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ABSTRACT

We prove that Graph Isomorphism and Canonization in graphs

excluding a fixed graph 𝐻 as a minor can be solved by an algo-

rithm working in time 𝑓 (𝐻 ) · 𝑛O(1) , where 𝑓 is some function.

In other words, we show that these problems are fixed-parameter

tractable when parameterized by the size of the excluded minor,

with the caveat that the bound on the running time is not necessar-

ily computable. The underlying approach is based on decomposing

the graph in a canonical way into unbreakable (intuitively, well-

connected) parts, which essentially provides a reduction to the case

where the given 𝐻 -minor-free graph is unbreakable itself. This is

complemented by an analysis of unbreakable 𝐻 -minor-free graphs,

which reveals that every such graph can be canonically decom-

posed into a part that admits few automorphisms and a part that

has bounded treewidth.
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1 INTRODUCTION

The Graph Isomorphism problem is arguably the most widely

known problem whose membership in P is unknown, but which

is not believed to be NP-hard. After decades of research, a quasi-

polynomial time algorithm was proposed by Babai in 2015 [1].

While the existence of a polynomial-time algorithm on general

graphs is still elusive, the complexity of Graph Isomorphism has

been well understood on several classes of graphs, where struc-

tural properties of graphs in question have been used to design

polynomial-time procedures solving the problem. Classic results in

this area include an 𝑛O(𝑑) -time algorithm on graphs of maximum

degree𝑑 [2, 29], a polynomial-time algorithm for planar graphs [20ś

22, 37], an 𝑛O(𝑔) -time algorithm on graphs of Euler genus 𝑔 [11, 30],

anO(𝑛𝑘+4.5)-time algorithm for graphs of treewidth𝑘 [3], an𝑛O(𝑘) -

time algorithm for graphs of rankwidth 𝑘 [15, 18], an 𝑛𝑓 ( |𝐻 |) -time

algorithm for graphs excluding a fixed graph𝐻 as a minor [34], and

an 𝑛𝑓 ( |𝐻 |) -time algorithm for graphs excluding a fixed graph 𝐻 as

a topological minor [13] (where 𝑓 is some computable function).

In all the results mentioned above, the degree of the polynomial

bound on the running time depends on the parameter Ð maximum

degree, genus, treewidth, rankwidth, or the size of the excluded

(topological) minor Ð in at least a linear fashion. Since the parame-

ter can be as high as linear in the size of the graph, for large values of

the parameter the running time bound of the quasi-polynomial-time

algorithm of Babai [1], which works on general graph, is prefer-

able. During the last few years, there has been several successful

attempts of bridging this gap by using the group-theoretic approach

of Babai in conjunction with structural insight about considered

graph classes. This led to algorithms with running time of the form

𝑛polylog(𝑝) , where 𝑝 is any of the following parameters: maximum

degree [16], Euler genus [31], treewidth [38], and the size of a fixed

graph 𝐻 excluded as a minor [19]. We refer to a recent survey [14]

for an excellent exposition.

A parallel line of research is to turn the aforementioned algo-

rithms into fixed-parameter algorithms for the parameters in ques-

tion. That is, instead of a running time bound of the form 𝑛𝑓 (𝑝) for

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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a computable function 𝑓 and a parameter 𝑝 , we would like to have

an algorithm with running time bound 𝑓 (𝑝) · 𝑛𝑐 for a universal

constant 𝑐 . In other words, the degree of the polynomial governing

the running time bound should be independent of the parameter;

only the leading multiplicative factor may depend on it.

In this line of research, the current authors developed an FPT

algorithm forGraph Isomorphism parameterized by treewidth [26].

This result has been subsequently improved and simplified [17],

as well as used to give a slice-wise logspace algorithm [10]. In

2015, Kawarabayashi [23] announced an FPT algorithm for Graph

Isomorphism parameterized by the Euler genus of the input graph,

with a linear dependency of the running time on the input size. Very

recently, Neuen [32] proposed a different and simpler algorithm

for this case, which runs in time 2O(𝑔4 log𝑔) · 𝑛𝑐 , for some constant

𝑐 . The recent survey [14] mentions obtaining FPT algorithms with

parameterizations by the size of an excluded minor, maximum

degree, and the size of an excluded topological minor as important

open problems. (Note that the last parameter, the size of an excluded

topological minor, generalizes the other two.)

Our Contribution. In this work we essentially solve the first of

these open problems by proving the following statement.

Theorem 1.1. There exists an algorithm that given a graph 𝐻

and an 𝐻 -minor-free graph 𝐺 , works in time 𝑓 (𝐻 ) · 𝑛O(1) for some

function 𝑓 and outputs a canonical labeling of 𝐺 .

Here, a canonical labeling of 𝐺 is a labeling of the vertices of

𝐺 with labels from [|𝑉 (𝐺) |] = {1, . . . , |𝑉 (𝐺) |} so that for any two

isomorphic graphs 𝐺 and 𝐺 ′, the mapping matching vertices with

equal labels in𝐺 and𝐺 ′ is an isomorphism between𝐺 and𝐺 ′. Thus,

our algorithm solves the more general Canonization problems,

while Graph Isomorphism can be solved by computing the canon-

ical labelings for both input graphs and comparing the obtained

labeled graphs.

The caveat in Theorem 1.1 is that we are not able to guarantee

that 𝑓 is computable. This makes the algorithm formally fall outside

of the usual definitions of fixed-parameter tractability (see e.g. [5]),

but we still allow ourselves to call it an FPT algorithm for Graph

Isomorphism and Canonization parameterized by the size of an

excluded minor. We stress that we obtain a single algorithm that

takes 𝐻 on input, and not a different algorithm for every fixed 𝐻 .

We now describe the ideas standing behind the proof of Theo-

rem 1.1. First, we need to take a closer look at the FPT algorithm

for Graph Isomorphism and Canonization for graphs of bounded

treewidth [17, 26]. There, the goal is to obtain an isomorphism-

invariant tree decomposition of the input graph of width bounded

in parameter; then, to test isomorphism of two graphs it suffices

to test isomorphism of such decompositions. Unfortunately, it is

actually impossible to find one such isomorphism-invariant tree

decomposition of the input graph; for instance, in a long cycle one

needs to arbitrarily break symmetry at some moment. However,

up to technical details, it suffices and is possible to find a small

isomorphism-invariant family of tree decompositions. To achieve

this goal, the algorithm of [26] heavily relies on the existing un-

derstanding of parameterized algorithms for approximating the

treewidth of a graph.

The initial idea behind our approach is to borrow more tools

from the literature on parameterized graph separation problems, in

particular from the work on the technique of recursive understand-

ing [4, 6, 8, 24]. This work culminated in the following decomposi-

tion theorem for graphs, proved by a superset of authors.

Theorem 1.2 ([6]). Given a graph 𝐺 and an integer 𝑘 , one can in

time 2O(𝑘 log𝑘)𝑛O(1) compute a tree decomposition of𝐺 where every

adhesion is of size at most𝑘 and for every bag 𝑆 the following holds: for

every separation (𝐴, 𝐵) in𝐺 of order at most 𝑘 , either |𝐴∩𝑆 | ⩽ |𝐴∩𝐵 |

or |𝐵 ∩ 𝑆 | ⩽ |𝐴 ∩ 𝐵 |.

The last property of Theorem 1.2 says that a bag 𝑆 of the tree

decomposition cannot be broken by a separation of order at most 𝑘

into two parts that both contain a large portion of 𝑆 . This property

is often called unbreakability. More formally, let us recall the notion

of a (𝑞, 𝑘)-unbreakable set introduced in [4, 8]. Given a graph 𝐺

and integers 𝑞 ⩾ 𝑘 ⩾ 0, we say that a set 𝑆 ⊆ 𝑉 (𝐺) is (𝑞, 𝑘)-

unbreakable if for every separation (𝐴, 𝐵) in 𝐺 of order at most 𝑘 ,

we have |𝐴∩𝑆 | ⩽ 𝑞 or |𝐵∩𝑆 | ⩽ 𝑞. Theorem 1.2 of [6] can be seen as

a simpler and cleaner version of an analogous result of [8], where

the bags are only guaranteed to be (𝑞, 𝑘)-unbreakable for some 𝑞

bounded exponentially in 𝑘 , and adhesion sizes are also bounded

only exponentially in 𝑘 .

Theorem 1.2 and its predecessor from [8] have been used to

design parameterized algorithms for several graph separation prob-

lems [6, 8], most notably forMinimum Bisection. In most cases,

when looking for a deletion set of size at most 𝑘 , one performs

dynamic programming on the tree decomposition provided by The-

orem 1.2, where every step handling a single bag can be solved using

color-coding thanks to the unbreakability of the bag. More recent

applications include a parameterized approximation scheme for

Min 𝑘-Cut [28], as well as algorithms and data structures for prob-

lems definable in first-order logic with connectivity predicates [33].

In this paper we propose to use the ideas behind the tree decom-

position of Theorem 1.2 in the context of Graph Isomorphism and

Canonization in order to provide a reduction to the case when

the input graph is suitably unbreakable. The next statement is a

wishful-thinking theorem that in some variant we were able to

prove, but in the end the result turned out to be too cumbersome to

use. In essence, it says the following: in FPT time one can compute a

tree decomposition with the same qualitative properties as the one

provided by Theorem 1.2, but in an isomorphism-invariant way.

łWishful-thinking Statementž 1.3. There is a computable

function 𝑓 and an algorithm that, given a graph 𝐺 and an integer 𝑘 ,

in time 𝑓 (𝑘)𝑛O(1) computes an isomorphism-invariant tree decom-

position of 𝐺 such that

• the sizes of adhesions are bounded by 𝑓 (𝑘); and

• every bag is either of size at most 𝑓 (𝑘) or is

(𝑓 (𝑘), 𝑘)-unbreakable.

Instead of proving and using (a formal and correct version of)

“Theoremž 1.3, we resort to the strategy used in the earlier works,

namely recursive understanding. Here, in some sense we compute

a variant of the tree decomposition of “Theoremž 1.3 on the fly,

shrinking the already processed part of the graph into constant-size

representatives. Importantly, the run of this process is isomorphism

invariant. An overview of this approach is provided in Section 2.1,
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while the full statement and its proof will be presented in the full

version of the paper.

At first glance, “Theoremž 1.3 may seem unrelated to the setting

of graphs excluding a fixed minor. However, let us recall one of

the main results of the Graph Minor Theory, namely the Structure

Theorem for graphs excluding a fixed minor, proved by Robertson

and Seymour in [35]. Informally speaking, this statement says that

if a graph 𝐺 excludes a fixed graph 𝐻 as a minor, then 𝐺 admits

a tree decomposition (called henceforth the RS-decomposition) in

which the sizes of adhesions are bounded in terms of 𝐻 and the

torso of every bag is nearly embeddable in a surface of Euler genus

bounded in terms of 𝐻 . Without going into the precise definition

of “nearlyž, let us make the following observation: if we are given

an 𝐻 -minor-free graph 𝐺 and we apply to 𝐺 the algorithm of The-

orem 1.2 with 𝑘 equal to the expected bound on adhesion sizes

in an RS-decomposition, then the resulting tree decomposition

should roughly resemble the RS-decomposition. In particular, one

may expect that the “largež bags of the decomposition of Theo-

rem 1.2 should also be nearly embeddable in some sense, as (due

to unbreakability) they cannot be partitioned much finer in an

RS-decomposition whose adhesions are of size at most 𝑘 .

For the Graph Isomorphism and Canonization problems, the

main issue now is that the output of Theorem 1.2 is not neces-

sarily isomorphism-invariant; this is where the wishful-thinking

“Theoremž 1.3 comes into play. In particular, one could expect that

the “largež bags of the decomposition of “Theoremž 1.3 would be

nearly embeddable in some sense. We are able to carry this intuition

through the recursive understanding point of view, and show the

following.

Theorem 1.4 (simplified variant). For every graph 𝐻 there

exists a function 𝑞𝐻 : N→ N such that the following holds. Suppose

there exists an integer 𝑘 and a canonization algorithm A that works

on all graphs that are 𝐻 -minor-free and (𝑞𝐻 (𝑖), 𝑖)-unbreakable for

all 𝑖 ⩽ 𝑘 . Then there is also a canonization algorithm B for all

𝐻 -minor-free graphs. Furthermore, B can be chosen to run in time

upper bounded by 𝑔(𝐻 ) · 𝑛O(1) plus the total time taken by at most

𝑔(𝐻 ) · 𝑛O(1) invocations of A on 𝐻 -minor-free graphs with no more

than 𝑛 vertices, where 𝑔 is some function.

The proof of Theorem 1.4 is sketched in Section 2.1. The full

version will be proved in the full version of the paper. In essence,

the full version differs from the one above in that it is uniform in

𝐻 : if there is a single algorithm A that works for all 𝐻 , then there

is one resulting algorithm B that works for all 𝐻 .

With Theorem 1.4 understood, it suffices to “onlyž provide a

Canonization algorithm working on graphs that are 𝐻 -minor-

free and (𝑞(𝑖), 𝑖)-unbreakable for all 𝑖 ⩽ 𝑘 . We comment here on the

quantifier order: the algorithm needs to accept any unbreakability

guarantee 𝑞, and then we have to choose the threshold 𝑘 to which

this guarantee will be used based on 𝐻 and 𝑞. However, both 𝑘

and the values of 𝑞 (up to 𝑞(𝑘)) can be included as parameters in

the final running time bound. That said, we prove the following

statement.

Theorem 1.5 (simplified variant). For every graph 𝐻 and func-

tion 𝑞 : N → N there exists a constant 𝑘 and an algorithm that

given an 𝐻 -minor-free graph 𝐺 with a promise that 𝐺 is (𝑞(𝑖), 𝑖)-

unbreakable for all 𝑖 ⩽ 𝑘 , outputs a canonical labeling of 𝐺 in time

𝑓 (
∑𝑘
𝑖=1 𝑞(𝑖)) · 𝑛

O(1) , where 𝑓 is a computable function.

Note that Theorem 1.5 combined with Theorem 1.4 yield a non-

uniform version of Theorem 1.1. Again, the full version of Theo-

rem 1.5 is an appropriately uniform statement that together with

Theorem 1.4 proves Theorem 1.1 in full generality.

Let us now discuss the proof of Theorem 1.5. Observe that

if we set 𝑘 higher than the bound on adhesion sizes in an RS-

decomposition for 𝐻 -minor-free graphs, then we expect any RS-

decomposition of a (𝑞(𝑘), 𝑘)-unbreakable 𝐻 -minor-free graph𝐺 to

have one central bag (with a nearly embeddable torso) that may be

huge, while all other bags have sizes at most 𝑞(𝑘). Thus, it seems

natural that a procedure for Canonization on nearly embeddable

graphs can be lifted to a procedure working on graphs as above.

The main step towards the proof of Theorem 1.5 is provided by

the following statement.

Theorem 1.6 (simplified version). For every graph 𝐻 and func-

tion 𝑞 : N → N there exists a constant 𝑘 , computable functions

𝑓time, 𝑓tw, 𝑓genus : N → N, and an algorithm that given a graph 𝐺

that is 𝐻 -minor-free and (𝑞(𝑖), 𝑖)-unbreakable for all 𝑖 ⩽ 𝑘 , works in

time bounded by 𝑓time (
∑𝑘
𝑖=1 𝑞(𝑖)) · 𝑛

O(1) and computes a partition

of 𝑉 (𝐺) = 𝑉tw ⊎𝑉genus and a nonempty family Fgenus of bijections

𝑉genus ↦→ [|𝑉genus |] such that

(1) the partition 𝑉 (𝐺) = 𝑉tw ⊎𝑉genus is isomorphism-invariant;

(2) 𝐺 [𝑉tw] has treewidth bounded by 𝑓tw (
∑𝑘
𝑖=1 𝑞(𝑖));

(3) |Fgenus | ⩽ 𝑓genus (
∑𝑘
𝑖=1 𝑞(𝑖)) · 𝑛

O(1) ; and

(4) Fgenus is isomorphism-invariant.

The statement of Theorem 1.6 is quite technical, so let us pro-

vide more intuitive explanation. We are given an 𝐻 -minor-free

graph 𝐺 with sufficiently strong unbreakability properties. Then

the claim is that 𝐺 can be vertex-partitioned in an isomorphism-

invariant way into two parts𝑉tw and𝑉genus. The part𝑉genus is rigid

in the sense that the subgraph induced by it admits a polynomially-

sized isomorphism-invariant family of labelings. The other part

𝑉tw may have multiple automorphisms, but the subgraph induced

by it has bounded treewidth. Informally speaking, the bounded-

treewidth part 𝑉tw always contains all the “near-ž elements of a

near-embedding: vortices, apices, etc., while the rigid part 𝑉genus
contains the core of the embedded part; its rigidity is witnessed by

the embedding.

Theorem 1.5 follows quite easily from Theorem 1.6 combined

with the FPT canonization procedure on graphs of bounded tree-

width [26]. So the main weight of argumentation is contained in

the proof of Theorem 1.6. This proof is sketched in Section 2.2 and

will be proven formally in the full version.

Finally, let us remark that the full version of Theorem 1.4 is

stated and proved in terms of graph classes defined by forbidding

topological minors. Thus, it can be readily used also to reduce the

Canonization problem on 𝐻 -topological-minor-free graphs to the

same problem on suitably unbreakable 𝐻 -topological-minor-free

graphs. For the latter setting, one could apply the Structure Theorem

of Grohe and Marx [13] to reason that unbreakable 𝐻 -topological-

minor-free graphs are either close to being nearly embeddable

(and this case is treated in this paper), or they essentially have
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bounded maximum degree. In spirit, this reduces the problem of

finding an FPT algorithm for Canonization on 𝐻 -topological-

minor-free graphs to the problem of finding such an algorithm on

graphs of bounded maximum degree. We refrain from expanding

this discussion in this paper, as it is tangential to the main direction

of our work.

2 OVERVIEW

2.1 Decomposition

In this section we provide an informal overview of the proof of

Theorem 1.4. For convenience, we restate Theorem 1.4 here.

Theorem 1.4 (restated, simplified variant of Theorem 1.4) For

every graph 𝐻 there exists a function 𝑞𝐻 : N → N such that the

following holds. Suppose there exists an integer 𝑘 and a canoniza-

tion algorithm A that works on graphs that are 𝐻 -minor-free and

(𝑞𝐻 (𝑖), 𝑖)-unbreakable for all 𝑖 ⩽ 𝑘 . Then there is also a canonization

algorithm B for 𝐻 -minor-free graphs. Furthermore, B runs in time

upper bounded by 𝑔(𝐻 ) · 𝑛O(1) plus the total time taken by at most

𝑔(𝐻 ) · 𝑛O(1) invocations of A on 𝐻 -minor-free graphs with no more

than 𝑛 vertices, where 𝑔 is some function.

The proof of Theorem 1.4 is based on the recursive understanding

technique, pioneered in [12, 24], and explicitly defined and further

refined in [4].

We first discuss the essence of the recursive understanding tech-

nique, as it has been applied in the past, in the context of some

generic problem. Much of this discussion does not apply to Can-

onization, but it helps motivate our approach and naturally intro-

duces the crucial notions of representatives and replacement.

Recursive understanding based algorithms proceed as follows.

Either the input graph is already (𝑞, 𝑘)-unbreakable, then we are

already done, because the goal is to reduce the original problem

to the problem on unbreakable graphs. Otherwise there exists a

separation (𝐴, 𝐵) of order at most 𝑘 such that both𝐴 and 𝐵 have size

𝑞, which is much bigger than𝑘 . The algorithm calls itself recursively

on𝐺 [𝐴], and after thoroughly analyzing the graph𝐺 [𝐴], produces

a representative 𝐺𝑅
𝐴
for it.

The representative 𝐺𝑅
𝐴
is a tiny graph on at most 𝑓 (𝑘) < 𝑞

vertices, and all of the vertices of 𝐺𝑅
𝐴
are new vertices that are not

present in 𝐺 , except that 𝐺𝑅
𝐴
shares the vertices 𝐷 = 𝐴 ∩ 𝐵 with 𝐺

(we will require that 𝐺𝑅
𝐴
[𝐷] = 𝐺 [𝐷].) The algorithm then replaces

𝐺 [𝐴] in 𝐺 with 𝐺𝑅
𝐴
. This means that the algorithm removes all

vertices of 𝐴 \ 𝐵 from 𝐺 , and attaches 𝐺𝑅
𝐴
to 𝐷 instead. We call the

resulting graph 𝐺★. Note that |𝑉 (𝐺★) | ⩽ |𝐵 | + 𝑞. The algorithm

then calls itself recursively on 𝐺★, and finally lifts the solution on

𝐺★ to a solution of 𝐺 .

We upper bound the running time of the algorithm by a function

𝑇 (𝑛, 𝑘) of the number of vertices and the parameter 𝑘 - the size of

the separators. 𝑇 (𝑛, 𝑘) satisfies the following recurrence.

𝑇 (𝑛, 𝑘) ⩽ 𝑆 (𝑛, 𝑘) +𝑇 ( |𝐴|, 𝑘) +𝑇 ( |𝐵 | + 𝑓 (𝑘), 𝑘) + 𝐿(𝑛, 𝑘) (1)

Here, 𝑆 (𝑛, 𝑘) denotes the time to find the separation (𝐴, 𝐵) or decide

that such a separation does not exist, 𝑇 ( |𝐴|, 𝑘) is the running time

of the algorithm on 𝐺 [𝐴], 𝑇 ( |𝐵 | + 𝑓 (𝑘), 𝑘) is the running time

of the algorithm on 𝐺★, and 𝐿(𝑛, 𝑘) is the time it takes to lift a

solution to𝐺★ back to a solution of𝐺 . A simple recurrence analysis

of Equation 1 shows that 𝑇 (𝑛, 𝑘) ⩽ (𝑆 (𝑛, 𝑘) + 𝐿(𝑛, 𝑘)) · 𝑔(𝑘) · 𝑛.

Thus, as long as we are able to find a separator in FPT time, lift

solutions of 𝐺★ back to 𝐺 in FPT time, and solve the base case of

(𝑞, 𝑘) unbreakable graphs in FPT time, we get an FPT algorithm for

the original problem.

Being able to execute the above scheme rests on a crucial prop-

erty of the relationship between the graph 𝐺 [𝐴] and the represen-

tative 𝐺 [𝐴]𝑅 that we replace it with. In particular a solution to the

reduced graph 𝐺★ needs to be useful for the lifting procedure in

order to recover the solution to 𝐺 . This is tricky, because the algo-

rithm needs to compute𝐺𝑅
𝐴
from𝐺 [𝐴] without looking at𝐺 [𝐵]. In

particular this means that the reduction from𝐺𝐴 to𝐺𝑅
𝐴
has to work

for every possible𝐺 [𝐵]. This is the reason for the name “recursive

understandingž - the procedure needs to “understandž𝐺 [𝐴] to such

an extent that it can efficiently lift a solution of 𝐺★ to a solution of

𝐺 , pretty much independently of what 𝐺★ is (since only 𝑘 vertices

of 𝐺 [𝐴] come from 𝐺★). This typically means that our algorithm

should not just solve the original problem, but a generalized ver-

sion of the problem that takes as input the graph 𝐺 [𝐴], together

with the set 𝐷 ⊆ 𝐴, and the promise that “the rest of the graphž

will attach to 𝐺 [𝐴] (and 𝐺𝑅
𝐴
) only via 𝐷 . The task is to compute

sufficient information about (𝐺 [𝐴], 𝐷) to be able to produce 𝐺𝑅
𝐴
.

While this task may appear much more difficult than the original

problem, for many computational problems the “recursive under-

standingž task is no harder than the original problem in the formal

sense that an FPT algorithm for the original problem implies the

existence of an FPT algorithm for recursive understanding [27].

However no such results were previously known for Graph Iso-

morphism or Canonization, and it was far from obvious that such

a statement would even be true for these problems.

The first main hurdle in applying recursive understanding for

Canonization is that we need to be able to find a separation (𝐴, 𝐵)

of order at most𝑘 andmin{|𝐴|, |𝐵 |} > 𝑞 in an isomorphism invariant

way. Here, by isomorphism invariant we mean that if two graphs𝐺

and 𝐺 are isomorphic, then if we run the algorithm on 𝐺 and find

a separation (𝐴, 𝐵) of 𝐺 , and on 𝐺 , and find a separation (𝐴, 𝐵̂) of

𝐺 then every isomorphism from 𝐺 to 𝐺 maps 𝐴 to 𝐴 and 𝐵 to 𝐵̂.

We have no idea whatsoever how to find a single separation (𝐴, 𝐵)

of 𝐺 of order at most 𝑘 with min{|𝐴|, |𝐵 |} ⩾ 𝑞 (or determine that

such a separation does not exist) in an isomorphism invariant way

in FPT time. Indeed, the task of finding such a separation looks as

difficult as canonizing 𝐺 .

For this reason we turn to an easier problem, finding a single

set 𝐵 ⊆ 𝑉 (𝐺) in an isomorphism invariant way such that (i) 𝐵 is

either small (that is has size at most 𝑓 (𝐻 )), or it has some nice

properties - for example 𝐵 could be (𝑞, 𝑘)-unbreakable in 𝐺 (for

some 𝑞 and 𝑘 upper bounded by a function of 𝐻 ), and (ii) every

connected component 𝐶 of 𝐺 − 𝐵 has at most 𝑘 neighbors in 𝐵.

It is convenient to formalize the decomposition of 𝐺 into 𝐵 and

the remaining components in terms of tree decompositions. We

follow the notation of [13] for tree decompositions. We say that a

star decomposition is a tree decomposition (𝑇, 𝜒) where 𝑇 is a star

rooted at its center node 𝑏 (the unique node of degree larger than 1

in𝑇 ). The bags of the decomposition are the sets {𝜒 (𝑣) : 𝑣 ∈ 𝑉 (𝑇 )}

and the adhesions are the sets {𝜎 (ℓ) = 𝜒 (ℓ) ∩ 𝜒 (𝑏) : ℓ ∈ 𝑉 (𝑇 ) \ {𝑏}}.
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Wewill frequently need to find an isomorphism invariant star de-

composition (𝑇, 𝜒) of𝐺 with center bag 𝑏 such that 𝐵 has some nice

properties, and all adhesions have size at most 𝑘 . Here isomorphism

invariant means that if𝐺 and𝐺 are isomorphic with star decompo-

sitions (𝑇, 𝜒) and (𝑇, 𝜒) respectively, then for every isomorphism

𝜙 of 𝐺 to 𝐺 there exists an isomorphism 𝜙𝑇 : 𝑉 (𝑇 ) → 𝑉 (𝑇 ) such

that for every vertex 𝑢 ∈ 𝑉 (𝐺) and node 𝑣 ∈ 𝑉 (𝑇 ) it holds that

𝑢 ∈ 𝜒 (𝑣) if and only if 𝜙 (𝑢) ∈ 𝜒 (𝜙𝑇 (𝑣)). Informally, every isomor-

phism 𝜙 that maps 𝐺 to 𝐺 also maps (𝑇, 𝜒) to (𝑇, 𝜒). We will defer

the discussion of how exactly we find such decompositions to the

end of this section, because there are many different cases, and how

exactly we find (𝑇, 𝜒) depends on the context.

Isomorphism Invariant Recursive Understanding. We are now

ready to flesh out the overall scheme used in our algorithm. From

now on, we will assume that all parameters that we introduce are

upper bounded by some function of 𝐻 , unless explicitly stated

otherwise.

We are trying to find a canonical labeling for a graph𝐺 . However,

just as in the recursive understanding scheme discussed in the

beginning of this section, our algorithm will also take as input

a distinguished set 𝐷 . The interpretation is again that 𝐺 is not

necessarily the entire instance that we are trying to solve, and that

the remaining “hiddenž part of the instance attaches to 𝐺 via 𝐷 .

The first step is to compute an isomorphism invariant star decom-

position (𝑇, 𝜒) of 𝐺 with central bag 𝑏 ∈ 𝑉 (𝑇 ), such that 𝐵 = 𝜒 (𝑏),

𝐷 ⊆ 𝐵, and 𝐵 either has size upper bounded by 𝑓 (𝐻 ) or has some

nice properties (such as being (𝑞, 𝑘)-unbreakable in 𝐺 , or that for

every pair of vertices 𝑢, 𝑣 in 𝐵 there is no 𝑢-𝑣 separator of size at

most 𝑘 .) Additionally we require all adhesions of (𝑇, 𝜒) to have size

at most 𝑓 (𝑘). Once we have identified (𝑇, 𝜒) we run the algorithm

recursively on𝐺 [𝜒 (ℓ)] for every leaf ℓ in𝑉 (𝑇 ). Having “understoodž

each of the leaves we need to use this understanding to “understandž

𝐺 with distinguished set 𝐷 .

At this point we need to unpack precisely what we mean by

understanding in the context of canonization. Because we know

that every automorphism of𝐺 maps (𝑇, 𝜒) to itself we know that the

center bag of (𝑇, 𝜒) maps to itself, while every leaf ℓ of (𝑇, 𝜒) maps

in its entirety to itself, or to some other leaf ℓ ′ of (𝑇, 𝜒). We would

like to use the “understandingž from the recursive calls in order to

determine which leaves ℓ ′ the leaf ℓ can map to. Additionally, an

automorphism of 𝐺 might map ℓ to itself, but permute the vertices

of the adhesion 𝜎 (ℓ). Therefore we also need to be able to use

the “understandingž from the recursive calls to determine the set

of permutations from 𝜎 (ℓ) to 𝜎 (ℓ) that can be completed to an

automorphism of 𝐺 [𝜒 (ℓ)].

It can be shown that both of these goals can be achieved if we for-

malize the “understandingž task for the leaves as follows: for every

bijection 𝜋 : 𝜎 (ℓ) → [|𝜎 (ℓ) |] we need to find a canonical labeling

of𝐺 [𝜒 (ℓ)] that coincides with 𝜋 on 𝜎 (ℓ). Because the distinguished

set 𝐷 is actually one such 𝜎 (ℓ) in the recursive call corresponding

to the parent of the current call in the recursion tree, the formal-

ization of the “understandingž task for 𝐺 with distinguished set 𝐷

becomes to compute for every bijection 𝜋 : 𝐷 → [|𝐷 |] a canonical

labeling of 𝐺 that coincides with 𝜋 on 𝐷 .

The recursive scheme (compute (𝑇, 𝜒), understand all leaves

recursively) now leaves us with the following task. We have as

input a graph 𝐺 and vertex set 𝐷 and an isomorphism invariant

star decomposition (𝑇, 𝜒) with central bag 𝑏, such that 𝐷 ⊆ 𝜒 (𝑏),

together with a set of canonical labelings

{𝜆𝜋,ℓ : ℓ ∈ 𝑉 (𝑇 ) \ {𝑏} and 𝜋 : 𝜎 (ℓ) → [|𝜎 (ℓ) |] is a bijection}.

Here 𝜆𝜋,ℓ is a canonical labeling of𝐺 [𝜒 (ℓ)] that coincides with 𝜋

on 𝜎 (ℓ). The goal is to compute for every permutation 𝜋 : 𝐷 → [𝐷]

a canonical labeling 𝜆𝜋 of 𝐺 that coincides with 𝜋 on 𝐷 .

At this point some case work is in order. The easy case is when

the size of the center bag 𝐵 is upper bounded by a function of 𝐻 . In

this case we can proceed in a manner almost identical to a single

step of the dynamic programming step in the algorithm of [26] or

even [3]. The idea is to simply brute force over all permutations of

𝐵.

The hard case is when 𝐵 is large. In this case we need to use

the fact that 𝐵 has some “nicež property. For now, let us not worry

precisely what the property is, because the next crucial step of the

algorithm works independently of it.

Unpumping and Lifting. The case when the central bag 𝐵 is large

is the only step of the algorithm in which we actually employ

the “replacing a graph by its representativež part of the recursive

understanding technique. The unpumping procedure takes as input

𝐺 with a distinguished set 𝐷 , (𝑇, 𝜒), as well as the set of labelings

{𝜆𝜋,ℓ } and produces the graph 𝐺★ by replacing every leaf 𝐺 [𝜒 (ℓ)]

with distinguished set 𝜎 (ℓ) by representative 𝐺𝑅
ℓ whose size is

upper bounded by a function only of 𝑘 . We will shortly discuss in

more detail the properties of the representatives, but before that let

us state the properties of the unpumped graph 𝐺★ that we need.

(1) (Lifting) For every permutation 𝜋 : 𝐷 → 𝐷 a canonical

labeling 𝜆★𝜋 of𝐺★ that coincides with 𝜋 on 𝐷 can be lifted in

polynomial time to a canonical labeling 𝜆𝜋 , which coincides

with 𝜋 on 𝐷 , of 𝐺 .
(2) (Feasibility) If 𝐺 is 𝐻 -minor-free then 𝐺★ is 𝐻 -minor-free.
(3) (Maintains Cut Properties Of 𝐵) If 𝐵 is (𝑞, 𝑘)-unbreakable

in 𝐺 then 𝐵 is also (𝑞, 𝑘)-unbreakable in 𝐺★. If, for every

𝑢, 𝑣 ∈ 𝐵 there is no 𝑥-𝑦 separator of size at most 𝑘 in 𝐺 then

there is no such separator in 𝐺★.
(4) (Small Leaves) 𝐺★ has a star decomposition (𝑇, 𝜒★) with

the same decomposition star 𝑇 as 𝐺 , with 𝜒 (𝑏) = 𝜒 (𝑏) and

|𝜒 (ℓ) | ⩽ 𝑔(𝑘) for some function 𝑔. Remark: This function 𝑔

is possibly not computable.

Representatives for Canonization. Before proceeding to discussing

how the algorithm uses the unpumping/lifting procedure we need

to discuss how it is able to guarantee the key properties of 𝐺★.

These properties follow by how we define the representative 𝐺𝑅
ℓ

for each leaf (𝐺 [𝜒 (ℓ)], 𝜎 (ℓ)). Specifically, when we compute a rep-

resentative of ℓ we need to ensure that:

• (Lifting I) The isomorphism class of𝐺𝑅
ℓ depends only on the

isomorphism class of (𝐺 [𝜒 (ℓ)], 𝜎 (ℓ)).

• (Lifting II) For all permutations 𝜄 : 𝜎 (ℓ) → 𝜎 (ℓ), the graph

(𝐺 [𝜒 (ℓ)], 𝜎 (ℓ)) has an automorphism that coincides with 𝜄

on 𝜎 (ℓ) if and only if 𝐺𝑅
ℓ does.

• (Feasibility)𝐺𝑅
ℓ contains exactly the same set of minors on at

most |𝑉 (𝐻 ) | vertices, and these minors intersect with 𝜎 (ℓ)

in exactly the same way in 𝐺𝑅
ℓ and in 𝐺 [𝜒 (ℓ)].
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• (Maintains Cut Properties) For every separation (𝐿, 𝑅) of

𝐺 [𝜎 (ℓ)] the minimum order of a separation of 𝐺 [𝜒 (ℓ)] that

coincides with (𝐿, 𝑅) on 𝜎 (ℓ) and the minimum order of a

separation of 𝐺𝑅
ℓ that coincides with (𝐿, 𝑅) on 𝜎 (ℓ) are the

same.

• (Small Leaves) |𝑉 (𝐺𝑅
ℓ ) | is upper bounded by a function only

of 𝐻 and 𝑘 , and therefore only of 𝐻 .

It is fairly easy to see that the properties (Feasibility), (Maintains

Cut Properties) and (Small Leaves) of unpumping follow from the

corresponding properties of representatives. On the other hand, an

attentive reader should be worried about (Lifting) for the unpump-

ing property to follow from properties (Lifting I) and (Lifting II) of

representatives. Indeed, the graph𝐺 [𝜒 (ℓ)] is possibly a large graph

on up to 𝑛 vertices, while the size of𝐺𝑅
ℓ is bounded as a function of

𝐻 . Thus, by pigeon hole principle non-isomorphic graphs 𝐺 [𝜒 (ℓ)]

may end up having the same representative 𝐺𝑅
ℓ .

How can we now ensure that such leaves do not get mapped to

each other by automorphisms of 𝐺★? Well, before unpumping we

can use the canonical labelings of 𝐺 [𝜎 (ℓ)] for every leaf ℓ to deter-

mine which leaves ℓ and ℓ ′ have isomorphic graphs 𝐺 [𝜎 (ℓ)] and

𝐺 [𝜎 (ℓ ′)]. Then we encode non-isomorphism of non-isomorphic

leaves in 𝐺 by assigning in 𝐺★ colors to vertices in the representa-

tives so that the representatives of non-isomorphic leaves receive

distinct colors.

𝐺★ Inherits Properties of 𝐵. As we already have alluded to before,

the properties of 𝐵 that we will be maintaining are either that 𝐵 is

(𝑞, 𝑘)-unbreakable in 𝐺 and in 𝐺★, or even stronger, that there is

no 𝑥-𝑦 separator of size at most 𝑘 in 𝐺 and in 𝐺★ for every pair of

vertices 𝑥 , 𝑦 in 𝐵.

This, together with the property (Small Leaves) can be used

to show that 𝐺★ itself is (𝑞′, 𝑘)-unbreakable for 𝑞′ that is only a

function of 𝑞 and the size of the leaves (in the first case), or is

is (𝑞, 𝑘, 𝑘)-improved clique unbreakable (in the second case). Here

(𝑞, 𝑘, 𝑘)-improved clique unbreakable means that there is no sep-

aration (𝐿, 𝑅) of 𝐺 of order at most 𝑘 such that min{|𝐿 |, |𝑅 |} ⩾ 𝑞

and for every pair 𝑥 , 𝑦 of vertices in 𝐿 ∩𝑅 the minimum order of an

𝑥-𝑦 separation is at least 𝑘 + 1. Thus, the good property of the bag 𝐵

in 𝐺 is in an approximate sense inherited by the entire unpumped

graph 𝐺★.

Overall Scheme, Again. Our reduction from general graphs to

unbreakable graphs proceeds in two steps. In the first stepwe reduce

from general graphs to improved clique-unbreakable graphs, while

in the second step we reduce from improved clique-unbreakable

graphs to unbreakable graphs.

In the first step, the reduction from general graphs to improved

clique-unbreakable graphs, all we still have to do is to design an

algorithm that given a general graph 𝐺 and set 𝐷 , outputs an iso-

morphism invariant star decomposition (𝑇, 𝜒) of 𝐺 such that the

central bag 𝐵 of (𝑇, 𝜒) satisfies that there is no 𝑥-𝑦 separator of

size at most 𝑘 in 𝐺 for every pair of vertices 𝑥 , 𝑦 in 𝐵. If we can

achieve this, then the argument in the previous section yields that

𝐺★ is improved clique unbreakable, and we have achieved a re-

duction to improved clique unbreakable graphs. This can be done

by essentially observing that it was already done by Elberfeld and

Schweitzer [10]. However we need to modify their algorithm to

work in FPT time rather than log space and 𝑂 (𝑛𝑘 ) time.

In the second case we have (𝐺, 𝐷) and the promise that 𝐺 is

improved clique unbreakable. What we need is to find a star de-

composition (𝑇, 𝜒) where center 𝐵 is unbreakable, because then

𝐺★ will be unbreakable as desired.

Finding Next Bag in Improved Clique Unbreakable Case. Instead

of considering the (𝑞, 𝑘, 𝑘)-improved clique unbreakable case, we

will make the simplifying assumption that𝐺 has no separator (𝐿, 𝑅)

of order at most 𝑘 , such that for every 𝑥 , 𝑦 in 𝐿 ∩ 𝑅 the minimum

order of an 𝑥-𝑦 separation is at least 𝑘 + 1.

Again we are given as input a graph 𝐺 with a distinguished

vertex set 𝐷 and the task is to find a isomorphism invariant star

decomposition (𝑇, 𝜒) with central bag 𝐵 such that 𝐷 ⊆ 𝐵 and 𝐵 is

(𝑞, 𝑘)-unbreakable in 𝐺 .

There are two cases, either 𝐷 is small (|𝐷 | ⩽ 𝑘) or 𝐷 is large. If

𝐷 is small and there exists a pair 𝑥 , 𝑦 such that the minimum order

of an 𝑥-𝑦 separation in 𝐺 is at most 𝑘 , we can proceed in a similar

manner as the corresponding case in the algorithm of [26].

On the other hand, if 𝐷 is small and no such pair exists, then 𝐷

yields precisely the type of separation in 𝐺 that we just assumed

does not exist. Therefore this case does not apply. This is the only

place in the algorithm where we use the assumption that 𝐺 is

(𝑞, 𝑘, 𝑘)-improved clique unbreakable.

If 𝐵 is large and breakable (there exists a separation (𝐿, 𝑅) of

order 𝑖 < min( |𝐿 ∩ 𝐵 |, |𝑅 ∩ 𝐵 |) then we can use the “notion of

stable separatorsž defined in [26] and make progress. Finally, when

𝐵 is large and unbreakable, we observe that the idea of important

separator extension used in designing an algorithm forMinimum

Bisection [7] gives an unbreakable bag 𝐵 in an isomorphism in-

variant way.

In either case we are able to find a star decomposition (𝑇, 𝜒)

where the central bag 𝐵 is either small or unbreakable. When it

is small we can brute force, while when it is big and unbreakable,

the unpumped graph 𝐺★ is unbreakable and so we can solve the

problem for the unbreakable graph𝐺★ and lift the solution back to

𝐺 using the lifting algorithm. This concludes the proof sketch of

Theorem 1.4.

2.2 Canonizing Unbreakable Graphs with an
Excluded Minor

In this section we provide an intuitive overview of the proof of

Theorem 1.6. That is, given an unbreakable 𝐻 -minor-free graph𝐺 ,

we would like to partition the vertex set of𝐺 into a rigid part𝑉genus
and a bounded-treewidth part 𝑉tw in an isomorphism-invariant

way.

To simplify the exposition, we first focus on proving Theorem 1.6

under a stronger assumption that 𝐺 actually has bounded genus.

This case already allows us to showmost of the key conceptual steps

used in the argument for the general case of unbreakable 𝐻 -minor-

free graphs. Then, we briefly discuss traps, issues, and caveats that

arise when working in the general setting with near-embeddings

rather than embeddings.
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Graphs of Bounded Genus. In this section we sketch how to prove

the following statement, which is weaker variant of Theorem 1.6

tailored to the bounded genus case.

Theorem 2.1. There exist computable functions 𝑓cut, 𝑓tw, 𝑓time and

an algorithm A with the following specification. The algorithm A is

given as input a graph 𝐺 and integers 𝑔 and 𝑞 with a promise that 𝐺

is of Euler genus at most 𝑔 and is (𝑞, 𝑘)-unbreakable for 𝑘 = 𝑓cut (𝑔).

Then A runs in time bounded by 𝑓time (𝑔, 𝑞) · 𝑛
O(1) and computes

an isomorphism-invariant partition of 𝑉 (𝐺) into 𝑉tw ⊎𝑉genus and

a nonempty isomorphism-invariant family Fgenus of size O(|𝐸 (𝐺) |)

of bijections 𝑉genus ↦→ [|𝑉genus |] such that 𝐺 [𝑉tw] is of treewidth at

most 𝑓tw (𝑔) · 𝑞.

Without loss of generality assume that 𝑞 ⩾ 𝑘 ⩾ 2. If 𝐺 is of

treewidth O(𝑞), then we can return 𝑉genus = ∅. Hence, we assume

that the treewidth of 𝐺 is much larger than 𝑞.

Consider Tutte’s decomposition of𝐺 into 3-connected compo-

nents1. Since𝐺 is (𝑞, 𝑘)-unbreakable and has treewidth much larger

than 𝑞, it follows that there is a unique 3-connected component of

𝐺 that has more than 𝑞 vertices and treewidth much larger than 𝑞,

while all the other 3-connected components are of size at most 𝑞.

The same conclusion holds for the graph𝐺−𝑋 for any set𝑋 ⊆ 𝑉 (𝐺)

of size at most 𝑘 − 2: If (𝐴, 𝐵) is a separation of order at most 2 in

𝐺 − 𝑋 , then (𝐴 ∪ 𝑋, 𝐵 ∪ 𝑋 ) is a separation of order at most 𝑘 in 𝐺

and, hence, either |𝐴 \ 𝐵 | ⩽ 𝑞 or |𝐵 \𝐴| ⩽ 𝑞. For any set 𝑋 ⊆ 𝑉 (𝐺)

of size at most 𝑘 − 2, by 𝐺𝑋 we denote the unique 3-connected

component of 𝐺 − 𝑋 that has more than 𝑞 vertices. Note that the

treewidth assumption implies that the treewidth of 𝐺𝑋 is in fact

much larger than 𝑞.

Our goal is to define 𝑉genus so that 𝐺 [𝑉genus] is almost rigid

Ð admits only few automorphisms Ð and this rigidity will be de-

rived from the rigidity of embedded graphs. Observe that if Π is

an embedding of a connected graph 𝐺 in some surface, then an

automorphism of (𝐺,Π) is fixed by fixing only the image of one

edge with distinguished endpoint and an indication which side of

the edge is “leftž and which is “rightž. This gives at most 4|𝐸 (𝐺) |

automorphisms.

Unfortunately, a graph can have many different embeddings

in a surface of Euler genus 𝑔, even assuming it is 3-connected.

However, the number of different embeddings drops if the embed-

dings have large face-width (the minimum number of vertices on

a noncontractible face-vertex noose, i.e., a closed curve without

self-intersections):

Theorem 2.2 ([36]). There is a function 𝑓ue (𝑔) ∈ O(log𝑔/log log𝑔)

such that if 𝐺 is a 3-connected graph and Π is an embedding of 𝐺 of

Euler genus 𝑔 and face-width at least 𝑓ue (𝑔), then 𝑔 is equal to the

(minimum) Euler genus of 𝐺 and Π is the unique embedding of Euler

genus 𝑔.

The first idea would be to apply Theorem 2.2 to𝐺 ∅ Ð the unique

large 3-connected component of𝐺 . That is, consider an embedding

Π of 𝐺 ∅ of minimum possible Euler genus. If the face-width of

this embedding is at least 𝑓ue (𝑔), then we may simply set 𝑉genus =

𝑉 (𝐺 ∅). Then Π is the unique embedding of𝐺 [𝑉genus] of minimum

1The 3-connected components of a graph are the torsos of the bags of its Tutte’s
decomposition.

Euler genus, which gives rise to an isomorphism-invariant family of

at most 4|𝐸 (𝐺) | automorphisms of 𝐺 , from which a suitable family

Fgenus can be easily derived. Note that by (𝑞, 𝑘)-unbreakability,

every connected component of 𝐺 [𝑉tw] = 𝐺 −𝑉genus has at most 𝑞

vertices, hence in particular 𝐺 [𝑉tw] has treewidth at most 𝑞.

However, it may happen that Π has face-width smaller than

𝑓ue (𝑔) and Theorem 2.2 cannot be applied. But then there is a set

𝑋1 ⊆ 𝑉 (𝐺 ∅) of size at most 𝑓ue (𝑔) such that 𝐺 ∅ − 𝑋1 has strictly

smaller Euler genus than 𝐺 ∅ . This implies that 𝐺𝑋1 has strictly

smaller Euler genus than 𝐺 ∅ .

We can iterate this process: if we take any minimum Euler genus

embedding Π1 of𝐺
𝑋1 and it turns out that Π1 has small face-width,

there is a set 𝑋2 of small cardinality such that 𝐺𝑋1∪𝑋2 has strictly

smaller Euler genus. It will be useful later to allow subsequent steps

in this process to ask for larger and larger face-width (and thus

allowing larger cut sets 𝑋2, 𝑋3, . . .). Note that the number of steps

is bounded by the Euler genus of 𝐺 .

More formally, let us define a function 𝜅 : {0, 1, . . . , 𝑔, 𝑔+ 1} → N

by setting 𝜅 (0) = 0 and 𝜅 (𝛾 + 1) = 𝑝𝜅 (𝜅 (𝛾)) for a polynomial

𝑝𝜅 (𝑥) = 𝑥 + 𝑓ue (𝑔) + 𝑐 · (𝑥 + 𝑔 + 1)4, where 𝑐 is a sufficiently large

constant. We set 𝑘 = 𝑓cut (𝑔) = 𝜅 (𝑔 + 1) ≔ 𝑝𝜅 (𝜅 (𝑔)) ∈ 22
O(𝑔)

.

Let 0 ⩽ 𝛾 ⩽ 𝑔. A set 𝑋 ⊆ 𝑉 (𝐺) is a potential deletion set for 𝛾 if

|𝑋 | ⩽ 𝜅 (𝛾) and the Euler genus of𝐺𝑋 is at most𝑔−𝛾 . Let 0 ⩽ 𝛾0 ⩽ 𝑔

be the maximum integer such that there exists a potential deletion

set for 𝛾0; note that 𝛾0 exists as 𝑋 = ∅ is a potential deletion set for

𝛾 = 0. Let 𝜅0 ⩽ 𝜅 (𝛾0) be the minimum size of a potential deletion

set for 𝛾0. A potential deletion set for 𝛾0 of size 𝜅0 shall be called a

deletion set.

LetX be the family of all deletion sets. Let𝑋0 =
⋂

X be the set of

those vertices of 𝐺 that are contained in every deletion set; clearly

|𝑋0 | ⩽ 𝜅0. We define also 𝑍 ≔
⋃

X to be the set of all vertices

contained in any deletion set. We remark that known algorithms for

Genus Vertex Deletion (e.g., [25]) can be modified to compute

𝛾0, 𝜅0, 𝑋0, 𝑍 , and an arbitrary element of X in FPT time when

parameterized by 𝑔.

In this overview we assume 𝛾0 < 𝑔; the case 𝛾0 = 𝑔 (i.e., we

reach a planar graph in the end of the process described above)

can be handled very similarly, using the fact that a 3-connected

plane graphs has a unique planar embedding. By the choice of 𝛾0,

for every 𝑋 ∈ X the graph 𝐺𝑋 admits an embedding Π
𝑋 of Euler

genus𝑔−𝛾0 and face-width at least 𝑓ue (𝑔)+𝑐 · (𝜅0+𝑔+1)
4, i.e., much

larger than both 𝜅0 and 𝑓ue (𝑔). In particular, Π𝑋 has the minimum

possible Euler genus, which is 𝑔 − 𝛾0, and is the unique embedding

of 𝐺𝑋 of this Euler genus.

Although it can be easily seen that the treewidth of 𝐺 −𝑉 (𝐺𝑋 )

is O(𝑞 + 𝜅0) and the uniqueness of the embedding of 𝐺𝑋 makes

its automorphism group simple, we cannot return𝑉genus = 𝑉 (𝐺𝑋 ),

because the choice of 𝑋 ∈ X is not isomorphism-invariant. The

crux of the approach lies in showing that the graph 𝐺𝑍 can be

defined similarly as 𝐺𝑋 , while now 𝑍 Ð the union of all deletion

sets Ð is defined in an isomorphism-invariant way. Namely, 𝐺𝑍 is

the unique large 3-connected component of 𝐺 − 𝑍 , which can be

well defined despite the fact that the size of 𝑍 may be much larger

than 𝑘 . Then 𝐺𝑍 has similar embedding properties as 𝐺𝑋 , while

it turns out that 𝐺 −𝑉 (𝐺𝑍 ) still has low treewidth. Thus we can

return 𝑉genus = 𝑉 (𝐺𝑍 ). Intuitively, the key to proving the viability
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of this strategy is to show that two elements 𝑋,𝑋 ′ ∈ X cannot

differ too much from each other, and therefore 𝑍 =
⋃

𝑋 ∈X 𝑋 is

structurally not much different from every single 𝑋 ∈ X.

For 𝑋 ∈ X and𝑤 ∈ 𝑉 (𝐺) \𝑋 , we define the projection 𝜋𝑋 (𝑤) ⊆

𝑉 (𝐺𝑋 ) as follows. If 𝑤 ∈ 𝑉 (𝐺𝑋 ), then 𝜋𝑋 (𝑤) = {𝑤}. Otherwise,

letting 𝐶𝑤 be the component of 𝐺 − 𝑋 −𝑉 (𝐺𝑋 ) containing𝑤 , we

set 𝜋𝑋 (𝑤) = 𝑁𝐺−𝑋 (𝐶𝑤). Note that |𝑁𝐺−𝑋 (𝐶𝑤) | ∈ {0, 1, 2} and if

|𝑁𝐺−𝑋 (𝐶𝑤) | = 2, then 𝐺𝑋 contains an edge connecting the two

elements of 𝑁𝐺−𝑋 (𝐶𝑤).

For 𝑋 ∈ X, we define the set Γ𝑋 of attachment points as follows.

For every 𝑣 ∈ 𝑋 \𝑋0, we define the set Γ
𝑋 (𝑣) of attachment points

of 𝑣 as the union of 𝜋𝑋 (𝑢) over all𝑢 ∈ 𝑁𝐺 (𝑣) \𝑋 . Finally, we define

Γ
𝑋
=
⋃

𝑣∈𝑋\𝑋0
Γ
𝑋 (𝑣).

The first step in our analysis of X is to observe that the attach-

ment points are local in the following sense.

Lemma 2.3 (informal statement). For every 𝑋 ∈ X, there is a

set Λ𝑋 ⊆ Γ
𝑋 of size O((𝑔 + 𝜅0 + 1)2) such that Γ𝑋 is covered by the

union of radial balls in Π
𝑋 of radius 9 centered at vertices of Λ𝑋 .

The proof of Lemma 2.3 goes roughly as follows: if for some

𝑣 ∈ 𝑋 the set Γ𝑋 (𝑣) cannot be covered by a small number of radial

balls, then one can pack many vertex-disjoint radial balls of radius

3 around the attachment points. Using the 3-connectivity of 𝐺𝑋 ,

one can argue that these radial balls give rise to many 𝐾5 minor

models intersecting only at 𝑣 . This implies 𝑣 ∈ 𝑋0, a contradiction.

Using the above, we prove that any two elements of X need to

be somewhat similar, in the sense that their attachment points are

close to each other.

Lemma 2.4 (informal statement). Consider any 𝑋,𝑋 ′ ∈ X.

Then for every𝑤 ∈ 𝑋 ′ \ 𝑋 , the elements of 𝜋𝑋 (𝑤) are within radial

distance O((𝑔 + 𝜅0)
2) from Λ

𝑋 in Π
𝑋 .

For the proof of Lemma 2.4, assume there is 𝑤 ∈ 𝑋 ′ \ 𝑋 with

𝜋𝑋 (𝑤) radially far from Λ
𝑋 (and thus also far from Γ

𝑋 ). Since 𝜅0 is

still significantly smaller than 𝑘 , the graph 𝐺𝑋 ′∪𝑋 is well-defined

and it has a unique embedding Π
𝑋∪𝑋 ′

with large face-width and

of the same Euler genus 𝑔 − 𝛾0. One can now argue that a big part

of the graph “betweenž Λ𝑋 and 𝜋𝑋 (𝑤) is embedded in the same

way in embeddings Π𝑋 , Π𝑋 ′
, and Π

𝑋∪𝑋 ′
. This gives ground for

a replacement argument: if Π𝑋 is able to embed 𝜋𝑋 (𝑤), and the

area between 𝜋𝑋 (𝑤) and Λ
𝑋 is embedded in the same way in Π

𝑋

and in Π
𝑋 ′
, then one can modify the embedding Π

𝑋 ′
using a part

of the embedding Π
𝑋 to obtain an embedding of 𝐺𝑋 ′\{𝑤 } . This

embedding can be turned into an embedding of 𝐺 − (𝑋 ′ \ {𝑤}) of

Euler genus 𝑔 − 𝛾0, contradicting the minimality of 𝑋 ′ ∈ X.

With Lemma 2.4 established, we can proceed to the analysis of

𝑍 =
⋃

𝑋 ∈X 𝑋 . Lemma 2.4 shows that for any fixed 𝑋 ∈ X, 𝑍 \ 𝑋 is

contained in O((𝑔 +𝜅0)
2) radial balls in Π

𝑋 , each of radius O((𝑔 +

𝜅0)
2). First, since |𝑋 | = 𝜅0, this gives a bound on the treewidth of

𝐺 [𝑍 ] using the fact that graphs of bounded genus have bounded

local treewidth Ð the treewidth is bounded linearly in the radial

radius. Second, it shows that𝐺𝑋 \𝑍 , with the embedding inherited

from 𝐺𝑋 , still has large face-width. This allows us to define 𝐺𝑍

as the unique 3-connected component of 𝐺 − 𝑍 with Euler genus

𝑔 − 𝛾0 and large face-width of the embedding.

The face-width lower bound makes the embedding of𝐺𝑍 unique,

imposing a very rigid structure on the automorphism group of 𝐺𝑍 .

With some technical care, the treewidth bound on 𝐺 [𝑍 ] can be

lifted to a treewidth bound on𝐺 −𝑉 (𝐺𝑍 ). Since the definition of 𝑍

is isomorphism-invariant, our definition of𝐺𝑍 is also isomorphism

invariant. So all requirements are satisfied to set 𝑉genus = 𝑉 (𝐺𝑍 )

and 𝑉tw = 𝑉 (𝐺 −𝑉 (𝐺𝑍 )). This finishes the sketch of the proof of

Theorem 2.1.

The General Case. We now discuss how the strategy presented

above can be lifted to the general case of 𝐻 -minor-free graphs.

Here, the main tool will be the Structure Theorem of Robertson

and Seymour. We first need to recall some terminology.

A tangle T of order 𝑝 in a graph 𝐺 is a family of separations of

order less than 𝑝 in 𝐺 such that (i) for every separation (𝐴, 𝐵) of

order less than 𝑝 , either (𝐴, 𝐵) or (𝐵,𝐴) is in T , (ii) for every three

elements (𝐴1, 𝐵1), (𝐴2, 𝐵2), (𝐴3, 𝐵3) ∈ T , we have 𝐴1 ∪𝐴2 ∪𝐴3 ≠

𝑉 (𝐺). If (𝐴, 𝐵) ∈ T , then 𝐴 is the small side and 𝐵 is the big side

of the separation (𝐴, 𝐵). For a vertex subset 𝑋 and a tangle T , by

T − 𝑋 we denote the set of all separations (𝐴, 𝐵) of 𝐺 − 𝑋 such

that (𝐴 ∪ 𝑋, 𝐵 ∪ 𝑋 ) ∈ T . It is straightforward to check that if T

has order 𝑝 > |𝑋 |, then T − 𝑋 is a tangle of order 𝑝 − |𝑋 |.

Let us come back to the proof of Theorem 1.6. The threshold 𝑘

will be set later, but let us imagine for a moment that it is defined.

Then note that the unbreakability assumption on𝐺 in Theorem 1.6

allows us to define the unbreakability tangle of order 𝑘+1: the tangle

consists of all separations (𝐴, 𝐵) of order at most 𝑘 with |𝐴| ⩽ 𝑞(𝑘).

This defines a tangle as long as |𝐺 | > 3𝑞(𝑘), and otherwise we can

return 𝑉tw = 𝑉 (𝐺) and 𝑉genus = ∅.

In the general case we will work with near-embeddings of graphs;

in this matter, we mostly follow the the notation from [9]. Given a

graph 𝐺 , a near-embedding of 𝐺 consists of:

(1) a set A ⊆ 𝑉 (𝐺), called the apices;

(2) a partition of the graph 𝐺 − A into edge-disjoint subgraphs

𝐺 − A = 𝐺0 ∪

𝑘◦⋃

𝑖=1

𝐺◦
𝑖 ∪

𝑘△⋃

𝑖=1

𝐺△
𝑖 ;

(3) an embedding Π of 𝐺0 into a (compact and connected) sur-

face Σ.

The following properties have to be satisfied:

(1) Every vertex of𝐺 −A that belongs to at least two subgraphs

of the partition, belongs to 𝐺0.

(2) For every 1 ⩽ 𝑖 ⩽ 𝑘△ , |𝑉 (𝐺△
𝑖 ) ∩ 𝑉 (𝐺0) | ⩽ 3. (The graphs

𝐺△
𝑖 are henceforth called dongles.)

(3) The graphs (𝐺◦
𝑖 )

𝑘◦

𝑖=1 are pairwise vertex-disjoint.

(4) For every 1 ⩽ 𝑖 ⩽ 𝑘◦, the set𝑉 (𝐺◦
𝑖 ) ∩𝑉 (𝐺0) can be enumer-

ated as {𝑣◦𝑖,1, . . . , 𝑣
◦
𝑖,𝑛◦

𝑖

} so that 𝐺◦
𝑖 admits a path decomposi-

tion (B◦𝑖,1, . . . ,B
◦
𝑖,𝑛◦

𝑖

) with 𝑣◦𝑖, 𝑗 ∈ B
◦
𝑖, 𝑗 for every 1 ⩽ 𝑗 ⩽ 𝑛◦𝑖 .

The graph𝐺◦
𝑖 is called a vortex and the vertices 𝑣◦𝑖, 𝑗 are called

the society vertices of the vortex 𝐺◦
𝑖 . The number of society

vertices, 𝑛◦𝑖 , is the length of a vortex.

(5) On the surface Σ there exist closed discs with disjoint in-

teriors (𝐷△
𝑖 )

𝑘△

𝑖=1 and (𝐷◦
𝑖 )

𝑘◦

𝑖=1 such that Π embeds 𝐺0 into

the closure of Σ \
(⋃𝑘△

𝑖=1 𝐷
△
𝑖 ∪

⋃𝑘◦

𝑖=1 𝐷
◦
𝑖

)
and the following

conditions hold:

• For every 1 ⩽ 𝑖 ⩽ 𝑘△ , the vertices of 𝐺0 that lie on the

boundary of𝐷△
𝑖 are exactly the vertices of𝑉 (𝐺△

𝑖 )∩𝑉 (𝐺0).
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• For every 1 ⩽ 𝑖 ⩽ 𝑘◦, the vertices of 𝐺0 that lie on the

boundary of 𝐷◦
𝑖 are exactly the vertices of𝑉 (𝐺◦

𝑖 ) ∩𝑉 (𝐺0).

Furthermore, these vertices lie around the boundary of

𝐷◦
𝑖 in the order 𝑣◦𝑖,1, . . . , 𝑣

◦
𝑖,𝑛◦

𝑖

.

We say that a near-embedding E captures a tangle T if for each

separation of T −A, the big side of this separation is not contained

in any dongle 𝐺△
𝑖 or in any vortex 𝐺◦

𝑖 .

The following statement is the main structural result of the

Graph Minors series and appears as (3.1) in [35].

Theorem 2.5. For every nonplanar graph 𝐻 there exist integers

𝑘𝐻 , 𝛼𝐻 ⩾ 0 such that for every 𝐻 -minor-free graph 𝐺 and every tan-

gle T of𝐺 of order at least 𝑘𝐻 ,𝐺 admits a near-embedding capturing

T where the number of apices, the Euler genus of the surface, the

number of vortices, and the maximum adhesion size of a vortex are

all bounded by 𝛼𝐻 .

Thus, if we set the threshold 𝑘 to be larger than 𝑘0 = 𝑘𝐻 +𝛼𝐻 +1,

then Theorem 2.5 asserts that there exists a near-embedding E of𝐺

that captures the unbreakability tangle where the number of apices

and the maximum adhesion size of a vortex is bounded by 𝑘0. This

in particular implies that every dongle and every bag of a vortex

has size bounded by 𝑞0 ≔ 𝑞(𝑘0).

To imitate the role of 𝜅 from the bounded genus case, consider

the following refinement process. Recall that Π is the embedding

of 𝐺0 in the near-embedding E. If the face-width of Π is small

(i.e., bounded by a function of 𝑞0), or if two vortices are close in

the radial distance in Π (again, meaning that the radial distance is

bounded as a function of 𝑞0), we can move all vertices appearing on

the corresponding curve on the surface to the apex set, decreasing

either the Euler genus or the number of vortices. If such a curve

passes through a vortex or a disc corresponding to a dongle, we

move also to the apex set the entire dongle or two bags of a vortex Ð

the ones at society vertices where the curve entered and left the disc

of a vortex. In this way we have obtained a new near-embedding

Ẽ, which uses fewer vortices or a simpler surface, but where the

number of apices has grown to at most some function of 𝑞0 Ð call

it 𝑘1. Denote 𝑞1 = 𝑞(𝑘1) and iterate this process, as in the bounded

genus case. The number of iterations is bounded by O(𝛼𝐻 ), since

every iteration either decreases the genus or the number of vortices.

So eventually the process stops after some 𝜄 ⩽ O(𝛼𝐻 ) iterations,

reaching a near-embedding that has at most 𝑘𝜄 apices, but has

face-width and the radial distance between vortices larger than

any function of 𝑞𝜄 fixed in advance. Here we stop; we will analyze

the family of all such near-embeddings, and call them henceforth

optimal.

Note that the argument above uses the unbreakability assump-

tion only for a bounded Ð in terms of 𝑘𝐻 , 𝛼𝐻 , and the function

𝑞 Ð initial values 𝑞. The bound on the number of those values

constitutes our threshold 𝑘 .

At this moment, most of the reasoning for bounded genus can

be adjusted. First, there is a well-defined notion of universal apices:

these are vertices of 𝐺 that are apices in all optimal-near embed-

dings. Then we can prove an analog of Lemma 2.3, which shows

that in every optimal near-embedding, the attachment points of

non-universal apices appear locally on the surface: up to technical

details, they can be covered by a bounded number of bounded-

radius balls. Second, leveraging on that, we prove an analog of

Lemma 2.4: for any two optimal near-embeddings E and Ẽ, if we

additionally assume that Ẽ has inclusion-wise minimal set of ver-

tices contained in vortices, then every vertex that is an apex or is

in a vortex in Ẽ, is also either an apex of E or is close (in radial

distance) to a vortex or an attachment point of a non-universal apex

of E.

Finally, this allows us to argue the following. Define 𝑍 to be the

set of all vertices of𝐺 that can be apices or be contained in vortices

in an optimal near-embedding with an inclusion-wise minimal set

of vertices contained in vortices. Then 𝐺 − 𝑍 contains a unique

3-connected component 𝐻 of large treewidth. Further, any optimal

near-embedding of 𝐺 as above projects to a near-embedding of 𝐻

without vortices or apices, but into the same surface and with still

large face-width. This allows us to use Theorem 2.2 to be able to

proclaim 𝑉 (𝐻 ) to be the 𝑉genus part. As before, we are left with

arguing that the graph𝐺 −𝑉genus = 𝐺 [𝑉tw] has bounded treewidth.

Again, this follows from the fact that surface-embedded graphs

have locally bounded treewidth, which we use in conjunction with

the radial bounds provided by the analog of Lemma 2.4.

Note that in the plan sketched above, we cannot directly apply

Theorem 2.2 to 𝐻 , as 𝐻 is not a completely embeddable graph:

the near-embedding inherited from a near-embedding of 𝐺 has no

apices or vortices, but still may contain dongles. To circumvent

this issue, we prove that in 3-connected graphs, the dongles can be

chosen in a canonical way so that we may essentially speak about

the unique near-embedding of 𝐻 . We remark that the canonical

choice of dongles is also crucially used in the replacement argument

underlying the proof of the analog of Lemma 2.4.
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