPH IsoMORPHISM has
been well understood on several classes of graphs, where struc-
tural properties of graphs in question have been used to design
polynomial-time procedures solving the problem. Classic results in
this area include an n9(@-time algorithm on graphs of maximum
degree d [2, 29], a polynomial-time algorithm for planar graphs [20—
22,37, an n%9 -time algorithm on graphs of Euler genus g [11, 30],
an O(n**%5)-time algorithm for graphs of treewidth k [3], an nOk)_
time algorithm for graphs of rankwidth k [15, 18], an n/ (HD _time
algorithm for graphs excluding a fixed graph H as a minor [34], and
an nf UHD _time algorithm for graphs excluding a fixed graph H as
a topological minor [13] (where f is some computable function).

In all the results mentioned above, the degree of the polynomial
bound on the running time depends on the parameter — maximum
degree, genus, treewidth, rankwidth, or the size of the excluded
(topological) minor — in at least a linear fashion. Since the parame-
ter can be as high as linear in the size of the graph, for large values of
the parameter the running time bound of the quasi-polynomial-time
algorithm of Babai [1], which works on general graph, is prefer-
able. During the last few years, there has been several successful
attempts of bridging this gap by using the group-theoretic approach
of Babai in conjunction with structural insight about considered
graph classes. This led to algorithms with running time of the form
nPoYog(P) where p is any of the following parameters: maximum
degree [16], Euler genus [31], treewidth [38], and the size of a fixed
graph H excluded as a minor [19]. We refer to a recent survey [14]
for an excellent exposition.

A parallel line of research is to turn the aforementioned algo-
rithms into fixed-parameter algorithms for the parameters in ques-
tion. That is, instead of a running time bound of the form nf (®) for
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a computable function f and a parameter p, we would like to have
an algorithm with running time bound f(p) - n¢ for a universal
constant c. In other words, the degree of the polynomial governing
the running time bound should be independent of the parameter;
only the leading multiplicative factor may depend on it.

In this line of research, the current authors developed an FPT
algorithm for GRAPH IsoMORPHISM parameterized by treewidth [26].
This result has been subsequently improved and simplified [17],
as well as used to give a slice-wise logspace algorithm [10]. In
2015, Kawarabayashi [23] announced an FPT algorithm for GRAPH
IsomoRrpPHISM parameterized by the Euler genus of the input graph,
with a linear dependency of the running time on the input size. Very
recently, Neuen [32] proposed a different and simpler algorithm
for this case, which runs in time 20(94 logg) . n®, for some constant
c. The recent survey [14] mentions obtaining FPT algorithms with
parameterizations by the size of an excluded minor, maximum
degree, and the size of an excluded topological minor as important
open problems. (Note that the last parameter, the size of an excluded
topological minor, generalizes the other two.)

Our Contribution. In this work we essentially solve the first of
these open problems by proving the following statement.

THEOREM 1.1. There exists an algorithm that given a graph H
and an H-minor-free graph G, works in time f(H) - n9) for some
function f and outputs a canonical labeling of G.

Here, a canonical labeling of G is a labeling of the vertices of
G with labels from [|V(G)|] = {1,...,|V(G)|} so that for any two
isomorphic graphs G and G’, the mapping matching vertices with
equal labels in G and G’ is an isomorphism between G and G’. Thus,
our algorithm solves the more general CANONIZATION problems,
while GRAPH ISOMORPHISM can be solved by computing the canon-
ical labelings for both input graphs and comparing the obtained
labeled graphs.

The caveat in Theorem 1.1 is that we are not able to guarantee
that f is computable. This makes the algorithm formally fall outside
of the usual definitions of fixed-parameter tractability (see e.g. [5]),
but we still allow ourselves to call it an FPT algorithm for GRAPH
IsomoRrpHISM and CANONIZATION parameterized by the size of an
excluded minor. We stress that we obtain a single algorithm that
takes H on input, and not a different algorithm for every fixed H.

We now describe the ideas standing behind the proof of Theo-
rem 1.1. First, we need to take a closer look at the FPT algorithm
for GrarH IsomorrHISM and CANONIZATION for graphs of bounded
treewidth [17, 26]. There, the goal is to obtain an isomorphism-
invariant tree decomposition of the input graph of width bounded
in parameter; then, to test isomorphism of two graphs it suffices
to test isomorphism of such decompositions. Unfortunately, it is
actually impossible to find one such isomorphism-invariant tree
decomposition of the input graph; for instance, in a long cycle one
needs to arbitrarily break symmetry at some moment. However,
up to technical details, it suffices and is possible to find a small
isomorphism-invariant family of tree decompositions. To achieve
this goal, the algorithm of [26] heavily relies on the existing un-
derstanding of parameterized algorithms for approximating the
treewidth of a graph.
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The initial idea behind our approach is to borrow more tools
from the literature on parameterized graph separation problems, in
particular from the work on the technique of recursive understand-
ing [4, 6, 8, 24]. This work culminated in the following decomposi-
tion theorem for graphs, proved by a superset of authors.

THEOREM 1.2 ([6]). Given a graph G and an integer k, one can in
time 20 (klogk) O (1) compute a tree decomposition of G where every
adhesion is of size at most k and for every bag S the following holds: for
every separation (A, B) in G of order at most k, either |[ANS| < |[ANB|
or|BNS| < |ANB|.

The last property of Theorem 1.2 says that a bag S of the tree
decomposition cannot be broken by a separation of order at most k
into two parts that both contain a large portion of S. This property
is often called unbreakability. More formally, let us recall the notion
of a (g, k)-unbreakable set introduced in [4, 8]. Given a graph G
and integers ¢ > k > 0, we say that a set S € V(G) is (g, k)-
unbreakable if for every separation (A, B) in G of order at most k,
we have |ANS| < gor |[BNS| < q. Theorem 1.2 of [6] can be seen as
a simpler and cleaner version of an analogous result of [8], where
the bags are only guaranteed to be (g, k)-unbreakable for some ¢
bounded exponentially in k, and adhesion sizes are also bounded
only exponentially in k.

Theorem 1.2 and its predecessor from [8] have been used to
design parameterized algorithms for several graph separation prob-
lems [6, 8], most notably for MiNnIMuM BIsEcTION. In most cases,
when looking for a deletion set of size at most k, one performs
dynamic programming on the tree decomposition provided by The-
orem 1.2, where every step handling a single bag can be solved using
color-coding thanks to the unbreakability of the bag. More recent
applications include a parameterized approximation scheme for
MiN k-Curt [28], as well as algorithms and data structures for prob-
lems definable in first-order logic with connectivity predicates [33].

In this paper we propose to use the ideas behind the tree decom-
position of Theorem 1.2 in the context of GRAPH IsomoRPHISM and
CANONIZATION in order to provide a reduction to the case when
the input graph is suitably unbreakable. The next statement is a
wishful-thinking theorem that in some variant we were able to
prove, but in the end the result turned out to be too cumbersome to
use. In essence, it says the following: in FPT time one can compute a
tree decomposition with the same qualitative properties as the one
provided by Theorem 1.2, but in an isomorphism-invariant way.

“WISHFUL-THINKING STATEMENT” 1.3. There is a computable
function f and an algorithm that, given a graph G and an integer k,
in time f(k)no(1> computes an isomorphism-invariant tree decom-
position of G such that

o the sizes of adhesions are bounded by f(k); and
o every bag is either of size at most f(k) or is
(f(k), k)-unbreakable.

Instead of proving and using (a formal and correct version of)
“Theorem” 1.3, we resort to the strategy used in the earlier works,
namely recursive understanding. Here, in some sense we compute
a variant of the tree decomposition of “Theorem” 1.3 on the fly,
shrinking the already processed part of the graph into constant-size
representatives. Importantly, the run of this process is isomorphism
invariant. An overview of this approach is provided in Section 2.1,
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while the full statement and its proof will be presented in the full
version of the paper.

At first glance, “Theorem” 1.3 may seem unrelated to the setting
of graphs excluding a fixed minor. However, let us recall one of
the main results of the Graph Minor Theory, namely the Structure
Theorem for graphs excluding a fixed minor, proved by Robertson
and Seymour in [35]. Informally speaking, this statement says that
if a graph G excludes a fixed graph H as a minor, then G admits
a tree decomposition (called henceforth the RS-decomposition) in
which the sizes of adhesions are bounded in terms of H and the
torso of every bag is nearly embeddable in a surface of Euler genus
bounded in terms of H. Without going into the precise definition
of “nearly”, let us make the following observation: if we are given
an H-minor-free graph G and we apply to G the algorithm of The-
orem 1.2 with k equal to the expected bound on adhesion sizes
in an RS-decomposition, then the resulting tree decomposition
should roughly resemble the RS-decomposition. In particular, one
may expect that the “large” bags of the decomposition of Theo-
rem 1.2 should also be nearly embeddable in some sense, as (due
to unbreakability) they cannot be partitioned much finer in an
RS-decomposition whose adhesions are of size at most k.

For the GrarH IsomorPHISM and CANONIZATION problems, the
main issue now is that the output of Theorem 1.2 is not neces-
sarily isomorphism-invariant; this is where the wishful-thinking
“Theorem” 1.3 comes into play. In particular, one could expect that
the “large” bags of the decomposition of “Theorem” 1.3 would be
nearly embeddable in some sense. We are able to carry this intuition
through the recursive understanding point of view, and show the
following.

THEOREM 1.4 (SIMPLIFIED VARIANT). For every graph H there
exists a function qpr : N — N such that the following holds. Suppose
there exists an integer k and a canonization algorithm A that works
on all graphs that are H-minor-free and (qg (i), i)-unbreakable for
all i < k. Then there is also a canonization algorithm B for all
H-minor-free graphs. Furthermore, 8B can be chosen to run in time
upper bounded by g(H) - n9) plus the total time taken by at most
g(H) - n9M) invocations of A on H-minor-free graphs with no more
than n vertices, where g is some function.

The proof of Theorem 1.4 is sketched in Section 2.1. The full
version will be proved in the full version of the paper. In essence,
the full version differs from the one above in that it is uniform in
H: if there is a single algorithm A that works for all H, then there
is one resulting algorithm B that works for all H.

With Theorem 1.4 understood, it suffices to “only” provide a
CANONIZATION algorithm working on graphs that are H-minor-
free and (q(i), i)-unbreakable for all i < k. We comment here on the
quantifier order: the algorithm needs to accept any unbreakability
guarantee g, and then we have to choose the threshold k to which
this guarantee will be used based on H and g. However, both k
and the values of g (up to g(k)) can be included as parameters in
the final running time bound. That said, we prove the following
statement.

THEOREM 1.5 (SIMPLIFIED VARIANT). For every graph H and func-
tion ¢: N — N there exists a constant k and an algorithm that
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given an H-minor-free graph G with a promise that G is (q(i),)-
unbreakable for all i < k, outputs a canonical labeling of G in time
f(Zle q(i)) - nOW) where f is a computable function.

Note that Theorem 1.5 combined with Theorem 1.4 yield a non-
uniform version of Theorem 1.1. Again, the full version of Theo-
rem 1.5 is an appropriately uniform statement that together with
Theorem 1.4 proves Theorem 1.1 in full generality.

Let us now discuss the proof of Theorem 1.5. Observe that
if we set k higher than the bound on adhesion sizes in an RS-
decomposition for H-minor-free graphs, then we expect any RS-
decomposition of a (g(k), k)-unbreakable H-minor-free graph G to
have one central bag (with a nearly embeddable torso) that may be
huge, while all other bags have sizes at most q(k). Thus, it seems
natural that a procedure for CANONIZATION on nearly embeddable
graphs can be lifted to a procedure working on graphs as above.

The main step towards the proof of Theorem 1.5 is provided by
the following statement.

THEOREM 1.6 (SIMPLIFIED VERSION). For every graph H and func-
tion g: N — N there exists a constant k, computable functions
ftimes fiw» fgenus: N — N, and an algorithm that given a graph G
that is H-minor-free and (q(i), i)-unbreakable for all i < k, works in
time bounded byftime(Zf:1 q(i)) - %M and computes a partition
of V(G) = Viw W Vgenus and a nonempty family Feenus of bijections
Vgenus — [|Vgenus|] such that

(1) the partition V(G) = Viw W Vgenus is isomorphism-invariant;

(2) G[Viw] has treewidth bounded byftW(Zf:l q(i));

(3) Fgenus| < fyenus (S, ¢() -n®W; and

(4) Fgenus is isomorphism-invariant.

The statement of Theorem 1.6 is quite technical, so let us pro-
vide more intuitive explanation. We are given an H-minor-free
graph G with sufficiently strong unbreakability properties. Then
the claim is that G can be vertex-partitioned in an isomorphism-
invariant way into two parts Viy and Vgenus- The part Vgenuys is rigid
in the sense that the subgraph induced by it admits a polynomially-
sized isomorphism-invariant family of labelings. The other part
Viw may have multiple automorphisms, but the subgraph induced
by it has bounded treewidth. Informally speaking, the bounded-
treewidth part Vi always contains all the “near-” elements of a
near-embedding: vortices, apices, etc., while the rigid part Vgenus
contains the core of the embedded part; its rigidity is witnessed by
the embedding.

Theorem 1.5 follows quite easily from Theorem 1.6 combined
with the FPT canonization procedure on graphs of bounded tree-
width [26]. So the main weight of argumentation is contained in
the proof of Theorem 1.6. This proof is sketched in Section 2.2 and
will be proven formally in the full version.

Finally, let us remark that the full version of Theorem 1.4 is
stated and proved in terms of graph classes defined by forbidding
topological minors. Thus, it can be readily used also to reduce the
CANONIZATION problem on H-topological-minor-free graphs to the
same problem on suitably unbreakable H-topological-minor-free
graphs. For the latter setting, one could apply the Structure Theorem
of Grohe and Marx [13] to reason that unbreakable H-topological-
minor-free graphs are either close to being nearly embeddable
(and this case is treated in this paper), or they essentially have
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bounded maximum degree. In spirit, this reduces the problem of
finding an FPT algorithm for CANoONI1ZATION on H-topological-
minor-free graphs to the problem of finding such an algorithm on
graphs of bounded maximum degree. We refrain from expanding
this discussion in this paper, as it is tangential to the main direction
of our work.

2 OVERVIEW

2.1 Decomposition

In this section we provide an informal overview of the proof of
Theorem 1.4. For convenience, we restate Theorem 1.4 here.

Theorem 1.4 (restated, simplified variant of Theorem 1.4) For
every graph H there exists a function qy: N — N such that the
following holds. Suppose there exists an integer k and a canoniza-
tion algorithm A that works on graphs that are H-minor-free and
(qg (i), i)-unbreakable for all i < k. Then there is also a canonization
algorithm B for H-minor-free graphs. Furthermore, B runs in time
upper bounded by g(H) - noM plus the total time taken by at most
g(H) - n9W invocations of A on H-minor-free graphs with no more
than n vertices, where g is some function.

The proof of Theorem 1.4 is based on the recursive understanding
technique, pioneered in [12, 24], and explicitly defined and further
refined in [4].

We first discuss the essence of the recursive understanding tech-
nique, as it has been applied in the past, in the context of some
generic problem. Much of this discussion does not apply to CAN-
ONIZATION, but it helps motivate our approach and naturally intro-
duces the crucial notions of representatives and replacement.

Recursive understanding based algorithms proceed as follows.
Either the input graph is already (g, k)-unbreakable, then we are
already done, because the goal is to reduce the original problem
to the problem on unbreakable graphs. Otherwise there exists a
separation (A, B) of order at most k such that both A and B have size
¢, which is much bigger than k. The algorithm calls itself recursively
on G[A], and after thoroughly analyzing the graph G[A], produces
a representative G§ for it.

The representative Gﬁ is a tiny graph on at most f(k) < g
vertices, and all of the vertices of Gﬁ are new vertices that are not
present in G, except that Gﬁ shares the vertices D = A N B with G
(we will require that Gfi [D] = G[D].) The algorithm then replaces
G[A] in G with Gﬁ. This means that the algorithm removes all
vertices of A \ B from G, and attaches Gﬁ to D instead. We call the
resulting graph G*. Note that |V(G*)| < |B| + q. The algorithm
then calls itself recursively on G*, and finally lifts the solution on
G* to a solution of G.

We upper bound the running time of the algorithm by a function
T(n, k) of the number of vertices and the parameter k - the size of
the separators. T(n, k) satisfies the following recurrence.

T(n k) <S(nk)+T(AlLk) + T(|B| + f(k),k) + L(n,k) (1)
Here, S(n, k) denotes the time to find the separation (A, B) or decide
that such a separation does not exist, T(|A|, k) is the running time
of the algorithm on G[A], T(|B| + f(k),k) is the running time
of the algorithm on G*, and L(n, k) is the time it takes to lift a
solution to G* back to a solution of G. A simple recurrence analysis
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of Equation 1 shows that T(n,k) < (S(n,k) + L(n,k)) - g(k) - n.
Thus, as long as we are able to find a separator in FPT time, lift
solutions of G* back to G in FPT time, and solve the base case of
(g, k) unbreakable graphs in FPT time, we get an FPT algorithm for
the original problem.

Being able to execute the above scheme rests on a crucial prop-
erty of the relationship between the graph G[A] and the represen-
tative G[A]R that we replace it with. In particular a solution to the
reduced graph G* needs to be useful for the lifting procedure in
order to recover the solution to G. This is tricky, because the algo-
rithm needs to compute Gﬁ from G[A] without looking at G[B]. In
particular this means that the reduction from G4 to G§ has to work
for every possible G[B]. This is the reason for the name “recursive
understanding” - the procedure needs to “understand” G[A] to such
an extent that it can efficiently lift a solution of G* to a solution of
G, pretty much independently of what G* is (since only k vertices
of G[A] come from G*). This typically means that our algorithm
should not just solve the original problem, but a generalized ver-
sion of the problem that takes as input the graph G[A], together
with the set D C A, and the promise that “the rest of the graph”
will attach to G[A] (and Gﬁ) only via D. The task is to compute

sufficient information about (G[A], D) to be able to produce Gﬁ.

While this task may appear much more difficult than the original
problem, for many computational problems the “recursive under-
standing” task is no harder than the original problem in the formal
sense that an FPT algorithm for the original problem implies the
existence of an FPT algorithm for recursive understanding [27].
However no such results were previously known for GrarH Iso-
MORPHISM or CANONIZATION, and it was far from obvious that such
a statement would even be true for these problems.

The first main hurdle in applying recursive understanding for
CANONIZATION is that we need to be able to find a separation (A, B)
of order at most k and min{|A|, |B|} > qinan isomorphism invariant
way. Here, by isomorphism invariant we mean that if two graphs G
and G are isomorphic, then if we run the algorithm on G and find
a separation (A, B) of G, and on G and find a separation (A, B) of
G then every isomorphism from G to G maps A to A and B to B.
We have no idea whatsoever how to find a single separation (A, B)
of G of order at most k with min{|A|, |B|} > g (or determine that
such a separation does not exist) in an isomorphism invariant way
in FPT time. Indeed, the task of finding such a separation looks as
difficult as canonizing G.

For this reason we turn to an easier problem, finding a single
set B € V(G) in an isomorphism invariant way such that (i) B is
either small (that is has size at most f(H)), or it has some nice
properties - for example B could be (g, k)-unbreakable in G (for
some ¢ and k upper bounded by a function of H), and (ii) every
connected component C of G — B has at most k neighbors in B.

It is convenient to formalize the decomposition of G into B and
the remaining components in terms of tree decompositions. We
follow the notation of [13] for tree decompositions. We say that a
star decomposition is a tree decomposition (T, y) where T is a star
rooted at its center node b (the unique node of degree larger than 1
in T). The bags of the decomposition are the sets { y(v) : v € V(T)}
and the adhesions are the sets {o(£) = y(£)Ny(b) : £ € V(T)\{b}}.
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We will frequently need to find an isomorphism invariant star de-
composition (T, y) of G with center bag b such that B has some nice
properties, and all adhesions have size at most k. Here isomorphism
invariant means that if G and G are isomorphic with star decompo-
sitions (T, ) and (T, }) respectively, then for every isomorphism
¢ of G to G there exists an isomorphism ¢7 : V(T) — V(T) such
that for every vertex u € V(G) and node v € V(T) it holds that
u € y(v) if and only if ¢(u) € ¥(¢1(v)). Informally, every isomor-
phism ¢ that maps G to G also maps (T, y) to (T, ). We will defer
the discussion of how exactly we find such decompositions to the
end of this section, because there are many different cases, and how
exactly we find (T, y) depends on the context.

Isomorphism Invariant Recursive Understanding. We are now
ready to flesh out the overall scheme used in our algorithm. From
now on, we will assume that all parameters that we introduce are
upper bounded by some function of H, unless explicitly stated
otherwise.

We are trying to find a canonical labeling for a graph G. However,
just as in the recursive understanding scheme discussed in the
beginning of this section, our algorithm will also take as input
a distinguished set D. The interpretation is again that G is not
necessarily the entire instance that we are trying to solve, and that
the remaining “hidden” part of the instance attaches to G via D.

The first step is to compute an isomorphism invariant star decom-
position (T, y) of G with central bag b € V(T), such that B = y(b),
D C B, and B either has size upper bounded by f(H) or has some
nice properties (such as being (g, k)-unbreakable in G, or that for
every pair of vertices u, v in B there is no u-v separator of size at
most k.) Additionally we require all adhesions of (T, y) to have size
at most f(k). Once we have identified (T, y) we run the algorithm
recursively on G[ y(¢)] for every leaf £ in V(T). Having “understood”
each of the leaves we need to use this understanding to “understand”
G with distinguished set D.

At this point we need to unpack precisely what we mean by
understanding in the context of canonization. Because we know
that every automorphism of G maps (7, y) to itself we know that the
center bag of (T, y) maps to itself, while every leaf ¢ of (T, y) maps
in its entirety to itself, or to some other leaf ¢’ of (T, y). We would
like to use the “understanding” from the recursive calls in order to
determine which leaves ¢’ the leaf £ can map to. Additionally, an
automorphism of G might map ¢ to itself, but permute the vertices
of the adhesion o(f). Therefore we also need to be able to use
the “understanding” from the recursive calls to determine the set
of permutations from o(¢) to o(f) that can be completed to an
automorphism of G[ y(¢)].

It can be shown that both of these goals can be achieved if we for-
malize the “understanding” task for the leaves as follows: for every
bijection 7 : 6(£) — [|o(£)|] we need to find a canonical labeling
of G x(¢)] that coincides with 7z on o(¢). Because the distinguished
set D is actually one such o(¢) in the recursive call corresponding
to the parent of the current call in the recursion tree, the formal-
ization of the “understanding” task for G with distinguished set D
becomes to compute for every bijection  : D — [|D|] a canonical
labeling of G that coincides with & on D.

The recursive scheme (compute (T, y), understand all leaves
recursively) now leaves us with the following task. We have as
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input a graph G and vertex set D and an isomorphism invariant
star decomposition (T, y) with central bag b, such that D C y(b),
together with a set of canonical labelings

{Are: €€ V(T)\{b} and 7 : o(¢) — [|o(£)]] is a bijection}.

Here A ¢ is a canonical labeling of G[ y(¢)] that coincides with =
on o(£). The goal is to compute for every permutation 7 : D — [D]
a canonical labeling A, of G that coincides with 7 on D.

At this point some case work is in order. The easy case is when
the size of the center bag B is upper bounded by a function of H. In
this case we can proceed in a manner almost identical to a single
step of the dynamic programming step in the algorithm of [26] or
even [3]. The idea is to simply brute force over all permutations of
B.

The hard case is when B is large. In this case we need to use
the fact that B has some “nice” property. For now, let us not worry
precisely what the property is, because the next crucial step of the
algorithm works independently of it.

Unpumping and Lifting. The case when the central bag B is large
is the only step of the algorithm in which we actually employ
the “replacing a graph by its representative” part of the recursive
understanding technique. The unpumping procedure takes as input
G with a distinguished set D, (T, y), as well as the set of labelings
{Ar¢} and produces the graph G* by replacing every leaf G[ y(¢)]
with distinguished set o(¢) by representative Gf whose size is
upper bounded by a function only of k. We will shortly discuss in
more detail the properties of the representatives, but before that let
us state the properties of the unpumped graph G* that we need.

(1) (Lifting) For every permutation 7 : D — D a canonical
labeling AX of G* that coincides with 7 on D can be lifted in
polynomial time to a canonical labeling A,;, which coincides

with 7 on D, of G.
(2) (Feasibility) If G is H-minor-free then G* is H-minor-free.
(3) (Maintains Cut Properties Of B) If B is (g, k)-unbreakable

in G then B is also (g, k)-unbreakable in G*. If, for every
u,v € B there is no x-y separator of size at most k in G then

there is no such separator in G*.
(4) (Small Leaves) G* has a star decomposition (T, y*) with

the same decomposition star T as G, with y(b) = y(b) and
| x(£)| < g(k) for some function g. Remark: This function g
is possibly not computable.

Representatives for Canonization. Before proceeding to discussing
how the algorithm uses the unpumping/lifting procedure we need
to discuss how it is able to guarantee the key properties of G*.
These properties follow by how we define the representative Gf
for each leaf (G[x(¢)], o(¢)). Specifically, when we compute a rep-
resentative of £ we need to ensure that:

e (Lifting I) The isomorphism class of Gf depends only on the
isomorphism class of (G[x(¢)], o(£)).

o (Lifting II) For all permutations ¢ : 0(£) — o(f), the graph
(G x(¢)], o(¢)) has an automorphism that coincides with :
on o(?) if and only if Gf does.

o (Feasibility) Gf contains exactly the same set of minors on at
most |V (H)| vertices, and these minors intersect with o(¢)
in exactly the same way in Gf and in G[ x(¢)].
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e (Maintains Cut Properties) For every separation (L, R) of
G[o(¢)] the minimum order of a separation of G[ y(¢)] that
coincides with (L, R) on ¢(£) and the minimum order of a
separation of Gf that coincides with (L, R) on () are the
same.

e (Small Leaves) |V(Gf)| is upper bounded by a function only
of H and k, and therefore only of H.

It is fairly easy to see that the properties (Feasibility), (Maintains
Cut Properties) and (Small Leaves) of unpumping follow from the
corresponding properties of representatives. On the other hand, an
attentive reader should be worried about (Lifting) for the unpump-
ing property to follow from properties (Lifting I) and (Lifting II) of
representatives. Indeed, the graph G| y(¢)] is possibly a large graph
on up to n vertices, while the size of Gf is bounded as a function of
H. Thus, by pigeon hole principle non-isomorphic graphs G[ y(¢)]
may end up having the same representative Gf.

How can we now ensure that such leaves do not get mapped to
each other by automorphisms of G*? Well, before unpumping we
can use the canonical labelings of G[o(¢)] for every leaf ¢ to deter-
mine which leaves ¢ and ¢’ have isomorphic graphs G[o(¢)] and
G[o(£’)]. Then we encode non-isomorphism of non-isomorphic
leaves in G by assigning in G* colors to vertices in the representa-
tives so that the representatives of non-isomorphic leaves receive
distinct colors.

G* Inherits Properties of B. As we already have alluded to before,
the properties of B that we will be maintaining are either that B is
(g, k)-unbreakable in G and in G*, or even stronger, that there is
no x-y separator of size at most k in G and in G* for every pair of
vertices x, y in B.

This, together with the property (Small Leaves) can be used
to show that G* itself is (¢’, k)-unbreakable for ¢’ that is only a
function of g and the size of the leaves (in the first case), or is
is (g, k, k)-improved clique unbreakable (in the second case). Here
(g, k, k)-improved clique unbreakable means that there is no sep-
aration (L, R) of G of order at most k such that min{|L|, |R|} > q
and for every pair x, y of vertices in L N R the minimum order of an
x-y separation is at least k + 1. Thus, the good property of the bag B
in G is in an approximate sense inherited by the entire unpumped
graph G*.

Overall Scheme, Again. Our reduction from general graphs to
unbreakable graphs proceeds in two steps. In the first step we reduce
from general graphs to improved clique-unbreakable graphs, while
in the second step we reduce from improved clique-unbreakable
graphs to unbreakable graphs.

In the first step, the reduction from general graphs to improved
clique-unbreakable graphs, all we still have to do is to design an
algorithm that given a general graph G and set D, outputs an iso-
morphism invariant star decomposition (T, y) of G such that the
central bag B of (T, y) satisfies that there is no x-y separator of
size at most k in G for every pair of vertices x, y in B. If we can
achieve this, then the argument in the previous section yields that
G* is improved clique unbreakable, and we have achieved a re-
duction to improved clique unbreakable graphs. This can be done
by essentially observing that it was already done by Elberfeld and
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Schweitzer [10]. However we need to modify their algorithm to
work in FPT time rather than log space and O(nk) time.

In the second case we have (G, D) and the promise that G is
improved clique unbreakable. What we need is to find a star de-
composition (T, y) where center B is unbreakable, because then
G* will be unbreakable as desired.

Finding Next Bag in Improved Clique Unbreakable Case. Instead
of considering the (g, k, k)-improved clique unbreakable case, we
will make the simplifying assumption that G has no separator (L, R)
of order at most k, such that for every x, y in L N R the minimum
order of an x-y separation is at least k + 1.

Again we are given as input a graph G with a distinguished
vertex set D and the task is to find a isomorphism invariant star
decomposition (T, y) with central bag B such that D C B and B is
(g, k)-unbreakable in G.

There are two cases, either D is small (|D| < k) or D is large. If
D is small and there exists a pair x, y such that the minimum order
of an x-y separation in G is at most k, we can proceed in a similar
manner as the corresponding case in the algorithm of [26].

On the other hand, if D is small and no such pair exists, then D
yields precisely the type of separation in G that we just assumed
does not exist. Therefore this case does not apply. This is the only
place in the algorithm where we use the assumption that G is
(g, k, k)-improved clique unbreakable.

If B is large and breakable (there exists a separation (L, R) of
order i < min(|L N B|,|R N B|) then we can use the “notion of
stable separators” defined in [26] and make progress. Finally, when
B is large and unbreakable, we observe that the idea of important
separator extension used in designing an algorithm for MINIMUM
BisecTION [7] gives an unbreakable bag B in an isomorphism in-
variant way.

In either case we are able to find a star decomposition (T, y)
where the central bag B is either small or unbreakable. When it
is small we can brute force, while when it is big and unbreakable,
the unpumped graph G* is unbreakable and so we can solve the
problem for the unbreakable graph G* and lift the solution back to
G using the lifting algorithm. This concludes the proof sketch of
Theorem 1.4.

2.2 Canonizing Unbreakable Graphs with an
Excluded Minor

In this section we provide an intuitive overview of the proof of
Theorem 1.6. That is, given an unbreakable H-minor-free graph G,
we would like to partition the vertex set of G into a rigid part Vgenus
and a bounded-treewidth part Vi in an isomorphism-invariant
way.

To simplify the exposition, we first focus on proving Theorem 1.6
under a stronger assumption that G actually has bounded genus.
This case already allows us to show most of the key conceptual steps
used in the argument for the general case of unbreakable H-minor-
free graphs. Then, we briefly discuss traps, issues, and caveats that
arise when working in the general setting with near-embeddings
rather than embeddings.
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Graphs of Bounded Genus. In this section we sketch how to prove
the following statement, which is weaker variant of Theorem 1.6
tailored to the bounded genus case.

THEOREM 2.1. There exist computable functions feut, fiw, friime and
an algorithm A with the following specification. The algorithm A is
given as input a graph G and integers g and q with a promise that G
is of Euler genus at most g and is (g, k)-unbreakable for k = feut(g).
Then A runs in time bounded by fiime(g,q) - n%) and computes
an isomorphism-invariant partition of V(G) into Vi W Vgenus and
a nonempty isomorphism-invariant family Fgenus of size O(|E(G)|)
of bijections Vgenus > [|Vgenus|] such that G[Viw] is of treewidth at
most fiw(9) - q.

Without loss of generality assume that ¢ > k > 2. If G is of
treewidth O(q), then we can return Vgenys = 0. Hence, we assume
that the treewidth of G is much larger than q.

Consider Tutte’s decomposition of G into 3-connected compo-
nents!. Since G is (g, k)-unbreakable and has treewidth much larger
than g, it follows that there is a unique 3-connected component of
G that has more than g vertices and treewidth much larger than g,
while all the other 3-connected components are of size at most q.
The same conclusion holds for the graph G—X for any set X C V(G)
of size at most k — 2: If (A, B) is a separation of order at most 2 in
G - X, then (AU X, BU X) is a separation of order at most k in G
and, hence, either |A \ B| < g or |B\ A| < q. For any set X € V(G)
of size at most k — 2, by GX we denote the unique 3-connected
component of G — X that has more than g vertices. Note that the

treewidth assumption implies that the treewidth of G¥ is in fact
much larger than q.

Our goal is to define Vgenus so that G[Vgenus] is almost rigid
— admits only few automorphisms — and this rigidity will be de-
rived from the rigidity of embedded graphs. Observe that if IT is
an embedding of a connected graph G in some surface, then an
automorphism of (G, II) is fixed by fixing only the image of one
edge with distinguished endpoint and an indication which side of
the edge is “left” and which is “right”. This gives at most 4|E(G)|
automorphisms.

Unfortunately, a graph can have many different embeddings
in a surface of Euler genus g, even assuming it is 3-connected.
However, the number of different embeddings drops if the embed-
dings have large face-width (the minimum number of vertices on
a noncontractible face-vertex noose, i.e., a closed curve without
self-intersections):

THEOREM 2.2 ([36]). There is a function fue(g) € O(logg/loglog g)
such that if G is a 3-connected graph andII is an embedding of G of
Euler genus g and face-width at least fye(g), then g is equal to the
(minimum) Euler genus of G and 11 is the unique embedding of Euler
genus g.

The first idea would be to apply Theorem 2.2 to G? — the unique
large 3-connected component of G. That is, consider an embedding
IT of G® of minimum possible Euler genus. If the face-width of
this embedding is at least fie(g), then we may simply set Vgenus =
V(GY). Then IT is the unique embedding of G[Vgenus] of minimum

!The 3-connected components of a graph are the torsos of the bags of its Tutte’s
decomposition.

920

STOC 22, June 20-24, 2022, Rome, Italy

Euler genus, which gives rise to an isomorphism-invariant family of
at most 4|E(G)| automorphisms of G, from which a suitable family
Fgenus can be easily derived. Note that by (g, k)-unbreakability,
every connected component of G[Viw] = G — Vgenus has at most g
vertices, hence in particular G[Viy] has treewidth at most g.

However, it may happen that IT has face-width smaller than
fue(g) and Theorem 2.2 cannot be applied. But then there is a set
X1 C V(G?) of size at most fe(g) such that G® — X; has strictly
smaller Euler genus than G?. This implies that GX! has strictly
smaller Euler genus than G©.

We can iterate this process: if we take any minimum Euler genus
embedding IT; of GX1 and it turns out that IT; has small face-width,
there is a set X3 of small cardinality such that GX1YX2 has strictly
smaller Euler genus. It will be useful later to allow subsequent steps
in this process to ask for larger and larger face-width (and thus
allowing larger cut sets X3, X3, . ..). Note that the number of steps
is bounded by the Euler genus of G.

More formally, let us define a function k: {0,1,...,g9,g+1} - N
by setting k(0) = 0 and k(y + 1) = px(x(y)) for a polynomial
Pic(X) = x + fae(g) + ¢ - (x + g+ 1)*, where ¢ is a sufficiently large
constant. We set k = fout(g) = k(g +1) = pi(x(g)) € 229,

Let 0 < y < g. A set X C V(G) is a potential deletion set fory if
|X| < k(y) and the Euler genus of GX is at most g—y.Let 0 < yg < g
be the maximum integer such that there exists a potential deletion
set for yp; note that yo exists as X = 0 is a potential deletion set for
y =0.Let ko < k(o) be the minimum size of a potential deletion
set for yp. A potential deletion set for yy of size k¢ shall be called a
deletion set.

Let X be the family of all deletion sets. Let Xo = () X be the set of
those vertices of G that are contained in every deletion set; clearly
|Xo| < Kko. We define also Z := [J X to be the set of all vertices
contained in any deletion set. We remark that known algorithms for
GENUs VERTEX DELETION (e.g., [25]) can be modified to compute
Y0, Ko, X0, Z, and an arbitrary element of X in FPT time when
parameterized by g.

In this overview we assume yy < g; the case yp = g (ie., we
reach a planar graph in the end of the process described above)
can be handled very similarly, using the fact that a 3-connected
plane graphs has a unique planar embedding. By the choice of yy,
for every X € X the graph GX admits an embedding TIX of Euler
genus g—yo and face-width at least fye(g)+c- (ko +g+1)%, i.e., much
larger than both kg and fye(g). In particular, [TX has the minimum
possible Euler genus, which is g — yo, and is the unique embedding
of GX of this Euler genus.

Although it can be easily seen that the treewidth of G — V(GX)
is O(q + ko) and the uniqueness of the embedding of GX makes
its automorphism group simple, we cannot return Vgenus = V(GX),
because the choice of X € X is not isomorphism-invariant. The
crux of the approach lies in showing that the graph GZ can be
defined similarly as GX, while now Z — the union of all deletion
sets — is defined in an isomorphism-invariant way. Namely, G is
the unique large 3-connected component of G — Z, which can be
well defined despite the fact that the size of Z may be much larger
than k. Then GZ has similar embedding properties as GX, while
it turns out that G — V(G¥) still has low treewidth. Thus we can
V(G?). Intuitively, the key to proving the viability

return Vgenus
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of this strategy is to show that two elements X, X’ € X cannot
differ too much from each other, and therefore Z = (Jxcx X is
structurally not much different from every single X € X.

For X € X and w € V(G) \ X, we define the projection 7% (w) C
V(GX) as follows. If w € V(GX), then 7% (w) = {w}. Otherwise,
letting C,, be the component of G — X — V(GX) containing w, we
set 7% (w) = Ng_x (Cy). Note that |[Ng_x (C)| € {0,1,2} and if
ING_x(Cy)| = 2, then GX contains an edge connecting the two
elements of Ng_x (Cyy).

For X € X, we define the set TX of attachment points as follows.
For every v € X \ Xo, we define the set ¥ (v) of attachment points
of v as the union of 7% (u) over all u € N (v) \ X. Finally, we define
X = Ugex\x, I (0).

The first step in our analysis of X is to observe that the attach-
ment points are local in the following sense.

LEMMA 2.3 (INFORMAL STATEMENT). For every X € X, there is a
set AX C TX of size O((g + Ko + 1)%) such that TX is covered by the
union of radial balls in TIX of radius 9 centered at vertices of AX.

The proof of Lemma 2.3 goes roughly as follows: if for some
v € X the set I’ (v) cannot be covered by a small number of radial
balls, then one can pack many vertex-disjoint radial balls of radius
3 around the attachment points. Using the 3-connectivity of GX,
one can argue that these radial balls give rise to many K5 minor
models intersecting only at v. This implies v € X, a contradiction.

Using the above, we prove that any two elements of X need to
be somewhat similar, in the sense that their attachment points are
close to each other.

LEMMA 2.4 (INFORMAL STATEMENT). Consider any X, X’ € X.
Then for every w € X’ \ X, the elements of:rX(w) are within radial
distance O((g + x0)?) from AX inTIX,

For the proof of Lemma 2.4, assume there is w € X’ \ X with
7% (w) radially far from AX (and thus also far from I'X). Since « is
still significantly smaller than k, the graph GX'YX is well-defined
and it has a unique embedding IXYX" with large face-width and
of the same Euler genus g — yp. One can now argue that a big part
of the graph “between” AX and 7% (w) is embedded in the same
way in embeddings 11, X', and TXYX’ . This gives ground for
a replacement argument: if IIX is able to embed 7 (w), and the
area between 7% (w) and AX is embedded in the same way in ITX
and in ITIX", then one can modify the embedding X’ using a part
of the embedding IT¥X to obtain an embedding of GX (W} This
embedding can be turned into an embedding of G — (X’ \ {w}) of
Euler genus g — yo, contradicting the minimality of X’ € X.

With Lemma 2.4 established, we can proceed to the analysis of
Z = Uxex X. Lemma 2.4 shows that for any fixed X € X, Z \ X is
contained in O((g + kg)?) radial balls in ITX, each of radius O((g +
K0)?). First, since |X| = g, this gives a bound on the treewidth of
G[Z] using the fact that graphs of bounded genus have bounded
local treewidth — the treewidth is bounded linearly in the radial
radius. Second, it shows that GX \ Z, with the embedding inherited
from GX, still has large face-width. This allows us to define G*
as the unique 3-connected component of G — Z with Euler genus
g — yo and large face-width of the embedding.

The face-width lower bound makes the embedding of GZ unique,
imposing a very rigid structure on the automorphism group of G,
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With some technical care, the treewidth bound on G[Z] can be
lifted to a treewidth bound on G — V(G#). Since the definition of Z
is isomorphism-invariant, our definition of GZ is also isomorphism
invariant. So all requirements are satisfied to set Vgenus = V(G%)
and Vi = V(G — V(G%)). This finishes the sketch of the proof of
Theorem 2.1.

The General Case. We now discuss how the strategy presented
above can be lifted to the general case of H-minor-free graphs.
Here, the main tool will be the Structure Theorem of Robertson
and Seymour. We first need to recall some terminology.

A tangle T of order p in a graph G is a family of separations of
order less than p in G such that (i) for every separation (A, B) of
order less than p, either (A, B) or (B, A) is in 7, (ii) for every three
elements (A1, B1), (A2, B2), (A3, B3) € 7, we have A; U A U As #
V(G).If (A, B) € T, then A is the small side and B is the big side
of the separation (A, B). For a vertex subset X and a tangle 7, by
7 — X we denote the set of all separations (A, B) of G — X such
that (AU X,BU X) € 7.1t is straightforward to check that if 7
has order p > |X|, then 7 — X is a tangle of order p — |X].

Let us come back to the proof of Theorem 1.6. The threshold k
will be set later, but let us imagine for a moment that it is defined.
Then note that the unbreakability assumption on G in Theorem 1.6
allows us to define the unbreakability tangle of order k+1: the tangle
consists of all separations (A, B) of order at most k with |A| < g(k).
This defines a tangle as long as |G| > 3q(k), and otherwise we can
return Vi = V(G) and Vgenus = 0.

In the general case we will work with near-embeddings of graphs;
in this matter, we mostly follow the the notation from [9]. Given a
graph G, a near-embedding of G consists of:

(1) aset A C V(G), called the apices;

(2) a partition of the graph G — A into edge-disjoint subgraphs

k° k-
G-A=Goul| Jerul Jap
i=1 i=1

(3) an embedding IT of Gy into a (compact and connected) sur-
face >.
The following properties have to be satisfied:
(1) Every vertex of G — A that belongs to at least two subgraphs
of the partition, belongs to Gy.
(2) For every 1 < i < k%, |V(G) NV(Go)| < 3. (The graphs
GiA are henceforth called dongles.)
(3) The graphs (G; )lk: | are pairwise vertex-disjoint.
(4) Forevery 1 < i < k°, the set V(G;) NV(Gp) can be enumer-
ated as {07, .. ”U?,n'f} so that G; admits a path decomposi-
tion (B‘Zl, . ..,B2n9)lwith Uzj € B‘l.’,j for every 1 < j < n3.
The graph G; is called a vortex and the vertices o7 jare called
the society vertices of the vortex G7. The number of society
vertices, n‘i’, is the length of a vortex.
On the surface X there exist closed discs with disjoint in-
teriors (DI.A)!‘:A1 and (Dl?’)lk;1 such that IT embeds Gy into
the closure of ¥\ (Ufﬁl D} U Uf:ol Dlo) and the following
conditions hold:
e Forevery 1 < i < k%, the vertices of Gy that lie on the
boundary of D;* are exactly the vertices of V(G;*) NV (Gy).



Fixed-Parameter Tractability of Graph Isomorphism in Graphs with an Excluded Minor

e For every 1 < i < k°, the vertices of Gy that lie on the
boundary of D; are exactly the vertices of V(G}) N V(Go).
Furthermore, these vertices lie around the boundary of
D; in the order vzl, o Dzn‘;'
We say that a near-embedding & captures a tangle 7~ if for each

separation of 7~ — A, the big side of this separation is not contained

in any dongle Gl.A or in any vortex G;.

The following statement is the main structural result of the

Graph Minors series and appears as (3.1) in [35].

THEOREM 2.5. For every nonplanar graph H there exist integers
kg, agr > 0 such that for every H-minor-free graph G and every tan-
gle T of G of order at least kgr, G admits a near-embedding capturing
T~ where the number of apices, the Euler genus of the surface, the
number of vortices, and the maximum adhesion size of a vortex are
all bounded by ayy.

Thus, if we set the threshold k to be larger than kg = kg +ag +1,
then Theorem 2.5 asserts that there exists a near-embedding & of G
that captures the unbreakability tangle where the number of apices
and the maximum adhesion size of a vortex is bounded by kp. This
in particular implies that every dongle and every bag of a vortex
has size bounded by qo = q(ko).

To imitate the role of x from the bounded genus case, consider
the following refinement process. Recall that IT is the embedding
of Gy in the near-embedding &. If the face-width of II is small
(i.e., bounded by a function of qg), or if two vortices are close in
the radial distance in IT (again, meaning that the radial distance is
bounded as a function of gg), we can move all vertices appearing on
the corresponding curve on the surface to the apex set, decreasing
either the Euler genus or the number of vortices. If such a curve
passes through a vortex or a disc corresponding to a dongle, we
move also to the apex set the entire dongle or two bags of a vortex —
the ones at society vertices where the curve entered and left the disc
of a vortex. In this way we have obtained a new near-embedding
5, which uses fewer vortices or a simpler surface, but where the
number of apices has grown to at most some function of g — call
it k1. Denote g1 = q(k1) and iterate this process, as in the bounded
genus case. The number of iterations is bounded by O(ag), since
every iteration either decreases the genus or the number of vortices.
So eventually the process stops after some 1 < O(ap) iterations,
reaching a near-embedding that has at most k, apices, but has
face-width and the radial distance between vortices larger than
any function of g, fixed in advance. Here we stop; we will analyze
the family of all such near-embeddings, and call them henceforth
optimal.

Note that the argument above uses the unbreakability assump-
tion only for a bounded — in terms of ky, @y, and the function
q — initial values g. The bound on the number of those values
constitutes our threshold k.

At this moment, most of the reasoning for bounded genus can
be adjusted. First, there is a well-defined notion of universal apices:
these are vertices of G that are apices in all optimal-near embed-
dings. Then we can prove an analog of Lemma 2.3, which shows
that in every optimal near-embedding, the attachment points of
non-universal apices appear locally on the surface: up to technical
details, they can be covered by a bounded number of bounded-
radius balls. Second, leveraging on that, we prove an analog of
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Lemma 2.4: for any two optimal near-embeddings & and &, if we
additionally assume that & has inclusion-wise minimal set of ver-
tices contained in vortices, then every vertex that is an apex or is
in a vortex in &, is also either an apex of & or is close (in radial
distance) to a vortex or an attachment point of a non-universal apex
of &.

Finally, this allows us to argue the following. Define Z to be the
set of all vertices of G that can be apices or be contained in vortices
in an optimal near-embedding with an inclusion-wise minimal set
of vertices contained in vortices. Then G — Z contains a unique
3-connected component H of large treewidth. Further, any optimal
near-embedding of G as above projects to a near-embedding of H
without vortices or apices, but into the same surface and with still
large face-width. This allows us to use Theorem 2.2 to be able to
proclaim V(H) to be the Vgenys part. As before, we are left with
arguing that the graph G — Vgenys = G[Viw] has bounded treewidth.
Again, this follows from the fact that surface-embedded graphs
have locally bounded treewidth, which we use in conjunction with
the radial bounds provided by the analog of Lemma 2.4.

Note that in the plan sketched above, we cannot directly apply
Theorem 2.2 to H, as H is not a completely embeddable graph:
the near-embedding inherited from a near-embedding of G has no
apices or vortices, but still may contain dongles. To circumvent
this issue, we prove that in 3-connected graphs, the dongles can be
chosen in a canonical way so that we may essentially speak about
the unique near-embedding of H. We remark that the canonical
choice of dongles is also crucially used in the replacement argument
underlying the proof of the analog of Lemma 2.4.
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